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This thesis presents the realization of a hybrid quantum device, in 
which collective degrees of freedom of an ensemble of spins in a crys-
tal are used as a multi-qubit register for superconducting qubits. A 
memory protocol able to store and retrieve on demand the state of a 
large number of qubits in a spin ensemble is first presented, followed 
by the demonstration of building blocks of its implementation with NV 
center spins in diamond. Incoming quantum states are written by reso-
nant absorption of a microwave photon in the spin ensemble, and then 
read out of the memory by applying refocusing sequences. 

In a first experiment, the write step of the protocol is demonstrated by 
integrating on the same chip a superconducting qubit, a resonator with 
tunable frequency, and the ensemble of NV centers. Arbitrary qubit 
states are stored into the spin ensemble via the resonator. In a second 
experiment, an important building block of the read step of the protocol 
is demonstrated, which consists in retrieving multiple classical micro-
wave pulses down to the single photon level using Hahn echo refocus-
ing techniques. A reset step is implemented in-between two succes-
sive sequences using optical repumping of the spins.

Cette thèse porte sur la réalisation d'un dispositif quantique hybride, 
dans lequel les degrés de liberté collectifs d'un ensemble de spins 
dans un cristal sont utilisés comme une mémoire quantique multimode 
pour les qubits supraconducteurs. Un protocole capable de stocker et 
récupérer à la demande les états d'un grand nombre de qubits dans 
un ensemble de spins est d’abord présenté, suivi de la démonstration 
expérimentale des briques de bases de son implémentation avec des 
centres NV dans le diamant. Les états quantiques sont écrits par 
absorption résonante d'un photon micro-onde dans l'ensemble de 
spins, et lus par application d'une séquence de refocalisation de type 
écho de Hahn. La réinitialisation de la mémoire entre deux séquences 
successives est implémentée par repompage optique des spins.
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S U P E RV I S O R ’ S F O R E W O R D

The research project described in Cécile Grezes’s PhD thesis takes place within
a large effort worldwide to build a new type of machine called a quantum
computer. A quantum computer relies on registers of quantum two-level sys-
tems called qubits, which obey the laws of quantum physics. By placing the
qubit registers in complex superpositions of quantum states according to the
rules of a quantum algorithm, a quantum computer can implement certain
tasks more efficiently than a classical machine, such as factorizing large num-
bers or simulating interacting quantum systems. Because of their coupling to a
fluctuating environment, qubits placed in superpositions of states retain their
quantum coherence only during a finite time; this coherence time defines the
longest calculation that can be performed with the computer. Electrical circuits
made in superconducting metallic electrodes and incorporating tunnel junc-
tions, cooled at millikelvin temperatures in a dilution refrigerator, are among
the most promising qubit candidates nowadays, with demonstrations of ele-
mentary processors including up to 10 qubits. However, the coherence time
of superconducting qubits is presently too short (few tens of microseconds) to
hope building a truly operational large-scale quantum computer.

A new research direction emerged in 2008 to solve this issue, when several
theorists proposed to combine superconducting qubits with other quantum
systems having much longer coherence times which would serve as quantum
memory and could thus extend the time allowed for a quantum computation.
It rapidly appeared that ensembles of electronic spins in a solid could be well
suited for this idea. When embedded in ultra-pure crystals, spins can have
coherence times reaching seconds or hours. In our group, we started an ex-
perimental effort to build a quantum memory using an ensemble of nitrogen-
vacancy (NV) centers in diamond. NV centers consist of a substitutional nitro-
gen atom sitting next to a vacancy of the diamond lattice; their ground state
has a spin degree of freedom with a demonstrated coherence time up to 1 sec-
onde, which is thus promising to store quantum information.

When Cécile arrived in the group to work on this project for her PhD, early
initial steps had been taken by postdoc Yuimaru Kubo, who had demonstrated
spectroscopically the coherent coupling of an ensemble of NV centers to mi-
crowave photons in a superconducting resonator. However, the design and real-
ization of an operational quantum memory remained very far from reach, and
this was precisely the PhD subject of Cécile. As a first step of her thesis work,
Cécile was involved in a collaboration with theorists from Aarhus University
in Danemark. This made possible to devise a complete quantum memory pro-
tocol and to calculate its fidelity for realistic parameters. The protocol includes
a "write" step during which the quantum state is transferred from a supercon-



ducting qubit into the spin-ensemble memory, and a subsequent "read" step
triggered by complex sequences of microwave pulses to recover the state after
storage.

The first experiment demonstrating the "write" step was a success, in which
Cécile was actively involved at the beginning of her PhD. But the most ex-
perimentally challenging part was the implementation of the "read" step of the
protocol. Indeed, it required the combination of spin-echo techniques borrowed
from magnetic resonance, with optical irradiation to actively reset the spins in
their ground state between experimental sequences, all the experiment being
cooled at millikelvin temperatures. Cécile took the lead of this experimental
effort. Thanks to her dedicated work, insight, and talent, she obtained sev-
eral remarkable results, which culminated with the first demonstration of the
storage of a microwave pulse at the single-photon level into the NV ensemble
memory, and its retrieval 100 microseconds later by a spin-echo sequence. This
is a landmark result for this field, which opens the way to realistic quantum
memory implementations in a near future. As a recognition of the significance
of her work, Cécile was asked to give an invited talk at the Americal Physical
Society 2015 March meeting, and she received the Madeleine Lecoq prize from
the French Academy of Sciences.

Cécile’s PhD manuscript contains a detailed account of this work, from the
description of the quantum memory protocol up to the experimental imple-
mentation of most of its building blocks. It also includes a chapter which sum-
marizes all the theoretical aspects needed to understand this complex system
involving superconducting qubits, resonators, ensembles of spins, microwave
and optical photons. I believe this manuscript will constitute a reference for
people interested in the field, and I am very glad to see it published.
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A B S T R A C T

Processing quantum information requires quantum-mechanical systems with
long coherence times and that can be easily coupled together to perform logic
operations. Superconducting qubits are well suited to perform the rapid logic
gates since they couple very strongly to microwave fields, but have coherence
times limited so far to tens of microseconds. This limitation has motivated pro-
posals to combine them to a physical system better protected against decoher-
ence. In this hybrid architecture, a memory provides the long-lived register of
N quantum states and a few-superconducting qubit processor performs qubit
gates to create multi-qubit entanglement. The implementation comes however
with new challenges. The multi-qubit register must be able to store N quantum
states (write), retrieve each of them on-demand (read), and be re-initialized be-
tween successive experimental sequences (reset).

This thesis work discusses the development of these three memory opera-
tions in a hybrid quantum circuit, in which collective degrees of freedom of an
ensemble of NV center spins in diamond are used as a multimode quantum
memory for superconducting qubits. In the first part of the thesis, I present the
details of our quantum memory protocol. It relies on the coupling of the NV
ensemble to a resonator with tunable frequency and quality factor. Incoming
quantum states are written by resonant absorption of a microwave photon in
the spin ensemble, and then read out of the memory by applying a sequence of
control pulses to the spins and to the resonator. The second part of the thesis
reports our experimental efforts towards the implementation of this protocol,
which requires a combination of the most advanced techniques of supercon-
ducting quantum circuits and pulsed electron spin resonance.

The write step of the protocol is demonstrated in a first experiment by in-
tegrating on the same chip a superconducting qubit, a resonator with tunable
frequency, and the NV ensemble. Arbitrary qubit states are stored into the spin
ensemble via the resonator. After storage, the resulting collective quantum state
is rapidly dephased due to inhomogeneous broadening of the ensemble and
a refocusing sequence must be applied on the spins to bring them to return
in phase and to re-emit collectively the quantum state initially absorbed as an
echo. In a second experiment, we demonstrate an important building block
of this read-out operation, which consists in retrieving multiple classical mi-
crowave pulses down to the single photon level using Hahn echo refocusing
techniques. Finally, optical repumping of the spin ensemble is implemented in
order to reset the memory in-between two successive sequences.
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1 I N T R O D U C T I O N A N D E X E C U T I V E S U M M A RY

1 rationale for the hybrid way

Research in quantum physics has undergone a major breakthrough over the
last few decades with the advent of experimental techniques able to manip-
ulate the state of individual quantum systems. This progress has triggered a
large effort worldwide to use non-classical phenomena to carry out informa-
tion processing tasks more efficiently than allowed by classical physics. One
of these applications, the quantum computer, takes advantage of entanglement
and massive parallelism enabled by the superposition principle to solve prob-
lems intractable by classical computers. In quantum information processing
(QIP), information is encoded in the quantum state of quantum bits (or qubits)
with basis states |0〉 and |1〉. As classical information, it can be materialized in
different physical forms and converted from one to another without changing
its content. The choice of the physical implementation is left to the "quantum
engineer": either natural microscopic systems such as atoms, ions, photons,
electron and nuclear spins, or more artificial systems such as superconducting
qubits, nanomechanicals resonators, or semiconducting heterostructures. Each
physical system has specific advantages from the point of view of QIP. Mi-
croscopic systems benefit from a natural decoupling from their environment
which results in long coherence times, mechanical resonators can be function-
alized to measure various forces, photons are interesting for communications
while superconducting circuits are electrically addressable and well suited for
rapid logic gates. It is then natural to imagine that integrating different physi-
cal resources will lead to new quantum devices with new functionalities. This
is the framework of the emerging field of hybrid quantum systems that aims
to couple different quantum systems with complementary properties to benefit
from their respective advantages [1, 2].

The birth of this field is linked to the development of circuit quantum electro-
dynamics (cQED), in which superconducting qubits interact with microwave
photons in a resonator [3, 4]. Indeed, in cQED, the quantum systems are pur-
posely designed electrical circuits offering a large flexibility that can be ex-
ploited for coupling to other systems. Superconducting qubits are promising
candidates for building a quantum computer since they couple very strongly
to microwave fields, which enables rapid single- and multi-qubit gates, but
have coherence times limited so far to tens of microseconds [5, 6], allowing
only a short time window to perform quantum calculations before the whole
system decoheres. This time limitation has motivated early hybrid quantum
system proposals of increasing the coherence time of superconducting qubits
by combining them to other quantum systems better protected against decoher-
ence. It was thus proposed to couple superconducting qubits, via a supercon-

17
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ducting resonator, to ions [7], atoms [8, 9, 10], polar molecules [11], electrons
on helium [12], or impurity spins [13, 14, 15]. Here, the microscopic systems
are magnetic or electrical dipoles that couple to the electromagnetic field sub-
stained by the superconducting resonator. The prerequisite for such a hybrid
scheme to be operational is to reach the regime of strong coupling between the
quantum system and the resonator, in which they can coherently exchange a
photon. Whereas the coupling of one individual microscopic system to a super-
conducting circuit is usually too weak, the coupling constant of an ensemble of
N such systems is enhanced by

√
N, allowing to satisfy this requirement. Our

research project focuses on the use of ensembles of spins in solids to build a
quantum memory for superconducting qubits.

V

N

0

+1

-1

ms

532 nm
2.88 GHz

S = 1

Figure 1: The nitrogen-vacancy center. Sketch
of a NV center with its vacancy (V) and nitrogen
atom (N), as well as three neighboring carbon atoms.
Its electronic ground state has a spin S = 1 with
transition between states mS = 0 and mS = ±1 at
2.88GHz in zero magnetic field. It can be repumped
optically into the |mS = 0〉 state.

The spin species considered in
this thesis work is the negatively
charged nitrogen-vacancy center
in diamond [16] (NV center). De-
picted in Fig. 1, it consists of a
substitutional nitrogen atom with
a neighboring vacancy. Its elec-
tronic spin, a triplet with tran-
sition between states mS = 0

and mS = ±1 in the microwave
domain, is particularly attractive
for the implementation of a mi-
crowave quantum memory as it
has coherence times that can
reach seconds [17] and can be ac-

tively reset in the spin ground state by optical pumping [18]. In our experi-
ments, we use one of the two microwave transitions so that the NV center spin
can be described as a two-level system.

A multimode quantum memory Beyond the strong coupling requirement, the
use of an ensemble of spins rather than a single one in our research towards a
quantum memory has an important interest: an ensemble of N spins provides
several collective degrees of freedom to store qubit states in parallel. From the
quantum computation point of view, such a multi-qubit register associated to
a few(2)-qubits processor would work like a genuine quantum Turing machine
that promotes the few-qubits processor to N-qubits operations with good co-
herence properties. Experimental progress has been slow, because combining
different quantum systems requires developing new experimental techniques
to make them compatible. The first step in this direction, the strong coupling
of a resonator to the ensemble of spins, was demonstrated in the group shortly
before the beginning of this thesis work [19].
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This thesis goes one step further and presents the development of building
blocks of memory operations in a hybrid circuit, in which an ensemble of NV
center spins is used as a multimode quantum memory for superconducting
qubits. The qubit is of Transmon type, with which a two-qubit processor has
been developed in 2012 in the group [20]. The microwave photon exchange
between the two systems is implemented by a superconducting resonator used
as a quantum bus, which is electrically coupled to superconducting qubits, and
magnetically coupled to the ensemble of NV spins, as schematically shown in
Fig. 2.

Memory
(Spin ensemble)

Processor
(Superconducting qubits)

Quantum bus
(Superconducting microwave resonator)

Figure 2: Concept of the hybrid quantum processor combining a few(2)-qubits proces-
sor and a spin ensemble multimode quantum memory. The microwave photon exchange
between both is implemented by a superconducting resonator used as a quantum bus, which is
coupled electrically to the qubits and magnetically to the spins.

In Chapter I, we introduce the theoretical background needed to understand
the work that follows, with a particular emphasis on the modeling of the spin
ensemble-resonator coupled system. We then present the spin ensemble quan-
tum memory protocol in which building blocks of write, read and reset memory
operations can be isolated [21]. The experimental demonstration of coherent
storage of quantum information from a superconducting qubit to the NV spin
ensemble (write operation) is reported in Chapter III [22]. The active polarization
of the spins (reset operation) and retrieval of multiple few photon field initially
stored (building block of the read operation) are presented in Chapter IV [23].
Finally, solutions for reaching the level of an operational quantum memory are
discussed in Chapter V, illustrated by a selection of experimental results going
in this direction.
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2 spin ensemble quantum memory principle
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κ

ωr ωs
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memory
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(a) Physical setup
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0 Tmem
τ

ρ

QuP

(b) Quantum memory protocol

Figure 3: Spin ensemble quantum memory prin-
ciple. (a) Quantum memory circuit. The resonator,
with frequency ωr and damping rate κ tunable at
the nanosecond scale, is coupled to the spin ensem-
ble (frequency ωs) with coupling strength gens.
An external processor (QuP) delivers a quantum
state |ψ〉 to the bus resonator, to be stored into
the spin-based memory. Refocusing pulses are ap-
plied to the spins via the resonator. (b) Schematic
timing of pulses and cavity parameters ωr and κ.
The quantum state delivered by QuP is stored in
the spin ensemble (write operation). A refocusing
sequence acts as time-reversal for the spins and trig-
gers the retrieval of the stored quantum state as an
echo (read operation).

In the goal of realizing a spin-
based quantum memory for su-
perconducting qubits, the first
step is to design a suitable proto-
col, and to estimate theoretically
the efficiency with which an in-
coming quantum state can be re-
stored after its storage. We took
inspiration from related experi-
ments on optical quantum memo-
ries based on atom and ion ensem-
bles [24], for which storage and
retrieval procedures have been
developed. These protocols pro-
ceed along the following princi-
ples. First, the optical pulse car-
rying the quantum state of in-
terest is collectively absorbed by
the ensemble of ions (this is the
write step). Due to inhomogeneous
broadening that causes each ion
in the ensemble to have a slightly
different Larmor frequency, the re-
sulting collective quantum state is
rapidly dephased. In order to re-
trieve this state on-demand (the
read step), an operation is per-
formed on the ions that brings
them to return in phase at a
later time in the sequence and to
re-emit collectively the quantum
state initially absorbed as an echo.
Several experiments have already
successfully implemented this re-

focusing [25, 26], which is the most challenging part of the quantum memory
protocol.

The microwave quantum memory protocol builds on these same ideas, adapted
to the requirements of a cQED setup working at millikelvin temperatures, and
taking advantage of the new possibilities offered by Josephson quantum cir-
cuits. Indeed, efficient absorption of microwave photons by the spin ensemble
requires to insert them inside a resonator, which is straightforwardly achieved
by planar superconducting resonators used in cQED. Our proposed protocol,
described in detail in Chapter II [21], uses the physical system depicted in Fig. 3
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to implement write and read operations in the spins memory. The bus resonator,
with frequency ωr and damping rate κ both tunable, is coupled to the spin en-
semble with frequency ωs and spin linewidth Γ , with an ensemble coupling
constant gens. Such a resonator with tunable parameters can be realized using
SQUIDs, as described in Chapters I and III.

Write operation The resonator receives |ψ〉 from the external superconduct-
ing qubit processor (QuP), which initializes the cavity-field state. The cavity is
tuned to the spin frequency and a high quality factor so that the spin ensemble
and the resonator are in the strong coupling regime (gens � κ, Γ ). The mi-
crowave photon carrying out the state |ψ〉 is collectively absorbed by the spin
ensemble and is transferred to collective spin modes decoupled to the cavity.
This transfer takes place in a time T∗2 = 2/Γ , the free induction decay time of
the spins.

Read operation The stored quantum state is coherently retrieved by applying a
refocusing sequence that combines the application of π-pulses with dynamical
tuning of the resonator frequency and quality factor to act as a time reversal
for the spins. The echo, described by the density matrix ρ, restores the initial
state |ψ〉〈ψ|. The maximum storage time after which the quantum state can be
retrieved is of order the echo coherence time T2 of the spin ensemble.

(a) Multimode ability (b) Multimode storage and on-demand retrieval
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WRITE READ
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ωsωr

κ 0
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ρ2 ρn

T2

T2
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Figure 4: Multimode storage and on-demand retrieval. (a) Collective excitations of the
spins can be used to simultaneously encode a large number of qubits. As seen from the collective
spin mode coupled to the cavity, the other modes behave as a conveyor belt, with loading time
the free induction decay time (T∗2 ) and life time the Hahn-echo decay time (T2). (b) Extension
of the quantum memory protocol to multimode storage and on-demand retrieval.

Extension to multimode storage and on-demand retrieval As is the case for
optical quantum memories [27], collective excitations of the ensemble can be
used to simultaneously encode a large number of qubits. As seen from the
collective spin mode coupled to the cavity, the other spin modes behave as a
conveyor belt with loading time the free induction decay time (T∗2 ), and life
time the Hahn-echo decay time (T2), as illustrated in Fig. 4a. Once absorbed by
the spin ensemble, the quantum state is transferred into one of these collective
spin modes in a characteristic time T∗2 , after which the collective spin mode
coupled to the cavity is accessible again for storage. Hence, consecutive write
steps separated by time of order T∗2 can be performed to store various quantum
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states. The lifetime of the memory is approximately the Hahn-echo decay time
T2, so that the maximal number of stored quantum states is of order T2/T∗2 .
On-demand retrieval is obtained by extending the read protocol to multiple
states with dynamical detuning of the cavity to retrieve selectively the state
|ψi〉, while keeping the others in the memory (see Fig. 4b).
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Figure 5: Results of numerical simulations, showing that successive cavity field states can
be stored and retrieved with 80% efficiency with our memory protocol.

Numerical simulations performed by Brian Julsgaard at Aarhus University [21,
28] show that the NV memory can store and retrieve multiple quantum states
of the field with 80% efficiency with realistic experimental parameters (see
Fig. 5), and higher using spin species with better coherence times. The core of
this thesis is the description of two experiments going in the direction of imple-
menting this protocol with NV centers in diamond. The first one demonstrates
the coherent storage of a qubit state into the NV ensemble, bringing a proof-of-
concept of the write operation. The second shows the retrieval of multiple few
photon microwave pulses initially stored, a first step towards the read operation.

3 storing a qubit state in a spin ensemble (write)
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τ
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Single qubit

REFOCUSING SEQUENCE

ωr = ωs

κ = κmin

Figure 6: The write step.

As mentioned above, the coupling
strength of an individual spin for
typical parameters of supercon-
ducting resonator is too small to
achieve strong coupling and sub-
sequent transfer of quantum in-
formation. For NV centers cou-
pled to a planar microwave res-
onator, the coupling constant is
g/2π ∼ 10Hz, which is four or-
ders of magnitude smaller than
resonator linewidth κ reachable in

cQED. The strong coupling between superconducting resonators and collec-
tive spin modes was evidenced by the experiment performed in the group in
2010 with a collection of 1012 NV center spins [19]. It is manifested by the
appearance of a vacuum Rabi splitting in the transmission spectrum of the res-
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onator (shown in Fig. 7) when its frequency is tuned through the NV center
electron spin resonance. Later, experimental evidences for the coherent cou-
pling to a superconducting circuit were obtained with other types of electronic
spins [29, 30, 31, 32], and the storage of hundreds of photons microwave fields
into collective excitations of a spin ensemble was demonstrated [33].
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Figure 7: Spectroscopic evidence for spin ensemble-
resonator strong coupling [19]. The resonator transmis-
sion spectrum shows two avoided level crossings whenever
the tunable resonator frequency crosses the NV resonance
frequencies.

These experiments were car-
ried out in the classical
regime since the resonator
and spin ensemble behave as
two coupled harmonic oscil-
lators driven by classical mi-
crowave fields. In the per-
spective of building a quan-
tum memory, it is instead
necessary to perform exper-
iments at the level of a sin-
gle quantum of excitation.
For that purpose, in the first
part of this thesis work, we
integrate on the same chip
three different quantum sys-
tems: an ensemble of NV
center spins, a superconduct-
ing qubit, and a resonator
acting as a quantum bus between the qubit and the spins, in the goal of demon-
strating the storage of a qubit state into the ensemble.

Qubit drive & readout 

resonator

NV ensemble

Bus resonator

Transmon 

Qubit

Figure 8: Write experiment: schematic of the hybrid quantum circuit. A transmon qubit
(red) is coupled to an ensemble of NV centers electron spins (pink) via a frequency tunable bus
resonator (yellow).

A sketch of our hybrid quantum circuit [22] is shown in Fig. 8. The diamond
single-crystal that contains the spins is placed on top of the superconduct-
ing circuit. The quantum bus, a coplanar waveguide resonator, is electrostati-
cally coupled to the qubit and magnetically coupled to the spins. It is made
frequency-tunable by inserting a SQUID in the resonator central line [34, 35]
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making it possible to transfer quantum information from one system to the
other.
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Figure 9: Write experiment. (a) Protocol for storing a qubit state into the spin ensemble. (b)
Swap oscillations of an excitation |e〉 and (c) of a coherent superposition of quantum states
(|g〉+ |e〉)/

√
2, initially prepared in the qubit. The transfer to the spin ensemble is complete at

τs.
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The storage of the qubit state |ψ〉 into the spin ensemble proceeds by pulsed
control of the bus resonator frequency (see Fig. 9a). The state is retrieved with-
out using refocusing before complete transfer into the collective spin modes
decoupled to the cavity, in order to demonstrate that the qubit state is not
altered during the storage. The qubit is used as a readout apparatus for the
comparison with the initially encoded state.

Fig. 9b shows the storage and retrieval of the qubit state initially prepared
in |e〉. The quantum of excitation is exchanged coherently between the quan-
tum bus and the spin ensemble. This exchange is damped by the transfer into
the other collective modes of the spins with characteristic time T∗2 ∼ 200ns,
as requested for the write step of the protocol. To demonstrate that the phase
information is preserved during the storage, the experiment is repeated with
a superposition state (|g〉+ |e〉)/

√
(2) and the density matrix of the retrieved

state reconstructed by quantum state tomography [22] (see Fig. 9c).

The combination of the results of Fig. 9 demonstrates that an arbitrary qubit
state ψ can be stored into the spin ensemble. The leakage of the quantum state
into the other collective spin modes being a part of the write step of our memory
protocol, the only loss of quantum information during the storage comes from
energy damping in the resonator and non-static spin dephasing, that reduce
the efficiency of write step to 3T∗2 as seen in Fig. 9. The detailed description of
this experiment can be found in Chapter III.

4 retrieving few-photon fields stored in a spin ensemble (read)
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Figure 10: The read step.

After storage, spins dephase due
to the spread of resonance fre-
quencies in the ensemble, and the
quantum information is no longer
directly accessible from the res-
onator. To retrieve the quantum
states initially stored, our goal
is to apply Hahn-echo refocusing
techniques inspired by magnetic-
resonance methods [36]. These
techniques are based on the appli-

cation of π-pulses that act as a time reversal for the spins, producing a dipole
rephasing and the subsequent emission of an echo of the initially stored states.
For our quantum memory purpose, this read operation has to be implemented
at the quantum level, with retrieval efficiency close to 1, and in a setup compat-
ible with superconducting qubit technology. The object of the second part of
this thesis work is precisely to identify the challenges posed by this task and to
demonstrate experimentally that they can be solved. In this aim, in Chapter IV
we test a protocol simpler than the full read operation but which constitutes an
essential building block: the retrieval with a single refocusing pulse of weak mi-
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crowave pulses initially stored [37]. The hybrid quantum circuit developed for
this experiment [23] is shown in Fig. 11. It consists of a diamond single-crystal
placed on top of the inductance of a planar superconducting LC resonator. A
fiber is attached to the circuit, in which green light can be injected for active
reset of the spin ensemble.
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Figure 11: Read experiment: schematic of the circuit. An ensemble of NV electronic spins
(pink) is coupled to a planar superconducting LC resonator. Laser pulses are shone on the
diamond through an optical fiber glued to its top face, to reset the spins in their ground states
between successive operation.

A prerequisite: active reset of the spins Prior to memory operation, the spin
ensemble must be initialized in its ground state, or close enough. NV center
spins have spin transition frequencies in the GHz range and thus, without ex-
ternal excitation, are mainly polarized in the spin ground state at millikelvin
temperature. Once excited however, they relax extremely slowly in the spin
ground state [38, 23]. To test the write step of the protocol, we operated at the
single-photon level such that the amount of excited spins was always negligible
compared to the total number of spins. In the second part of the protocol how-
ever, strong refocusing pulses are applied and subsequently a large amount
of excited spins is left at the end of each experimental sequence. To repeat at
a reasonable rate, there is thus a need for an active reset of the NV spins. In
this aim, the usual optical pumping used at room-temperature (see Fig. 1) is
adapted to the low-temperature environment [23].

Typical pulsed polarization experiments are shown in Fig. 12 with 1.5mW
optical power. The spin polarization increases with the optical pulse duration
and then saturates, which indicates that the spins reach the maximum polar-
ization allowed by optical pumping at this wavelength. In this circuit a large
polarization of the spins is obtained in a few seconds, sufficiently fast to make
it possible to implement the read step of the protocol. The detailed description
of the active reset of the spins can be found in Section IV.4.
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laser power and different duration TL. The curves show the spectroscopic signatures of the spins,
with an amplitude that increases with TL because of increasing spin polarisation. (b) Relative
spin polarisation dependence on TL.

Storage and retrieval of multiple few photon field Fig. 13 shows an example
of multimode storage and retrieval of weak microwave pulses with refocusing
techniques. Six consecutive microwave pulses are first absorbed by the spin en-
semble and a single refocusing pulse is applied. The six pulses are retrieved up
to 35 µs after their storage [23]. This result demonstrates that complex dynam-
ical control of spin ensembles is compatible with hybrid quantum circuits, as
requested for our quantum memory protocol. The efficiency of the process is
∼ 2 · 10−4, limited by the short echo coherence time of the spin ensemble used
for the experiment. In Chapter IV, we discuss this experiment in greater details
together with the factors that limit the efficiency, for the purpose of developing
efficient read memory operation.
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Figure 13: Read experiment. Six consecutive microwave pulses θi with a varying phase and
identical amplitude corresponding to ≈ 104 photons in the resonator are absorbed by the spin
ensemble, followed 10µs later by a strong refocusing pulse R applied to trigger their retrieval.
The six pulses are recovered up to 35µs after their storage with an amplitude reduced by ∼ 102

compared to the incoming pulses.

5 nv clock transitions for long coherent storage

A quantum memory is only interesting if it has long coherence times. For NV
centers, Hahn-echo coherence times T2 up to 5ms have been obtained with
single spins at room temperature [39], and up to 1 s in ensembles of NV centers
at 100K using dynamical decoupling [17]. So far, most of these echo coherence
time measurements on NV centers have been performed at finite magnetic
fields. Indeed the NV spectrum around zero magnetic field is complicated by
terms in the Hamiltonian describing the effect of strain or electric fields, which
induce a mixing between the spin states mS = ±1 due to spin orbit interaction.
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Figure 14: Decay of the spin-echo amplitude as
a function of the external magnetic field. The
coherence time is enhanced at the three clock transi-
tions.

We point out in our experiments
that this spin mixing has an inter-
esting consequence: the NV eigen-
states present a sweet spot and
become insensitive to first order
to magnetic field fluctuations. In
such case, the coherence time is
expected to show an enhance-
ment, a situation known as a clock
transition (CT) [40]. The hybrid
quantum circuit that we devel-
oped for the second experiment
makes it possible to unveil sev-
eral aspects of the NV low-field
properties. Three CTs exist at fi-
nite magnetic field due to the hy-
perfine interaction of the NV cen-
ter electronic spin with the nitro-
gen (14N) nuclear spin. At these
CTs, the Hahn-echo time T2 shows
an enhancement (see Fig. 14). Put
back in the perspective of the development of a quantum memory for super-
conducting qubits, those points have potential interest for memory operation.
A more detailed analysis of the coherence times around these clock transitions
is presented in Section IV.6.

6 towards an operational quantum memory

The two experiments outlined in this thesis work constitute proofs-of-concept
of write and read memory operations in a spin ensemble. In order to reach
an operational quantum memory for superconducting qubits, further develop-
ments are however required: (i) the fidelity of the memory operations must
come closer to 1, which calls for a quantitative understanding of our experi-
ments imperfections, and (ii) the complete memory protocol of Fig. 3 must be
implemented, which requires the development of new engineering solutions
for tuning the cavity parameters.

Reaching efficient memory operations The experiment reported in Chapter III
demonstrates complete storage of arbitrary qubit states in the spin ensemble
with ∼ 95% efficiency which validates the write step of the protocol. Its retrieval
however is challenging, as shown by the experiment described in Chapter IV:
with refocusing sequence, we obtain a retrieval efficiency of order 10−4. We
analyze this low retrieval efficiency as due to three factors: the finite echo co-
herence time of the ensemble, the finite spin coupling to the resonator and
the refocusing pulse imperfections. Numerical simulations, in good agreement
with the data (see Fig. 13), show that, in this experiment, the main limitation
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of the retrieval efficiency is the short echo coherence time of the spins, which
yields a reduction by a factor 103.
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Figure 15: Storage and retrieval at the single
photon level in an isotopically enriched sam-
ple having long coherence times. Less than 1

photon is absorbed by the spins and retrieved after
100µs storage with 0.3% efficiency.

Longer coherence times can be
achieved [17] with samples hav-
ing a reduced concentration of ni-
trogen impurities as well as iso-
topic enrichment in 12C. Such a
sample was provided to us by Ju-
nichi Isoya after the experiments
reported in Chapters III and IV.
Fig. 15 shows a storage and re-
trieval experiment performed in
a hybrid quantum circuit simi-
lar to Fig. 11 with this new sam-
ple for which we measured T2 =

84µs. The retrieval is achieved
with much larger efficiency: 3 ·
10−3 instead of 10−4 despite a
longer storage time (100µs). The
storage pulse contains< 1 photon,
demonstrating that when the retrieval efficiency is sufficient, we can go down
to the single photon level, as required for the memory protocol. Besides coher-
ence times, better refocusing pulses can be obtained either by rapid adiabatic
passage [21, 41], or by tailoring the spin spatial distribution [42, 43]. These com-
bined advances should make possible to reach the figures of merit requested
for the read step to be in the quantum regime, and therefore to implement the
full quantum memory protocol of Fig. 3 at the single photon level. Preliminary
measurements in this direction and solutions for development up to the oper-
ational level are discussed in Section V.1.

Running the full quantum memory protocol The echo protocol that was
tested in the experiment reported in Chapter IV is not suitable by itself for
a quantum memory. As mentioned above and further explained in Chapter II,
there is a need in our protocol to dynamically tune the cavity frequency and
quality factor during the refocusing sequence. This task is challenging com-
pared to what we achieved for the write experiment: when strong refocusing
pulses are applied, the usual way of tuning the resonator parameters by in-
serting a SQUID is not allowed because of the high intra-cavity field in the
resonator. We worked on the development of alternative solutions, especially
on the frequency tunability. The approach we followed is to couple the quan-
tum bus to a second resonator, itself made tunable in frequency by inserting a
SQUID. We show in Fig. 16 the spectroscopy of this circuit showing a detuning
up to 40MHz, and spin echo signal obtained using refocusing pulses.
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(a) Applying refocusing pulses in a frequency tunable resonator: the circuit

(b) Spectroscopy (c) Hahn echo sequence
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Figure 16: Tuning the cavity ON and OFF resonance during the refocusing sequence.
(a) The quantum bus is coupled to a second resonator made tunable in frequency by inserting
a SQUID loop. (b) Spectroscopy of the circuit as a function of the local magnetic field applied
to the SQUID loop of the tunable resonator. The frequency of the quantum bus is displaced due
to the coupling with the tunable resonator. (c) Storage and retrieval of a weak microwave pulse,
demonstrating the compatibility of the circuit with the application of refocusing pulses.

