iemn

Institut d'Electronique, de Microélectronique et de Nanotechnologie

UMR CNRS 8520

Custo

Optically-Pumped Terahertz Sources and Applications

Jean-François Lampin Terahertz Photonics Group IEMN CNRS Lille University

Universite de Lille

Introduction

THz ? Driven by applications

- Strong interactions with matter
- Huge bandwidths
- Imaging

How to generate THz waves?

The THz band

THz Photomixing

Volume 1, Number 4

de Microélectronique

t de Nanotechnologie MR CNRS 8520

APPLIED PHYSICS LETTERS

1 December 1962

OPTICAL FREQUENCY MIXING IN BULK SEMICONDUCTORS¹

M. DiDomenico, Jr.,² R. H. Pantell,³ O. Svelto,⁴ J. N. Weaver

Microwave Laboratory, W. W. Hansen Laboratories of Physics Stanford University, Stanford, California (Received October 1, 1962; in final form October 29, 1962)

6

• LT-GaAs Photoconductor: Elliott Brown et al. (1995)

• UTC photodiodes: T. Ishibashi, H. Ito et al. (1997)

UTC-PD: State of the art

- Wideband antenna
 ≈1-2 µW @ 1 THz
- Resonant antenna $\approx 10\text{--}20 \ \mu\text{W} @ 1 \ \text{THz}$ $\approx 500 \ \mu\text{W} @ 350 \ \text{GHz}$

RCE UTC-PD 0.75 mW @300GHz

THz Photomixing at IEMN

$\approx 1 \text{ mW}$ @ 300 GHz, efficiencies $\approx 0.1\text{--}1$ %

2 µm

THz generation: parametric & DFG

Takunori Taira · Jun-ichi Shikata · Kodo Kawase

DFG in MIR QCLs

For a review: K. Fujita,, M. A. Belkin, Nanophotonics 7, 1795 (2018)

Hamamatsu : 1mW/W² peak @ 2.5 THz (Mo-AM-6-1)

State of the art CW solid-state THz sources

Natural THz lasers

Microwave and THz masers exist in the universe in molecular clouds !

658 GHz Maser, Hunter 2007

The molecular lasers

The molecular discharge lasers:

1964: The H₂O laser by Crocker, Gebbie, Kimmit and Mathias

1965: Patel (CO₂ laser)

M. Kimmit (KJB prize 2004)

K. Patel

- Works with only few molecules
- Problem of dissociation
- Lethal voltage, low efficiency
- Only CO₂ was really successful

Molecular infrared absorption

Visible

IR

Venus greenhouse effect

Principle of OPTLs OPTL = Optically Pumped Terahertz Laser (Chang & Bridges 1970, Bell Labs, Holmdel) DET E A& BEAM FIR FABRY-PEROT in Sb SPLITTE INTERFEROMETER DET. AAAExcited FIR FLAT MIRROR WITH CONCAVE POLYETHYLENE OUT COUPLING HORN MIRROR states T.-Y. Chang THz PREAM $\approx 5 kT$ KCL WINDOW emission AL BÉAM SCANNING SPLITTER VAC. MOTOR PUMP A MIR pump? ... the CO₂ Laser Vibrational MIR de-excitation 10,6 µm 9.6 µm CO2 Put R pump CH₃OH Ground (methanol) state number of P emission lines CH₃OH (cm -1) 950 1000 1050 1100 mn de Microélectronique de Nanotechnologie R CNRS 8520

A revolution in the IR world: QCLs !

Faist et al., Science (1994)

- Monomodes CW QCL: external cavity, DFB
- Commercially available with 100's mW

Tunable QCLs

Why pumping an OPTL with a QCL?

Comparison with CO₂ lasers:

Advantages:

- Compactness
- Low power consumption
- Continuous tunability

Drawbacks:

- Lower power
- Needs monomode QCL
- More sensitive to feedback

Why pumping an OPTL with a QCL?

Comparison with CO₂ lasers:

Advantages:

- Compactness
- Low power consumption
- Continuous tunability

Drawbacks:

- Lower power
- Needs monomode QCL
- More sensitive to feedback

The main advantage is: QCL allows to pump *light molecules* with **high dipolar moment**:

- High gain
- Fast relaxation
- Frequencies OK for applications

A very common molecule...