This experiment demonstrates the operation of a frequency tunable resonator
compatible with the applications of refocusing pulses. We discuss in details
this experiment in Section V.2, together with engineering solutions to realize a
circuit able to run the full memory protocol.



I
B A C K G R O U N D

The experiments reported in this thesis rely on two elements: Josephson
superconducting circuits (the processor) and NV center spins in diamond
(the memory). In this chapter, we introduce the minimum theoretical back-
ground needed to understand the work which follows.
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1 S U P E R C O N D U C T I N G C I R C U I T S A N D M I C R O WAV E
E N G I N E E R I N G

In this section, we provide the reader elements of theory on superconducting
circuits and microwave engineering which are relevant for this work. We start
with the simplest circuit, the superconducting resonator, which is of particular
interest for our experiments as it is used as a bus between spins and circuits.
We then see how resonators can be turned into active devices, using Josephson
junctions. Along these lines, we describe how to implement the qubit concept
by pushing Josephson circuits to the level of very large anharmonicity. We fi-
nally introduce the field of circuit quantum electrodynamics, which describes
the interaction of a qubit with single photons in a resonator.

1.1 superconducting resonators

1.1.1 The LCR resonator

L C

V I

Figure 1.1: A LC resonator.

We start with the quantum treatment of the sim-
plest superconducting circuit that can be built: the
LC resonator. Its schematic is given in Fig. 1.1, con-
sisting of an inductance L in parallel with a ca-
pacitance C. We note V the voltage across the
capacitance and I the current. As explained e.g
in [44, 45], the circuit can be quantized in terms
of two generalized conjugate quantum operators,
Φ̂ the flux in the inductance and Q̂ the charge ac-
cumulated on the capacitor, obeying [Φ̂, Q̂] = i h,
with Hamiltonian:

Ĥ =
Q̂2

2C
+
Φ̂2

2L
(1.1)

This harmonic oscillator Hamiltonian can be written:

Ĥ =  hωr

(
â†â+

1

2

)
(1.2)

where â†, â are respectively the creation and annihiliation operators

â† =
1√
2 hZr

(
Φ̂− iZrQ̂

)
(1.3)

â =
1√
2 hZr

(
Φ̂+ iZrQ̂

)
(1.4)

with ωr = 1/
√
LC the resonance frequency and Zr =

√
L/C the resonator

impedance. The eigenstates |n〉 of Ĥ are called Fock states, satisfying Ĥ|n〉 =
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 hωr
(
n+ 1

2

)
|n〉 with n the number of photons stored in the resonator. The

relations Eqs. 1.3, 1.4 can be inverted to obtain the expression of the flux and
charge operators Φ̂ and Q̂ and calculate their time derivatives to express the
voltage and current operators V̂ = i[Ĥ, Φ̂]/ h and Î = i[Ĥ, Q̂]/ h in term of the
field operators:

V̂ = iVrms(â
† − â) (1.5)

Î =
Vrms

Zr
(â† + â) (1.6)

with Vrms = ωr
√

 hZr/2 the root-mean-square vacuum fluctuations of the volt-
age. The current and voltage in the resonator give rise to associated electric (in
the capacitance) and magnetic (around the inductance) fields:

Ê(r) = iδE0(r)
(
â− â†

)
, B̂(r) = δB0(r)

(
â+ â†

)
(1.7)

at position r, with δE0(r) and δB0(r) their vacuum fluctuations. This electro-
magnetic field is used to couple the resonator to the qubit and the spins and
thus play a major role throughout this manuscript.

L C’R’

ωr , Qint ωr’, Q

L C

Cc

R

Z0

Figure 1.2: A LCR resonator coupled to an input transmission line with characteristic
impedance Z0 through a gate capacitance Cc. It is equivalent to a resonator with effective
resistance R ′ and capacitance C ′. The resonator frequency and characteristic impedance are
shifted to ω ′r and Z ′r with respect to that of the decoupled one.

In an experiment, a resonator can have internal losses and is coupled to mea-
suring lines. We thus consider the more general case shown in Fig. 1.2 of a
resonator with internal losses modelled by a resistance R, and coupled to an
input transmission line with characteristic impedance Z0 through a gate capac-
itance Cc. The capacitor acts as a semi-reflective mirror in optics and induces
a strong impedance mismatch so that the electromagnetic field is confined in
it. We want to determine the modified resonator frequency ω ′r and impedance
Z ′r. The circuit is equivalently modeled as a modified LCR resonator with an
effective resistance R ′ such that:

1

R ′
=
1

R
+

1

Rext
(1.8)

with Rext/Z0 = 1/(CcZ0ωr)2 + 1, and a new capacitance

C ′ = C+
Cc

1+ (CcωrZ0)
2
≈ C+Cc (1.9)
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This slightly changes the resonance frequency and the impedance to 1/
√
LC ′

and
√
L/C ′ respectively. An important quantity is the resonator quality factor,

defined as Q = R ′/Zr. This quantity can be separated in two contributions:

Q−1 = Q−1
int +Q

−1
ext (1.10)

where Qint = R/Zr is the internal quality factor, and Qext = Rext/Zr the cou-
pling quality factor. Associated damping rates are defined as κL = ω ′r/Qint the
rate at which the energy is dissipated in R and κ = ω ′r/Qext the rate at which
the energy leaks out of the resonator into the measurement lines through Cc.
In the usual case where the coupling capacitance is very small compared to the
capacitance of the resonator Cc � C ′:

ω ′r ≈ ωr , Z ′r ≈ Zr , Rext ≈ 1/Z0C2cω2r (1.11)

so that the external damping rate writes:

κ = ω3rC
2
cZ0Zr (1.12)

and equivalently

Cc = 1/
√
QextZ0Zrω2r (1.13)

In the following, we continue noting the resonance frequency ωr and the
impedance Zr by convenience.

1.1.2 Probing the resonator from the outside

L C

Cc1

R

Z0

Cc2

Z0

V

κ1 κ2

κL

(a) Electrical circuit

(b) Input-output theory framework

ain,1

aout,2aout,1

V1

I1 I2

I

Figure 1.3: Circuit and its equivalent in
the input-output theory framework.

To probe the resonators, they are
connected to voltage sources through
measurement lines. In the follow-
ing, we consider the case often en-
countered in our experiments of a
resonator coupled to two transmis-
sion lines (ports 1 and 2) with
coupling capacitances Cc,1 and Cc,2
yielding the damping rates κ1 and
κ2 through Eq. 1.12, and a voltage
V1(t) = V1 cos (ωt) applied to port
1 (see Fig. 1.3a). We note Ii the
current flowing into the ith port
and model the transmission lines
by impedances Z0, V the voltage
across the resonator capacitance, and
I the current through the induc-
tance.

An equivalent description, but more adapted to our experiments, is to replace
the voltage source V1(t) by a wave V1+(t) incoming onto the resonator input
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via the transmission line and driving it, generating an intra-cavity field V(t)
and I(t), and giving rise to outgoing waves V1−(t) and V2−(t) that describe the
leakage of the intra-cavity field towards the measurement apparatus. In this
scattering approach (see Fig. 1.3b), the behavior of the resonator is described
by the so-called scattering matrix Sij = aout,i/ain, with the classical input and
output waves ain/out,i defined as

ain,i =
Vi +Z0Ii
2
√
Z0

=
V+
i√
Z0

and aout,i =
Vi −Z0Ii
2
√
Z0

=
V−
i√
Z0

(1.14)

The quantum-mechanical extension of this classical scattering approach is pro-
vided by the input-output theory developed by Gardiner and Collett [46]. There,
the intra-resonator field is described by the quantum-mechanical operator â(t),
whose knowledge directly yields the resonator currents and voltages through
Eqs. 1.5, 1.6. Its evolution (in the Heisenberg representation) obeys to the mas-
ter equation

∂tâ(t) =
[â(t), Ĥ]
i h

−

(∑
i

κi
2

)
â+

∑
i

√
κiâin,i(t) (1.15)

This intra-cavity field equation is complemented with a relation stating the
continuity of the fields at each port i

âin,i(t) + âout,i(t) =
√
κiâ(t) (1.16)

In these equations, the input and output fields âin,out(t) are the quantum ana-
log of the classical waves described earlier. In our experiments the drive fields
will always be coherent states, so that we will take âin,1(t) = αine

−iωt, with
αin normalized such that |αin|

2 is the number of photons per second at the
resonator input, or equivalently P =  hω|αin|

2. Applying these equations to the
linear resonator depicted in Fig. 1.3b yields:

∂tα(t) = −iωrα(t) −
κ+ κL
2

α(t) +
√
κ1αin(t), (1.17)

with α(t) = 〈â〉(t) the mean value of the intra-resonator field, κ = κ1 + κ2 the
total resonator external damping rate. In steady-state α(t) = αe−iωt, yielding

α(ω) =
i
√
κ1

(ω−ωr) + i
κ+κL
2

αin (1.18)

At resonance, the intra-cavity average photon number n̄ = |α|2 is

n̄ =
4κ1

 hωr(κ+ κL)2
P. (1.19)

These equations allow us to obtain useful relations linking the resonator max-
imum voltages and currents V0 and I0 defined as V(t) = V0 sin (ωt) and
I(t) = I0 cos (ωt) to the input power. Combining Eqs. 1.5, 1.6 and 1.19 yields

V0 =

√
8Zrωrκ1
κ+ κL

√
P and I0 =

√
8ωrκ1/Zr

κ+ κL

√
P (1.20)
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Reflection measurement The reflection coefficient r =
αout,1
αin

follows from
Eqs. 1.16-1.18:

r(ω) =

√
κ1α−αin
αin

=
iκ1

(ω−ωr) + i
κ+κL
2

− 1 (1.21)

In the experiments reported in Chapter IV, in particular, we use a resonator
with only one port so that κ2 = 0 and κ = κ1 in the above expressions. Depend-
ing on the rate between the coupling constant κ and the losses κL we can define
three regimes characterized by different behaviors of the reflection coefficient:

• The over-coupled regime (red curves) defined by κ� κL. In this regime
|r| ≈ 1 for all frequencies and the phase φ undergoes a 2π shift at reso-
nance

φ = 2 arctan
(
2
ω−ωr
κ

)
• The critical coupling regime (green curves) defined by κ = κL. For this

regime the amplitude of r reaches 0 at resonance, while a discontinuity
in its phase brings a phase shift of π.

• The under-coupled regime (blue curves) defined by κ � κL. In this
regime the resonance corresponds to a dip in the amplitude of r and
a shift < π in its phase. The width of both the dip and the phase shift
decrease when κL/κ increases. Both the amplitude and the phase differ
very slightly from their out-of-resonance value.

Transmission measurement The transmission coefficient t =
αout,2
αin

follows
from Eqs. 1.16-1.18:

t(ω) =

√
κ2α

αin
=

i
√
κ1κ2

(ω−ωr) + i
κ+κL
2

. (1.22)

In the experiments reported in Chapter III we have κ1 = κ2 = κ/2. As in
reflection measurements, depending on the rate between the coupling constant
κ and the losses κL we can define three regimes characterized by different
behaviors of the transmission coefficient:

• The over-coupled regime (red curves) defined by κ � κL, in which |t|

almost reaches 1 at resonances. The phase of t undergoes a π shift at
resonance, whose width, as well as the width of |t|, is controlled by κL.

• The critical coupling regime (green curves) defined by κ = κL. In this
regime, the amplitude of t reaches 1/2 at resonance and the widths are
controlled by both κ and κL.

• The under-coupled regime (blue curves) defined by κ � κL. In this
regime the amplitude of t decreases when κL/κ increases and its width is
essentially controlled by κL.
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(a) Reflection measurement

(b) Transmission measurement
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Figure 1.4: Probing the resonator. (a) Reflection measurement. Frequency dependence of the
reflection coefficient r for κL = 0.01κ (red), κL = 0.1κ (yellow), κL = κ (green), κL = 10κ

(blue) and κL = 100κ (purple). (b) Transmission measurement. Frequency dependence of the
transmission coefficient t for the same values of damping.

In an experiment, the resonator spectrum is often obtained with a vector net-
work analyzer (VNA). This apparatus measures the S-matrix elements in re-
flection (S11(ω)) and in transmission (S21(ω)). Note that with respect to the
coefficients defined and calculated above, the definitions are different so that
S11 = r

∗ and S21 = t∗.

1.1.3 Implementation: lumped and distributed-element

Cc

C L

Figure 1.5: Picture of a lumped-
element resonator.

lumped-element resonators

Resonators can be implemented with lumped
capacitors and inductances on chip, provided
their dimensions are much smaller than half the
wavelength of a 3GHz signal propagating in sil-
icon (2 cm). An example is shown in Fig. 1.5.
The resonator capacitance (C), inductance (L)
and coupling capacitance to the external driv-
ing line (Cc) are made with interdigitated fin-
gers and meander wires. The geometrical pa-
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rameters (number of fingers, fingers length, length of the meanders wires,...)
are chosen using a 2D electromagnetic simulator (Sonnet), to obtain the de-
sired resonator physical parameters (ωr, Zr, Q). The software uses the physical
description of the circuit (geometry, material properties,...), places a voltage
source behind the input port of the circuit and solves by finite-element meth-
ods the Maxwell’s equations to extract the reflection and transmission coeffi-
cients.

We show in Fig. 1.6a the Sonnet simulated chip geometry of the resonator
pictured in Fig. 1.5, together with the computed alternative current flowing
in the resonator inductance I when the drive frequency matches the LC reso-
nance. Note that as expected for a lumped element circuit, the current is ap-
proximately constant throughout the wire used as an inductance. The reflected
phase φr on the resonator function of the drive is given in Fig. 1.6c, showing
the 2π phase shift at resonance. The fit of the resonance is used to estimate
the resonator frequency ωr and quality factor Q and to correct if needed the
design in a next simulation step.

285

350

1

-100

0

100

φ 
(ra

d)

3.83.63.43.23.0
ω/(2π) (GHz)

(a) The simulated chip geometry (b) Simulation

Figure 1.6: Implementation of a superconducting resonator with lumped electrical ele-
ments. (a) Schematic of the simulated chip geometry, showing the resonator and the coupling
capacitance to an input port with impedance 50Ω. The computed alternative current flowing
in the inductance is shown in the inset. (b) Computed (dots) and fitted (lines) reflected phase
φ, yielding ωr/(2π) = 3.41GHz and Q = 300.

To link the oscillating current in the resonator inductance to the magnetic field
generated in its surrounding, we use COMSOL Multiphysics. Together with
Eq. 1.20, this makes it possible to calculate the magnetic field amplitude B1(r)
to which the spins are coupled, for a given microwave power incident at the
resonator input.
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Λ

dx

l dx

c dx

V(x) I(x)

Figure 1.7: Distributed-element res-
onators. A transmission line, with
open circuits at each end, constitutes
a microwave resonator.

distributed-element resonators

A resonator can also be built using a piece of
transmission line of length Λ with an open
circuit at each end (Fig. 1.7). A transmission
line is characterized by its capacitance c and
inductance l per unit length, and characteris-
tic impedance Z0 =

√
l/c. Adding boundary

conditions creates stationary modes which
propagate with phase velocity c̄ = 1/

√
lc.

The details of the quantum treatment of the
field in such resonator can be found e.g in [3].
We give here the relevant results for the de-
sign of our experiments. The different sta-
tionary modes are equivalent LC resonators

k with frequency ωk = kπc̄
Λ and impedance Zr = 2

πZ0.

In our experiments, the fundamental mode k = 1 is the only one of interest,
with frequency

ωr =
πc̄

Λ
(1.23)

This equivalent resonator [47] can be put in the form of the LCR resonator
model with capacitance C = π

2 · 1
Z0ωr

, inductance L = 2
π ·

Z0
ωr

, resistance R =
2
π ·QintZ0 and voltages and currents inside the resonator expressed in the form

of Eqs. 1.5, 1.6 with Vrms = ωr
√

 hZ0
π .

We use a particular type of transmission line geometry: the coplanar waveg-
uide (CPW). It consists of a center strip conductor (of width S) that is sepa-
rated by a gap (of width W) from ground planes (of width b) on either sides,
as shown in Fig. 1.8a. To realize the resonator, the transmission line is termi-
nated at one end by an open gap and connected at the other end to exter-
nal line through coupling capacitance Cc. The effective dielectric constant felt
by the electromagnetic mode propagating in the resonator derives from the
relative dielectric constant of the substrate εr (Silicon in our experiment) as
εeff = ε0(1 + εr)/2 yielding a phase velocity c̄ = c/

√
εeff. The value of c̄ is

used with formula Eq. 1.23 to determine the resonator length Λ required to
obtain the desired resonance frequency. The coupling capacitance Cc sets the
resonator quality factor according to Eq. 1.10.

The configuration of the electromagnetic field generated by the CPW res-
onator is shown in the inset of Fig. 1.8. There exist analytical expressions link-
ing the voltage V(z) and current I(z) in the CPW to the electromagnetic field
of Eq. 1.7. These expressions are used to calculate the magnetic field to which
the spins are coupled in our experiments.
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Figure 1.8: Implementation of a superconducting resonator with a section of CPW
line. (a) 3D schematic of the resonator showing the electromagnetic field. The rms vacuum
fluctuations of the magnetic field δB0 is computed for a typical resonator geometry (S,W =

10, 5µm). (b) Reflected phase as a function of the reduced frequency ω/ωr for a λ/2 resonator
(red solid line). The first resonance frequency of the loaded resonator is shifted down with respect
to that of the decoupled one. The fundamental mode of the distributed resonator is very close to
those of a lumped element LCR resonator with the same C and Zr (blue dashed lines).

According to [48], the rms vacuum fluctuations of the magnetic field created
by a wave traveling in the z direction along the resonator are:

δBx(x,y, z) = −
2µ0
ηb

√
ε

∞∑
n=1

1

Fn

[
sin (nπδ/2)

nπδ/2
sin

nπδ̄

2

]
cos
(nπx
b

)
e−γny · V(z) (1.24)

δBy(x,y, z) = −
2µ0
ηb

√
ε

∞∑
n=1

[
sin (nπδ/2)

nπδ/2
sin

nπδ̄

2

]
sin
(nπx
b

)
e−γny · V(z)

δBz(x,y, z) = −i
2µ0
ηb
ε

(
4πcb

ωr

) ∞∑
n=1

1− εeff
nFn

[
sin (nπδ/2)

nπδ/2
sin
(
nπδ̄

2

)]
sin

nπx

b
e−γny · V(z)

with
V(z) = Vrms cos (πz/Λ) (1.25)

and a geometrical parameter

γn =

√(nπ
b

)2
+

(
4πcb

√
εeff − 1

nωr

)2
(1.26)
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In this expression, µ0 is the vacuum permeability, η = 376.7 the vacuum
impedance and δ = W/b,δ̄ = (S +W)/b, Fn = bγn

nπ are determined by the
resonator geometry.

1.2 josephson junction based circuits

A non-linear and lossless element can be introduced in superconducting cir-
cuits to turn them into active devices. This element is the Josephson tunnel
junction, which consists of two superconducting electrodes coupled through
a thin layer of insulating material. In this section, we introduce the reader to
Josephson junction based circuits. We discuss two particular implementations,
the bistable and the frequency-tunable resonator and see that when pushed to
the level of very large anharmonicity, Josephson circuits can be used to build
qubits.

1.2.1 The Josephson junction and its derivatives

Ψ1 = eiφ1

Ψ2 = eiφ2

InsulatorIJ

1
2

0

3

n

1
2

0

3

n

215 nm

230 nm

(a) The Josephson junction (b) Scanning electron micrograph (c) Non-linearity

Figure 1.9: The Josephson junction, a non-linear electrical element. (a) A Josephson junc-
tion is composed of two superconducting electrodes connected through an insulating barrier. (b)
Scanning electron micrograph of a Josephson junction used in this thesis work: the electrodes
are made of aluminum and the insulator of aluminum oxide. (c) A LC resonator has equally
spaced energy levels which prevents any individual transition from being selectively addressed.
A Josephson junction (represented by the X symbol) has unequally spaced energy levels, a
property that can be used to bring non-linearity to a circuit.

The Josephson junction used together with inductances and capacitances to
build superconducting circuits is depicted in Fig. 1.9. Its physics is based on
the Josephson effect [49], which states that between two closely spaced su-
perconducting electrodes separated by an insulating barrier, a supercurrent IJ
flows according to the classical equations:

IJ = Ic sinϕ (1.27)

V = ϕ0
∂ϕ

∂t
(1.28)
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where ϕ0 =  h/2e is the reduced superconducting flux quantum, Ic the critical-
current of the junction - that is the maximum supercurrent that the junction
can support - and ϕ = ϕ1 −ϕ2 and V respectively the superconducting phase
difference and voltage across the junction. This system of nonlinear equations
represents the main results of the general theory of the Josephson junction
which have many applications such as SQUID magnetic field detectors [50]
and quantum limited oscillators, mixers and amplifiers [51, 52]. The dynamical
behavior of the junction can be outlined in the expression of the derivative of
the supercurrent IJ:

dIJ
dt

=
Ic cosϕ
ϕ0

V =
Ic
√
1− (IJ/Ic)2

ϕ0
V (1.29)

The Josephson junction appears equivalent to a nonlinear inductance:

LJ(ϕ) =
ϕ0

Ic
√
1− (IJ/Ic)2

≈ ϕ0
Ic

(
1+

(IJ/Ic)
2

2
+O((IJ/Ic)

4)

)
(1.30)

Note that for IJ � Ic, the junction behaves as a point-like inductance LJ = ϕ0/Ic
whose value is entirely governed by the Josephson critical current. The energy
associated with the phase difference ϕ across the Josephson junction writes:

E = EJ(1− cosϕ) (1.31)

where EJ = Icϕ0 is called the Josephson energy. In addition, charge can ac-
cumulate on the capacitor C formed by the junction, giving rise to an electro-
static energy EC = Q2/2C. A quantum treatment of the Josephson junction is
obtained by treating the flux Φ = ϕ0ϕ and charge Q as conjugate operators
with commutation relation

[
Φ̂, Q̂

]
= i h. The Hamiltonian writes:

Ĥ =
1

2C
Q̂2 + EJ (1− cos ϕ̂) (1.32)

Here the nonlinearity present in the system is a key ingredient for realizing
Josephson junction based circuits since it breaks the degeneracy of the energy
level spacing in comparison to LCR resonator (Fig. 1.9c).

Φ
Ic0

Ic0

φ1

φ2

i1

i2

Ib

Figure 1.10: Electrical scheme of a
SQUID.

The SQUID: a tunable inductor Another el-
ement that we extensively use in our exper-
iment is the SQUID that we describe here.
It consists in a superconducting loop inter-
rupted by two Josephson junctions (Fig. 1.10).
We consider a balanced SQUID of same crit-
ical currents Ic,1 = Ic,2 = Ic and note φ1
and φ2 the superconducting phase differ-
ence across each of the junctions. Due to
flux quantization, a magnetic flux applied
through the loop produces a difference Φ be-
tween these phases:
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Φ =
Φ0
2π

(φ1 −φ2) (1.33)

where Φ0 = 2πϕ0. When the self-inductance of the loop remains negligible
compared to the inductance of the SQUID, the bias current through the SQUID
writes:

Ib = 2Ic cos
(
π
Φ

Φ0

)
sin
(
φ1 +φ2
2

)
(1.34)

which shows that a SQUID behaves as a Josephson junction with a critical
current Ic(Φ) = 2Ic cos

(
π Φ
Φ0

)
, and therefore as a flux-tunable inductor with

an inductance composed of a linear term

LJ(Φ) =
ϕ0
Ic(Φ)

(1.35)

with Ic(Φ) = 2Ic| cos (π Φ
Φ0

)| the flux-dependent critical current of the SQUID.
Note that in addition, as already mentioned there exists a non-linear term
dependent on the bias current Ib across the SQUID ϕ0

2I3c(Φ)
I2b. This unwanted

non-linear term arises when the bias current Ib is comparable to the critical
current Ic(Φ).

1.2.2 Josephson superconducting resonators

Josephson junctions can be embedded in superconducting resonators to en-
dow them with new functionalities. In our experiments, we are interested in
two types of Josephson junctions based resonators. The first one, with a single
junction, acts as a bistable hysteretic detector with the applied microwave field,
called cavity Josephson bifurcation amplifier (CJBA) and will be used in our
hybrid circuits to optimize the superconducting qubit measurement process.
The second, with a SQUID, acts as a frequency flux-tunable resonator when
supplied to an external magnetic flux Φ threading the SQUID loop, and as a
quantum bus, will be engineered to transfer quantum states from the super-
conducting circuits processor to the spins memory.

the cavity josephson bifurcation amplifier

Figure 1.11: The cavity Josephson
bifurcation amplifier. The CJBA fab-
ricated in this thesis work are nonlinear,
open-end λ/2 resonator, consisting of
two sections of transmission line joined
by a Josephson junction. Its equivalent
lumped elements circuit is a LC res-
onator with capacitance C and induc-
tance L, plus a Josephson junction with
inductance LJ.

λ/4 λ/4

Z0

Cc LJ,CJ

Z0

Cc LJLC R
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We present briefly here the physics of cavity Josephson bifurcation amplifier,
that we use to realize a single-shot readout scheme for superconducting qubits
in our hybrid circuits. A detailed discussion of the device can be found e.g.
in [51, 52, 53, 47]. The CJBA is shown in Fig. 1.11, consisting of a transmission
line resonator with a Josephson junction embedded in its central conductor. As
discussed in Section I.1.1.3, it can be modeled equivalently as a lumped ele-
ments resonator with capacitance C and inductance L plus a Josephson junc-
tion with inductance LJ. Its Hamiltonian, sum of harmonic oscillator Eq. 1.2
and Josephson junction terms Eq. 1.32, can be rewritten in the form of a Kerr
birefringence Hamiltonian:

Ĥ =  hωr

(
â†â+

K

2
â†2â2

)
(1.36)

with resonance frequency

ωr =
1√

(LJ + L)C
(1.37)

and Kerr constant

K = −πZr
e2

h

(
LJ

LJ + L

)3
(1.38)

When driven under classical field βd(t) = βde−iωdt at frequency ωd, the intra-
cavity field α of Eq. 1.18 in the CJBA satisfies:

i
(
Ω
κ

2
α+K|α|2α

)
+
κ

2
α = −iβd (1.39)

whereΩ = 2Q(1− ωd
ωr

) is the reduced detuning, which accounts for off-resonance
drive. For certain couple of drive parameters (βd, ωd), this equation has two
solutions αi=1,2.

Fig. 1.12a shows the intracavity field α as a function of Ω, plotted for several
values of the drive amplitude βd. These double solutions appear when increas-
ing the drive amplitude, and is conditioned by the drive frequency such that
Ω > Ωr =

√
3, the bistable region, in which we typically operate the CJBA to

readout superconducting qubits. In Fig. 1.12b, we call B̄ and B respectively the
low (α1) and high (α2) intracavity field state, and β±, the bifurcation points, i.e
the points at which the system can change state. Starting with the resonator
in B̄, the intra-cavity field remains in the lower branch while increasing the
drive until reaching β+, where it suddenly grows to reach the upper branch B
(the bifurcation). Operated in this bistable region, the CJBA acts as a hysteretic
detector for the drive amplitude.
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Figure 1.12: The CJBA: a hys-
teretic detector for the drive am-
plitude. (a) Current in a CJBA as
a function of the reduced drive de-
tuning, plotted for various drive am-
plitude βd. For drive detuning Ωd
larger than a threshold value Ωr, the
resonator becomes bistable above a
certain power threshold βd > βc. (b)
Phase diagram in the Ω− βd plane,
showing the region of low intracavity
field (B̄), the region of high intracav-
ity field (B), and the bistable region
(dashed) where both B̄ and B dynam-
ical states can exist. The intracavity
field bifurcates (see inset) from one
states to the other when increasing
(decreasing) the drive until reaching
β+ (β−).
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Figure 1.13: The frequency tunable resonator.

Being a flux-tunable inductor as
seen above, a SQUID loop can be
inserted in a resonator to make
it tunable in frequency with an
applied local magnetic field. Such
resonators are useful to transfer
quantum states between two sys-
tems at different frequencies and
are extensively used in our hybrid
circuits between the circuits and
the spins. Its implementation with
distributed element resonator is schematized in Fig. 1.13. A SQUID is inserted
in the central conductor of a λ/2 coplanar waveguide resonator at the position
x (x ∈ [0, 1], with respect to Λ the length of the resonator). As shown in [35],
the insertion of the SQUID is equivalent to the insertion of the flux tunable
inductance L(Φ) given by Eq. 1.35. This modifies the resonator frequency, with
a dependence on the position x of the insertion. When introduced in the mid-
dle of the resonator (x = 1/2), the resonance frequency is changed from ω0
(without SQUID) to:

ωr(
Λ

2
,Φ) =

ω0
1+ LJ(Φ)ω0Zr

(1.40)

and the quality factor Q0 to

Qc(Φ) ≈ Q0
(
1+ 4LJ(Φ)

ω0
Zr

)
(1.41)
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Figure 1.14: Dependence of resonance frequency
on the position of the SQUID in the resonator.
∆ωr(xΛ,Φf) is shown at fixed applied magnetic flux Φf
as a function of x. The line is fitted with Eq. 1.42 (dashed
and dotted line)

In our experiments, for de-
sign reasons we have found
preferable that the SQUID
is not located at x = 1/2

but closer to the resonator
end. We have thus extended
the analysis to the case of
an arbitrary value of x. To
do so, we computed numer-
ically the value of the reso-
nance frequency as a func-
tion of x in the case where
the ratio between the SQUID
inductance LJ(Φ) and the
resonator inductance Zr/ω0
is small compared to 1. The
result is shown in Fig. 1.14.

We find that it is well approximated by the intuitive formula:

ωr(xΛ,Φ) = ω0

[
1− sin2 (πx)

LJ(Φ)
Zr
ω0

+ LJ(Φ)

]
(1.42)

The characterization of the resonator requires a probe power low enough to
remain in the linear regime, i.e Ib � Ic(Φ). Fig. 1.15 shows the resonance fre-
quency period with the variation of the flux through the SQUID loop operated
in the linear regime, demonstrating that the resonator can be effectively tuned
over hundreds of MHz.
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Figure 1.15: The tunable resonator. The resonance frequency of a resonator containing a
SQUID is tuned by varying the flux applied to the SQUID loop.
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1.2.3 Superconducting artificial atoms

To build an artificial atom, the non-linearity of Josephson junction based circuit
has to be pushed to the level of very large anharmonicity so that individual
levels can be addressed separately. In this case, the |0〉 to |1〉 transition can be
used to implement the qubit concept. The specific Josephson circuit we used
to implement artificial atoms in our experiments is the transmon qubit [54]
pioneered by Schoelkopf’s group at Yale, a variant of the Cooper Pair Box
(CPB) developed in 1996 in the Quantronics group [55].

the transmon qubit

V

Cg

EJ, EC

CB

gNg

N θ

Figure 1.16: Circuit schematic
of a Cooper Pair Box. A super-
conducting island (purple) is con-
nected to a reservoir (blue) through
a Josephson junction with Joseph-
son energy EJ , and a capacitance
CJ. This island is also electrostat-
ically coupled to ground through
a geometric capacitor CB, and to
a voltage source Vg through a ca-
pacitor Cg. The gate circuit (yel-
low) can be used to induce an offset
charge on the island.

The Cooper-pair box artificial atom (CPB) con-
sists in a superconducting island connected
via a Josephson junction to a grounded reser-
voir (Fig. 1.16). The island is coupled to an
input voltage source through a gate capac-
itance Cg. Cooper-pairs tunnel on and off
the island via the Josephson junction. The
gate circuit can be used to induce an ex-
cess charge Ng = CgVg/(2e) on the is-
land. The total number of Cooper-pairs hav-
ing tunneled through the junction is described
by the operator N̂ and equivalently with
its canonical conjugate, the superconducting
phase difference θ̂ across the junction. We re-
call here the properties of the CPB that is
needed to design and understand our exper-
iment. An in-depth treatment of the Cooper-
pair box can be found in A.Cottet’s the-
sis [56].

The Hamiltonian of the CPB writes:

Ĥ = EC(N̂−Ng)
2 − EJ cos θ̂ (1.43)

with EC = (2e)2/2Cσ and Cσ = CJ +CB +Cg. Diagonalization of this Hamilto-
nian yields the circuit eigenenergies  hωi and eigenstates |i〉 so that the Hamil-
tonian can be recast in the form

Ĥ =  h
∑
i

ωi|i〉〈i| (1.44)

We use the two lowest levels, that we will call in the following |g〉 and |e〉 to
implement the qubit concept.
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(a) CPB energy levels (b) Qubit state represented in the Bloch sphere

Figure 1.17: Superconducting qubits. (a) The two lowest levels |g〉 and |e〉 are separated by
a transition at ωge, that can be used to implement the qubit concept. (b) The Bloch vector of
the qubit state (r) represents a pure quantum state if it falls on the surface of the Bloch sphere
or a mixed quantum state if it falls inside the sphere. The north pole corresponds to the state
|g〉, the south pole to |e〉. The intersections of the unit sphere with the x, y axes corresponds
respectively to the state |g〉+ |e〉 and |g〉+ i|e〉.

Any pure state of the qubit can be written in a linear combination |ψ〉 = α|g〉+
β|e〉 with α and β complex numbers satisfying |α|2 + |β|2 = 1. The state of the
qubit can be mapped to the points on a sphere of radius 1, the Bloch sphere,
with north pole corresponding to the state |g〉 and south pole to |e〉 and re-
written in the spherical coordinates

|ψ〉 = cos (θ/2)e−iϕ/2|g〉+ sin (θ/2)eiϕ/2|e〉 (1.45)

with θ ∈ [0,π] and ϕ ∈ [0, 2π], the polar and azimuth angles. The correspond-
ing position r, also called the Bloch vector, is defined in Fig. 1.17b and can
represent a pure or mixed state.

In our experiments, we use a split Cooper pair box with a balanced SQUID
loop instead of a single Josephson junction to allow for tunability of the qubit
frequency ωge. The Hamiltonian of this circuit shown in Fig. 1.18a recasts in
the form of Eq. 1.43 of the Cooper pair box with Josepshon energy E∗J(Φ) de-
pending of the applied flux Φ to the SQUID loop:

E∗J(Φ) = EJ

√
1+ cos (Φ/ϕ0)

2
(1.46)

In addition, the charging energy has been strongly reduced by designing a
large geometrical capacitance CB such that the qubit operates in the Josephson
regime EJ � Ec (Transmon). As shown in Fig. 1.18c, in this regime the charge
dispersion of the energy levels of the Cooper pair box becomes extremely weak,
thus rendering the qubit frequency practically insensitive to the value of the
gate charge Ng.
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Figure 1.18: Implementation of a superconducting qubit with a Transmon. (a) The Trans-
mon qubit used in this thesis work is a split CPB with the Josephson junction replaced by a
balanced SQUID loop and (b) operated in the regime EJ � EC. The first energy levels of a
Transmon qubit show a charge-dispersion curve almost completely flat.

decoherence

Independently of the physical implementation (superconduting qubits, spins,
atoms,...), the coupling to the environment deteriorates the quantum state sup-
ported by a qubit. This is the decoherence, which materializes in two processes:

• Energy relaxation The qubit in the excited state |e〉 decays to the ground
state |g〉 by dissipating energy into its environment. This process involves
the emission a photon with  hωge and is characterized by an exponential
decay time T1.

• Dephasing The qubit transition frequency ωge randomly fluctuates due
to interactions with the environment. This process involves loss of the
phase coherence ϕ of the quantum state and is characterized by a decay
time Tϕ.

The Bloch sphere is a useful tool to visualize the states and the decoherence pro-
cesses (Fig. 1.19). Relaxation precipitates the Bloch vector towards the ground
state; Dephasing shrinks the Bloch vector towards the center of the sphere.
Since energy relaxation also causes loss of phase coherence, the two times are
often expressed as one characteristic decoherence timescale, the free induction
decay time T∗2 , with

1

T∗2
=

1

2T1
+
1

Tϕ
(1.47)

There is usually a tradeoff between protecting the qubit from decoherence on
the one hand and being able to easily control, readout and couple it. Supercon-
ducting qubits can be easily manipulated but have typically coherence proper-
ties far lower than the one of isolated microscopic systems such as nuclear and
electronic spins in crystals. One of the major challenges in superconducting
circuits has actually been to improve the coherence properties from the first
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qubit operation in 1999 with 5− 10ns range [57] to allow the implementation
of quantum gate operation in multi-qubit small-scale processors. Progress in
circuit design [58, 59, 60, 61] and fabrication techniques has led to longer coher-
ence times, up to tens of microseconds nowadays for transmon qubits [5, 6].
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Figure 1.19: Decoherence mechanisms. (a) A qubit in the excited state decays to the ground
state via energy relaxation. (b) Interaction with the environment causes the energy level spacing
between the qubit states to jitter leading to a loss of phase coherence called dephasing.

1.3 circuit quantum electrodynamics

In this thesis, we use a resonator for coupling spins and superconducting
qubits. Both are two-level systems (TLS) that can be described within the same
framework when interacting with a planar resonator, referred as circuit quan-
tum electrodynamics. In this section, we focus on the coupling between a res-
onator and a superconducting qubit on chip. Two regimes are of interest for
our experiments: the resonant regime for quantum state transfer between the
qubit and the bus resonator, and the dispersive regime for non-destructive mea-
surement of the qubit state.

1.3.1 Qubit-resonator coupling

λ/2
Cc Cg

Vg

Figure 1.20: Schematic of a typical
CQED circuit, consisting of a Trans-
mon qubit capacitively coupled to a
transmission line resonator.
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We consider the system shown in Fig. 1.20, in which a qubit of the transmon
type, is capacitively coupled (Cg) to a CPW resonator, itself coupled (Cc) to
the 50Ω input transmission line. The Hamiltonian of the system is the sum
of the Hamiltonians of the resonator (Eq. 1.2) and the qubit (Eq. 1.43), plus
an interaction term Ĥint between them. For small couplings Cg � Cc, this
interaction Hamiltonian approximates as the energy stored in the capacitance
between the qubit and the resonator:

Ĥint =
1

2
CgV̂

2
g =

1

2
Cg

(
Vrms(â

† + â) − V̂
)2

(1.48)

where V̂g is the bias voltage at the coupling capacitance, Vrms the root-mean-
square fluctuations of the voltage of the resonator introduced in Eqs. 1.5, 1.6
and V̂ = 2e/CΣ · (N̂g − N̂) the voltage across the Transmon electrodes (see
Fig. 1.16). In the limit where β = Cg/CΣ � CΣ, we can restrict ourselves to the
first order coupling term in Vrms such that1:

Ĥint = 2eβVrmsN̂(â† + â) (1.49)

The coupling strength g between the qubit and the resonator can be identified
by rewriting the interaction Hamiltonian in term of σ̂+ = |e〉〈g| and σ̂− = |g〉〈e|
the raising and lowering operators of the qubit:

Ĥint =  hg(σ̂+ + σ̂−)(â+ â
†) (1.50)

with g given by
 hg = 2βVrms〈g|N̂|e〉 (1.51)

In the case where the coupling between the resonator and the qubit is such
that g � ωr,ωge, we can ignore the terms in the interaction Hamiltonian that
describe simultaneous excitation or desexcitation of the qubit and the resonator,
and rewrite the total Hamiltonian in the rotating wave approximation:

Ĥ =  hωr

(
â†â+ 1/2

)
−  h

ωge

2
σ̂z +  hg

(
âσ̂+ + â†σ̂−

)
(1.52)

This is the Jaynes Cumming Hamiltonian. In an experiment, both the cavity
and the qubit have losses, characterized by damping rates κ (cavity) and γ

(qubit). The regime of interest, in which the coupling strength is much larger
than all losses in the system, is called the strong coupling regime (g� κ,γ). In
this case, losses are invisible on the time scale of the qubit-resonator interaction
and the Jaynes-Cumming Hamiltonian can be analytically diagonalized. The
two eigenstates of the individual systems (the intracavity field state |n〉 for the
cavity and the ground state |g〉 and excited state |e〉 for the atom) are no longer
eigenstates of the Hamiltonian Eq. 1.52 but instead a coherent superposition of
both system states [55]:

|+,n〉 = cos θn|e,n〉+ sin θn|g,n+ 1〉 (1.53)
|−,n〉 = − sin θn|e,n〉+ cos θn|g,n+ 1〉 (1.54)

1 The terms in Ng which do not corresponds to coupling term but to a renormalization of the
resonator capacitance are omitted.
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with θn a mixing angle defined as

tan (2θn) = −2g

√
n+ 1

∆
(1.55)

where ∆ = ωge −ωr is the frequency difference between the cavity and the
qubit. The energies corresponding to these states are

 hω±,n =  hωr(n+ 1)±  h
Ωn,∆

2
(1.56)

with Ωn∆ the vacuum Rabi frequency given by

Ωn,∆ =
√
4g2(n+ 1) +∆2 (1.57)

In the experiment reported in Chapter III, we exchange a single photon be-
tween the qubit and the resonator. This corresponds to the case n = 0. We
show in Fig. 1.21 the frequencies ω±,0 as a function of the detuning ∆ between
the resonator and the qubit.
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Figure 1.21: Vacuum Rabi splitting. The frequency of the resonator shows an anti-crossing
when approaching the qubit frequency (∆ = 0).

An avoided crossing of width 2g appears between the two eigenstates of the
coupled system (see Fig. 1.21). This phenomenon is known as the vacuum Rabi
splitting. If the qubit is prepared in state |e〉 at t = 0 with the cavity empty
(|e, 0〉), the probability to find the system in state |g, 1〉 is:

P(t) =
4g2

Ω20,∆
sin2

(
Ω0,∆

2
t

)
. (1.58)

Resonant regime: vacuum Rabi oscillations When the cavity and the qubit are
resonant such that ∆� g, the frequency Ω0,∆ ≈ 2g. If the qubit is prepared in
|e〉 at t = 0 with the cavity in |0〉, the probability to find the resonator in |1〉 at
time t becomes:

P(t) = sin2 (gt) =
1− cos (2gt)

2
(1.59)

These oscillations are known as vacuum Rabi oscillations. After a time π/2g,
the resonator is prepared in state |1〉 with probability 1; we will use this phe-
nomenon in the experiments reported in Chapter III to transfer a quantum state
from the qubit into the spin ensemble via a resonator.
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Dispersive regime: cavity-pull When the cavity is far detuned from the TLS
transition frequency such that ∆ � g, the probability (Eq. 1.58) to exchange a
photon becomes negligible. This regime has been discussed e.g. in [47] and is
called the dispersive regime. In this case, the Hamiltonian is approximated by
an effective Hamiltonian:

Ĥdisp =
1

2
 hω ′geσ̂z +  h(ω ′r + χσ̂z)

(
â†â+

1

2

)
︸ ︷︷ ︸

cavity pull

(1.60)

with the dispersive shift χ = g2/∆. The term labeled as cavity pull remains
the Hamiltonian of a harmonic oscillator, but with frequency ω ′r + χ when the
TLS is in its ground state and ω ′r − χ when in its excited state. This qubit-state
dependent frequency shift is the basis for qubit readout in cQED. We place
ourselves in this dispersive regime to measure the superconducting qubit.

1.3.2 Resonant qubit manipulation

Z

X

ωd

Y

ϕd

g

e

Vd . τ

Figure 1.22: Qubit operations repre-
sented in the Bloch sphere rotating at the
microwave frequency ωd.

To drive the qubit, a microwave
pulse at a frequency ωd close to
ωge is sent onto the resonator in-
put. It generates a field of amplitude
|α|e−i(ωdt+φd), whose action on the
qubit is given by the Hamiltonian term
g|α|

[
e−i(ωdt+φd)σ̂+ + ei(ωdt+φd)σ̂−

]
. In

the rotating frame at ωd, the complete
qubit Hamiltonian can then be rewrit-
ten as:

Ĥd =
 hδω

2
σ̂z +  h

ΩR
2
σ̂n (1.61)

with δω = ωge−ωd the qubit-drive de-
tuning, ΩR = 2g|α| the Rabi frequency,
and σ̂n = cosφdσ̂x + sinφdσ̂y. In the

Bloch sphere representation (Fig. 1.22), the qubit Bloch vector precesses around
an axis making an azimuthal angle φd with the x-axis, and an angle θ such that
tan θ = δω/ΩR with the x− y plane. By appropriate selection of the pulse du-
ration and detuning, arbitrary rotations can be achieved on the Bloch sphere.

1.3.3 Non-destructive qubit readout with Josephson bifurcation amplifier

To measure the qubit state, we use the cavity pull effect seen in Section I.1.3.1.
The Transmon-resonator system is in the dispersive regime, where the res-
onator frequency is shifted up or down depending on the qubit state as ex-
pressed by Eq. 1.60. The common measurement technique consists in sending
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a microwave pulse at ωr and measuring the relative phase reflected onto the
resonator. At resonance, the reflected phase of the microwave signal onto the
cavity undergoes a π shift (see Section I.1.1.2). When coupled to the qubit, the
frequency at which occurs this π-shift is dependent on the qubit state which
defines a phase difference δϕ0 shown in Fig. 1.23. The discrimination between
the two qubit states is obtained by averaging out to reduce the noise on the
measured reflected phase.
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Figure 1.23: Standard dispersive measurement technique. The phase of a reflected probe
pulse is measured. The noise coming mainly from the cryogenic amplifier, introduces an un-
certainty on the discrimination between |g〉 and |e〉 qubit states (red and blue disks), which
depends on the averaging time, and which can be of the same order or even larger than the
separation between the two vectors to be discriminated.

However, as noise can be of the same order or even larger than δϕ0, require-
ment on the averaging is tight to obtain good signal to noise ratio. In our
experiments, we optimize the measurement process by replacing the resonator
by a cavity Josephson bifurcation amplifier (R), the hysteretic detector that we
have seen in Section I.1.2.2. Fig. 1.24 shows the phase diagram of the CJBA, in-
dicating the stability regions of the different solutions B̄ (low-amplitude) and
B (high-amplitude) of R for the two different qubit states |g〉 and |e〉. We take
advantage of its hysteretic behavior in a measurement process separated in two
steps:

• Map the qubit state to the resonator: at fixed drive frequency ωm, the
amplitude of the measurement pulse is quickly ramped from 0 to the
value βm as indicated in Fig. 1.24a. If the qubit is in state |g〉, R remains
in the low-amplitude state B̄, while switches to the high-amplitude state
B if in |e〉. In this way, the state of the qubit is mapped to one of the two
intra-cavity field states of R, resonator which can be easily measured by
standard microwave techniques;

• Maintain and measure the resonator until its discrimination: the mea-
surement of the resonator has to be well averaged out, thus during a long
time interval (typically 1− 2µs) to discriminate between the two oscilla-
tor states with certainty. To avoid further switching processes during the
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time needed to measure, the drive amplitude is lowered to a value βh at
which the switching probability of R is very small. At this point, we can
measure R for an arbitrary long time without being limited by spurious
switching events.

This measurement technique is qualified of single-shot readout and well-known
for its robustness with readout contrast demonstrated up to 93% in past exper-
iments [62]. In our hybrid circuit experiments, we will use the CJBA as a tool
for efficient qubit readout.
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Figure 1.24: Single-shot qubit readout. (a) Same CJBA phase diagram as on Fig. 1.12 for
a CJBA embedding a qubit that shifts the diagram by ±χ when being in its |g〉 and |e〉 states,
respectively. (b) Probability of switching from B̄ to B as a function of the CJBA input drive
amplitude βd, shown for an embedded qubit in state |g〉 (blue) or |e〉 (red).

2 N V C E N T E R S P I N S I N D I A M O N D

We now turn to the second component of our hybrid circuits: the NV center
spins in diamond. The Nitrogen-Vacancy center (NV) is an impurity in dia-
mond which has drawn an increasing amount of interest in the quantum optics
community for its spin and optical properties. The reason is that it is param-
agnetic [63, 64], has good coherence properties [39, 17], and using Optically
Detected Magnetic Resonance (ODMR) it is possible to optically read out and
polarize the electron spin state [18]. We give in the following more details on
its spin and optical properties which will be exploited to implement memory
operations and explicit the specific sample properties required for our hybrid
circuit implementations.
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2.1 structure

V
N

C

C

C

Figure 1.25: Schematic representa-
tion of the NV center in diamond.

The NV center consists of a substitutional
nitrogen atom (N) next to a vacancy (V) in
an adjacent lattice site of the diamond crys-
talline matrix (Fig. 1.25). It has a trigonal
symmetry around the crystallographic direc-
tion connecting the nitrogen and the vacancy
that we refer to as the NV axis and note Z
in the following. The NV axis coincides with
〈111〉 directions of the diamond lattice which
implies four different possible NV axis ori-
entations. The electronic structure of the NV
center determines its optical and spin prop-
erties. Three electrons are provided by the
dangling bonds of the vacancy to neighbor-

ing carbon atoms, two by the dangling bonds of the nitrogen atom itself. This
configuration forms the first kind of NV center, the NV0, which is neutral and
has electron spin S = 1/2. There are also cases where the NV center has cap-
tured an additional electron from other Nitrogen donors in the diamond: the
negatively charged NV centers (NV−). In this thesis work we concentrate ex-
clusively on the latter one which has electron spin S = 1 and will omit ’−’ sign
from now.

2.2 the nv center spin qubit

3E

3A

1A

1
0

+

1
0

+

ms

Figure 1.26: Level diagram of the NV
center, showing ground (3A) and first ex-
cited (3E) electronic states, as well as the
1A state. A transition in the optical domain
separates the two electronic states, which
are both spin triplet (S = 1).

Symmetry and structure determine the electronic properties of the NV center.
In the case of NV, the electronic configuration leaves two unpaired electrons
which couple together to form either triplet or singlet states. The determina-
tion of the exact energy level structure resulting of this coupling has combined
many efforts both from the theoretical and experimental side including opti-
cal [65], electron [66] paramagnetic resonance. For the work we discuss in this
thesis, we limit ourselves to relevant states, the electronic ground (3A) and the
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first excited state (3E) which both are spin triplet states, plus a singlet level
1A present between the ground and excited states [18]. The schematic of the
energy level diagram is shown in Fig. 1.26.

2.2.1 NV qubit transition: spin properties

The electronic ground state 3A is a spin triplet (S = 1). The system can be
described in the basis mS = 0,±1 (the spin quantization along Z, the NV axis)
using the dimensionless spin-1 vectorial operator S = (ŜX, ŜY , ŜZ), with

ŜX =
1√
2

 0 1 0

1 0 1

0 1 0

 , ŜY =
1√
2

 0 −i 0

i 0 −i

0 i 0

 , ŜZ =

 1 0 0

0 0 0

0 0 −1

 (1.62)

Note that restricting ourselves to a 2-level subspace, one obtains the relations
ŜX,Y = 1√

2
σ̂x,y between the spin-1 operators and the usual spin-1/2 Pauli matri-

ces which will be used later in this manuscript. The spin Hamiltonian is a sum
of the zero-field splitting (ĤZF), the electron Zeeman shift (ĤB) and the hyper-
fine interaction with the nitrogen nucleus (ĤHF). These three contributions are
described below.
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Figure 1.27: Electron spin levels of
the electronic ground state.

Zero-field splitting The zero-field splitting
ĤZF results from the dipole-dipole magnetic
coupling between the two unpaired electron
spins forming S = 1. As the name suggests
it leads to a level splitting even in the ab-
sence of external magnetic field. The zero-
field Hamiltonian can be written using the
zero-field splitting tensor D̄:

ĤZF/ h = S · D̄ · S (1.63)
= DXŜ

2
X +DYŜ

2
Y +DZŜ

2
Z(1.64)

which can be equivalently rewritten as1:

ĤZF/ h = DŜ2Z + E
(
Ŝ2X − Ŝ

2
Y

)
(1.65)

where we defined D = 3DZ/2 the zero-field
splitting and E = (DX −DY)/2 the strain in-
duced splitting.

Due to the axial symmetry of the NV center, DX and DY should be iden-
tical. In our experiment however, a distortion of the trigonal symmetry ap-
pears due to the effect of strain and local electric fields on the orbital en-
ergy yielding DX 6= DY (and thus E 6= 0). As a result, the energy eigen-
states |±〉 are not identical to the two pure spin eigenstates |mS = ±1〉. The

1 The constants terms are omitted.
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state |±〉 are linear combinations of |mS = ±1〉, with at zero magnetic field
|±〉 = (|mS = +1〉 ± |mS = −1〉)/

√
2 separated in frequency by 2E. Microwave

transitions are induced between the |mS = 0〉 ground state and either the |+〉
or the |−〉 excited states with transition frequency ω± (Fig. 1.27). For our hy-
brid circuits, we use an ensemble of NV centers which involves a distribution
of both the zero-field splitting ρ(D) and strain induced splitting ρ(E) Hamil-
tonian parameters. Average values are D/2π = 2.878GHz and E/2π between
1− 5MHz from sample to sample.

BNV
BNV

NV
NV

3.4

3.2

3.0

2.8

2.6

2.4

ω
/(2

π)
 (G

H
z)

20151050
BNV (mT)

Figure 1.28: Energy states depen-
dence of the microwave transitions
ω± under a magnetic field, applied
parallel (perpendicular) to the NV cen-
ter axis showing a linear (quadratic)
Zeeman effect.

Zeeman interaction The Zeeman term ap-
pears upon the application of an exter-
nal magnetic field BNV. It writes ĤB/ h =

−γeBNV · S, with γe = −geµB/ h = −2π ×
2.8MHz/Gs the gyromagnetic moment of
the NV electron spin (ge = 2 [63] the
NV Landé factor and µB the Bohr magne-
ton).

The Hamiltonian ĤZF + ĤB can be diago-
nalized. In Fig. 1.28, we show the spin energy
states evolution with the external magnetic
field BNV applied parallel and perpendicu-
lar to the NV center axis for 2MHz strain
coefficient. When BNV � E/|γe|, the strain-
induced fine structure splitting becomes neg-
ligible compared to the Zeeman splitting, the
states |±〉 are well approximated by the pure
spin states |mS = ±1〉 and the resonant fre-
quencies ω± tend towards their asymptotes
D∓γeBNV . In our experiments, the magnetic
field BNV is applied parallel to superconduct-
ing bus resonator on a collection of NV cen-
ter spins yielding different Zeeman shifts for
the four spin groups of crystallographic NV orientations.

Hyperfine interaction The NV center is also coupled by hyperfine interaction
to nearby nuclear spins. One can distinguish the contribution of the hyperfine
coupling to the 14N nuclear spin, which is present in each NV center and
modifies appreciably its spectrum, from the hyperfine coupling to the 13C spins
in the diamond lattice, which has a different effect on each NV center and
contributes to decoherence. We thus include in the NV Hamiltonian only the
coupling to the nuclear spin-1 (I = 1) of the nitrogen atom 14N. The hyperfine
term can be written as ĤHF/ h = S · Ā · I with I the dimensionless operator of
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the nitrogen nuclear spin and Ā the hyperfine interaction tensor. The hyperfine
tensor is given by [66]:

Ā =

 A⊥
A⊥

A‖

 (1.66)

with A⊥/2π = 2.7MHz and A‖/2π = 2.14MHz. In addition, the nitrogen atom
has a quadrupole moment yielding a term ĤP = PÎ2Z with P = −2π× 5MHz.
In total, the NV Hamiltonian is:

Ĥ/ h = S · D̄ · S︸ ︷︷ ︸
ZF

−γeBNV · S︸ ︷︷ ︸
B

+S · Ā · I︸ ︷︷ ︸
HF

+PÎ2Z (1.67)

The NV eigenstates are displayed in Fig. 1.29b, showing the effect of the strain
as a lifting of degeneracy at zero field and the hyperfine interaction with 14N as
a splitting by approximately 2.17MHz of the resonance into a triplet structure.
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Figure 1.29: NV energy diagram showing the Zeeman and hyperfine structure of the
electronic ground state under a magnetic field applied parallel (perpendicular) to the
NV center axis. Six microwave transitions are allowed. Under magnetic field applied perpen-
dicular to the NV axis, the transitions |mS = 0,mI = ±1〉 → |mS = +1,mI = +1〉 and
|mS = 0,mI = ±1〉 → |mS = +1,mI = −1〉 (respectively |mS = 0,mI = ±1〉 → |mS =

−1,mI = +1〉 and |mS = 0,mI = ±1〉 → |mS = −1,mI = −1〉) are degenerated.

In practice, one of the two transitions at frequencies ω± between the spin
ground state |mS = 0〉 and the excited states |±〉 is used, equivalent to a two-
level system with ground state |g〉 and excited state |e〉 and transition frequency
ωs. In this two level system description, the Hamiltonian of the NV center spin
(Eq. 1.67) reduces to

Ĥa = − h
ω±
2
σ̂z (1.68)

An oscillating magnetic field Bd(t) = Bd cos (ωdt) · eX can be applied to drive
the spin transitions. The corresponding Hamiltonian is Ĥd = −γeS ·Bd(t) and
can be rewritten in the frame rotating at ωd

Ĥd/ h = −γe
B̂d · ŜX
2

= −γe
Bd

2
√
2
σ̂x (1.69)
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which corresponds to a Rabi frequencyΩR = γeBd/
√
2. In our experiments, the

spins are driven via a resonator, with the oscillating magnetic field generated
by the oscillating current in the resonator inductance. As explained earlier, it
is possible to link the incoming microwave power P to this current, and the
current to a spatially-dependent magnetic field Bd(r). The last equation shows
how to determine the Rabi frequency ΩR(r,P) of a spin located at position r,
which will be used in Chapter IV.

2.2.2 NV qubit initialization: optical properties

0

+1

-1

3E

3A

D ms

532 nm

Figure 1.30: Optical repumping of NV centers in their mS = 0 ground state by appli-
cation of green (532 nm) laser pulses exciting the 3E-3A transition.

Spin state initialization can be obtained through the use of an optical transi-
tion to the electronic excited state which has the property to relax selectively
in |mS = 0〉 of the electronic ground state. For this, drive of the NV centers
to the electronic excited state has to be implemented. The electronic ground
and excited states of the NV centers are coupled through an electrical dipolar
transition with zero phonon line (ZPL) at 1.945 eV (Fig. 1.30), corresponding to
emission at λZPL = 638nm. This radiative transition is coupled to the phonons
of the diamond matrix which allows for vibronic sideband excitations. Due
to the availability, usually 532nm laser light is used to excite from the triplet
ground state to the excited one [67]. The optical transitions between 3A and
3E are spin conversing (∆mS = 0). As a result, NV centers initially in the
|mS = 0〉ground (respectively in |mS = ±1〉ground) end up in the |mS = 0〉excited
(respectively in the |mS = ±1〉excited) excited state and can decay back through
the same radiative transition.

There is however a second possibility given by intersystem crossing (ISC):
once in the excited electronic state the NV center can return into the triplet
ground state via the singlet metastable level 1A. The decay back from the
metastable state into the triplet ground state occurs preferentially into the
|mS = 0〉ground [68, 69]. The point is that ISC is strongly spin state depen-
dent so that there is high probability from |mS = ±1〉excited state to decay back
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via the metastable state while a very low one from |mS = 0〉excited state. Hence,
after several optical cycles, the NV-centers are mainly polarized in the ground
state |mS = 0〉ground regardless of theirs former state: this is the optical repump-
ing. This process occurs in few tens of nanoseconds at low temperature [70],
sufficiently fast to be included in our memory protocol. The maximum spin
polarization reachable using optical repumping is ∼ 90%, according to [71].

For experiments which do not require such fast pumping, or alternatively in
which the amount of excited spins is intrinsically very low (for example the ex-
periment 1 of this thesis work), cooling down in a dilution fridge at milliKelvin
(mK) temperatures via the surrounding bath temperature is sufficient to ensure
large polarization in |mS = 0〉. Indeed for NV center at 30mK,  hωge � kBT

and the probability for a spin to be excited is p± = e−( hωge/kBT) ≈ 0.01. Note
however that the NV energy relaxation time is of order 5ms [72] at room tem-
perature, and even longer at low temperature. This implies that once excited,
the relaxation of the spin polarization towards the equilibrium is long. Hence,
it is possible that the temperature of the spins is different than the one of the
cryostat, due to thermal excitation, i.e via measurement transmission lines.

2.3 coherence times

π/2

π/2

π/2

π/2π

(a) Ramsey sequence

(b) Spin-echo sequence

π/2 π/2π

N
(c) Dynamical decoupling sequence

Figure 1.31: Measuring the coher-
ence times. (a) Ramsey sequence. Two
π/2 rotations are performed, separated
by a delay during which the spins pre-
cess freely. The envelope of the oscilla-
tions for increasing τ is characterized
by the dephasing time T∗2 , associated
to fluctuations of the environment. (b)
Spin echo sequence. An intermediate π
rotations around x is performed to re-
focus the dephasing due to static fluc-
tuations. (c) Dynamical decoupling se-
quence. Successive π rotations are per-
formed to refocus the dephasing due to
dynamic fluctuations.

The coherence properties of NV centers
are characterized by the free-induction de-
cay time T∗2 (measured by Ramsey fringes),
the Hahn-echo decay time T2 (measured by
a spin-echo sequence), and the coherence
time under dynamical decoupling sequences
such as Carr-Purcell-Meiboom-Gil T2CPMG
(see Fig. 1.31). The value found for these
times depends crucially on the local mag-
netic environment of each spin in a sphere of
radius few tens of nanometers. In diamond,
the main magnetic impurities are neutral
nitrogen atom (the P1 centers) which have
an electronic spin 1/2 and carbon 13 nuclei
with their nuclear spin 1/2 present to 1.1%
abundance in natural carbon. The longest
echo coherence times T2 = 2ms were there-
fore measured in ultra-pure samples growth
by Chemical-Vapor Deposition (CVD) with
very low nitrogen concentration as well as
isotopically enriched carbon source. In such
samples, the coherence time has been ex-
tended out up to T2CPMG = 0.5 s under Carr-
Purcell-Meiboom-Gil dynamical decoupling
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sequences at low (100K) temperatures [17].
This is five orders of magnitude longer than superconducting qubits, which
motivates the idea of using NV centers for storing quantum information.

The crystals used in our experiments are however not as pure. Indeed, we
need relatively large concentrations of NV centers of orders ∼ 1.76 − 17.6 ·
105 µm3 (1− 10ppm) to efficiently absorb microwave photon in superconduct-
ing resonator. These concentrations are not easily reached with sample grown
by CVD. Our crystals instead are grown by a method called High-Pressure-
High-Temperature (HPHT). HPHT diamond usually have a large nitrogen con-
centration of 1 − 100ppm. NV centers are created from this nitrogen doped
diamond in two steps: (i) irradiation with protons or with electrons of a dia-
mond crystal to produce vacancies (ii) annealing at 800− 1000° C to allow the
vacancies to migrate and form the NV defect. This method unavoidably leaves
a significant residual concentration of P1 centers (1− 100ppm), which limits
the spin coherence time (both T∗2 and T2) to lower values than reported with
CVD diamonds. In the experiments discussed here, these residuals P1 centers
are the main cause of decoherence. The contribution of P1 centers to the de-
coherence has been thoroughly studied [73, 74, 75, 76]. In particular, it was
shown [77] that T∗2 and T2 are inversely proportional to the P1 center concentra-
tion ([P1]), with the relations 1/T∗2 = −γe

√
1.2 · 10−4[P1]2 + 6.4 · 10−4 s−1 and

1/T2 = 1.4 · 104 × [P1] s−1 (see Fig. 1.32). At low concentration, the contribution
of the 13C becomes dominant as evidenced by the saturation.

Figure 1.32: Dependence of the coherence times on the P1 concentration [77]. Depen-
dence of the linewidth γ = 1/T∗2 (left) and spin-spin relaxation rate 1/T2 (right).

3 C O U P L I N G E N S E M B L E S O F N V C E N T E R S P I N S T O

S U P E R C O N D U C T I N G C I R C U I T S

In our experiments, a superconducting resonator is used to mediate the inter-
action between the NV center spins and the rest of the circuit. In the follow-
ing, we describe the spins-resonator system. We first evaluate the interaction
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strength of a single NV center spin to a superconducting resonator for typical
cQED parameter. We will see that this coupling strength is too weak to allow
for coherent exchange of quantum information, but instead an ensemble of
such spin benefit from a collective enhancement. We will consider our experi-
mental conditions in which the spin ensemble has both static distributions of
spin-resonance frequency and coupling strength to the resonator and treat the
dynamics of the spins-resonator system.