The ammonia molecule (NH3)

The ammonia molecule (NH3)

The ammonia molecule (NH3)

The ammonia molecule (NH₃)

Pure inversion transitions in NH3

Inversions: $\approx 1 \text{ THz}$

Selection rules for optical transitions:

- $\Delta v_2 = 0 \text{ or } \pm 1$
- $\Delta \mathbf{K} = \mathbf{0}$
- $\Delta \mathbf{J} = 0 \text{ or } \pm 1$

mn

t de Nanotechnologie MR CNRS 8520

• s←a and a←s

de Microélectroniau

Pure inversion transitions in NH₃

IR CNRS 852

Rotation-inversion transitions in NH3

Rotations: $2B \approx 0.6$ THz

Selection rules for optical transitions:

- $\Delta v_2 = 0 \text{ or } \pm 1$
- $\Delta \mathbf{K} = \mathbf{0}$

emn

et de Nanotechnologie IMR CNRS 8520

- $\Delta \mathbf{J} = 0 \text{ or } \pm 1$
- s←a and a←s

NH₃ MIR pumping with a QCL

MIR absorption spectrum of NH_3 around 966 cm⁻¹ (simulation)

mn

t de Nanotechnologie

de Microélectronique

- Q-branch transitions
 (\Delta J = 0)
- Cell length: 50 cm
- Pressure: 50 µbar
- Dense region
- Strong lines !
- FWHM ≈ 80 MHz
- No coincidence with CO₂ lines !

The first setup

The first try

Lasing with 0.1 W pump (instead of 10 W) ???

First results at 1.073 THz

- Pyro calibrated at PTB
- Threshold is very **low**: 2 mW
- Real power is twice (symmetry)
 ≈ 40 μW
- Differential efficiency:
 0.8 mW/W (3,3)
- 10 laser lines have been obtained
- Optimum pressure \approx 1 Pa

1st THz generation by a laser pumped by a QCL !

A. Pagies *et al.*, APL Photonics **1** 031302 (2016) A. Pagies *et al.*, IRMMW-THz 2016

New design of the cavity

Institut d'Electronique, de Microélectronique et de Nanotechnologie UMR CNRS 6520

Mode measurements

I2S TZcam microbolometer camera

mn

t de Nanotechnologie IMR CNRS 8520

que, de Microélectronique

Mode measurements

TE₀₁ mode of the cylindrical metallic waveguide (low loss)

I2S TZcam microbolometer camera

mn

de Nanotechnologie

de Microélectronique

ATHz real-time video

Movie of a HR silicon substrate at 1.073 THz with TZcam (I2S microbolometer camera)

35

Gain measurements set-up

de Microélectroniau

10 mm diameter, 50 cm long copper cell with Si Brewster windows

M. Micica et al., IRMMW-THZ 2017
M. Micica *et al.*, Optics Express **26**, 21242 (2018)

Gain measurements

Gain measurements

Other 1 THz inversion laser lines

1 THz VDI subharmonic mixer

Lamb dip transfer: well known effect in THz molecular lasers produced by stronger saturation of the mid-IR transition when the QCL is pumping at the line center

mn

le Microélectroniqu

See for example T. A. De Temple et al., J. IR MM Waves, 7, 1-41 (1983)

Phase noise

Local oscillator for heterodyne

SOLEIL synchrotron FTIR resolution limited to 30 MHz

Experimental molecular spectra

Portions of the IF spectra extracted from the 2.5 GHz full bandwidth

Spectra are recorded in 1 s using the same 1,073,049 MHz LO The vertical dotted lines indicate the literature frequencies

Phase lock and rotational lines

Phase-locking successful: sub-Hz linewidth

➤ ~ 0.04rad residual rms phase noise → > 99.5% of BN signal power coherently locked

de Nanotechnologie

July update: ¹⁴NH₃ **Rotational** laser lines 0.742, 1.34, 3.1 THz

Rotational line of ¹⁵NH₃ at 4.5 THz M. Wienold *et al.* Tu-Po2-104

Conclusion

- 1st THz laser pumped by a MIR QCL & 1st THz molecular laser pumped by a solid-state source
- Room temperature, high gain, no high voltage
- \approx **30 new laser lines** available around 1 THz with NH₃
- 1 mW CW @ 1.073 THz, 10 mW/W, THz WPE = 10⁻⁴
- Rotation-inversion lines: 0.7 5 THz

Photomixing: 10 μ W @ 1.04 THz, efficiency: 1.6x10⁻⁵ MIR-QCL intracavity DFG: 0.6 mW/W², CW RT: 14 μ W @ 3.4 THz, THz WPE = 0.8x10⁻⁶

Applications:

- THz imaging (far- & near-field)
- Local oscillator for heterodyne receivers)
- Metrology (low phase noise, molecular clock ?)
- Magnetospectroscopy

THANK YOU!

iemn

centralelille

0

NH₃ was investigated...

Unfortunately **no coincidence** between standard NH₃ and standard CO₂ lasers !

Chang, Bridges, Burkhardt APL 1970

de Microélectronique

t de Nanotechnologie MR CNRS 8520

- Rotational transition @ 3.7 THz
- Cascade
- N₂O pumping

©1999 Kvantovaya Elektronika and Turpion Ltd

CONTROL OF LASER RADIATION PARAMETERS

Quantum Electronics 29 (8) 704-707 (1999)

PACS numbers: 42.55.Lt; 42.62.Eh

Experimental investigation of a waveguide submillimetre optically pumped laser

G N Grachev, V F Zakhar'yash, V M Klement'ev, A G Khamoyan