3.1 single spin - resonator coupling

Strictly speaking, NV centers are spin-1 systems so that it is not possible to
write the interaction of the electronic spin with a resonator field on the Jaynes
Cummings form of Section I.1.3.1. However by applying a static bias on the
spins, one can operate on one of these transitions only: the NV center is re-
duced to a two-level system with ground state |g〉 = |mS = 0〉, excited state
|e〉 = |±〉 and transition frequency ωs = ω±. The Hamiltonian of the single
spin-resonator system can be written:

Ĥ = Ĥr + Ĥa + Ĥint (1.70)

with Ĥr the free-field Hamiltonian given by Eq. 1.2, Ĥa the Hamiltonian of
the NV center spin given by Eq. 1.68 and a coupling term function of S the
magnetic dipole of the NV and B the magnetic field sustained by the resonator:

Ĥint/ h = −γeS ·B (1.71)

= −
γe√
2
[σ̂xδBx(r) + σ̂yδBy(r)] (â+ â†) (1.72)

= −
γe√
2

[
âσ̂+{δBx(r) − iδBy(r)}+ â†σ̂−{δBx(r) + iδBy(r)}

]
(1.73)

= g∗âσ̂+ + gâ†σ̂− (1.74)

with the (complex) spin-resonator coupling constant defined as

g = −
γe [δBx(r) + iδBy(r)]√

2
(1.75)

The modulus of this coupling constant can be estimated numerically for typical
parameters of resonators in circuits, using the analytical expression for the
magnetic field generated by a CPW waveguide Eq. 1.24. For a 50Ω resonator on
Silicon with geometrical parameters S,W = 10, 5µm and resonance frequency
ωr/(2π) = 2.88GHz, the magnetic field generated at the surface is ∼ 450pT
yielding a single-spin-resonator coupling constant

g ∼ 2π · 10Hz. (1.76)

This value is four orders of magnitude smaller than resonator linewidth κ

reachable in circuit QED. The coupling strength of an individual NV center
spins to one electromagnetic mode is thus too weak to allow for strong cou-
pling (g � κ,γ) and subsequent coherent exchange of quantum information.
This issue is overcome by using large ensembles of spins, as explained in the
following.
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3.2 spin ensemble - resonator coupling : collective effects

New effects appear when an ensemble of N spins is collectively coupled to a
resonator. The goal of this section is to give the elements of theory relevant for
understanding our quantum memory protocol and experiments, and to derive
a number of formulas for the analysis.

3.2.1 The Tavis-Cummings model

ωr

ωs , g

Figure 1.33: The Tavis-Cummings model. N identical two-level systems of frequencyωs are
identically coupled to a single cavity mode with coupling strength g.

The Tavis-Cummings model [78] considers N identical spins-1/2 with frequency
ωs coupled with the same coupling constant g to a single cavity mode at fre-
quency ωr (see Fig. 1.33). The Hamiltonian writes:

ĤTC/ h = ωr

(
â†â+

1

2

)
+
ωs

2

N∑
j=1

σ̂
(j)
z + g

N∑
j=1

(
âσ̂

(j)
+ + â†σ̂(j)−

)
, (1.77)

with σ̂(j)z,± the Pauli spin operators of spin j. The internal states of the ensemble
can be written in the 2N-dimensional basis spanned by the states Πj=1,..,N|i〉j,
with i = g, e. As a useful notation, we refer in the following to the collective
ground state |G〉 ≡ |g1...gN〉, and the state with only spin j excited |Ej〉 ≡
|g1...ej..gN〉. Introducing the collective spin operators ŜX,Y,Z =

∑N
j=1 σ̂

(j)
x,y,z/2 and

Ŝ± =
∑N
j=1 σ̂

(j)
± , ĤTC can be rewritten as:

ĤTC/ h = ωr

(
â†â+

1

2

)
+ωsŜz + g

(
âŜ+ + â†Ŝ−

)
, (1.78)

called the Tavis-Cummings Hamiltonian.

the collective basis

One key property of this Hamiltonian is that it commutes with the total spin
Ŝ
2
= Ŝ2x + Ŝ2y + Ŝ2z, implying that its eigenvalue 1 S(S + 1) is a good quan-

tum number whose value is constant in time. The system dynamics is thus

1 S takes any integer or half-integer value between 0 and N/2
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restrained to subspaces with fixed S, and it is therefore interesting to describe
it in the basis of the simultaneous eigenstates of Ŝ

2
and Ŝz:

Ŝ
2
|S,m〉 = S(S+ 1)|S,m〉 (1.79)

Ŝz|S,m〉 = m|S,m〉 (1.80)

where m can take any of the (2S+ 1) values −S,−S+ 1, ..., S− 1, S. Note that
these states are highly degenerated since there are only N(N+ 3)/2 possible
values for the couple (S,m) whereas there are 2N possible spin states. The de-
generacy of the states |S,m〉 is given by N!(2S+1)

(N/2+S+1)!(N/2−S)! [79], implying that
states with low values of S are much more numerous than states with large S.
At the extreme, states with S = N/2 are non-degenerate.

Another relevant quantity is the degeneracy of states having a well-defined
value of m, which is simply given by N!

(N/2+m)!(N/2−m)! , the number of differ-
ent ways to flip N/2 +m spins among N. One sees that there is only one
ground state corresponding to |N/2,−N/2〉, N states with a single excitation
m = −N/2+ 1, among which 1 state |N/2,−N/2+ 1〉 and (N− 1) of the form
|N/2 − 1,−N/2 + 1〉, N(N − 1)/2 states with 2 excitations (m = −N/2 + 2),
among which 1 with S = N/2, (N− 1) with S = N/2− 1, and N(N− 3)/2 with
S = N/2− 2, ... A schematic description of the collective states summarizing
their degeneracy is in Fig. 1.34.

m= -N/2

m= -N/2+1

m= -N/2+2

m= N/2

m= N/2-1

m= N/2-2

S= N/2 S= N/2-1 S= N/2-2

N-1 degenerate N(N-3)/2 degenerate

Figure 1.34: Energy level diagram of an ensemble of N spins-1/2. States S 6= N/2 are
highly degenerate. There is one ground state corresponding to |N/2,−N/2〉, N states with a
single excitation m = −N/2+ 1, among which 1 state |N/2,−N/2+ 1〉 and (N− 1) of the
form |N/2− 1,−N/2+ 1〉.

collective enhancement of the coupling

Of particular interest is the situation where the initial state is the collective
ground |G〉, corresponding to m = −N/2 and hence S = N/2. Since the
Tavis-Cummings Hamiltonian preserves S and since the states |N/2,m〉 are
non-degenerate, the system dynamics is restricted to the (N+1)-dimensional
manifold of perfectly symmetric states for which S = N/2, instead of the
full 2N-dimensional Hilbert space. Putting one excitation in the spin system
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can be done by asorbing a photon from the cavity, which excites the state
|B〉 = |N/2,−N/2+ 1〉 ≡ S+|G〉/|S+|G〉| =

∑
k |Ek〉/

√
N. The N− 1 other states

with one excitation in the spin ensemble (i.e. with m = −N/2 + 1) can be
written as |Dj〉 =

∑N−1
k=0 expijk2π/N |Ek〉/

√
N (with j = 1, ...,N− 1). It is straight-

forward to see that 〈Dj|B〉 = 0, which implies that all |Dj〉 states are of the
form |N/2− 1,−N/2+ 1〉. Since the |Dj〉 states are states with S = N/2− 1, they
cannot be coupled to |G〉 by the Tavis-Cummings Hamiltonian, and one gets

〈E, 0|Ĥ|G, 1〉 = (1/
√
N)

∑
i

g = g
√
N (1.81)

〈Dj, 0|Ĥ|G, 1〉 = 0. (1.82)

By describing the spin-cavity coupling in the collective basis, we thus come to
the important conclusion that (for single-excitation states) only one collective
state (bright) |B〉 is coupled to the cavity mode with a strength enhanced by a
factor

√
N compared to the single spin case, whereas (N − 1) collective spin

states (dark) |Dj〉 are decoupled from the radiation field.

low-excitation approximation

In the limit of small excitation numbers, i.e. where m +N/2 � N, a useful
approximation (called the Holstein-Primakoff approximation) is possible [80,
81, 82]. It consists in replacing each spin operator σ̂(j)± by bosonic operators
ŝj,ŝ
†
j that verify [ŝj, ŝ

†
j ] = 1 using the following rules

σ̂
(j)
− → ŝj (1.83)

σ̂
(j)
+ → ŝ

†
j (1.84)

σ̂
(j)
z → −1+ 2ŝ†j ŝj. (1.85)

In doing so, one neglects all effects linked to the saturation of a spin since a
harmonic oscillator can have an arbitrary number of excitations contrary to a
spin. This approximation is thus only valid when the system dynamics is re-
stricted to states for which 〈ŝ†j ŝj〉 � 1 or equivalently 〈σ̂(j)z 〉 + 1 � 1. In our
situation where the spin ensemble can only be collectively excited and thus
where a large number of spins have the same average excitation, this is indeed
equivalent to the condition stated at the beginning of this section that the total
number of excitation of the ensemble verifies m+N/2� N.

In the same way as previously, it is useful to describe the spins in the collec-
tive basis in the Holstein-Primakoff approximation, by defining the collective
bosonic operators

b̂ =
1√
N

N−1∑
k=0

ŝk (1.86)

d̂j =
1√
N

N−1∑
k=0

expijk2π/N ŝk (1.87)
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and their conjugate. It is then straightforward to show that the Tavis-Cummings
Hamiltonian can be rewritten as

ĤHP/ h = ωr

(
â†â+

1

2

)
+ωs(b̂

†b̂+
N−1∑
j=1

d̂
†
j d̂j) + gens(â

†b̂+ âb̂†). (1.88)

In the Holstein-Primakoff approximation, the coupling of N spins to a cavity
with constant g can thus be described as a collection of N harmonic oscilla-
tors: one bright mode b coupled to the cavity mode with an enhanced coupling
constant

gens = g
√
N, (1.89)

and N− 1 dark modes dj (with j = 1, ...,N− 1) completely decoupled from the
cavity field. From the ground state |G〉 ≡ |0, ..., 0〉, one can generate N different
single-excitation states by applying one of the collective creation operators b̂†

or d̂†j , and then N(N + 1)/2 two-excitation states by applying a second time
one of these operators, and so forth. The single-excitation manifold is strictly
identical to the m = −N/2+ 1 collective spin states described earlier. The two-
excitation manifold contains an excess of N states in the Holstein-Primakoff
description (the states with 2 excitations in the same mode and 0 in the others),
but for N large this is a small error compared to the much larger number of
states with one excitation in two different modes, which are identical to the
m = −N/2+ 2 collective spin states.

At this point it is interesting to make a side remark regarding thermal
equilibrium of the spin ensemble at finite temperature T . In the limit where
kBT �  hωs the mean number of excited spins at equilibrium is approximately
given by N exp(− hωs/kBT) � N, so that the Holstein-Primakoff approxima-
tion is valid. According to the previous discussion, the thermal state of the spin
ensemble is thus well described by the thermal state of a collection of N inde-
pendent harmonic oscillators. Even though the total number of excited spins
N exp(− hωs/kBT) can be very large, we thus come to the conclusion that each
of the collective modes actually has a large probability (1− exp(− hωs/kBT))

to be found in its ground state |0〉. This means that in order for our quantum
memory to be initialized, the requirement is simply that the mean excitation
of the collective bright mode should be small (exp(− hωs/kBT) � 1), and not
that the total number of excited spins should be small (N exp(− hωs/kBT)� 1),
which would be an impossible condition to fulfill in any realistic experiment.

Note however that if the memory uses n modes for storage, the requirement
that each of these modes be initialized in its ground state becomes more strin-
gent (n exp(− hωs/kBT)� 1), but for realistic values of n = 102 − 103, this still
seems achievable experimentally.
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excitation spectrum

The Hamiltonian ĤHP can be very simply diagonalized by introducing two new
operators which are linear combinations of the bright mode and the cavity field,
called polaritons, and defined as

p̂+ = cos θâ+ sin θb̂ (1.90)
p̂− = − sin θâ+ cos θb̂, (1.91)

with tan (2θ) = −2gens/∆, ∆ = ωs −ωr being the frequency difference be-
tween the cavity and the spins. These bosonic operators (since [p̂+, p̂†+] =

[p̂−, p̂†−] = 1) describe coupled spin-photon excitations. Introducing ωp,± =

ωr ± 1
2

√
4g2ens +∆

2, the Hamiltonian can then be written as

ĤHP/ h = ωs

N−1∑
j=1

d̂
†
j d̂j +ωp,+p̂

†
+p̂+ +ωp,−p̂

†
−p̂−. (1.92)

which shows that the Hamiltonian eigenstates are tensor products of Fock
states of the dark modes (at frequency ωs) and the polaritonic modes (at fre-
quencies ωp,±).
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Figure 1.35: Polaritonic modes. The system exci-
tation spectrum consists of only the two polaritonic
modes.

Probing the system with a mi-
crowave tone coupled to the cav-
ity input, the system excitation
spectrum consists of only the two
polaritonic modes since the dark
modes are decoupled to the cav-
ity and thus invisible. Sweep-
ing the spin frequency across the
cavity, one should thus observe
an avoided level crossing (see
Fig. 1.35), with minimal peak sep-
aration of 2gens obtained at reso-
nance (∆ = 0), where p̂+ = (â+

b̂)/
√
2 and p̂− = (â− b̂)/

√
2. The

experimental observation of such
an anticrossing in the transmis-
sion spectrum of a resonator cou-
pled to an ensemble of NV centers
is reported in Chapter III and is the starting point of this thesis work.

dynamics

Coming back to the Hamiltonian Eq. 1.88, we see that the interaction between
the bright mode and the cavity is of the beam-splitter type â†b̂+ âb̂†. It is well-
known [83] that suddenly switching on resonantly this type of interaction for
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a well-chosen duration produces a dynamics corresponding to a SWAP oper-
ation, exchanging the two quantum states of the cavity and the bright mode.
For instance, if the cavity is prepared at t = 0 in a single-photon Fock state |1〉
and the bright mode in its ground state |0b〉, the coupled system quantum state
|ψ(t)〉 will evolve at t > 0 as

|ψ(t)〉 = cos (genst)|1, 0b〉+ sin (genst)|0, 1b〉 (1.93)

which shows that the single-photon state will indeed be transferred from the
resonator into the spin ensemble after an interaction time π/(2gens). This vac-
uum Rabi oscillation between the resonator and the bright mode of the spin
ensemble is the basis for the write experiment that will be related in Chapter III.

superradiance

Besides the collective enhancement of the coupling of the bright mode to the
cavity field, another interesting phenomenon arises from the Tavis-Cummings
Hamiltonian when the initial state is the fully excited state |e1...eN〉. This state
is also symmetrical and can be identified as |N/2,N/2〉 in the collective spin ba-
sis. Being the state of maximal energy it eventually has to relax by spontaneous
emission of photons into the electromagnetic mode defined by the cavity. The
Tavis-Cummings Hamiltonian shows however that its relaxation should still
take place in the basis of fully symmetrical states S = N/2, going down the en-
ergy ladder from |N/2,N/2〉 until it reaches the ground state |N/2,−N/2〉, via
states |N/2,m ≈ 0〉, by steps of ∆m = −1 corresponding to successive photon
emissions.

Defining the photon spontaneous emission rate of an isolated spin as γ1,
the spin ensemble collective radiation rate (assuming that the cavity is rapidly
damped so that the intra-cavity photon number stays ≈ 0) is given by γ1|〈m−

1,N/2|S−|m,N/2〉|2, which was shown by Dicke to be equal to I0(N/2+m)(N/2−

m+ 1). For m = N/2, this rate is Nγ1 as would be the case for independent
emitters, but this quantity rapidly increases with decreasingm, reaching a max-
imum of (N/2)2γ1 when m = 0, after which it goes down again to Nγ1 when
the system approaches its ground state. This implies that the photon emission
of a collection of symmetrically excited spins does not take place as a simple
exponential, as would be the case if each spin would radiate individually, but
instead consists of a coherent pulse of light, which takes place in an overall
much shorter time given by γ−11 /N and with a much stronger peak intensity of
N2γ1.

This enhanced collective spontaneous emission is called superradiance and
has been widely studied both theoretically and experimentally. In our context
superradiance is relevant because it complicates the read step of our memory
protocol, since as explained in Chapter II this step involves the application of
a π pulse to the spins which precisely excites them into |e1...eN〉. The desex-
citation of this state by emission of a superradiant pulse would be disastrous
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for the fidelity of the memory, and is prevented in the protocol described in
Chapter II.

3.2.2 The realistic model

ωr

ωi , gi

κ1 κ2

Figure 1.36: The realistic model. The cavity is coupled to external transmission lines through
coupling capacitances and has a finite damping rate κ = κ1 + κ2. The spin ensemble has both
static distributions of spin-resonance frequency ρ(ω) and coupling strength ρ(g).

In our experiments, several hypotheses of the Tavis-Cummings model are not
satisfied:

1. The spin-resonator coupling is far from being the same for each spin.
Indeed, in our experiments (see Chapters III and IV), the resonator is
implemented by a superconducting planar circuit, on top of which the
diamond crystal is fixed, and the magnetic field it generates (as well of
course as its quantum fluctuations) is spatially inhomogeneous. This re-
sults in a position-dependent spin-resonator coupling constant gi = g(ri),
which now becomes a complex number since the field direction may vary
between different spins. The distribution ρ(g) =

∑
i δ(g− |gi|) character-

izes the amplitude variations of the coupling constant in the continuous
limit.

2. The NV centers throughout the ensemble have slightly different frequen-
cies due to their different local magnetic environments (see Section I.2.3).
This inhomogeneous broadening is described by a (static) distribution of
frequency

ρ(ω) =
∑
i

|gi|
2δ(ω−ωi) (1.94)

around the central frequency ωs.

3. The cavity has a finite damping rate κ due to coupling to the line and
internal losses, implying that the quantum states inside the resonator
have a finite lifetime.
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coupling constant inhomogeneity

The coupling constant inhomogeneity would not alter any of the conclusions
reached in the previous section, provided all spins have the same frequencyωs.
Indeed one can redefine the bright mode in the Holstein-Primakoff approxima-
tion as b̂ = 1/gens

∑N
k=1 gkŝk, with

gens = (

N∑
j=1

|gj|
2)1/2 = (

∫
g2ρ(g) · dg)1/2 (1.95)

the collective coupling constant, as well as N − 1 orthogonal dark modes dj
(j = 1, ...,N − 1) (without giving their explicit expression, which would be
more tedious than in the previous section). It is then straightforward to see
that the Tavis-Cummings Hamiltonian can be rewritten exactly in the form
of Eq. 1.88, implying that all the previous conclusions about collective effects
would be completely unchanged, apart from a re-definition of the ensemble
coupling constant provided by Eq. 1.95. In the remaining of this work we will
use these new definitions of the bright mode b, and of gens. Note that with
these definitions of ρ(ω) and gens, one finds that

∫
ρ(ω)dω = g2ens.

inhomogeneous broadening

The inhomogeneity in resonance frequency of the NV centers has more pro-
found consequences. This can be seen qualitatively by noting that if the en-
semble is prepared in the state |1b〉 ≡ b̂†|0b〉 = (

∑N
k=1 gk|Ek〉)/gens at t = 0, it

will evolve at later time into (
∑N
k=1 gke

−i(ωk−ωs)t|Ek〉)/gens. The overlap of this
state with |1b〉 varies in time as the Fourier transform of ρ(ω−ωs). It there-
fore decays in a time T∗2 = 2/Γ , Γ being the characteristic width of the ρ(ω)

distribution (see below for a more quantitative definition).

gens
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..…

d1 dN-1

Cavity mode
N-1 uncoupled

dark modes : BATHBright mode

transfer

(T2*)

b

(b) Inhomogeneous case
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d1 dN-1

Cavity mode
N-1 uncoupled

dark modes Bright mode

b

(a) Homogeneous case

ρ(ω) ρ(ω)

ωs ωs

Figure 1.37: Transfer from the bright mode to the dark mode subspace enabled by inho-
mogeneous broadening. In the homogeneous case (a), the cavity and bright mode constitutes
a closed system. The bright mode is coupled to the bath of dark modes in case of inhomogeneous
broadening (b), which make it possible the transfer to the multimode dark mode subspace.

At times t� T∗2 , the system is thus in a state with m = −N/2+ 1 but orthogo-
nal to |1b〉, which therefore belongs to the sub-space spanned by the N− 1 dark
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states |1dj〉. This brings us to the important conclusion that in the presence of
inhomogeneous broadening, the cavity and bright mode do not constitute a
closed system any more because the bright mode is now coupled to the large
ensemble of dark modes, which act as a bath because of their extremely large
number (of order 1011 in our experiments). As we will see in Chapter II, this
quantum state transfer from the bright mode into the dark mode subspace is a
key resource of our quantum memory protocol because it can be reversed with
the appropriate pulse sequence.

3.2.3 Coupling regimes

We now address the issue of whether the coherent collective effects discussed in
the idealized model (vacuum Rabi oscillations, ..) pertain in the realistic model.
Somewhat qualitatively, one can expect two different situations, depending on
the relative values of gens, κ, Γ :

• If gens � κ, Γ (strong coupling regime), one can expect that the dynamics
will be dominated by the collective radiative effects seen previously. The
low-energy excitation spectrum should display a visible avoided level
crossing [81, 82]; it should be possible to coherently transfer a quantum
state between the resonator and the bright mode of the spin ensemble
(even though this state will eventually leak out into the dark modes); and
if all the spins are inverted, they should emit a superradiant pulse [84].
This regime is called the strong coupling regime. Being able to reach it is a
key requirement in some steps of our quantum memory protocol. It re-
quires samples with a large number of spins, but with narrow linewidth.

• If gens � κ, Γ (weak coupling regime), no anticrossing is visible; no coher-
ent state transfer is possible; and as discussed in [84], superradiance is
suppressed.

The cross-over between weak and strong coupling can also be quantified using
a dimensionless number, the so-called cooperativity defined as

C =
2g2ens
κΓ

. (1.96)

If C� 1, the system is in the strong coupling regime, and in the weak coupling
regime if C� 1.

the key parameters

The ensemble coupling constant gens The ensemble coupling constant gens is a
central quantity to describe the spin-resonator coupling. We demonstrate here
a formula that provides a simple way to estimate gens as a function of basic
experimental parameters, and which will be used extensively throughout this
thesis. We have seen in Section I.3.1 that a single NV center spin located at posi-
tion r is coupled to the rms vacuum magnetic field fluctuations of the resonator
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δB0(r) with a coupling constant of modulus |g(r)| = (|γe|/
√
2)|‹B0(r)| sin θ(r),

θ(r) being the angle between ‹B0(r) and the NV axis. To proceed, we note that
the energy En of a n-photon Fock state in the cavity is equal to (n+ 1/2) hωr,
but can also be written as En = 2

2µ0

∫
dr〈n|B̂(r)2|n〉 = 2n+1

µ0

∫
dr|δB0(r)|2, so that∫

dr|δB0(r)|2 =
µ0 hωr
2

. (1.97)

For a sample of volume V with a homogeneous concentration of NV centers
ρNV , this allows us to rewrite

gens =
|γe|√
2
[ρNV

∫
V
dr|δB0(r) sin θ(r)|2]1/2 = −

|γe|√
2

√
ρNVµ0 hωr

2

√
αη, (1.98)

where η and α are dimensionless numerical factors defined as

η =

∫
V dr|δB0(r)|2∫
dr|δB0(r)|2

(1.99)

and

α =

∫
V dr|δB0(r) sin θ(r)|2∫

V dr|δB0(r)|2
. (1.100)

The first parameter η is called the filling factor, and describes what fraction
of the magnetic mode volume is occupied by the spins. In our experiments,
the diamond is often glued on top of the resonator. If the resonator is of the
coplanar waveguide type of total length L, with the diamond symmetrically
covering a section of length l as in Chapter III, it is straightforward to see
that η =

∫(L+l)/2
(L−l)/2

dx sin2
(
πx
L

)
/L. If the diamond covers a section of length l of a

lumped-element inductance of length L, then η = l/(2L). The second parameter,
α, should be evaluated numerically. It is of order 1 and accounts for the fact
that the resonator magnetic field is not necessarily transverse to the NV axis.
Overall, we get

gens = |γe|

√
µ0 hωrρNVαη

4
. (1.101)

It is interesting to note that all the geometric factors are included in the di-
mensionless parameters η and α. This can be intuitively understood by the
fact that reducing the transverse dimensions of a CPW resonator by a factor β
would enhance the vacuum fluctuations of the magnetic field by the same fac-
tor β, thus increasing the single-NV-resonator coupling constant also by β, but
it would also reduce by a factor β2 the total number of spins N, which exactly
compensates the previous gain since gens scales like

√
N. Provided the filling

factor is maximized, the only way to increase further gens is thus to increase
the sample concentration ρNV .

The characteristic width Γ The definition of Γ , which was introduced as the
characteristic width of ρ(ω), can be precised. If the spin distribution is well-
behaved (a single Lorentzian or Gaussian peak), its definition is straightfor-
ward as the peak width. But if the ensemble contains spins with different fre-
quencies, due to either hyperfine coupling with a nucleus, or to a different
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Zeeman shift, ρ(ω) then may consist of a sum of peaks with possibly widely
different center frequencies. Note that in the definition above, gens includes a
sum over all the spins regardless of their resonance frequency, with a contribu-
tion from spins that are completely off-resonance with the cavity. This issue is
solved by using the following definition [84] in the above criteria for strong /
weak coupling:

Γ−1 ≡ 1

g2ens

∫+∞
−∞

ρ(ω)dω

γ/2+ i(ω−ωs)
, (1.102)

with ωs =
∫+∞
−∞ ρ(ω)ωdω/g2ens being the average spin frequency. That defini-

tion makes the criteria above well-defined regardless of the detailed shape of
ρ(ω).

In the following, we illustrate these qualitative statements by explicitly com-
puting several physical quantities useful in our experiments for given spin and
coupling constant densities ρ(ω) and ρ(g), and show how they evolve between
the weak and strong coupling regimes.

3.3 the resonator-spins system in the low-excitation regime

In this section we restrict ourselves to calculating quantities in the weak ex-
citation regime, where the Holstein-Primakoff approximation holds. We first
derive analytical expressions for the system spectrum, as probed by measur-
ing its transmission or reflection coefficient (see Fig. 1.38). We then compute
the system dynamics with the cavity initialized in a single-photon Fock state,
a situation implemented in the experiments described in Chapter III. Here we
rely on the work performed by our collaborators at Institut Néel I. Diniz and
A. Auffèves described in detail in [82], and the closely related work performed
at Aarhus University [81].

β
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ωr

ωi , gi

κ1 κ2

at

Figure 1.38: Probing the resonator-spins system.

3.3.1 Master equation

Our starting point is the cavity - spin ensemble Hamiltonian in the Holstein-
Primakoff approximation, taking into account the inhomogeneity of spin fre-
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quency, and written in the individual spin basis using the bosonic operators
ŝj:

ĤHP2/ h = ωr

(
â†â+

1

2

)
+

N∑
j=1

ωjŝ
†
j ŝj+

N∑
j=1

(
g∗j ŝ
†
ja+ gjŝja

†
)
+ i
√
κ1(βa

†−β∗a),

(1.103)
where the last term describes the cavity drive through port 1, with β(t) =

β0e
−iωt, |β0|2 being the number of photons per second at the cavity input.

In order to apply input-output theory and to obtain tractable expressions,
damping phenomena are described in the Markov approximation. For the cav-
ity field this is well justified, as known from quantum optics. For the spins, the
situation is more complex. Spins have negligibly low energy relaxation rates
at cryogenic temperatures, as will be showed in the following chapters. Spin
dephasing is in general non-Markovian, since as explained in the previous
section it is caused by a spin bath which has a slow and complex dynamics.
Nevertheless, since in this work we are mainly interested in treating quantita-
tively the static effects of inhomogeneous broadening, we will make a crude
approximation and take as a transverse damping rate the Hahn-echo decoher-
ence rate T−12 (which implies treating the corresponding bosonic operator as
having its energy damped at a rate γ = 2T−12 ). Note that in all the results of
this section, this decoherence rate simply adds up to the width Γ of the spin
frequency distribution ρ(ω); since γ � Γ the exact modelling of decoherence
is not very critical. These approximations yield the following Lindblad master
equation for the system density matrix ρ

∂ρ̂

∂t
=
1

i h

[
ĤHP2, ρ̂

]
+
∑
k

Ω[ĉk]ρ̂ (1.104)

whereΩ[ĉk]ρ̂ ≡ −1
2 ĉ
†
kĉkρ̂−

1
2 ρ̂ĉ

†
kĉk+ ĉkρ̂ĉ

†
k describes each damping phenomenon

by a jump operator ĉk. For cavity damping, ĉ1 =
√
κ+ κLâ, and for spin damp-

ing ĉ2,j =
√
γŝj. In this way the following equations are obtained:

∂t〈â〉 = −[(κ+ κL)/2+ iωr]〈â〉− i
N∑
j=1

gj〈ŝj〉+
√
κ1β(t) (1.105)

∂t〈ŝj〉 = −(γ/2+ iωj)〈ŝj〉− ig∗j 〈â〉 (1.106)

Looking for steady-state solutions of the form 〈â〉(t) = a0e
−iωt and 〈ŝj〉(t) =

sj0e
−iωt, we get

sj0 = −
ig∗j

γ/2+ i(ωj −ω)
a0 (1.107)

which yields

a0 =
i
√
κ1β0

ω−ωr + i
κ+κL
2 −K(ω)

, (1.108)

where we have introduced the function

K(ω) ≡
∑
j

|gj|
2

ω−ωj + i
γ
2

=

∫+∞
−∞

ρ(ω ′)dω ′

ω−ω ′ + iγ2
. (1.109)
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From the previous equations it appears that all the information about the spins
is included in the function K(ω) which is therefore an important quantity on
which we will give more details later. In an experiment, one measures the field
either transmitted by the cavity or reflected on it. Using input-output theory
as explained in the beginning of this chapter, one obtains the transmitted field
as at(ω) =

√
κ2a0(ω), so that the transmission coefficient t(ω) = at(ω)/β0

writes

t(ω) =
i
√
κ1κ2

ω−ωr + i
κ+κL
2 −K(ω)

. (1.110)

In the same manner, the reflection coefficient r(ω) =
√
κ1a0(ω)/β0− 1 is found

to be given by

r(ω) =
iκ1

ω−ωr + i
κ+κL
2 −K(ω)

− 1. (1.111)

3.3.2 Measuring the parameters of the system

The spin susceptibility The function K(ω) contains all the information that can
be accessed by measuring the microwave transmission or reflection coefficients
of the spin-resonator system. It should thus not be a surprise that this function
is directly linked to the quantity measured in dc magnetic resonance, namely
the spin susceptibility χ(ω), defined as the ratio of the induced magnetization
Mx(t) and the applied microwave field Hx(t). More precisely, for an applied
field Hx(t) = 2H1 cos (ωt), the induced magnetization is

Mx(t) = 2H1(χ
′(ω) cos (ωt) + χ ′′(ω) sin (ωt))

with χ = χ ′ − iχ ′′ [85]. This changes the resonator inductance L into L(1 +
4πηχ(ω)), η being the filling factor and χ the complex spin susceptibility in
cgs units. The resonator frequency is therefore shifted by −2πηωrRe(χ), and
the extra field damping rate is −2πηωrIm(χ). This yields the following direct
link between K(ω) and χ(ω):

χ(ω) = −K∗(ω)/(2πηωr). (1.112)

Another important point is that in the limit where γ � Γ (which is always
satisfied in our systems), K(ω) is directly linked to the spin density function
by the relation [81]

ρ(ω) = −
1

π
Im[K(ω)]. (1.113)

The cooperativity Given the definition of Γ by Eq. 1.102, Γ−1 = iK(ωs)/g
2
ens.

This implies that the cooperativity verifies

C =
2g2ens

(κ+ κL)Γ
=
2iK(ωs)

κ+ κL
. (1.114)

Since on the other hand K(ω) is directly linked to the reflection and absorption
coefficients at frequency ω, this implies that the cooperativity can be directly
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accessed by measuring r, t(ωs). This relation is most useful in the case of re-
flection on a lossless (κL = 0) one-sided (κ2 = 0) cavity at resonance with the
spins (ωs = ωr), in which case:

r(ωs) =
iκ1

iκ12 −K(ωs)
− 1 =

1−C

1+C
. (1.115)

This relation shows in particular that at resonance, perfect absorption of an
incoming microwave by the spins is achieved for the impedance matching con-
dition C = 1, which determines the threshold between the weak and the strong
coupling regimes. It also offers a convenient way of determining the system
parameters in the weak coupling regime, since measuring the reflection coef-
ficient at resonance yields the cooperativity which straightforwardly leads to
the value of gens. In the strong coupling regime, this relation is still valid but
inconvenient since r(ω) ≈ −1 as long as C� 1; in that limit gens is much more
conveniently determined by the polaritonic peak separation.

3.3.3 Spectroscopy and dynamics

spectroscopy

It is possible to obtain analytical expressions of K(ω) for typical distributions.
For a Lorentzian ρ(ω) = g2ens

w/2π

(ω−ωs)2+(w/2)2
, one can show [82, 81] that

K(ω) =
g2ens

(ω−ωs) + i
w+γ
2

. (1.116)

Using the definition of the characteristic width Γ introduced earlier, one gets as
expected Γ = (w+ γ)/2. In the case of three hyperfine components (as for NV
centers), the spin distribution consists of a sum of 3 Lorentzian peaks centered
on frequencies ωs,j = ωs + j∆hf with ∆hf/2π = 2.17MHz and j = −1, 0,+1
yielding

ρ(ω) =
∑

j=−1,0,+1

g2ens
3

w

2π

1

[ω− (ωs + j∆hf)]2 + (w/2)2
. (1.117)

The corresponding K function is

K(ω) =
∑

j=−1,0,+1

g2ens/3

ω− (ωs + j∆hf) + i
w+γ
2

, (1.118)

with a characteristic width

Γ = (
w+ γ

2
) · (

w+γ
2 )2 +∆2hf

(w+γ2 )2 + 1
3∆

2
hf

. (1.119)

Note that in the limit w � ∆hf, one finds Γ ≈ 3(w+ γ)/2. If the cavity is res-
onant with only one of the three peaks, the cooperativity would therefore be
the same, should one consider the three peaks as making part of the ensemble,
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or only this resonant peak and disregard the two others (since the collective
coupling would then be reduced by

√
3, but the width Γ by 3).

Fig. 1.39 shows the single- and triple-Lorentzian Re[K(ω)] and Im[K(ω)], for
gens/2π = 1MHz. When increasing Γ , the three peaks corresponding to the
hyperfine components disappear and merge in a single peak, a case sometimes
encountered in our experiment.
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Figure 1.39: The K-function. The imaginary and real part of the function K(ω) are displayed
respectively on the top and on the bottom for a Lorentzian (left) and sum of three Lorentzian
(right) distributions.

We can now explicitly evaluate the expressions Eq. 1.110 and Eq. 1.111 giving
the resonator transmission and reflection coefficient. We show in Fig. 1.40 a two-
dimensional plot of the modulus of the reflection and transmission coefficients
of a resonator resonantly coupled (ωr = ωs) to a spin ensemble with a single
Lorentzian distribution, as a function of the collective coupling strength gens.

The reflection coefficient (on the left) is computed for the condition of the
experiment reported in Chapter IV in which the resonator has only one port
(κ = κ1). The transmission coefficient (on the right) for the condition of the ex-
periment reported in Chapter III in which the resonator has two identical ports
(κ1 = κ2 = κ/2). In both cases we assume a lossless cavity κL = 0.

Starting from the decoupled cavity reflection / transmission coefficients (gens =
0), the first effect of the spins (for low values of gens, i.e. in the weak coupling
regime) is to produce absorption dips. This is the situation commonly encoun-
tered in magnetic resonance, where in general C � 1 so that the spins only
bring minor changes to the cavity frequency and quality factor. The depth of
these absorption dips increases with gens, until it reaches perfect absorption
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on the reflection coefficient (r(ωs) = 0, or t(ωs) = 1/2 in transmission), which
corresponds to the situation C = 1 as already explained. For larger values of
gens, the two polaritonic peaks, separated by 2gens, become visible, marking
the strong coupling regime.
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Figure 1.40: Reflection and transmission of a resonator resonantly coupled to a single
Lorentzian distribution of spins. The strong coupling is manifested by the appearance of
two polaritonic signal separated by 2gens when gens > max(κ/2, Γ) = 2π× 1MHz. In the
left panel, the graphs for gens/2π = 0.03MHz (red), 0.3MHz (green), 1MHz (light blue) and
3MHz (blue).

Fig. 1.41 shows the reflection and transmission spectra for NV centers with
κ/(2π) = 10MHz and Γ/(2π) = 0.1MHz. The same condition for a single-
Lorentzian distribution is plotted on the right for comparison. In the weak cou-
pling regime, the hyperfine structure is directly visible as 3 distinct absorption
peaks. Note that the condition C = 1, corresponding to r(ωs) = 0, is reached at
a
√
3 larger gens for the NV center case than in the case of a single Lorentzian,

since the number of spins in each peak is divided by 3.
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Figure 1.41: Reflection and transmission of a resonator resonantly coupled to a dis-
tribution of NV center spins. Case Γ/(2π) = 0.1MHz and κ/(2π) = 10MHz. The same
condition for the single Lorentzian distribution is shown on the right for comparison. In the
bottom panel, the graphs for gens/2π = 0.07MHz (red), 0.7MHz (yellow), 7MHz (green),
10MHz (light blue) and 15MHz.

At the other extreme, for gens � ∆hf, only two polaritonic peaks are visible, ex-
actly as in the single-Lorentzian case, which implies that the details of the spin
distribution function are "washed out" in the strong coupling regime. In the in-
termediate regime where gens ≈ ∆hf, an interesting phenomenon occurs, with
the appearance of two narrow peaks in the spectrum, which are reminiscent of
dark modes [82].
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dynamics

As will be clear in Chapters III and IV, we also need to compute the dynamics
of an excitation initially stored in the system, in the absence of external drive.
We follow the main lines of the derivation done in [82]. We consider the spin-
resonator system, described by Hamiltonian Eq. 1.103 without drive, and initial-
ized at t = 0 in state |1,G〉, i.e. with all spins in their ground state and 1 photon
in the resonator. The goal is to determine the probability at t > 0 that the ex-
citation is still in the resonator p(t) = |α(t)|2 with α(t) = 〈0|a(t)a†(0) |0〉. This
quantity can be calculated by considering an effective non-Hermitian Hamilto-
nian

Heff/ h =


ω̃0 ig1 ig2 . . .

−ig1 ω̃1

−ig2 ω̃2
... . . .

 . (1.120)

with complex angular frequencies ω̃r = ωr − iκ/2 and ω̃k = ωk − iγ/2. Intro-
ducing the vector X(t) of coordinates

[〈
a(t)a†(0)

〉
, ...,
〈
b̂j(t)a

†(0)
〉

, ...
]

it can be
shown that dX/dt = −(i/ h)HeffX. The formal solution to this equation is

X(t) = L−1[(s+ iHeff/ h)
−1X(0)] (1.121)

with X(0) = xG and xG ≡ (1, 0, ..., 0) . This implies that α(t) = xG
† · X(t) =

L−1 [t1(s)] with t1(s) = xG
† · (s+ iHeff)−1 · xG and L[f(s)] =

∫
e−stf(t)dt, s be-

ing a complex number. Since t1(s) is not singular on its imaginary axis, we only
need the transmission coefficient t1 given by Eq. 1.110 in Section I.3 for pure
imaginary argument s = −iω to perform the Laplace transform inversion. The
computation of the intracavity field α(t) follows.

We show in Fig. 1.42 the computed probability p(t) for different coupling
strengths gens in the case of the single Lorentzian and sum of three Lorentzian
spin distributions, assuming a width w/2π = 1MHz for each Lorentzian peak,
and taking γ = 0. The resonator is resonant with the spins (ωr = ωs) and has a
damping rate κ = 1.2× 106 s−1. When the coupling constant is low so that the
two systems are in the weak coupling regime (right panel), p is exponentially
damped with a time constant slightly shorter than in the absence of spins,
which shows that the absorption of the spin takes place on a longer time scale
and is therefore not able to efficiently absorb the photon before it leaks out
of the cavity. Increasing the coupling constant makes the absorption faster, up
to the point that coherent effects are visible (middle then left panel, strong
coupling case). There, oscillations are seen in p(t) with period π/gens, revealing
the coherent exchange of a single excitation between the two systems. The
damping of the oscillations is due mainly this time to the transfer of the energy
from the bright spin mode into the spin dark modes (with a time constant T∗2 =

2/w = 300ns), as evidenced from the fact that it takes place faster than cavity
damping. In the case of the Lorentzian triplet distribution, the conclusions are
unchanged, except that the oscillations in the strong coupling regime are non-
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periodic and non-exponentially damped. Corresponding experimental results
are reported in Chapter III.
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Figure 1.42: Dynamics of a photon in a resonator resonantly coupled to a distribution
of spins. Probability p(t) for a single Lorentzian (top) and sum of three Lorentzian (bottom)
spin distributions. The exchange of the photon is only possible in the strong coupling regime
gens � κ, Γ . The case g/2π = 0MHz that reveals the damping in the cavity alone is plotted
in dashed line.

3.4 the resonator-spins system under strong drive powers

The Holstein-Primakoff approximation, in which the spin operators are lin-
earized, makes it possible to compute the quantum dynamics of the resonator-
spin ensemble system, as explained in the previous section and required for the
experiments described in Chapter III where single-photon fields are stored into
the ensemble. But in order to retrieve this quantum field after writing into the
spin-ensemble memory, a π pulse should be applied to all the spins (see Intro-
duction), which requires strong classical microwave pulses and clearly implies
a breakdown of the Holstein-Primakoff approximation. A quantitative estimate
of the fidelity of the quantum memory requires not only a calculation of the
mean values of the spin and field operators, but also of their quantum statis-
tics, which then becomes a difficult theoretical problem in particular because
of inhomogeneous broadening, as explained above. In this section we qualita-
tively outline the steps taken by our collaborator B. Julsgaard, from Aarhus
University, to address this problem numerically as explained in more details
in [21, 23]. The simulations developed at this occasion will be used extensively
in Chapter IV to compute the response of the spins to microwave pulses beyond
the HP approximation, including Hahn-echo pulse sequences.
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3.4.1 The model

The cavity - spin ensemble system is modelled by the following Hamiltonian,
which takes into account the inhomogeneity of spin frequency and of coupling
constant, and which includes the effect of a drive through port 1:

Ĥ2/ h = ωr

(
â†â+

1

2

)
+

N∑
j=1

ωjσ̂
(j)
z +

N∑
j=1

(
gjσ̂

(j)
+ â+ g

∗
j σ̂

(j)
− â
†
)
+ i
√
κ1(βâ

†−β∗â).

(1.122)
Damping is treated as in the previous section by a master equation approach
using the Lindblad formalism. This implies as before that the baths are Marko-
vian, which constitutes a crude approximation when applied to the spins. The
cavity damping operator is kept unchanged. Spin decoherence is described by
the operator ĉ ′2,j =

√
γ2/2σ̂− which damps the phase of a state superposition

at the Hahn-echo damping rate γ2.

3.4.2 Integration

To treat the problem, the approach developed in [21] consists in dividing the
spin ensemble into M sub-ensembles, each of them containing a smaller num-
ber of spins Nm with homogeneous coupling strength gm and frequency ωm.
This subdivision is done according to the distributions of coupling constant
and frequency ρ(g) and ρ(ω) which are input to the problem. As explained
in Section I.3.2.1 about the Tavis-Cummings model, this allows to re-write the
Hamiltonian using only the collective spin operators Ŝ(m)

x,y,z, which considerably
reduces the number of variables. In the end, there are 3M+ 2 operators (3 for
each spin subdivision, and 2 for the two field quadratures X̂ = (â+ â†)/

√
2

and P̂ = −i(â − â†)/
√
2) whose evolution needs to be computed. The time-

dependence of their mean values is thus obtained by solving a set of 3M+ 2

coupled differential equations, which can achieved numerically provided M

is not too large. This is the approach used for the simulations presented in
Chapter IV, where we compute the response of the spins to strong resonant
microwave pulses and to Hahn-echo sequences.

Knowing the mean value evolution is not sufficient to assess the fidelity of
a quantum memory. Indeed, a quantum state of the field is characterized also
by its fluctuations. Imagine that an input field in a coherent state |α〉 is stored
in the memory, with mean values 〈X̂〉 = α and 〈P̂〉 = 0. The variance of these
quadratures X̂ and P̂ then verifies 〈δX2〉 = 〈δP2〉 = 1/2. These values should
be preserved at the end of the protocol: the final state of the field should still
be in a state of minimal uncertainty, otherwise the fidelity will be low even
though the mean values of the quadrature are faithfully restored. Fortunately,
the approach outlined above not only makes it possible to integrate the time
evolution of the operators mean value, but also of their co-variance matrix. In-
deed this matrix has a dimension of (3M+ 2)2; its coefficients are governed by
intricate equations which were derived in [21]. Again, for M not too large, this
set of coupled (3M+ 2)2 differential equations can be integrated numerically.





II
P R O P O S A L : A S P I N E N S E M B L E Q U A N T U M

M E M O RY F O R S U P E R C O N D U C T I N G Q U B I T S

This chapter is dedicated to the presentation of the quantum memory proto-
col, on which our experiments are based. It describes the storage in parallel
of multiple quantum states into a spin ensemble, and their on-demand
retrieval. Simulations of this protocol performed by B. Julsgaard are pre-
sented at the end of this chapter with realistic experimental parameters.
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1 S P I N - B A S E D Q U A N T U M M E M O RY

1.1 motivations

Superconducting qubits have emerged in recent years as promising candidates
for the realization of a large-scale quantum processor. At the time of writ-
ing this thesis, up to five-qubit processors were realized [20, 86, 87, 88] in
which bi- and tripartite entanglement can be produced to run compiled ver-
sions of quantum algorithms [89, 90, 91]. The scaling up to larger processor
however is slowed down by technical issues, mainly the increasing complex-
ity of the circuit [92] and the relatively short coherence time of superconduct-
ing qubits [5, 6] (∼ 10µs). This has motivated alternative quantum computing
approaches such as holographic quantum computing [93] that make use of
collective excitations in an ensemble of microscopic systems with long coher-
ence times to implement a multi-qubit register. The memory is combined with
a few(2)-qubit processor that performs the single and multi-qubit gates (see
Fig. 2.1).

n -qubit memoryFew(2)-qubit quantum processor

QUANTUM MEMORY

…. ….
1 n

Figure 2.1: Concept of the hybrid quantum processor combining a few(2)-qubits pro-
cessor and a n-qubit register. The quantum operations are restricted to few-qubit gates but
with a reservoir of n quantum states to create up to n-qubits entanglement.

From the quantum computation point of view, such a system works like a
genuine quantum Turing machine with the memory providing the storage sys-
tem to protect quantum states from decoherence and the few-qubits processor
providing the "hardware" to perform quantum gates. In this architecture, the
quantum operations are restricted to few-qubit gates but with a reservoir of n
quantum states to create multi-qubits entanglement. The advantages are that
it is protected against decoherence at the level of the coherence time of the
memory to perform long calculation and relies on a superconducting qubit
processor with limited complexity, that is close to the actual state of the art.
Such architecture comes however with new challenges. The multi-qubit regis-
ter must be able to receive n quantum states possibly entangled (write), retrieve
them on-demand without affecting the others (read), and be re-initialized in the
ground state between successive memory operations (reset). We designed a pro-
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tocol made of the write, read and reset steps for a memory made of an ensemble
of spins, that we describe below.

1.2 spin ensemble quantum memory : principles

Optical quantum memories The protocol is inspired from related experiments
on optical quantum memories based on atom and ion ensembles [24]. Optical
quantum memory protocols can be divided in two families. A number of pro-
posals and experiments rely on a nonlinear phenomenon occurring in atomic
systems that have the appropriate energy level structure (Λ-transition), the so-
called Electromagnetic-Induced Transparency [94, 95, 96, 97]. These protocols
are not easily transposed to our situation, since NV centers have a V-level
structure instead of a Λ. We instead take inspiration of another class of opti-
cal quantum-memory protocols, based on photon echoes. In these experiments,
an optical pulse carrying the quantum state is first collectively absorbed by the
ensemble. Due to inhomogeneous broadening that causes each ion in the en-
semble to have a slightly different Larmor frequency, the resulting collective
quantum state is rapidly dephased. Two types of strategies can then be envi-
sioned to retrieve the initial state.

The first strategy requires to be able to tailor the shape of the spin frequency
distribution prealably to the storage of the quantum state. This is possible
for rare-earth-ions-doped crystals, in which one can achieve arbitrarily sharp
frequency profiles by spectral hole burning, which transfers atoms of a cer-
tain frequency class into states that are not coupled to the radiation field. For
these systems, Controlled Reversible Inhomogeneous Broadening [98, 99] or
Atomic-Comb-Frequency [100, 101] protocols have been shown to be efficient
for storing quantum states of the light. Spectral hole burning is however im-
possible for NV centers which only have three ground state levels. Fortunately,
another class of protocols does not require any tailoring of the spin frequency
distribution. They rely on the application of sequences of π pulses to the ions
in order to make them return in phase at a later time and to re-emit collectively
the quantum state initially absorbed. This is the basis of our protocol that we
describe below.

Microwave quantum memory protocol Our protocol is built on the same prin-
ciple, adapted to the requirements of a cQED setup working at millikelvin
temperatures, and taking advantage of the new possibilities offered by Joseph-
son quantum circuits. The ensemble of spins is embedded in a superconduct-
ing resonator to ensure efficient absorption of microwave photons. A SWAP
operation first transfers state |ψ〉 from the external superconducting qubit pro-
cessor (QuP) to the resonator field. This field is then collectively absorbed by
the bright mode of the spin ensemble, after which it is transferred into the spin
dark modes due to inhomogeneous broadening of the ensemble (see Section
I.3.2.2). To retrieve the state, refocusing techniques based on the application of
π pulses to the spins are applied.
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The implementation of these ideas faces a number of contradictory require-
ments: (i) the resonator and the spins must be in the strong coupling regime
(C � 1) for the SWAP operation (see Section I.3.3.3), (ii) after the π-pulse in-
version, the spin ensemble must remain stable, which implies to the contrary
a weak spin-resonator coupling (C � 1) to avoid superradiant pulse emission
(see Section I.3.2.1), and (iii) the whole statistics of the collective spin must be
restored at the single quantum level. Our protocol combines the application of
π-pulses with dynamical tuning of the resonator frequency and quality factor
to address these issues. It is associated to the physical setup depicted in Fig. 2.2.
The bus resonator, with frequency ωr and damping rate κ both tunable, is cou-
pled to the spin ensemble with frequency ωs and spin linewidth Γ , with an
ensemble coupling constant gens. Refocusing pulses are applied to the spins
via the resonator. Such resonators with tunable parameters can be realized us-
ing SQUIDs, as described in Chapters I and V. In the next section, we describe
in more details the steps of the protocol.

gens

κ

ωr ωs

ψ

Refocusing
pulse

Spins 
memory

QuP

Figure 2.2: Quantum memory circuit. The resonator, with frequencyωr and damping rate κ
tunable at the nanosecond scale, is coupled to the spin ensemble (frequency ωs) with coupling
strength gens. An external processor (QuP) delivers a quantum state |ψ〉 to the bus resonator,
to be stored into the spin ensemble. Refocusing pulses are applied to the spins via the resonator.

2 S P I N E N S E M B L E Q U A N T U M M E M O RY P R O T O C O L

2.1 the write step : storage of n quantum states |ψ1〉 . . . |ψn〉

The write step of the protocol consists in storing a quantum state |ψ〉 into
the spin ensemble. The resonator receives |ψ〉 from the external superconduct-
ing qubit processor, which initializes the cavity-field state. As seen in Section
I.3.3.3, the subsequent transfer from the resonator to the spin ensemble is only
possible if the two systems are in the strong coupling regime gens � κ , Γ .
The damping rate of the resonator is set purposely to κmin = ωr/Qmax to
satisfy this condition. The microwave photon carrying out the state |ψ〉 is
transferred to the spins by tuning the resonator at the average spin frequency
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ωs for a time Tswap = π/(2gens) after which the cavity frequency is de-
tuned at the "parking" frequency ωp such that (ωs − ωp) � gens. This cor-
responds to the SWAP operation described in Section I.3.2.1, during which the
coupled system quantum state evolves (using Eq. 1.93 in Section I.3.2.1) from
|ψrs(0)〉 = |ψ〉 × |0b〉 to |ψrs(Tswap)〉 = |0〉 × |ψb〉.

As seen in Section I.3.2.2, in the presence of inhomogeneous broadening,
the bright mode b is coupled to the N− 1 dark modes dj, which are decoupled
from the electromagnetic mode of the cavity (see Fig. 2.3a). Hence, the quantum
state |ψ〉 is transferred from the bright mode into the dark modes subspace.
The dark states are naturally protected against spontaneous emission in the
cavity, a key property for the storage of quantum information. This storage
into the dark modes of the spins takes place in a time of order T∗2 = 2/Γ ,
the free induction decay time of the spins. This transfer to the dark modes
subspace due to inhomogeneous broadening confers its multimode ability to
the memory. As seen from the bright mode coupled to the cavity, the dark
modes behave as a conveyor belt with loading time the free induction decay
time (T∗2 ) and life time the Hahn-echo decay time (T2), as illustrated in Fig. 2.3b.

gens

a

..…

d1 dN-1

Cavity mode
N-1 uncoupled

dark modes : BATHBright mode

transfer

(T2*)

b

T2

T2

m

m+1

m-1

m+2 m+3

m-2 m-3
*

(b) Multimode ability(a) Storage process

Figure 2.3: Storage of n quantum states into the spin ensemble. (a) Storage process.
The resonator receives |ψ〉 from the external superconducting qubit processor (QuP), which
initializes the cavity-field state. The microwave photon is collectively absorbed by the spin
ensemble and is transferred into the dark modes subspace in a time of order T∗2 . (b) Multimode
ability. Collective excitations of the spins can be used to simultaneously encode a large number
of qubits. As seen from the collective spin mode coupled to the cavity, the other modes behave
as a conveyor belt, with loading time the free induction decay time (T∗2 ) and life time the Hahn-
echo decay time (T2).

After the transfer to the dark mode subspace, the bright mode is accessible
again for storage. Hence, successive write steps separated by time of order T∗2
can be performed to store various quantum states |ψ1〉 ... |ψn〉 in orthogonal
modes of the spins (see Fig. 2.4). The lifetime of the memory is approximately
the Hahn-echo decay time T2, so that the maximal number of stored quantum
states is of order n ∼ T2/T

∗
2 .
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Figure 2.4: The write step of the protocol. Successive swap operations separated by time of
order T∗2 are performed to store various quantum states |ψ1〉 ... |ψn〉 into the spin ensemble.

2.2 the read operation : on-demand retrieval of |ψi〉

The read step of the protocol consists in retrieving one of the states |ψi〉 stored
in the spin ensemble. This state initially stored into the dark modes is actively
restored into the bright mode by using refocusing techniques derived from the
Hahn echo [36].

2.2.1 The building block: the two-pulse Hahn echo

The Hahn echo relies on the use of short radio frequency pulses to manipulate
the macroscopic magnetic moment of an ensemble of spins. The sequence is
sketched in Fig. 2.5a in the Bloch sphere representation. A π/2 pulse is first
applied around x which flips the macroscopic magnetic moment of the spins
along −y. This pulse initiates a free precession of the spins in the equatorial
plane. As spins in an inhomogeneous ensemble have different Larmor frequen-
cies, some spins precess faster and some slower than the average magnetization
that causes the later to decay in a time T ∗2 , the free induction decay time. At
time τ, a π-pulse is applied so that the spin Bloch vector undergoes a π rotation
around the x-axis. The slower spins become ahead of the average magnetic mo-
ment and the fast ones trail behind. As spins continue to precess in the same
direction at their Larmor frequency, they rephase together along +y direction
at 2τ, time at which the magnetic moment vector adds constructively to pro-
duce a spontaneous induction signal called echo.

This refocusing effect is the basis of the two-pulse echo protocol (2PE) used
in classical memory experiment [102]. It is sketched in Fig. 2.5b. The initial π/2-
pulse is replaced by multiple photon pulses (called θi) absorbed by the spins
at time t = ti and a refocusing pulse (R) applied at t = τ triggers the emission
of echo pulses ei at t = 2τ − ti (therefore in the reverse order). The phase φe ,i
of the echo is related to φθ ,i and φR the phases of the incoming and refocusing
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pulses by the relation φe ,i = −(φθ ,i − φR).
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(b) Two-pulse Hahn echo

θ1 R

t1 τ 2τ-t1

e1

z

y

x

z

y

x

z

y

x
echo

z

y

x

z

y

x

advanced phase

delayed phase

θ2 θn e2en

t2 tn 2τ-t22τ-tn

1

2

3

4

5

Figure 2.5: The building block of the read operation. (a) Standard Hahn echo. A π pulse
applied at time τ acts as a time reversal for the spins, which leads to a rephasing at time 2τ
with the emission of an echo. (b) Two-pulse Hahn echo (2PE). Weak pulses θi are stored into
the spin ensemble at times ti, followed by the application of a refocusing pulse at time τ that
triggers the emission of echo pulses ei at times 2τ− ti (therefore in reverse order).

One could imagine extending very simply the 2PE to the quantum regime by
replacing the classical pulse θi by incoming fields in well-defined states |ψi〉.
As explained in [103], this strategy however cannot provide a high fidelity
quantum memory. The main reason is that when the echo signal appears the
whole medium is still inverted and acts as a noise amplifier: the spontaneous
emission produces a noise comparable to the retrieved signal. The efficiency
of the retrieval is thus fundamentally limited by fluorescence. Even if the 2PE
cannot reach the quantum regime, it has the unique ability to rephase atoms
independently of the effect inducing the inhomogeneous distribution. As such,
it is a tool for the design of more elaborate protocols able to reach the quantum
regime. In the following, we use the 2PE as a building block for designing our
quantum memory protocol for microwave photons.
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2.2.2 Reaching the quantum regime with silenced primary echo

In order to reach the quantum regime, one possible strategy consists in apply-
ing a second refocusing pulse, which ensures that the final echo is formed in
a non-inverted spin ensemble. This however requires to "silence" the first echo,
which otherwise would carry away the quantum information. Optical quantum
memory protocols have proposed silencing either by using phase mismatch ef-
fects arising from the laser pulse propagation (ROSE protocol [25, 104]), or by
artificially broadening the atomic resonance at the time of the first echo (HY-
PER protocol [26]).
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2τ1+τ2 2(τ1+τ2)
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Refocusing sequence

Silenced 
echo

ψ ρ

Figure 2.6: Extension to the quantum regime. A second refocusing pulse is applied that
brings the spins back into the ground state. The first echo is "silenced" to preserve all informa-
tion for the second echo.

In our protocol, we make use instead of dynamical detuning of the cavity to
silence the primary echo, as was independently proposed in [105]. In this case,
spins rephase at 2τ but cannot re-emit. The information remains stored in the
memory and spins pursue their evolution at their own Larmor frequency. As
shown in Fig. 2.6, at time t = 2τ1 + τ2, a second refocusing pulse is applied
to make them rephase again at t = 2(τ1 + τ2) in a non-inverted medium. The
echo described by the density matrix ρ, restores the initial state |ψ〉〈ψ|.

READ

MW

ωr ωs

ωp

Refocusing sequence

ρ1 ρ2 ρ3 ρi ρn

Figure 2.7: The read step of the protocol. On-demand retrieval is obtained by dynamically
detuning the cavity to retrieve selectively a state |ψi〉, while prohibiting the echo of others states
|ψj〉 to keep them in the memory.
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On-demand retrieval is obtained by extending this protocol to multiple states
with dynamical detuning of the cavity to select retrieval of |ψi〉, while prohibit-
ing the echo of others states |ψj〉 to keep them stored in the memory for a later
retrieval (Fig. 2.7). Note that due to the presence of two refocusing pulses, the
states are retrieved in the same order as they were stored, contrary to the 2PE
case.

2.3 the full quantum memory protocol

WRITE READ

MW

ωr

κ

STORAGE RETRIEVAL

0 Tmem

QuP

Silenced 
echo

ρ

ωs

ωp

κmin

κmax

Tmem / 4 3Tmem / 4

Refocusing sequence

ψ R R

Tmem / 2

Figure 2.8: Quantum memory protocol. The cavity-field state |ψ〉 delivered by the QuP is
stored at t = 0 and retrieved at t = Tmem.

The whole quantum memory protocol combines the strategies presented above
(see Fig. 2.8). The cavity state |ψ〉 delivered by the QuP is first transferred to the
spins by setting ωr = ωs for a time Tswap, after which the cavity is "parked"
at ωr = ωp. For a high-fidelity storage, the damping rate is set to κ = κmin
so that the spin ensemble and the resonator are in the strong coupling regime
(C� 1).
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Figure 2.9: Extension of the quantum memory protocol to multimode storage and on-
demand retrieval.
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Next, in order to refocus the spin dephasing, two refocusing pulses at t =

Tmem/4 and t = 3Tmem/4 are applied with ωr = ωs. The stabilization of the
inverted spin ensemble is ensured by setting κ = κmax so that the cooperativity
parameters fulfills C < 1 during and immediately after the refocusing pulses.
In between, the cavity is set to ωr = ωp to silence the first echo at t = Tmem/2.
After the second refocusing pulse, the quantum state is retrieved from the spin
ensemble by setting ωr = ωs during Tswap, after which it is finally transferred
to the QuP. The extension to multimode storage and on-demand retrieval is
depicted in Fig. 2.9.

3 S I M U L AT I O N S

Numerical simulations of the quantum memory protocol described above were
performed by our collaborator B. Julsgaard at Aarhus University. We present
here the key results of his simulations and refer to [21] for further details on
the analysis.
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Figure 2.10: Simulations of the storage and retrieval of a weak coherent cavity-field
state. (top) Schematic timing of pulses and cavity parameters (ωs and κ) used for the simu-
lations. (bottom) Cavity-field mean values, 〈X̂〉 (black) and 〈P̂〉 (gray) versus time. The inset
re-plots the dashed-line region with |â| on the logarithmic vertical scale.

The simulations use the realistic model for NV centers described in Section
I.3.2.2 and account for typical spin frequency ρ(ω) and coupling strength ρ(g)
distributions. The parameters entering in the simulations correspond to real-
istic experimental parameters (gens = 2π · 3.5MHz, T∗2 = 0.16 µs, T2 = 100µs,
T1 = +∞, and quality factors Qmin = 100 and Qmax = 104 for the cavity).
The refocusing pulses are hyperbolic secant π-pulses [106], which are pulses
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known to tolerate frequency and coupling strength inhomogeneity (see Chap-
ter V). The peak power of the external driving field is chosen to be 100µW, an
experimentally acceptable power in a dilution refrigerator. The dynamical evo-
lution is calculated numerically as explained in Section I.3.4, by dividing the
spins into M sub-ensembles, keeping account of the mean values and covari-
ances between cavity-field quadratures, X̂ and P̂, and spin components, Ŝ(m)

x ,
Ŝ
(m)
y , and Ŝ(m)

z of the m’th sub-ensemble. The results are displayed in Fig. 2.10.

The mean values of X̂ and P̂ are shown when a weak coherent cavity-field
state is delivered at t = 0. We see in the inset that even though the cavity field
is very strong during the inversion pulses at t ≈ 2.5µs and t ≈ 7.5µs, the field
relaxes to negligible levels prior to memory retrieval. Due to an imperfect stor-
age process [marked by the arrow in Fig. 2.10] a minor part of the field is left in
the cavity (14% in field strength or 2% in energy units), but most importantly
at t = Tmem we retrieve into the cavity a mean value corresponding to 79% of
the initial state.
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Figure 2.11: Storage and retrieval efficiency.
Various input states (black) and output states (gray,
sign reversed) examined in the protocol. The center
of circles mark mean values whereas the radii mark
the standard deviation σ of the state.

To assess the performance of the
quantum memory, the above sim-
ulation was repeated with vari-
ous other coherent input states.
A selection of these is shown
in Fig. 2.11 in terms of retrieved
mean values and variances of the
quadratures of the field (gray cir-
cles) as compared to those of the
input states (black circles). The
stored and retrieved relations con-
stitute a linear map, which (i)
presents a reduction factor for the
mean values ∼ 0.79 and (ii) shows
a variance of the retrieved states
∼ 1.11. The fact that the reduction
factor and the variance are close
to 1 suggests respectively that the
energy and the phase of the quan-
tum state are almost conserved

along the protocol. Since any quantum state can be expressed as a superpo-
sition of coherent states, the memory should work for arbitrary input states, in
particular for Schrödinger cats [107]. The simulated efficiency of storage and
retrieval with realistic experimental parameters is E = 79% after Tmem = 10 µs
storage. For optimized samples, that is in the limit T2,Qmax →∞ and homoge-
neous distribution of coupling strengths, the efficiency E = 97% was calculated,
limited by the finite spin-resonator coupling and imperfection of the refocusing
pulse.
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Figure 2.12: Multimode ability. The cavity field |â| versus time in a multi-mode storage
example with three input fields separated by 0.84µs and memory time 16µs.

As demonstrated experimentally for classical pulses [102], the spin-ensemble
quantum memory is multi-mode in nature, which we confirm in the simula-
tions by storing and retrieving three pulses as exemplified in Fig. 2.12. The
number of storage modes that can be faithfully addressed and refocused is
estimated to be n ∼ 100 for these sample parameters.
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E X P E R I M E N T 1 ( W R I T E ) : C O H E R E N T S T O R A G E

O F Q U B I T S TAT E S I N T O A S P I N E N S E M B L E

This chapter is dedicated to the presentation of the first experiment, where
we have tested the write step of our memory protocol. Three different quan-
tum systems are integrated on the same chip for this experiment: an ensem-
ble of NV center spins, a superconducting qubit, and a superconducting
resonator acting as a quantum bus between the qubit and the spins. Qubit
states are coherently stored into the spin ensemble via the bus resonator.
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1 S TAT E O F T H E A RT & P R I N C I P L E O F T H E
E X P E R I M E N T

The prerequisite for the transfer of quantum information from a superconduct-
ing circuit to a spin ensemble is to reach the strong coupling regime. At the
time of writing this thesis, this regime has been evidenced spectrocopically for
various types of spins embedded in superconducting resonators, including NV
center spins in diamond. These experiments lay the foundations of this thesis
work towards a spin ensemble memory.

1.1 state of the art

In the experiments related to this thesis work, ensembles of typically 1012 elec-
tron spins in millimeter to centimeter sized crystals are coupled to the mag-
netic field sustained by a planar resonator. The first demonstration of strong
coupling to a resonator was obtained in the group [19] shortly before the begin-
ning of this thesis work, with an ensemble of NV center spins in diamond. In a
parallel experiment, Schuster et al. [29] observed a similar coupling with both
nitrogen impurities (P1 centers) in diamond, and chromium ion spins (Cr3+)
in sapphire. More recently, Amsuss et al. [30] and Ranjan et al. [31] made fur-
ther work with NV centers and nitrogen impurities in diamond, and Bushev
et al. [108, 32] with erbium rare-earth ion spins (Er3+) in Y2SiO5 crystal.

Figure 3.1: State of the art.

An overview of the state of art is depicted in Fig. 3.1. In these experiments, the
strong coupling is manifested as described in Section I.1.3.1, by the presence of
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a vacuum Rabi splitting in the resonator spectrum. We present now in details
the experiment performed in the group with an ensemble of NV centers in
diamond, the starting point of the experiment described in this chapter.

1.2 strong coupling of nvs to a superconducting resonator

The hybrid circuit that was developed for this experiment combines two com-
ponents: a superconducting resonator and an ensemble of NV center spins in
diamond. The resonator is a λ/2 CPW resonator with an array of four SQUIDS
inserted in its central conductor to make its frequency ωr(Φ) tunable with a
locally applied flux Φ threading the SQUID loops (see Section I.1.2.2). It has
been measured separately at 40mK, showing a tunability over hundreds of
MHz below its maximum resonance frequency ωr/2π = 2.94GHz, and a qual-
ity factor ∼ 2 · 104 at the zero field NV center frequency. The diamond crystal
is of the HPHT type, with a NV concentration of ∼ 1.2 · 106 µm−3 (6.8ppm). A
spin linewidth w/2π = 6MHz was measured at room temperature. The setup
of this experiment is shown in Fig. 3.2.
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Figure 3.2: Strong coupling of a spin ensemble to a superconducting resonator [19]:
scheme of the experiment. (top left) A diamond crystal containing NV center spins is placed
on top of the superconducting circuit and positioned in the middle of the superconducting
coplanar resonator. (top right) A SQUID array is inserted in the central conductor to tune the
resonator frequency with an on-chip wire producing a flux Φ in the SQUIDs. (bottom) A mag-
netic field BNV is applied, making the same angle with the four possible NV axis orientations.

The diamond single crystal (3× 3× 0.5mm3) is placed on top of the supercon-
ducting circuit and positioned in the middle of the CPW resonator where the
magnetic field is maximum to maximize the ensemble coupling constant. The
spin Zeeman splitting is tuned with a magnetic field BNV making the same an-
gle with the four possible NV axis orientations. The fraction η of the resonator
mode volume occupied by the spins and the angular factor α introduced in
Section I.3.2.2 are respectively 0.29 and 0.81. Combined with the measured NV
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density, this yields (using Eq. 1.101 in Section I.3.2.2) a predicted ensemble cou-
pling constant gthens/2π = 11.6MHz. This value satisfies gthens � Γ , κ , bringing
theoretically the experiment in the strong coupling regime.
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Figure 3.3: Strong coupling of a spin ensem-
ble to a superconducting resonator [19]: spec-
troscopic evidence for strong coupling. The
resonator transmission spectrum S21 shows two
anticrossings whenever the tunable resonator fre-
quency crosses the NV transitions |0〉 → |+〉 and
|0〉 → |−〉. Red solid (yellow dashed) lines are
fits to the eigenfrequencies of the coupled (decou-
pled) resonator-spin system as described in Section
I.3.2.1. A transmission spectrum (white overlay) is
also shown in linear units in the middle of the anti-
crossing with the NV transition |0〉 → |−〉.

Strong coupling signature The
strong coupling is evidenced spec-
troscopically. The resonator trans-
mission spectrum S21(ω) was
measured with a vector network
analyzer, at microwave power
weak enough to not modify the
spin polarization (see Section
I.3.3). The transmission spectrum
as a function of Φ is shown in
Fig. 3.3 for an applied magnetic
field BNV = 1.98mT. Two avoided
crossings are observed when the
resonator is tuned through the
NV center spin-resonance fre-
quencies. This is the signature of
the strong coupling between the
NV ensemble and the resonator as
described in Section I.1.3.1. The fit
yields g+/2π = g−/2π = 11MHz,
in quantitative agreement with
the predicted value gthens. This ex-
periment demonstrates the strong
coupling of an ensemble of NV
center spins to a superconducting resonator, a prerequisite to the implemen-
tation of the write step of the memory protocol.
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1.3 principle of the experiment
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(b) Physical setup for the WRITE experiment
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Figure 3.4: Principle of the experiment. (a)
Quantum states delivered by a QuP, materialized
by a single superconducting qubit, are stored into
the spin ensemble. (b) The resonator, with frequency
ωB tunable and high quality factor, is strongly cou-
pled to both the spin ensemble (frequency ωs) with
an ensemble coupling strength gB−NV and a qubit
(frequency ωQ) with coupling strength gB−Q. The
qubit delivers quantum states to the bus resonator
to be stored into the spins memory.

The write step of the memory
protocol described in Chapter II
consists in storing a quantum
state |ψ〉 delivered by an exter-
nal superconducting qubit pro-
cessor (QuP) into a spin en-
semble. The write experiment
aims at demonstrating this op-
eration with the QuP material-
ized by a single superconduct-
ing qubit. The physical setup
and protocol proposed are de-
picted in Fig. 3.4. They are ar-
ticulated around three compo-
nents: an ensemble of NV center
spins, a superconducting qubit,
and a superconducting resonator
acting as a quantum bus be-
tween the qubit and the spins.
The protocol requires that the
bus resonator is strongly cou-
pled to both the qubit and the
spin ensemble to enable coher-
ent exchange of quantum in-
formation, and made frequency
tunable to transfer this informa-
tion from one component to the
other.

To demonstrate that the qubit
state is preserved during the storage, the state is retrieved without refocusing,
and compared to the initially encoded one. Hence the qubit must not be only
an instrument for preparing the quantum state but also a precise readout appa-
ratus for the comparison. This calls experimentally for the conception of a good
qubit manipulation and readout circuitry. We show in Fig. 3.5 a 3D schematic
of the hybrid circuit together with the corresponding electrical scheme. The
bus resonator B (in yellow) is electrostatically coupled to the qubit Q (in red)
with coupling strength gB−Q and magnetically coupled to NV (in pink) with
gB−NV . It is implemented as a λ/2 CPW resonator made frequency tunable by
inserting a SQUID loop in the resonator central line. The qubit is coupled with
coupling constant gR−Q to a manipulation and readout circuit R (in blue) that
contains a hysteretic detector to ensure an efficient readout. We explain in the
next section how the hybrid circuit is designed and describe the manipulation
and readout techniques that we use to operate it.
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Figure 3.5: Designing the write experiment: schematic of the hybrid quantum circuit.
The quantum bus B (in yellow), a coplanar waveguide resonator, is coupled to Q (in red) and
to NV (in pink). It contains a SQUID that makes its frequency tunable by applying in its loop
a flux via an on-chip current line F (in green). The qubit Q is electrostatically coupled to a
nonlinear resonator R (in blue) which is used to manipulate and readout its state.

2 E X P E R I M E N TA L R E A L I Z AT I O N

2.1 the hybrid quantum circuit

2.1.1 Diamond sample properties

The superconducting circuit is designed for matching the properties of the
spin ensemble. The diamond is a polished (110) plate of dimensions 2.2 ×
1× 0.5mm3 taken from a type-Ib HPHT crystal prepared by our collaborator
Pr. Isoya in Tsukuba University. The diamond contained initially 7 · 106 µm−3

(40ppm) of neutral substitutional nitrogen (P1 centers) as measured by IR
absorption. It was irradiated by 2MeV electrons at 700° C with a total dose
of 6.4 · 1018 e/cm2 and annealed at 1000° C for 2 hours in vacuum. The high
temperature irradiation was employed to minimize residual unwanted defects.
The diamond sample was characterized at room temperature by our collabo-
rators A. Dreau and V. Jacques at ENS de Cachan. The measurement of the
resulting concentration of negatively-charged NV centers proceeds by compar-
ing the sample photoluminescence (PL) to the one obtained from a single NV
center. For that purpose, a continuous laser source operating at 532nm wave-
length was tightly focused on the sample through a high numerical aperture
oil-immersion microscope objective. The NV center PL was collected by the
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same objective, spectrally filtered from the remaining pump light and directed
to a silicon avalanche photodiode. After calibration of the PL response associ-
ated with a single NV center, a PL raster scan of the sample directly yields the
NV center content since the excitation volume is known.
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Figure 3.6: The diamond: characterization at room temperature. (left) Two-dimensional
map of the NV center density for a depth of 5 µm inside the diamond sample. (right) Optically
detected ESR spectrum with a static magnetic field B ≈ 1.5mT applied along the [111] axis of
the diamond crystal. Four ESR lines are observed, corresponding to |0〉 → |±〉 spin transitions
for the two subsets of NV centers crystalline orientations (±III and±I). The fit with Lorentzian
functions (inset) leads to A|| = 2.14± 0.02MHz as expected from hyperfine interaction with
14N nuclear spins.

As shown in the left panel of Fig. 3.6, the NV center concentration is rather in-
homogeneous over the sample, with an average density of ρNV = 4.4 · 105 µm−3

(2.5ppm). Electron spin resonance (ESR) measurements have been performed
at room temperature by applying a microwave field with a copper microwire
placed on the diamond surface. In addition, a static magnetic field B ≈ 1.5mT
was applied along the [111] axis of the diamond crystal. As explained in Chap-
ter I, such a magnetic field orientation allows both to lift the degeneracy of
ms = ±1 spin sublevels and to divide the NV center ensemble into two sub-
groups of crystallographic orientations (I and III) which experience different
Zeeman splitting. Optically detected ESR spectra were recorded by sweeping
the frequency of the microwave field while monitoring the PL intensity.

As shown in the right panel, when the microwave frequency is resonant
with a transition linking ms = 0 and ms = ±1 spin sublevels, ESR is evidenced
as a dip of the PL signal owing to the spin-dependent PL response of the
NV centers [65], as explained in Chapter I. The study has been focused on
the ESR line at ω+I/2π = 2.915GHz, which corresponds to the |0〉 → |+〉 spin
transition for the subset of [111]-oriented NV centers. The nitrogen atom of NV
centers in our sample being a 14N isotope, each electron spin state is further
split into three sublevels by the hyperfine interaction with a splitting 2.17MHz
between ESR frequencies associated with different nuclear spin projections (see
Section I.2.2.1). This hyperfine structure is easily observed in our sample at low
microwave power.
To probe the coherence properties of this subset of NV centers, the Ramsey
sequence described in Section I.2.3 is applied. As seen in the left panel of
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Figure 3.7: The diamond: coherence times at room temperature. (left) Ramsey fringes
recorded for the subset of [111]-oriented NV centers with a microwave detuning δ = 13MHz
from the ESR line at ω+I/2π = 2.915GHz. The laser pulses used in the Ramsey sequence
have a duration of 30 µs and the laser power is set at 40mW. For data analysis, the NV center
PL recorded during the first 10 µs of the laser pulses is used for spin-state read-out while
the PL recorded during the last 10 µs is used as reference. The red solid line is data fitting
with the function exp[−τ/T∗2 ] ×

∑1
i=−1 cos

[
2π(δ+ iA‖)τ

]
. The inset shows the Fourier-

transform of the free induction decay. Solid lines are data fitting with Lorentzian functions.
(right) Measurement of the coherence time T2 for the subset of [111]-oriented NV centers using
a π/2− τ− π− τ− π/2 spin echo sequence. Data fitting with an exponential decay leads to
T2 = 7.3± 0.4 µs.

Fig. 3.7), the free induction decay signal exhibits beating frequencies which
correspond to the hyperfine components of the NV center ESR lines. The fit
yields T∗2 = 390 ± 30ns and its Fourier transform spectrum reveals the 14N
hyperfine structure with a linewidth w/2π = 810± 90 kHz for each peak (see
inset of Fig. 3.7). Spin echo coherence time of the NV center ensemble reaches
T2 = 7.3± 0.4 µs (right panel).

2.1.2 Superconducting circuit design

We now discuss the parameters of each component of the superconducting
circuit in details, explaining the relevant design goals and presenting the pa-
rameter choice we made.

qubit and readout circuit design

The design of the qubit is motivated by three requirements: it must have (i) a
frequency in the dynamical frequency range of the bus resonator, (ii) a coher-
ence time sufficiently long to allow for coherent exchange with the resonator
and (iii) be weakly coupled to the readout circuitry to enable its measurement
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via dispersive techniques.
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Figure 3.8: The qubit and its coupling to the
readout circuitry. Schematic of the simulated chip
geometry, showing the Transmon capacitance, the
space for the Josephson junction and the coupling to
the readout circuitry.

The qubit and its coupling to
the readout circuitry are de-
signed accordingly using the mi-
crowave solver SONNET (see Sec-
tion I.1.1.3). The geometry used
for the simulation is shown in
Fig. 3.8. The Josephson junction
is modeled separately by an in-
ductance that matches the Joseph-
son inductance to complete the
SONNET simulation. We design
CQ = 100 fF and the two Joseph-
son junctions with area 150nm
× 200nm to obtain the charg-
ing energy EC/h = 0.68GHz and
Josephson energy EJ/h = 6.5GHz.
This ensures that the qubit is in the Transmon regime EJ � EC and has a
transition frequency

√
2ECEJ/h = 2.97GHz ideally placed between the NV

zero-field and bus frequencies (see below). The qubit is further equipped with
a fast magnetic flux line to tune its resonance frequency, which was however
not used in our experiments.

The readout circuit is a cavity Josephson bifurcation amplifier described in
Section I.1.2.2, made of two pieces of CPW transmission lines with a Josephson
junction placed in the middle. It is capacitively coupled on one side to the input
transmission line and on the other side to the qubit. As explained in Section
I.1.3.3, the state-dependent dispersive shift of the resonator for readout can be
maximized by increasing the coupling constant gR−Q to the qubit, reducing its
frequency detuning ∆R−Q with respect to the qubit. We design accordingly the
qubit-readout-resonator coupling constant gR−Q/2π = 40MHz, the frequency
at ωR/2π = 3.86GHz corresponding to a detuning ∆R−Q/2π = 860MHz. The
Kerr constant 2πKR/ωR = −4.5 · 10−6 and quality factor Q = 103 are chosen
to optimize the Josephson bifurcation amplifier response, with an estimated
time Tmeas = 100ns for mapping the qubit state to the oscillator This implies
that the relaxation time TQ1 of the qubit has to be longer than 1µs to limit the
relaxation probability during the measurement interval to about 5%.

bus resonator design

The design of the bus resonator is motivated by two requirements: it must (i)
have a dynamical frequency tunability between the qubit and the spin ensem-
ble frequencies to transfer quantum states between the two components, (ii) be
strongly coupled with both the qubit and the spin ensemble such that the two
components can coherently exchange quantum states via the resonator. The
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first requirement implies to use a SQUID-based resonator as described in Sec-
tion I.1.2.2. As explained in this section, the frequency of such resonator can
be tuned only below its bare frequency. We thus aim for a resonator frequency
ωB higher than both the qubit and the spin ensemble frequencies. The second
requirement implies for the resonator to have a coherence time much longer
than the time needed to exchange the information between the bus resonator
and the qubit (π/(2gB−Q)) and the spins (π/(2gB−NV)).

We design accordingly the CPW bus resonator of length Λ with a SQUID
embedded in its central conductor at position 0.8Λ. The length is adjusted to
Λ = 18.8mm to obtain a resonance frequency without SQUID ωB = πc̄/Λ =

2π× 3.15GHz. With the SQUID embedded, we estimate (using Eq. 1.42 in Sec-
tion I.1.2.2) the resonance frequency at zero flux ωB(0)/2π = 3.10GHz, higher
than the qubit and NV frequencies, as required for this experiment. The res-
onator is terminated at both ends by elbow couplers to the measuring lines
with C1 = C2 = 2 fF setting the bare quality factorQ0 = 105, which corresponds
to a bus damping rate κ ∼ 0.19 · 106 s−1 (and coherence time TB1 = 3.3µs).

Strong coupling requests that the coupling strengths of the bus resonator to
the qubit gB−Q and to the spins gB−NV are much larger than the bus damping
rate κ. These coupling strengths are set respectively for the qubit and the spins
by the electrical and magnetic fields sustained by the resonator (see Section
I.1.1.3). In this work, the resonator is designed with 10µm central conductor
and 5µm gap width. The dielectric constant is εeff =

εSi+1
2 = 6.45, set by the

Silicon substrate. The coupling capacitance to the qubit CB−Q is located at 0.2Λ.
At this position, the vacuum fluctuations of the electrical field are reduced by
a factor cos(0.2π) = 0.81. We design accordingly CB−Q = 3 fF to obtain a cou-
pling to the bus resonator gB−Q = 2e(CB−Q/CQ)δVrms〈1|n|0〉 = 2π · 10MHz
much larger than the bus resonator damping rate κ.

Ld

Λ SQUID

Figure 3.9: The bus resonator: the design. It is made
with a section of CPW transmission line terminated at
both ends with elbow couplers. A SQUID is embedded in
its central conductor to make its frequency tunable. The
diamond covers a length Ld of the resonator length Λ.

Similarly, the coupling strength
to the spins gB−NV is set
by the vacuum fluctuations
of the magnetic field sus-
tained by the CPW transmis-
sion line (shown in Fig. 3.10).
As we have seen in Section
I.3.2.2, the fraction η of the
mode volume occupied by
the spins increases with the
resonator section of CPW
transmission line covered by

the diamond crystal. We design accordingly the resonator with a meander
shape in the middle of the resonator on top of which the diamond crystal will
be positioned (see Fig. 3.9). The coupling strength gB−NV between the resonator
and the spin ensemble is estimated in the next section.
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Figure 3.10: The bus resonator: the AC magnetic field to which the spins are coupled.
Amplitude of the microwave field generated by the bus resonator driven at resonance by a
incident microwave of power 1µW.

2.1.3 The device

The superconducting circuit is fabricated on a silicon chip oxidized over 50nm,
using the process described in Appendix A. A 150nm thick niobium layer is
first deposited by magnetron sputtering and then dry-etched in a SF6 plasma
to pattern the readout resonator R, the bus resonator B, the current lines for
frequency tuning, and the input waveguides. Finally, the transmon qubit Q,
the coupling capacitance between Q and B, the Josephson junction of R, the
SQUID in B, are fabricated by double-angle evaporation of aluminum through
a shadow mask patterned using e-beam lithography. The first layer of alu-
minum is oxidized in a Ar-O2 mixture to form the oxide barrier of the junc-
tions.

1 mm1 mm

50 mm50 µm

0.1 mm0.1 mm

CJBA junction

SQUID

Transmon qubit

Elbow couplers

PCB

Circuit

Figure 3.11: The fabricated circuit with panels zooming to its most important features.

The flux line is a 50Ω CPW transmission line passing nearby the resonator
SQUID at a distance of d ≈ 12 µm. The ground plane between the resonator
and the central conductor of the flux line has been removed to eliminate un-
wanted shielding currents. The chip is finally attached with wax on a mi-
crowave printed circuit board (PCB) made out of TMM10 ceramics and wire
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bonded to it. The whole is enclosed in a copper box. We show in Fig. 3.11 the
scanning optical and electron micrographs of the circuit.

The diamond is positioned in the middle of the bus resonator mode, on top
of the meanders (see Fig. 3.12). A superconducting coil which produces a mag-
netic field BNV is attached to the copper box containing the sample to tune the
NV frequency. BNV is parallel to the [1, 1, 1] NV crystalline axis. The NV fre-
quencies being sensitive only to the projection of BNV along the NV axis, two
groups of NVs thus experience different Zeeman effects: those along [1, 1, 1]
(denoted I) and those along either of the three other < 1, 1, 1 > axes (denoted
III as they are 3 times more numerous). This results in four different ESR fre-
quencies ωI±,III±. We call from now gens,I and gens,III the coupling strengths of
the I and III spin groups respectively.

IIII

BNV // [111]

V
N
S=1

BNV

BNV

Figure 3.12: Hybrid quantum circuit for the write experiment. The diamond crystal con-
taining the NV center spins is glued on the chip surface, in the middle of the bus resonator. A
magnetic field BNV is applied parallel to the [1, 1, 1] crystallographic axis, resulting in differ-
ent Zeeman splittings for centers having the NV axis parallel to BNV (ensemble I, in red) and
those having their axis along the three other < 1, 1, 1 > axes (ensemble III, in blue).

Given the position and the orientation of the diamond, we estimate the cou-
pling strength of the spin ensemble to the bus resonator via the filling η and
angular α factors introduced in Section.3.2.2. The length of the CPW transmis-
sion line covered by the diamond is Ld = 8.5mm, yielding (using Eq. 1.99 in
Section I.3.2.3) a filling factor1 η = 0.38. We obtain the angular factor α from the
spin average orientation with respect to the resonator microwave field shown
in Fig. 3.10. For group I, the angular factor is αI = 1 as the NV axis is par-

1 Note that we did not consider an eventual gap between the diamond and the circuit for the
calculation.
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allel to the resonator waveguide. For group III, we consider the projection of
the NV axis on the resonator, which yields (using Eq. 1.100 in Section I.3.2.3)
αIII = 0.57. Using the NV concentration ρNV measured in Section III.2.1.1, we
estimate the ensemble coupling constants using Eq. 1.101 in Section I.3.2.3:

gthens,I = 2π× 4.4 MHz (3.1)

gthens,III = 2π× 5.8 MHz. (3.2)

where we introduce a factor
√
3/2 for gthens,III (respectively 1/2 for gthens,I) since

III are 3 times more numerous than I. The total estimated coupling constant is

gthens =
√
g2ens,I + g

2
ens,III = 2π× 7.3MHz.

2.2 measurement setup

2.2.1 The experimental setup

The experiment is performed in a cryogen free dilution refrigerator. This refrig-
erator has four stages at different temperature (70K, 4K, 1K, 30mK) separated
by shields to minimize radiative energy transfer. The sample is thermally an-
chored to the mixing chamber at 30mK. At this temperature, the spins and
the qubit are with good approximation in the ground state (see Section I.3.2.1).
The hybrid circuit is characterized either by microwave reflection or transmis-
sion measurement. For that purpose, microwave signals are sent and retrieved
through transmission lines which connect the measurement apparatus at RT
to the 30mK stage. These transmission lines are made of CuNi (or Ag-CuNi)
coax from room temperature to 4K and superconducting NbTi down to 30mK
to ensure low microwave attenuation. Semi-flexible Copper microwave coaxial
cables are used at 30mK. A schematic of the measurement setup is shown in
Fig. 3.13.

The setup is designed to reduce the thermal and technical noises reaching
the sample and to ensure the lowest possible noise temperature at the output.
To reduce thermal noise from the room temperature, the input line (MW in)
contains several filters and successive attenuators thermally anchored at differ-
ent temperatures. The input noise at 300K is absorbed by attenuators which
subsequently re-emit thermal noise at their own physical temperature. As the
signal-to-noise ratio depends mostly on the last attenuator on the chain, we
concentrated the attenuation on lower stages. For the same reason, a cryogenic
amplifier is placed at the 4K stage on both output lines (reflect out and trans
out) to ensure low noise measurement.



2 experimental realization 111

Room
temperature

4 K

30 mK

20
 d

B

SC
 c

oa
x

C
uN

i c
oa

x

N
bT

i w
ire

Br
as

s 
w

ire
s

Flex coax

Ag
-C

uN
i c

oa
x

C
uN

i c
oa

x

H
EM

T

SC
 c

oa
x

SC
 c

oa
x

BP
F1

LP
F2

LP
F1

LP
F3LP

F4
Ag

-C
uN

i c
oa

x

H
EM

T

SC
 c

oa
x

40
 d

B

flux inMW in
trans

out
reflect

out

20
 d

B

BNV

C2

C1

Figure 3.13: Picture and wiring scheme of the dilution refrigerator. LPF1, LPF2, LPF3,
and LPF4 are low-pass filters with cutoff frequencies 1.35GHz, 450MHz, 5.4GHz, and
5.4GHz, respectively. BPF1 is a band-pass filter with a bandwidth of 2.5 - 4GHz. C1, C2
are double circulator. CuNi coax is a coaxial cable made of CuNi, and Ag-CuNi coax is a silver-
plated CuNi coaxial cable. SC coax is a superconducting NbTi coaxial cable. Flex coax is a
low-loss flexible coaxial cable. Rectangles represent ports terminated by 50 Ω. The cryogenic
microwave amplifier is a CITCRYO 1-12 from Caltech, with gain ∼ 38 dB and noise tempera-
ture ∼ 5K at 3GHz. A DC magnetic field BNV is applied parallel to the chip by passing a DC
current through an outer superconducting coil. The sample box and the coil are surrounded by
two magnetic shieldings consisting of a lead cylinder around which permalloy tape is wrapped.
The sample box, coil, and the shieldings are thermally anchored at the mixing chamber.

As amplifiers inject noise backwards to their input, an isolator must be in-
troduced between the sample and the amplifier. In our setup, this isolation is
made by a double circulator (C) which acts as a strong attenuator in the reverse
direction. This one is connected to a 50Ω charge, which allows the propagation
of signals in a given direction, the reverse way being attenuated by twice the
single circulator attenuation (2× 20dB). C2 is additionally used to separate the
input signal from the reflected signal. To tune the bus resonator, an additional
line (flux in) able to support hundreds of µA is required. As for the input line,
attenuators and filters are introduced to reduce thermal noise. The attenuation
is used only at 4K to avoid Joule heating at the mixing chamber. Since the
bandwidth of our current pulses is not greater than 100MHz, high frequency
are also attenuated to minimize thermal excitations in the bus resonator. This
is ensured by a home-made Eccosorb filters with a 50Ω input impedance and
a cutoff frequency of 500MHz placed at 30mK. To avoid any DC resistance at
30mK, the filter is covered with superconducting solder.
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2.2.2 Signal generation and acquisition
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Figure 3.14: Configuration of the setup at room tem-
perature.

The setup at room temper-
ature is shown in Fig. 3.14.
Two types of microwave sig-
nals are applied: (i) pulses
near the qubit resonance to
manipulate its state (drive
pulses), (ii) pulses near the
frequency of the readout
resonator R for qubit mea-
surement (readout pulses).
Both are made using a DC-
coupled IQ mixer before be-
ing combined and sent to
the sample through MW in.
The readout pulse is recov-
ered through reflect out after
reflection on the sample, am-
plified with a total gain of
45dB and mixed down us-
ing an IQ mixer with a local
oscillator synchronous to the
microwave tone used for its
generation. The output IQ
quadratures are then filtered,

amplified, balanced and finally sampled by an Acquiris DC282 fast digitizer be-
fore transfer to a computer for processing. In addition, DC pulses are shaped
and sent through flux in to tune the resonator frequency via the fast current
line on-chip.

τ

ωQ

Figure 3.15: The drive pulse. The microwave sig-
nal at frequency ωQ is modulated by a Gaussian
shape.

The drive pulse consists of a
truncated Gaussian microwave
pulse at the qubit frequency
ωQ with voltage drive Vd(t) =

AG(t) cos(ωQt+ϕ). The microwave
tone is generated by an An-
ritsu MG3692 microwave gener-
ator and shaped to a Gaussian
AG(t) with an IQ mixer with
I and Q signals generated by
an arbritrary waveform genera-
tor Tektronix AWG5014C (AWG).
The parameters (AG(t) · τ,ϕ) are
carefully tailored to apply qubit
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rotations in the Bloch sphere as explained in Section I.1.3.2. X-Y pulse gen-
eration by microwave sideband mixing is implemented for precise rotation, as
further explained in the next section.

ωR

tr tm th

Figure 3.16: The readout pulse. The microwave
signal at frequency close to ωR is modulated by a
complex shape with 3 characteristic times. The pulse
rises linearly in a time tR similar to the resonator
rise-time κ−1, is maintained during tm in the vicin-
ity of the bifurcation point β+ to let the transition
of the resonator B → B occurs and finally hold for
at time th at slightly lower power for measurement.

The measurement pulse consists
of a microwave tone at the fre-
quency of the readout resonator
ωR. It is generated by an An-
ritsu MG3692 microwave gener-
ator mixed with the DC pulses
generated by an arbritrary wave-
form generator Agilent AFG3252.
Its shape is related to the CJBA
characteristics described in Sec-
tion I.1.3.3. During the time tR,
the pulse rises linearly up to the
vicinity of the bifurcation point
β+, where it stays for a short time
tm, during which a bifurcation of
the CJBA B → B may occur de-
pending on the qubit state. The
resonator state is then maintained while the phase measurement is performed
during a long plateau th at lower power (to stabilize the resonator oscillations).

X-Y pulse generation for qubit manipulation Precise manipulation of the
qubit requires a good understanding of the imperfections of the IQ mixer used
to shape the drive pulse (Fig. 3.15). This element has four ports, LO, RF, I and
Q where LO is used as the main input port and RF as the output port (see
Fig. 3.17). Given the two input signals I and Q, the IQ mixer splits the incoming
microwave signal LO in two channels and multiplies the first one by I(t) while
the second one is first phase shifted by π/2 and multiplied by Q(t). Finally the
two channels are combined back together to produce the output signal RF:

VRF(t) = I(t)VLO cos (ωLOt) +Q(t)VLO sin (ωLOt) (3.3)

I

LO

RF

Q

π/2

RF

I(t)

Q(t)

LO

Figure 3.17: Diagram of an IQ mixer.

One can use this device to mix a DC pulse (I) with a continuous microwave
signal at the exact qubit frequency (LO) to create a rectangular pulse sig-
nal resonant with the qubit transition at frequency ωQ (with no signal in
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Q). In reality however, the IQ mixer is not perfect and suffers from leakage
that prevents precise qubit manipulations. In our experiments instead, we
choose a carrier frequency LO slightly lower than the resonance frequency
(ωLO = ωQ − ∆QS) and use I-Q inputs to up-convert the signal to the qubit
frequency. Microwave leaks are thus off resonance and do not affect the qubit.
This is called the single sideband mixing technique [109]. In addition we use
a truncated Gaussian shape aG(t) for I and Q as it has a narrower width in
the frequency space than the rectangular one. The advantage of using a Gaus-
sian pulse is that its Fourier transform is again a Gaussian, which, in con-
trast to a rectangular pulse, does not exhibit side lobes in the frequency do-
main and thus minimizes the leakage to higher qubit levels. When supplied
with I(t) = aG(t) cos (∆QSt+ϕ) and Q(t) = aG(t) sin (∆QSt+ϕ) the output
becomes VRF(t) = AG(t) cos

[
(ωLO +∆QS)t+ϕ

]
, resonant with the qubit fre-

quency ωQ, with AG(t) = aG(t) · VLO. In our experiments, we use ∆QS =

50MHz.

Figure 3.18: IQ mixer calibration. The correction
for the IQ mixer imperfections is represented in the
complex domain, with the IQ basis without calibra-
tion (in grey), and the orthogonal IQ basis obtained
with calibration (in black).

This complex pulse generation
calls for a calibration of the am-
plitude and phase imbalance of
the IQ mixer (see Fig. 3.18), which
would otherwise cause unwanted
harmonics to appear. To do so, the
signal out of the IQ mixer is split
in two paths, the first sent con-
nected to the measurement lines,
and the second plugged to a spec-
trum analyzer. An automatic loop
based on a function minimization
procedure adjusts the generation
of I(t) and Q(t) up to the full sup-
pression of the undesired frequen-
cies. This adjustment proceeds in
two steps: (i) offset correction (via
respective compensations I0 and
Q0) to suppress the carrier atωLO,
(ii) amplitude & phase corrections
(via a common compensation ce−iϕce−i(∆QSt+ϕ)) to suppress the lower side-
band, such that:

I(t) = Io + Re
[
aG(t)e

−i(∆QSt+ϕ) + ce−iϕce−i(∆QSt+ϕ)
]

(3.4)

Q(t) = Qo + Im
[
aG(t)e

−i(∆QSt+ϕ) + ce−iϕce−i(∆QSt+ϕ)
]

(3.5)
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3 O P E R AT I N G T H E H Y B R I D Q U A N T U M C I R C U I T

This section is dedicated to the characterization of the hybrid circuit and its
operation. We first present measurement of each component. We then discuss
the coupling of the bus resonator to both the qubit and the spins.

3.1 superconducting circuit characterization

3.1.1 Qubit characterization

qubit readout
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Figure 3.19: Characterization of the
CJBA. The phase of the reflection co-
efficient for probe microwave powers
P = −80,−76,−72,−68,−64,−60 dBm (from
purple to red) is shown as a function of the probe
frequency. The purple curve shows a π-shift at
ωR/2π = 3.472GHz, the readout resonator fre-
quency. At powers above −72 dBm, the resonance
shifts and acquires a reduced phase shift (< π)
indicating that the resonator becomes non-linear.
The readout parameters for qubit readout are chosen
Pd = −64 dBm and ωRd/2π = 3.458GHz to
operate in the hysteretic region of the CJBA.

We first calibrate the readout
pulse. The general principle of
qubit readout through the CJBA
is described in Section I.1.3.3.
We have seen that two parame-
ters are important: the drive fre-
quency ωRd and drive power P.
In this section we explain how
to choose them prior to qubit
characterization. The qubit read-
out will be further optimized
later by adjusting the readout
process described here to the
specific qubit parameters deter-
mined in the section that fol-
lows. We first determine by re-
flectometry the resonance fre-
quency ωR of the CJBA with
the qubit in the ground state
|g〉 and largely detuned from
the resonator. Microwave power
and frequency are swept over
a large range around the ex-
pected bifurcation point β+ and
the reflected phase measured (see
Fig. 3.19).

At the lowest powers (purple and blue curves), the resonator is in the linear
regime and the reflected phase undergoes a π-shift at ωR/2π = 3.472GHz, the
base resonance frequency of the readout resonator R. To operate in the hys-
teretic region, we ensure a relative drive detuning Ω = 2Q(ωRd/ωR − 1) >

√
3
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and choose the frequency of the readout pulse at ωRd/2π = 3.456GHz. The
power Pd = −64dBm is chosen accordingly (the yellow curve in Fig. 3.20) to
place ourselves at the point βm seen in Section I.1.3.3 at which the resonator can
switch from B→ B. For the shape of the readout pulse, we choose the rise time
tr = 80ns, the time tm = 350ns allowed for the bifurcation and th = 2000ns
for measurement.

During the time window th, the IQ quadratures are low-passed filtered at
200MHz, and digitized at a sampling rate of 1GSample/s. The IQ signals are
then averaged over the readout pulse to obtain a single measurement point
in the IQ plane. This sequence is repeated a large number of times (typically
104) to obtain the statistical distribution of IQ points shown in the left panel of
Fig. 3.20. Since the switching is a stochastic process, we will observe two dis-
tinct sets of points (clusters) close to the transition power. At the point βm we
have chosen, the variance σ2IQ =

∑
i

(
(Ii − Īi)

2 + (Qi − Q̄i)
2
)
/n of the obtained

IQ data points is the largest.
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Figure 3.20: Qubit readout. (left) Example of bimodal distribution of the time-averaged (I,Q)

measured. The red dotted line perpendicular to the principal axis joining the two modes of the
distribution and going through the mean quadratures (I0,Q0) provides an optimal separation
between the two clusters corresponding to the B̄ and B states. The signal projected on the
principal axis (red line) yield an histograms (right) revealing a switching probability of 84%
for the example shown.

We further subtract the averages (I0 =
∑
i Ii/n, Q0 =

∑
iQi/n) from the data

and perform a transformation to project the measured (I,Q) points on the
principal axis joining the two clusters of the distribution (the red line). In this
way we obtain a bivalued one-dimensional probability distribution correspond-
ing to the B and B states (in the right panel of Fig. 3.20). If the measurement
window th is large enough and no switching events occurs during the mea-
surement (i.e βm well chosen), the two clusters do not overlap, and we have
a perfect discrimination between them. The measurement yields the resonator
switching probability Psw, a quantity directly linked to the qubit excited state
probability Pe, the quantity of interest in our experiment.
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Figure 3.21: Measurement of the qubit fre-
quency. The switching probability Psw measured
after a 3µs drive is shown as a function of the drive
frequency. Low power spectroscopy (top) shows
only the |g〉 → |e〉 transition of the qubit at fre-
quency ωge, whereas the 2-photons |g〉 → |f〉 tran-
sition at frequencyωgf/2 is also observed at higher
power (bottom). A Lorentzian function (red line) is
fitted to the spectroscopic line at low power yield-
ing qubit frequency γQ/2π = 2.6215GHz and
linewidth γQ/2π = 0.13MHz.

To measure the qubit |g〉 →
|e〉 transition frequency, we drive
the qubit with a long microwave
pulse (3µs) whose frequency is
scanned around the expected
qubit frequency. The drive power
is ensured to be high enough to
excite the qubit in |e〉 so that the
readout resonator R undergoes a
transition B→ B. The resonator R
is measured over 5 · 103 identical
sequences to obtain the switching
probability Psw. Fig. 3.21 shows
Psw as a function of the drive
frequency at low (top) and large
(bottom) driving power. The peak
that appears in the top panel
corresponds to the qubit |g〉 →
|e〉 transition frequency. A sec-
ond smaller peak is visible at
2.6207GHz, suggesting a fluctua-
tion of the qubit transition from
one frequency to the other dur-
ing the measurement. This ef-
fect, possibly due to tunneling of
an out-of-equilibrium quasiparti-
cle between the two transmon is-
lands, will reappear later in this
section. At large drive power (see
bottom panel), a peak appears at
lower frequency. It corresponds to
the excitation to the third level
|g〉 → |f〉 by 2 photons. By fit-
ting the |g〉 → |e〉 and |g〉 →
|f〉 resonances with a Lorentzian
model we obtain the qubit fre-
quencies ωge/2π = 2.6215GHz
and ωgf/2π = 2 × 2.538GHz.

Note that the measured resonance frequency is 350MHz lower than the design
value, which places the qubit below the NV zero field frequency. Using the set
of formulas given in Section I.1.2.3, we obtain EJ/h = 5.2GHz the Josephson
energy and EC/h = 0.66GHz the charging energy. The measured charging en-
ergy is in good agreement with the design but EJ corresponds to 80% of the
design value. The energy EJ is still much larger than Ec placing the qubit in the
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Transmon regime, as required for our experiment. In the following, we refer
most of the time to ωQ = ωge the qubit |g〉 → |e〉 transition frequency.

∆t
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Figure 3.22: Measurement of the qubit gates: the
Rabi oscillations. The switching probability Psw is
measured after a drive pulse at ωQ of increasing ef-
fective duration ∆t (black points). The line is a fit by
an exponentially decaying sine function from which
we obtain the Rabi frequency ΩQ/2π = 20MHz
and decay time TR = 1.5µs. The π and π/2 qubit
gates correspond respectively to Tπ = 2π/ΩQ and
Tπ/2 = π/ΩQ.

rabi oscillations

To prepare the qubit in the
desired state, we have to cal-
ibrate the single qubit gates.
We perform Rabi oscillations
by driving resonantly the qubit
|g〉 → |e〉 transition with
pulses of increasing areas. The
state is measured immediately
afterwards. From the fit of
the Rabi oscillations, shown in
Fig. 3.22, we obtain the Rabi
frequency ΩQ/2π = 20MHz,
which we use to program pre-
cise qubit rotations. Here the
π/2-pulse and π-pulse length
are respectively 11.5ns and
23ns. For this measurement,
we operate at low power in
order to minimize the popu-
lation of |f〉 via 2-photon pro-
cess. The Rabi oscillations vis-
ibility is limited here at 55%
due the imprecision of the cur-
rent qubit readout and initial-
ization. Optimization will be
performed later in this sec-
tion.

relaxation and dephasing times measurement

The |g〉 → |e〉 relaxation time TQ1 of the qubit is measured by preparing the
qubit in |e〉 by applying a π-pulse and let it evolve freely afterwards for a
given delay time ∆t before reading out its state. As seen in the left panel of
Fig. 3.23, the switching probability Psw decreases exponentially. The fit with
Psw = Psw,0 + Psw,A exp−t/TQ1 yields TQ1 = 1.75µs. Note that Psw,0 contains an
offset linked to the readout techniques and has to be further converted in Pe
the probability to find the qubit in |e〉 to estimate the effective electromagnetic
temperature of the qubit. This conversion is made later in this section.
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Figure 3.23: Measurement of the qubit coherence times. (left) T1 measurement. The switch-
ing probability Psw is measured as a function of the delay time ∆t between the preparation of
the qubit in the excited state |e〉 and the actual measurement of the qubit state (black points).
The line is a fit by a decaying exponential yielding TQ1 = 1.75µs. (right) T∗2 measurement. The
switching probability Psw is measured at the end of the Ramsey sequence as a function of the
delay time ∆t between the two π/2 pulses. The line is a fit by an exponentially decaying sine
function yielding T∗2,Q = 2.23µs.

We also characterize the free induction decay time of the qubit by a Ram-
sey fringe experiment that consists in two π/2-pulses separated by a delay ∆t
and a readout immediately afterwards. The two microwave pulses are slightly
detuned by ωD from the qubit frequency ωge. As the pulse is non-resonant,
the qubit Bloch vector undergoes a rotation at frequency ωD during the free
time ∆t. The second π/2-pulse reveals the phase of the superposition. The
resulting signal, so-called Ramsey fringes, oscillates at ωD (2π × 5MHz in
our experiment) due to the oscillations between the qubit dipole and the mi-
crowave source. The Ramsey oscillations decay with characteristic time T∗2,Q
the free induction decay time of the qubit (see Section I.1.2.3). The right panel
of Fig. 3.23 shows the results of this measurement averaged out over 5 · 103
identical sequences. Note that a beating is visible. It is due to the fluctua-
tion of the qubit frequency that we have already seen in the spectroscopy.
The fit (red curve) yields T∗2,Q = 2.23 µs, or equivalently a qubit linewidth
γQ = 2/T∗2,Q ∼ 2π × 0.14MHz, which is in good agreement with our obser-
vation in the qubit spectroscopy of Fig. 3.21. Knowing the relaxation time and
the free induction decay time, we deduce (using Eq. 1.47 in Section I.1.2.3) the
pure dephasing time of our qubit Tφ = 6.15 µs.

optimized qubit operations

Using the measured qubit parameters, we can optimize the discrimination of
the two qubit states and convert the probability Psw of switching of the res-
onator R into the probability Pe of finding the qubit in |e〉. The reason for
which Pe is not directly given by Psw is due to readout errors caused either by
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• Limited dispersive shift ffl induced by the qubit on the readout resonator
R,

• Unavoidable qubit relaxation between the end of the drive and the time
at which readout effectively takes place.

These errors can be modeled with two parameters: the probability e0 that the
resonator switches despite the qubit being in |g〉 at the end of the drive, and the
probability e1 that the resonator doesn’t switch when the qubit is in |e〉. In or-
der to determine e0 and e1, we measure the switching probability as a function
of the input power while either leaving the qubit in state |g〉 or exciting it into
the state |e〉 via π-pulse. In the following we assume that the swap from state
|g〉 to |e〉 is 100% efficiency, that is Pe = 1 just after the π-pulse qubit operation.
Fig. 3.24 shows the corresponding switching probability Psw,0 and Psw,π, there-
after called the S-curves. The optimal input power for readout corresponds to
the maximum of the readout contrast function c = Psw,π − Psw,0, indicated by
the dotted blue vertical line.
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Figure 3.24: Converting Psw to Pe. The switching probability Psw is shown as a function
of readout pulse power PR (S-curves). Black solid line : S-curve with the qubit in thermal
equilibrium. Olive solid line: S-curve with the qubit prepared in |e〉 by a π pulse just before the
readout. Red solid line: S-curve with the qubit prepared in |e〉 by a π pulse, measured with a
composite readout pulse including a π pulse on the |e〉− |f〉 transition followed by the usual
readout pulse. Dashed lines represent fits of these S-curves using a sum of three Erf functions
(corresponding to the three transmon states |g〉 , |e〉 , |f〉) with different weights. In this way the
thermal population of the qubit Pe,eq = 0.08 is evaluated as explained in the text. Dotted blue
vertical line indicates the readout power used for simple readout pulses, dotted brown vertical
line indicates the readout power used for the composite readout pulse method.

Conversion to Pe For the conversion, an additional complication arises from
the fact that the qubit has a small but finite probability Pe,eq to be found in |e〉
even at thermal equilibrium, due to the rather low qubit frequency chosen in
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the experiment to match the NV centers. We therefore first estimate Pe,eq by
fitting the shape of Psw,0 and Psw,π to a simple model, yielding Pe,eq = 0.08
in our experiment (see Fig. 3.24). This corresponds to an effective electromag-
netic temperature of 50 mK, slightly higher than the cryostat base temperature
30 mK, possibly due to imperfect filtering of the flux lines. We then find e0 and
e1 by solving the system of two equations:

Psw,0 = e0(1− Pe,eq) + (1− e1)Pe,eq, (3.6)
Psw,π = e0Pe,eq + (1− e1)(1− Pe,eq). (3.7)

This allows to determine Pe from the directly measured Psw since

Psw = e0(1− Pe) + (1− e1)Pe. (3.8)

Fighting the qubit relaxation with |e〉 to |f〉 shelving In the limited cmax =

65% readout contrast measured in Fig. 3.24, there is a large part which can be
attributed to the unavoidable qubit relaxation in |g〉 during the measurement
pulse. To reduce this effect, one can use the |e〉 to |f〉 shelving technique in-
troduced in [53]. As the qubit nearly behaves like an harmonic oscillator, the
probability of transition between states of the same parity 〈n|Ĥ|n+ 2〉 ≈ 0. A
transfer of all the population of state |e〉 into the next excited state |f〉 thus
take advantage of a very low decay from |f〉 to |g〉 and decreases the overall
relaxation during the readout. For that, we apply a π pulse on the |e〉− |f〉 tran-
sition just prior to readout, resulting in a so-called composite readout pulse.
Readout errors e0 and e1 are lowered accordingly and the contrast enhanced
to cmax = 78% (see Fig. 3.24).

1.0

0.8

0.6

0.4

0.2

0.0

P sw

4003002001000
∆t (ns)

ππ/2

Figure 3.25: Rabi oscillations obtained for optimized qubit manipulation and readout.
The optimization includes a drive with Gaussian pulse and readout with composite readout
pulse.

Due to technical complications, we use the composite readout pulse method
only in experiments reported in Section III.4.1. The other experiments are per-
formed with simple readout pulses. As a result two different sets of errors
e0 and e1 were determined for each of the two types of readout pulses. For
composite readout pulses, we find e0 = 0 and e1 = 0.1, indicating a very high
fidelity readout consistent with [53]. Without the composite readout pulse we
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find e0 = 0 and e1 = 0.33. From these values we convert the measured Psw into
Pe in all the following experiment. After all optimizations, we can perform
again a Rabi measurement (Fig. 3.25). As expected from the S-curve, the con-
trast of the Rabi oscillations is around 78%. Note that since we have changed
the qubit drive from rectangular to Gaussian shape, we have to recalibrate the
quantum gates. The π/2-pulse and π-pulse durations are respectively 24ns and
38ns.

3.1.2 Bus resonator characterization

The bus resonator B is characterized by microwave transmission measurement.
The spectrum is obtained with a vector network analyzer as introduced in
Section I.1.1.2, with a probe power low enough to stay in the linear regime
of the SQUID inductance (see Section I.1.2.2). The transmission spectrum S21
as a function of the probe frequency ω is shown on the left of Fig. 3.26. In
absence of flux applied to the SQUID (Φ = 0), the resonator frequency is
ωB/2π = 3.004GHz and quality factorQ = 3 ·104, corresponding to a resonator
damping rate κ = 0.6 · 106 s−1. The dependence of the resonator frequency with
Φ is shown in the right panel, confirming that the resonator can be tuned over
several MHz below its bare resonance frequency. The periodic modulation is
in good agreement with the model described in Section I.1.2.2 for parameters
close to design values. As already observed in similar samples, Q decreases
when the resonator is tuned to lower frequencies due to flux noise [35, 34].
Around the NV center frequency of 2.88 GHz, we find Q = 1 · 104, correspond-
ing to a resonator energy damping rate κ = 1.9 · 106 s−1.
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Figure 3.26: Characterization of the bus resonator. (left) Resonance line of the bus res-
onator at Φ = 0 (dots). The line is a fit with a Lorentzian. (right) Two-dimensional plot of the
resonator spectrum as a function of the applied flux Φ. The fit (white dash-dotted line) yields a
SQUID critical current 2Ic0 = 1.3µA.
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3.2 transferring qubit states to the bus resonator

3.2.1 Coupling the qubit to the bus resonator

The prerequisite for transferring qubit states to the bus resonator is to be in the
strong coupling regime gB−Q > κ,γQ. This is evidenced spectroscopically by
tuning the bus through the qubit |g〉 → |e〉 transition (Fig. 3.27). The spectrum
shows a vacuum Rabi splitting with coupling constant gB−Q/2π = 7.5MHz.
Since this value is much larger than the resonator damping rate κ = 0.6 · 106 s−1

and qubit linewidth γQ/2π = 0.13MHz, the two systems are in the strong
coupling regime.
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Figure 3.27: Spectroscopic evidence of strong coupling between the bus resonator and
the qubit. The procedure is depicted on the right: a qubit spectroscopy is performed for increas-
ing applied flux Φ through the SQUID loop of the bus resonator. When ωB(Φ) matches the
qubit frequency ωQ, the qubit spectrum shows an anticrossing. The red line is a fit with the
model described in Section I.1.3.1, yielding gB−Q/2π = 7.2MHz.

3.2.2 Transferring qubit states: SWAP vs aSWAP transfer

We now explain how to exchange quantum state between the qubit and the
bus resonator. The first option is the resonant transfer (SWAP operation) which
uses the vacuum Rabi oscillations described in Section I.1.3.1. Experimentally,
the resonator ωB is suddenly tuned in resonance with ωQ for a duration
π/(2gB−Q). We show in the left panel of Fig. 3.28 the resulting vacuum Rabi
oscillations for the qubit prepared in |e〉.

In our experiment however, we found out that such a resonant SWAP opera-
tion was not stable enough to allow subsequent data acquisition during more
than ∼ 15 minutes. The problem is caused by flux noise in the SQUID loop,
which causes ωB(Φ) to drift over time so that the flux pulse amplitude needed
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to perform the vacuum Rabi oscillations in resonance also changes in time1.
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Figure 3.28: Comparison between resonant and adiabatic SWAP pulses. (left) principle
of a resonant SWAP. After excitation of the qubit in |e〉, B is put suddenly into resonance
with Q for an interaction time τ during which |e, 0B〉 and |g, 1B〉 swap periodically. After a
time τ = 37 ns, the qubit excitation is transferred to B. (right) principle of an adiabatic SWAP
(aSWAP). The qubit is excited in |e〉, after whatωB is ramped throughωQ in a time τ, and the
state of Q is finally read-out. For long enough ramp durations (for this sequence τ > 300 ns),
the qubit excited state population is fully transferred into the bus.
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Figure 3.29: The aSWAP.

To circumvent this problem, we resort
instead to adiabatic SWAP operations
(aSWAP) in which ωB is adiabatically
ramped through ωQ resonance so that
state |e, 0B〉 is adiabatically converted
into |g, 1B〉, yielding the same operation
as the resonant SWAP (on the right).
Finding good parameters for the pulse
requires some optimization since a too
fast pulse would not be adiabatic, while
a too slow pulse would strongly reduce
the signal because of energy relaxation either in the qubit or in the bus. The
final parameters that we used are ωB starts at 2.52 GHz, is first ramped up to
2.589 GHz in 60 ns, then to 2.643 GHz in 350 ns, then to 2.687 GHz in 40 ns, as
shown in Fig. 3.29.

1 We found a much larger flux noise at the working point BNV = 1.4mT of the experiments
which follow, probably due to vortices being trapped in the superconducting thin films around
the SQUID.
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3.3 coupling the nv spin ensemble to the bus resonator

The strong coupling between the bus resonator and the spin ensemble is ev-
idenced spectroscopically. A magnetic field BNV = 1.4mT is applied to lift
the degeneracy of the spin group I and III, resulting in four different ESR fre-
quencies ωI±,III± as explained in Section III.2.1.3. Throughout the experiments
reported in the rest of this chapter, we keep this magnetic field BNV unchanged.
We measure the microwave transmission S21(ω) of the bus B, while scanning
its frequency ωB over the four ESR frequencies. The microwave power used
corresponds to a maximum intracavity energy of ∼ 100 photons at resonance,
a value low enough to maintain the spin polarization at thermal equilibrium.
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Figure 3.30: Spectroscopic evidence of strong coupling between the bus resonator and
the spins. Two-dimensional plot of the transmission |S21| (ω,Φ) through B in dB units, with
Φ expressed in units of the superconducting flux quantumΦ0 = h/2e, at BNV = 1.4mT. The
resonator transmission spectrum S21 shows four anticrossing when the bus resonator frequency
crosses the NV transitions |0〉 → |+〉 and |0〉 → |−〉 of the two spin groups. The insets are
zooms on the anticrossing at ω−,I and ω−,III showing the hyperfine structure due to the
interaction with the spin-one nitrogen nuclei.

The two-dimensional plot of the transmission spectrum as a function of the
magnetic flux Φ through the SQUID embedded in B is shown in Fig. 3.31. We
observe four anticrossings in the spectrum when ωB matches the spin reso-
nance frequency at ω+I/2π = 2.91 GHz, ω−I/2π = 2.84 GHz, ω+III/2π =

2.89 GHz, and ω−III/2π = 2.865 GHz. The anticrossings correspond to the vac-
uum Rabi splittings, a signature of strong coupling between the spins and the
bus resonator. The triplet shape characteristic of the NV hyperfine structure
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(see Section I.2.2) is visible in the insets.

The transmission spectrum can be understood using the model described in
Section I.3.3. We use a three Lorentzian distribution (Eq. 1.118) and compute
the transmission coefficient (Eq. 1.110) with the parameters ωB(Φ) and κ of
our experiments. For the coupling strength gens and spin linewidth w enter-
ing in the model, we use parameters determined later in this chapter using
the time-domain results shown in Fig. 3.33 which yield gens,±I/2π = 2.9 MHz,
gens,±III/2π = 3.8 MHz, wI/2π = 1.6 MHz and wIII/2π = 2.4 MHz. As seen in
Fig. 3.31, the agreement is excellent. The hyperfine structure is nearly washed
out for group III, not due to a larger linewidth but due to a larger gens as
explained in Section I.3.3.3.

Note that we use a different spin linewidth for the two spin groups. We
attribute the larger linewidth of the spins from group III to a residual misalign-
ment of BNV with respect to the [1, 1, 1] axis of the crystal which causes each
of the three < 1, 1, 1 > axes non-collinear with the field to undergo slightly dif-
ferent Zeeman shifts2. Note also that the 1.6MHz linewidth of the spins from
group I is twice larger than measured optically, possibly due to the spatial
inhomogeneity of the initial nitrogen concentration in the sample.
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Figure 3.31: Comparison to the model. (top) Measured and computed spectrum around the
|0〉 → |−〉 transition of the spin group I (left) and III (right). Color scale goes from −70 dB
to −40 dB. (bottom) Measured (dots) and computed (line) transmission spectrum close to the
middle of the anticrossing with the |0〉 → |−〉 transition of the spin group I (left) and III (right).
The asymmetries that results from a slight detuning between the spin central frequency and the
resonator is well explained by the model.

Concerning the coupling strengths, the ratio g2ens,III/(3g
2
ens,I) = 0.58 is in good

agreement with the expected group ratio αIII/αI = 0.57 (see Section III.2.1.2).
Note however that these coupling strengths are reduced by a factor 1.5 with
respect to the values we have predicted in Section III.2.1.3. We attribute this

2 A misalignment of 1° would be enough to cause a broadening such as we observe.
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reduction to a gap between the diamond and the circuit induced by the glue
we used to attached the diamond on top of the resonator3, or to a reduction of
the NV density close to the diamond surface due to polishing damage. Despite
this, the coupling strengths still satisfy gens,I > κ, ΓI and gens,III > κ, ΓIII, barely
bringing the experiment in the strong coupling regime.

4 S T O R A G E O F Q U B I T S TAT E S I N T O A N V S P I N

E N S E M B L E

We now test the write step of the memory protocol. The goal of this experiment
is to demonstrate that qubit states can be stored into the spin ensemble. This
implies that (i) a single photon can be exchanged between the qubit and the
spin ensemble and (ii) the quantum state carried by the photon is not altered
during the storage process. We describe in the following the corresponding ex-
periments.

4.1 storing a single photon from the qubit into the spin en-
semble

In this section, a single microwave photon is exchanged coherently between
the qubit, the bus resonator and the spin ensemble.

4.1.1 Protocol for storage of |e〉 into the spins memory

The qubit is prepared in |ψ〉 = |e〉 to be stored into the spin ensemble memory.
The protocol is sketched in Fig. 3.32:

1. Preparation of the qubit in |e〉

2. Application of a aSWAP to convert |e〉 into the bus Fock state |1B〉

3. The bus resonator B is brought in or near resonance with the spin ensem-
ble for an interaction time τ

4. Retrieval of the state from the resonator to the qubit by another aSWAP

5. Readout of the final qubit state

Each of these steps is achieved using the methods and parameters described
in the previous section, at BNV = 1.4mT yielding four different ESR frequen-
cies ω±,I/ω±,III (see Fig. 3.31) with corresponding independent collective spin
modes. The sequence is repeated 104 times for each value of τ to obtain the
qubit excited probability Pe(τ) which indicates the remaining photon popula-
tion in the bus after its interaction with the spins and hence the efficiency of
the quantum state transfer between the bus and the spins.

3 Numerical simulations show that a 1µm gap reduces the coupling strength by 1.2.
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Figure 3.32: Protocol for storage of a single quantum of excitation from the qubit to
the spin ensemble. The sequence shows the microwave pulses used for exciting the qubit in
|e〉 (red) and for reading it out (blue), as well as transition frequencies of the quantum bus
(orange), qubit (red), and spins (magenta).

4.1.2 Experimental results and analysis

The results of the measurements are summarized in Fig. 3.33. The left panel
shows Pe(τ) when the bus resonator is tuned into resonance with either ω−I

or ω−III ESR frequency.

600400200
Interaction time,τ (ns)

Φ
/Φ

0

0.38

0.34

0.32

0.360.4

0.2

6004002000
Interaction time,τ (ns)

0.4

0.2

τs,III

τs,I

τr,III

τr,I

P
e

ω+I

ω-I

ω-III

ω+III

ω-I

ω-III

0.200.05 Pe

Figure 3.33: Storage of a single quantum of excitation from the qubit to the spin
ensemble. (left) Experimental (dots) and theoretical (dash-dotted line) probability Pe(τ) for
ωB tuned to ω−III (top graph) or ω−I (bottom graph), showing the vacuum Rabi oscillation
between the bus resonator and the spin ensemble. (right) Two-dimensional plot of Pe versus
interaction time τ and flux pulse height Φ, showing resonance with the four spin groups.
Chevron-like patterns are observed, showing a faster oscillation with reduced amplitude when
ωB is detuned from the spin resonance, as expected. Note that the difference between the ω−

and ω+ patterns in the same NV group is simply caused by the non-linear dependence of ωB
on Φ [35].

We first note that Pe(0) = 0.6 instead of its maximum possible value 0.92 (see
Section III.3.1.1), due to energy relaxation (with time constant TB1 = 1/κ =

3.3µs) in the bus resonator during the aSWAP steps. This effect simply reduces
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the overall contrast of our data and does not affect the following conclusions
on the spin-resonator interaction. At finite τ, Pe shows damped oscillations,
that reveal the exchange of a single quantum of excitation between the quan-
tum bus and the spin ensemble. At τs,III = 65 ns (respectively τs,I = 97 ns), the
single photon is fully transferred into the collective spin variable coupled to B
and at τr,III = 116 ns (τr,I = 146ns), it is partially retrieved back into the bus
resonator. As already explained in Section I.3.3.3, the damping of the oscilla-
tions is due to the inhomogeneous broadening of the spins, which causes a leak
of energy with rate wI,III from the bright mode (coupled to the resonator) into
the spin dark modes. At long times, the curve converges towards Pe = 0.08,
similar to the equilibrium qubit excited state population as explained above.
We conclude that the spin bright mode is at the same effective temperature as
the qubit, that is 50mK, with a 92% probability to be found in its collective
ground state, as requested to be in the quantum regime.

The measurements in Fig. 3.33 are accurately reproduced (dash-dotted line)
by a calculation of the spin-resonator dynamics performed by I. Diniz at Insti-
tut Néel which treats the spins in the Holstein-Primakoff approximation with
a static inhomogeneous distribution, as described in Section I.3.3. We take into
account the NV center hyperfine structure by considering a spin distribution
consisting of 3 Lorentzian peaks separated by 2.3MHz1, with the linewidth
of each hyperfine peak and the ensemble coupling constant as the only ad-
justable parameters, yielding wI/2π = 1.6MHz and gens,I/2π = 2.9MHz, and
wIII/2π = 2.4MHz and gens,III/2π = 3.8MHz. These linewidths indicate a free-
induction decay time T∗2 = 2/w ≈ 200ns for group I and 140ns for group III.
Note that the hyperfine structure is responsible for the non-exponential damp-
ing of Pe(τ), and even leads to revivals in the curve taken at ωB = ω−I. By
varying the bus resonator frequency during the interaction with the spins, it
is possible to map the 4 spin resonances as shown in the right panel. Chevron
patterns are observed as expected for a SWAP interaction.

Storage efficiency We discuss the significance of these measurements in light
of the quantum memory protocol described in Chapter II. At first sight, one
could conclude that the transfer efficiency of the qubit excitation into the spin
memory is rather low, since we find Pe(τr) to be much lower to Pe(0). This
would be the case if the goal of the experiment was to use the bright mode
as storage medium for the quantum state. But as explained in Chapter II, we
in fact consider the leakage of the quantum state from the bright mode into
the bath of dark modes as being a part of the whole memory protocol, instead
of being a detrimental effect, since our goal is precisely to later retrieve this
quantum information into the bright mode using refocusing pulses.

1 The splitting of 2.3 MHz between the three peaks of the hyperfine structure is slightly larger
than the value reported in most articles which is 2.17MHz. Our data are however not pre-
cise enough to determine precisely whether this difference actually reflects a change in the
hyperfine interaction parameters of the NV center at low temperature.
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Figure 3.34: The storage efficiency. The energy re-
laxation in the resonator (orange) and in the spins
(pink) are superimposed on the curve Pe(τ)/Pe(0)
when the bus resonator is tuned on resonance with
ω−III. The efficiency of the storage process is ex-
tracted from the average of the two decays (black) as
the value at full storage τs over the value at τ = 0,
yielding 95%.

In that perspective, the only loss
of quantum information in the
process shown in Fig. 3.34 actu-
ally comes from energy damp-
ing in the resonator (with a
time constant TB1 = 3.3µs), and
from non-static spin dephasing
(with time constant T2 = 7.3µs).
An estimate of the fidelity of
this process is thus given by2

exp(−τs/(2TB1 )) exp(−τs/(2T2)) ≈
95%, which is sufficiently high for
a quantum memory and could be
optimized with improved param-
eters. Note that despite a single
photon can be fully transferred
from the bus resonator into the
spins in a time τs of the order
or shorter than T∗2 , the spin en-
semble memory would not be im-
mediately ready to accept a new

quantum state. Indeed it still takes a time of order 2 − 3× T∗2 for the bright
mode to be damped into the dark modes, after which a new incoming quan-
tum state could indeed be stored, as shown by the fact that Pe(τ) is back to its
equilibrium value for τ > 3T∗2 in Fig. 3.33.

4.1.3 SWAP Vs aSWAP B-Q pulses
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Figure 3.35: Comparison between storage using
SWAP and aSWAP B-Q transfer. The probability
Pe(τ) is shown for ωB tuned to ω−III.

In the previous measurement, we
use an aSWAP for both Q to B,
and B to Q transfer to limit the
effect of flux noise on the res-
onator frequency. The aSWAP is
however longer than the SWAP,
which induces larger losses dur-
ing the transfer. We estimate that
the long B-Q aSWAP (2 × 450ns)
accounts for 72% of the energy
loss that involves Pe(0) = 0.6. The
fact that we use an adiabatic pas-
sage here thus reduces the overall
energy we exchange with the spin ensemble. To determine if we can instead use
a SWAP between Q and B, we compare in Fig. 3.35 the very same experiment

2 The factor 1/2 accounts for the fact that the excitation is shared between the bus and the spin
ensemble during the time needed for the swap operation
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with same degree of averaging for a SWAP B-Q transfer. In the non-adiabatic
case, we observe very fast oscillations around 250MHz, almost corresponding
to the frequency difference between the resonator at this step of the proto-
col and the qubit frequency. These oscillations are attributed to an imperfect
SWAP between Q and the B. Since ωB(ΦQ) = ωQ is obtained at a flux ΦQ
close to Φ0/2, the flux noise on the SQUID is large, yielding a bad resonance
of the bus resonator with the qubit during the SWAP operation. As a result, an
entanglement between the qubit and the bus resonator is created, and phase co-
herence appears between the two systems. This phase rotates at the frequency
∆BQ = ωB−ωQ, the frequency difference between the resonator and the qubit:
the second SWAP (from B to Q) interferes with the first SWAP (from B to Q)
inducing the oscillations which appear in Pe(τ). It is thus not possible to use a
SWAP for transfer between B and Q in this experiment.

4.2 storing a coherent superposition from the qubit to the

spin ensemble

We have stored a qubit prepared in the excited state |e〉 in the spin ensemble.
But this does not prove that superpositions of the qubit states with a well-
defined phase can be stored into the spin ensemble and recovered. To deter-
mine if the phase information is preserved, we follow a superposition state
along its storage in the spin ensemble and reconstruct its matrix density (state
tomography) at each iteration step.

4.2.1 Protocol for storage of |g〉+ |e〉 into the memory

The qubit is prepared in a coherent superposition |g〉+ |e〉 to be stored into the
spin ensemble memory. The protocol is sketched in Fig. 3.36:

1. Preparation of the qubit in |g〉+ |e〉

2. Application of a aSWAP to convert |g〉+ |e〉 into the bus state |0B〉+ |1B〉

3. The bus resonator B is brought in or near resonance with the spin ensem-
ble for an interaction time τ

4. Retrieval of the state from the spin ensemble to the qubit through the bus
resonator

5. Measurement of the qubit density matrix ρge by quantum state tomogra-
phy

This experiment is performed in the same experimental conditions as in Section
III.4.1.1, except that at the end of the sequence we perform a full qubit quantum
state tomography to analyze the phase coherence of the retrieved state.
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Figure 3.36: Protocol for storage a coherent superposition of states from the qubit to
the spin ensemble. The sequence shows the microwave pulses used for exciting the qubit in
1√
2
(|g〉+ |e〉) (red) and for reading it out (blue), as well as transition frequencies of the quantum

bus (orange), qubit (red), and spins (magenta). Quantum state tomography is performed to
determine the qubit state by applying either I, X, or −Y operation to the qubit before reading
out the Z component.

4.2.2 Experimental results and analysis

For this experiment, we focus on |mS = −1〉 of spin group I. The sequence
in Fig. 3.36 is repeated three times to determine the three components of the
Bloch vector of the qubit after an interaction time τ. First, after no operation
on the qubit to obtain the z-component; second, after a rotation of the qubit
around X that projects the Bloch vector of the qubit along the Bloch sphere
z-axis to obtain its y-component; finally, after a rotation of the qubit around
−Y to obtain the x-component. After substracting a trivial rotation around z
occurring at frequency

(
ω−I −ωQ

)
, we reconstruct the trajectory of the Bloch

vector as a function of the interaction time τ.

Fig. 3.37 shows the resulting measurement of 〈σX(τ)〉, 〈σY(τ)〉 and 〈σZ(τ)〉,
the projection of the Bloch vector on x, y and z axis, when the bus is brought
in resonance with ω−I. The off-diagonal element ρge of the final qubit density
matrix is plotted in the bottom panel of Fig. 3.37. This is the element which
quantifies its coherence. We find that no population is left in the qubit at the
end of the sequence for τ = τs,I, as expected for a full storage of the initial
state into the ensemble. Then, coherence is retrieved at τ = τr,I, although with
an amplitude ∼ 5 times smaller than its value at τ = 0 (i.e. without interaction
with the spins). Note the π phase shift occurring after each storage-retrieval
cycle, characteristic of 2π rotations in the two-level space {|1B, 0−I〉 , |0B, 1−I〉}.
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Figure 3.37: Storage of a coherent superposition of states from the qubit to the spin en-
semble. (top left) Trajectory of the qubit Bloch vector on the Bloch sphere, and its projection on
the equatorial plane. (top right) Components of the Bloch vector 〈σx〉, 〈σy〉 and 〈σz〉. (bottom)
Modulus and phase of the off-diagonal element ρge of the qubit density matrix as a function of
interaction time τ.
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We have demonstrated here that the storage preserves the phase coherence,
which confirms that arbitrary quantum state |ψ〉 can be successfully stored
into the spin ensemble memory.

4.3 entanglement between the spin ensemble and the resonator

In the course of the interaction between the spin ensemble and the bus res-
onator, the two systems become entangled. In this section we show how to
probe this entanglement.

4.3.1 Protocol for probing the entanglement

The resonator B is prepared in |1B〉 via the qubit and entangled with the spin
ensemble. The protocol is illustrated in Fig. 3.38:

1. Preparation of the qubit in |e〉

2. Application of aSWAP to convert |e〉 into the bus Fock state |1B〉

3. Creation of B-NV entanglement by placing the bus resonator in resonance
with the spin ensemble for a duration τπ/2 = τs/2 (thereafter called a B-
NV halfswap)

4. The bus resonator B is detuned from the spin ensemble by ωD for a
duration τ during which the spins evolve freely

At this point, the joint bus-spin ensemble state is an entangled state(
|1B, 0s〉+ eiϕ |0B, 1s〉

)
/
√
2 with a phase ϕ = δωτ.

5. Conversion of the phase ϕ into population |1B, 0s〉 by a second B-NV
halfswap

6. Readout of the qubit to obtain Pe

B

π
τ
δωτπ/2 τπ/2 R

Q

NV

aSWAP

Figure 3.38: Protocol for Ramsey-like experiment on the spin ensemble at the single-
photon level. The sequence shows the microwave pulses used for exciting the qubit in |e〉 (red)
and for reading it out (blue), as well as transition frequencies of the quantum bus (orange),
qubit (red), and spins (magenta). B is then detuned from the spins by δω/2π = 38 MHz
during a time τ.

This experiment is performed in the same experimental conditions as in Sec-
tion III.4.1.1. By repeating the sequence with increasing duration τ, we obtain
information on the free evolution of the spin ensemble.
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4.3.2 Experimental results and analysis

For this experiment, we focus on |mS = −1〉 of spin group I. The resulting Pe(τ)
for δω = 38MHz is shown in Fig. 3.39. Oscillations at frequency δω are visi-
ble which confirms that the resonator and the spins are entangled after the first
halfswap pulse. We see however that these oscillations are modulated by a beat-
ing pattern. We applied a Fourier transform to the signal (see inset Fig. 3.39)
and found that the signal is actually composed of three frequencies separated
by 3± 1MHz. Note that the resolution in frequency is limited here by the 1ns
resolution of the flux pulse waveform generator. This beating observed in the
qubit excited state probability is directly caused by the hyperfine structure of
NV centers, the Fourier transform showing the three hyperfine lines.
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Figure 3.39: Ramsey-like experiment on the spin ensemble at the single-photon level.
Measured (red circles) and calculated (black line) probability Pe(τ), as well as its Fourier
transform (inset) revealing the NV centers hyperfine structure.

The envelope of the oscillations decays with characteristic time T∗2 ∼ 200ns, the
spin free induction decay time. This experimental sequence is simulated in a
similar way as the single photon experiment (see [22] for more details), using
the same parameters. As seen in Fig. 3.39, the simulation captures quantita-
tively both the beatings and the oscillations damping.

This experiment demonstrates that the fine structure of a microscopic system
can be probed at the single photon level with a superconducting qubit.
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The combination of results obtained in Sections III.4.1 and III.4.2 demonstrates
that arbitrary quantum states |ψ〉 can be exchanged between the qubit and
the spin ensemble, with preserved phase coherence. The storage, as described
in Chapter II, takes place within a characteristic time T∗2 ∼ 200ns, the time
needed for the quantum state transferred from the qubit to the collective vari-
able coupled to B to be transferred into the bath of dark modes, in which
coherence can be stored. The experimental results are explained quantitatively,
with common parameters used for the modeling of the different experiments.
Considering the inhomogeneous broadening as being part of the protocol, we
estimate that the overall fidelity of the write step EWRITE ∼ 95%, a value com-
patible with quantum memory operation. The fidelity here, is limited by the
damping in the resonator during the transfer to the spin ensemble. It can be
further improved by increasing the rate at which the transfer occurs, that is
by increasing the coupling strength between the spins and the bus resonator.

Figure 3.40: Coherent coupling of a supercon-
ducting flux qubit to an electron spin ensemble
in diamond [110]. (top) Experimental set-up of the
NV diamond sample attached to a flux qubit sys-
tem. (bottom) Vacuum Rabi oscillations of the flux
qubit/NV− ensemble coupled system.

Before ending this chapter, we
note that a similar experiment
was performed at the same time
as the one reported here, demon-
strating the coherent exchange
of a single quantum of excita-
tion between a flux qubit and
an ensemble of NV center spins
in diamond [110]. In this work
done at NTT, the flux qubit was
directly coupled to an ensem-
ble of 3.3 · 107 NV center spins,
and vacuum Rabi oscillations ob-
served between the qubit and the
spin ensemble (see Fig. 3.40). In
a later experiment performed in
the same configuration [111], the
same group proceeded to the stor-
age of arbitrary quantum states
prepared by the flux qubit in the
spin ensemble and probed the en-
tanglement between the qubit and
the spin ensemble, similar to our
results reported in Sections III.4.2 and III.4.3.
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R E T R I E VA L O F F E W P H O T O N F I E L D S F R O M A
S P I N E N S E M B L E

This chapter is dedicated to the presentation of the second experiment,
where we made progress on the implementation of the read step of our
memory protocol. Multiple few-photons microwave pulses initially stored
in the spin ensemble are retrieved by applying refocusing techniques. An
active reset of the spins by optical repumping is also implemented.
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Figure 4.1: Principle of the experiment. (a) Suc-
cessive few-photons microwave pulses θi are stored
in the spin ensemble. A single refocusing pulse R
acts as time-reversal for the spins and triggers the
retrieval of the stored pulses as echoes ei in reverse
order. (b) The resonator and the spin ensemble are
weakly coupled with coupling strength gens. Mi-
crowave pulses θi and R are applied to the spins
through the resonator.

The read step of the memory pro-
tocol described in Chapter II con-
sists in retrieving quantum states
initially stored into a spin en-
semble. The retrieval is triggered
by a refocusing sequence which
combines the application of mi-
crowave pulses with dynamical
tuning of the resonator frequency
and quality factor. The read ex-
periment aims to demonstrate an
important building block of this
operation: the two-pulse Hahn
echo described in Section II. 2.2.1,
which consists in retrieving multi-
ple stored microwave fields with a
single refocusing pulse. As a first
step, we use classical microwave
pulses and only focus on the
mean value of the field, bearing in
mind that as explained in Chap-
ter II it is not possible to retrieve
the full quantum statistics of an
incoming coherent state with a
single refocusing pulse. The pro-
tocol and physical setup are de-
picted in Fig. 4.1. They are articu-
lated around two components: an

ensemble of NV center spins and a superconducting resonator. The few pho-
ton microwave pulses are sent via the resonator to which the spins are coupled.
The protocol requires that the resonator and the spin ensemble are in the low-
cooperativity regime to ensure the stability of the inverted ensemble in the
cavity after refocusing, as explained in Section II.1.2.

Designing the corresponding experiment at the quantum level imposes a
number of requirements which represent experimental challenges: (i) for quan-
tum states to be well defined, thermal excitations should be absent from the sys-
tem, implying that both the spin ensemble have a high degree of polarization
and the microwave field is in its ground state with high probability, (ii) apply-
ing refocusing pulses to the spins requires large microwave powers potentially
incompatible with the detection of quantum fields and (iii) the echo emitted
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by the spins should faithfully restore the initial field in the resonator, which
implies that the echo recovery efficiency E, that we define as the ratio of the en-
ergy radiated during the echo to the energy of the incoming pulses, should be
close to 1. To summarize, reaching the quantum regime requires a mean excita-
tion per mode (both microwave and spin) nMW,sp � 1, input microwave fields
with intra-cavity photon number n̄ ≈ 1, and an echo efficiency E close to 1.

Figure 4.2: Storage of Multiple Coherent Mi-
crowave Excitations in an Electron Spin En-
semble [102]. Storage of 100 microwave excita-
tions. After the refocusing pulse the stored excita-
tions are recovered in reverse time order.

The state of the art in this di-
rection is the experiment per-
formed by Wu et al. [102]
with an ensemble of phosphorus
donors in silicon at 10K in the
three-dimensional microwave cav-
ity of an electron paramagnetic
resonance spectrometer. In this
experiment, multiple microwave
pulses applied through the cavity
are stored in different collective
modes of the spin ensemble and
retrieved with a single refocusing pulse (see Fig. 4.2), demonstrating the multi-
mode character of the two-pulse Hahn echo. This experiment is performed in
the classical regime, with [112] nMW,sp ≈ 20, n̄ ≈ 1014, and an echo recovery
efficiency E ≈ 10−10.

We design the read experiment to come closer to the quantum regime. To do
so, we operate in a dilution refrigerator at mK temperatures, store and retrieve
at the few photon level and optimize the power of the refocusing pulse.

L

C

Cc

Figure 4.3: Designing the read experiment: schematic of the hybrid circuit. The ensemble
of NV center spins (pink) is coupled to a planar superconducting lumped element resonator.
Laser pulses can be shone on the diamond through an optical fiber glued to its top face.

As shown below, spins relax very slowly towards their ground state at mK
temperatures and an active spin reset is needed for achieving a reasonable rep-
etition rate (> 1Hz), as requested by experiments at the single photon level.
This active reset is implemented using the optical repumping described in Sec-
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tion I.2.2.2. To ensure its compatibility with the operation of the circuit in the
dilution refrigerator, the optical power is minimized by concentrating the spin
ensemble in a small region. This is achieved by using a lumped element res-
onator that makes it possible to place the diamond on top of the inductance
only, while still ensuring a large filling factor η for coupling. We show in Fig. 4.3
a 3D schematic of the device with relevant components. A fiber in which light
can be injected for optical repumping of the spins is included in the setup. We
explain in the next section how this hybrid circuit is designed.

2 E X P E R I M E N TA L R E A L I Z AT I O N

2.1 the hybrid quantum circuit

2.1.1 Diamond sample properties

As in the experiment reported in Chapter III, the diamond sample we use was
prepared by our collaborator Pr. Isoya in Tsukuba University. It is a polished
[100] plate of dimensions 3× 1.5× 0.5mm3 taken from a synthetic type-Ib di-
amond crystal containing initially a P1 center concentration of 3.52 · 106 µm−3

(20ppm). It was prepared to obtain NV centers as explained in Section III.2.1.1
using two cycles of irradiation and annealing. Compared to the previous sam-
ple, the NV concentration ρNV ≈ 3.52 · 105 µm−3 (2ppm) is slightly lower. This
was chosen on purpose in order to minimize optical absorption of the light at
532nm, which has to go through the whole diamond for reaching the spins
at the interface with the superconducting circuit. The concentration of remain-
ing neutral substitutional nitrogen (P1 centers) is predicted accordingly around
2.81 ·106 µm−3 (16ppm). We have seen in Section I.2.3 that in such samples with
large P1 center concentration, NV centers have a linewidth w/2π ≈ 1MHz for
each peak and an echo coherence time T2 ≈ 10µs.

2.1.2 Superconducting circuit design

The experiment needs to be in the low-cooperativity regime to ensure the stabil-
ity of the spin ensemble after refocusing pulses (see Chapter I). We have seen in
Chapter II that a convenient way to satisfy this criterion is to lower the quality
factor of the cavity. We target accordingly a resonator with frequency around
the zero-field electron spin resonanceωr/2π ≈ 2.88GHz and low quality factor
such that the resonator damping rate satisfies:

C =
g2ens
κΓ

< 1 ⇔ κ > Γ−1
(
gNVµB√

2

√
αηµ0 hωsρNV

)2
,

> 2π · 25.5MHz, (4.1)

where we used Γ ≈ w, the diamond sample parameters ρNV and w of Section
IV.2.1.1, and ideal filling and angular factors (η = 1/2 and α = 1). Besides
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the target resonator parameters, the resonator geometry is constrained by the
necessity of minimizing the laser power needed to repump the spins. Our res-
onator is designed purposely to have an inductance area ≈ 100 × 100µm2,
well separated from the two capacitor electrodes by 500µm. This configuration
makes it possible to place the diamond on top of the inductance only, thus
restricting the diamond region to be illuminated for optical repumping while
still optimizing the spin filling factor. Note that positioning the diamond far
from the resonator capacitance also avoids shifting the resonator frequency
due to the diamond dielectric constant. We explain below how the geometry
of the resonator is refined to satisfy both the requirement on the resonator mi-
crowave parameters and the magnetic field generated for coupling to the spins.

Microwave simulation with Sonnet simulator The resonator geometry is cho-
sen based on the constraint on its inductance area. We design the inductance
with a meander shape (3µm wide lines), determine its value using Sonnet,
and design the capacitor accordingly to target resonance frequency ωr/2π =

1/
√
LC = 2.88GHz. The resonator with its coupling capacitance is then sim-

ulated as a whole and its geometry adjusted iteratively to obtain the desired
resonance frequency and quality factor. We show in Fig. 4.4 the final geometry
of the chip together with the outcome of the Sonnet simulation. The fit (using
Eq. 1.21 in Section I.1.1.2) of the computed phase of the reflection coefficient
yields ωr/2π = 2.88GHz and Q = 93. To determine the resonator impedance
Zr =

√
L/C, we compute the current flowing in the inductance for a 1V drive

microwave at ωr, yielding Zr =
√
L/C = 26Ω. This corresponds to a total in-

ductance L = Zr/ωr = 1.4nH which arises from the meander wire connecting
the two capacitor electrodes on top of which the diamond is placed, and from
the capacitor fingers. Simulations indicate that the meander wire inductance is
Lw = 0.82nH (not shown). Since the diamond crystal covers only this wire, the
spin filling factor is1 η ≈ (1/2)Lw/L = 0.29.
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Figure 4.4: The resonator: the microwave parameters. (right) Schematic of the simulated
chip geometry, showing the resonator and the coupling capacitance to an input port (P) with
impedance 50Ω. The computed AC current flowing in the inductance is shown in the inset.
(left) Computed (dots) and fitted (lines) reflected phase φr, yielding ωr/2π = 2.88GHz and
Q = 93.

1 Note that we did not consider an eventual gap between the diamond and the circuit for the
calculation.
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Magnetic field computation with COMSOL Multiphysics In this experiment,
refocusing pulses are applied via the resonator to perform spin rotation. It
is thus important to determine the Rabi frequency Ω(r) of a spin at position
r for a given applied microwave power P. The magnetic field generated by
the resonator above the inductance is computed using the AC/DC module
of COMSOL Multiphysics. For the simulation, we neglect the curved section
of the meanders inductance and consider only wire sections parallel to the z-
axis, an approximation well justified by the aspect ratio of the inductance. The
wires are modeled as shown in Fig. 4.5 as 3× 0.3µm perfect conductors with
homogeneous current density. The magnetic field B created by 1A flowing in
the resonator inductance is computed. We observe that the superposition of
the field created by the wires yields a strong spatial inhomogeneity both in x
and y directions. This makes precise spin rotation difficult to achieve.
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Figure 4.5: The resonator: the AC magnetic field to which the spins are coupled. Am-
plitude of the microwave field generated by the resonator above the inductance for a 10 µW
incident microwave power at resonance. The field lines are superimposed on the graph.

2.1.3 The device

The device is shown in Fig. 4.6 with the diamond on top of the superconducting
circuit. The resonator is fabricated in Niobium following the process described
in Appendix A. The diamond crystal is placed on top of the resonator induc-
tance and oriented such that the applied magnetic field BNV is parallel to the
[1, 1, 0] crystalline axis. Half of the electronic spins (sub-ensemble denoted N-
Orth in blue) thus make an angle β = 35.3° with BNV , whereas the other half
(sub-ensemble denoted Orth in red) are orthogonal to the field. This results in
four different ESR frequenciesωOrth,±(BNV) andωN−Orth,±(BNV). The NV axis
directions k for the two NV center groups Orth and N-Orth are:

~̂kOrth =

 0

− sin(β)
± cos(β)

 , ~̂kN−Orth =

± cos(β)
sin(β)
0

 . (4.2)
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Figure 4.6: The hybrid circuit for the read experiment. The diamond crystal (dark pink)
containing the NV center spins is placed on top of the resonator inductance. A spacer (trans-
parent) is glued on the diamond top face, on which the fiber will be attached. A magnetic field
BNV is applied parallel to the [1, 1, 0] crystalline axis, resulting in different Zeeman splitting
for centers having the NV axis orthogonal to BNV (denoted Orth, in red) and those making an
angle β = 35.3° with BNV (denoted N-Orth, in blue).

The angular factors αOrth = 0.83 and αN−Orth = 0.50 are calculated (using
Eq. 1.100 in Section I.3.2.2) from the magnetic field computed with COMSOL.
Using the NV concentration ρNV = 2ppm and the filling factor η = 0.29, we
estimate the ensemble coupling constants:

gthens,Orth = 2π× 4.46 MHz, (4.3)

gthens,N−Orth = 2π× 3.46 MHz. (4.4)

The total estimated coupling constant is gthens =
√
g2ens,Orth + g

2
ens,N−Orth ≈

2π× 5.64MHz.

We calculate the coupling strength distribution ρ(g) numerically by integrat-
ing the magnetic field computed in Section IV.2.1.2 with the homogeneous NV
concentration estimated in Section IV.2.1.1. The resulting distribution ρ(g) =∫
g̃δ(g̃− g)dg̃ is shown in Fig. 4.7, where we have assumed a 0.7µm spacing

between the resonator and the diamond crystal to account for the glue between
the crystal and the chip. Note that according to its definition,

∫
g2ρ(g)dg =

g2ens.
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Figure 4.7: Distribution of g-parameters. The distribution ρ(g) is shown normalized as∫+∞
0 ρ(g)dg = N for the N-Orth spin group (red), the Orth group (green) and for all the

spins (black). A 0.7µm distance between the resonator and the diamond crystal was considered
for this simulation. This sets the maximum frequency cut-off observed in both graphs. (left) The
distribution ρ(g) zoomed in on the low frequency part. (right) The function g2ρ(g) shown on
the entire range of frequencies.

2.2 measurement setup

2.2.1 The experimental setup

The sample is placed in the same sample holder as in Chapter III, modified
to incorporate the optical fiber, and thermally anchored at 30mK in the dilu-
tion refrigerator. The schematic of the wiring inside the cryostat is shown in
Fig. 4.8. Compared to the former experiment in which we operated at the sin-
gle photon level, we work in this experiment with larger microwave fields and
repump optically the spins in the ground state, which makes the constraint on
the noise reaching the sample less stringent. To apply refocusing pulses with
sufficient microwave power at the sample input, we thus reduce purposely the
attenuation on the input microwave line (20dB at 4K and 10dB at 100mK).
This results in a thermal field of ∼ 5 photons in the resonator.

The sample is characterized by microwave reflectometry. The microwave sig-
nals are sent through an input transmission line (MW in) and retrieved from an
output line (reflect out). The signal reflected on the sample is separated from
the input signal by a double circulator, routed through a 5.4GHz lowpass filter,
amplified by a CITCRYO1-12 cryogenic amplifier, and is finally demodulated
at room temperature. The microwave setup at room temperature depends on
the physical quantity to be measured in the experiment, and is detailed in the
corresponding sections.
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Figure 4.8: Scheme of the wiring inside the dilution refrigerator. LPF1, LPF2 and LPF3
are low-pass filters with cutoff frequencies 5.4 , 4.7 and 5.4 GHz, respectively. CuNi coax is a
coaxial cable made of CuNi, and Ag-CuNi coax is a silver-plated CuNi coaxial cable. SC coax is
a superconducting NbTi coaxial cable. Flex coax is a low-loss flexible coaxial cable. Rectangles
represent ports terminated by 50Ω. The cryogenic microwave amplifier is a CITCRYO 1-12
from Caltech, with gain ∼ 38 dB and noise temperature ∼ 5K at 3 GHz. A DC magnetic field
BNV is applied parallel to the chip by passing a DC current through an outer superconducting
coil. The sample box and the coil are surrounded by two magnetic shieldings consisting of a
lead cylinder around which permalloy tape is wrapped. The sample box, coil, and the shieldings
are thermally anchored at the mixing chamber with base temperature 30mK (note that in the
experiments using active reset of the spins with 1.47mW laser power, the temperature was
400mK instead).

An optical fiber is installed in the refrigerator to guide light from the optical
setup at room temperature down to the sample at 30mK (see Fig. 4.9). Through-
out this chapter, P refers to the microwave power at the input of the resonator
and PL to the optical power out of the fiber at 30mK. In the next section, we
explain the optical setup in greater details.
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Fiber

Sample holder

30 mK stage

Fiber

Figure 4.9: The 30mK stage. The optical fiber guides light down to the sample at 30mK, and
is glued on it after alignment.

2.2.2 The optical setup

One challenge in bringing light down to the low temperature stage in a dilution
refrigerator is the limited cooling power (typically 100µW at 100mK). This
requests a special attention to the optical setup to minimize the optical power.
Since our cryostat had no optical window, we used an optical fiber to guide
light from the optical setup at room temperature down to the sample at 30mK.

optical pulse generation at room temperature

The schematic of the optical setup at room temperature is shown in Fig. 4.10. A
frequency-doubled YAG laser (Laser Quantum gem) delivers 50mW of 532nm
light. Optical pulses are generated with the help of an acousto-optic modulator
(AOM), which is mounted on a 2D translation and a rotation stage for precise
alignment with the laser beam. It is driven by radiofrequency pulses at 10MHz
generated by a rf source gated by dc pulses delivered by an arbitrary waveform
generator (AWG). An iris is used to separate the first-order diffracted beam
which is modulated from the unmodified zero-order beam.

To improve the pulse shaping, the AOM is used in a double pass configura-
tion: the first-order diffracted beam is retroreflected for a second pass through
the AOM. The second pass is separated from the input beam thanks to a
quarter-wave plate followed by a polarizing beam-splitter. The focalization sys-
tem made of a beam expander and plano-convex lenses was used to increase
the efficiency of the AOM which is inversely proportional to the incident beam
diameter.
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AOM
Laser λ/2 Expander

(motorized)

Polarizing BS

(f = 20 cm) (f = 20 cm)

Iris Iris λ/4

(xy translation
z-axis rotation)

Fiber coupling port

Power meter

2x2 fiber coupler

Single mode fiber

To the sample

20 cm 20 cm

Figure 4.10: Full schematic of the optical setup. The laser beam at 532 nm passes through
a half-wave plate (λ/2) mounted on a motorized rotation stage controlled by the computer
in order to choose the angle of the beam polarization. The beam is then expanded by a ×5
expander to 4mm and sent to the AOM through a polarizing beam splitter that selects the
vertical component of the beam polarization and throw the horizontal one out of the setup
(purposely to control the optical power). The beam is then focussed inside the AOM at the
diffraction spot size by a convergent lens with focal length 20 cm. The angle of incidence in the
AOM is adjusted with a rotation stage, on which is mounted the AOM to satisfy the Bragg
diffraction condition. The first order diffracted beam out of the AOM is selected by an iris and
reflects on a mirror for a second passage in the AOM. The pulsed beam is finally redirected,
coupled to a single mode fiber, and splitted in two paths (90% sent to the sample at 30mK and
10% to a powermeter.)

To couple the pulsed beam into the single-mode fiber, we use a commercial
aspheric fiber-port coupler with effective focal lens 18.3mm. The focal lens
value was chosen such that the diffraction-limited spot size matches the mode
field diameter of the single-mode fiber. Two mirrors mounted on kinematic
holders are used to adjust the angle and position of the beam incident on the
fiber-port to optimize the coupling of the light into the fiber. Note that the
fiber port is not protected from ambient light that could potentially be guided
down in the dilution refrigerator via the fiber. This effect has proven to be
non-critical for the case of our optical fiber, as most of the thermal radiation at
room temperature sits at ∼ 10µm while the transmission of our fiber is strongly
suppressed above 1µm wavelength.
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Fiber coupling port

AOMλ/4 Laser

Polarizing BS

Figure 4.11: The optical setup at room temperature with panel zooming to its most
important features. The laser (green panel) output a 0.8mm diameter beam at 532 nm. Opti-
cal pulses are shape by double pass in the AOM (blue panel) and finally coupled into the single
mode fiber (purple panel) that connect the setup at room temperature to the 30mK stage.

With all losses taken in account, we couple 3.3% of the light out of the laser
to the fiber. This value includes 64% conversion efficiency for the first pass in
the AOM, 84% for the second and 6.5% coupling efficiency of light into the
fiber. This fiber is connected to a 2× 2 fiber optic coupler to separate the optical
signal in two paths. In this way, 90% of the input signal is sent to the dilution
fridge while 10% is sent to a powermeter.
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Figure 4.12: Optical pulses. (left) The optical power at the sample stage is controlled with
10µW resolution up to 1.65mW using a half wave plate mounted on a motorized rotation
stage. (right) The optical pulse shape is designed with 10 ns resolution by double pass in the
AOM.
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For power control, a half-wave plate mounted on a motorized rotation stage
with 1 arcsecond resolution is placed at the output of the laser to control the
angle of beam polarization. This makes it possible to control precisely the op-
tical power sent to the sample with the polarizing beam splitter, as shown in
Fig. 4.12a. To analyze the optical pulse shape, the beam is further separated
in two paths with a beam splitter before the fiber coupler. The second path
is routed to a fast photodetector whose output voltage is monitored with an
oscilloscope as shown in Fig. 4.12b.

mounting the fiber on the hybrid circuit at 30 mk

As explained above, we have to minimize the optical power used for spin polar-
ization to avoid heating up the cryostat. Room temperature experiments have
shown that a single spin can be repumped using 100 µW power at 532 nm
focused on 1 µm2 in 10 ns [113]. Since the diamond crystal is homogeneously
doped, some light is absorbed by the NV centers before it reaches the bottom
of the crystal where the spins coupled to the resonator are found. We measured
this absorption to be of order 30%, which is therefore not a significant issue.

Concentrating the light in the region of the diamond just above the induc-
tance is needed to save optical power. Without optical windows, we have two
choices. The first one is to build an optical setup on the low temperatures
stage of the dilution refrigerator that focuses the beam outgoing the fiber to
the 100 × 100 µm2 area of interest. As thermal contraction occur during the
cooling down, an alignment at room temperature before closing the refriger-
ator would not be sufficient and such a setup would require delicate in situ
piezoelectric position control. The second strategy is to attach the fiber directly
to the sample. Because we want to target a small diamond region and that
thermal contractions also affect the sample holder, it is undesirable to attach
the fiber to it.

Instead we decide to align the fiber directly on top of the inductance of the
resonator and to glue it to the diamond, with the help of a stereomicroscope
with large working distance at room-temperature. The fiber is mounted in the
dilution refrigerator and aligned as shown in Fig. 4.14. It is a single mode fiber
with numerical aperture 0 .13 connected on one side with FC/PC connector
to the optical setup at room temperature and left naked on the other side.
The 100 µm core is surrounded by a coating that brings the total diameter
of the fiber to 124 µm. To make it enter the outer vacuum chamber, we use a
home-made vacuum feedthrough inspired from [114], made of a Swagelok that
crushes the fiber within a little Teflon piece (see Fig. 4.13). The fiber was first
cleaved in two parts, stripped, and inserted into the feedthrough, after what
it was spliced with the other part of the fiber. The fiber then goes down to
the sample via holes in the dilution refrigerator temperature stages, bringing
negligible heat load. Radiation is also not an issue since the mean occupation
of an optical mode at room-temperature is fully negligible.
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Figure 4.13: The vacuum optical fiber
feedthrough. The fiber is crushed into a little
piece of Teflon mounted on a Swagelok to enter
into the outer vacuum chamber of the dilution
refrigerator.

Once at the low temperature
stage, the fiber is stripped over
1 cm, mounted on a triaxial trans-
lation stage and placed for align-
ment under an optical microscope
as shown in Fig. 4.14. The short
bare fiber part is then glued to
a 1mm thick glass spacer itself
glued to the diamond, so that
the fiber - to - sample distance
is 1.5mm. This corresponds to a
nominal beam diameter of 230µm
at the sample, therefore matching
the area covered by the resonator
meander wire. Given the technical
difficulties of the whole process,
the accuracy of the alignment is estimated of order 0.5mm.

Triaxial translation stage

Stereomicroscope

Fiber

Sample holder

Figure 4.14: Alignment setup. (top left) The fiber is mounted on a triaxial translation stage,
placed under a stereomicroscope with large working distance and dropped though a hole in the
sample box (bottom left) to be attached to the sample (bottom right). The top right picture shows
the light beam reflected on the niobium (green spot) and the inductance (black square) as seen
through the optical microscope during the alignment process.

Note that for the goal that has been set to minimize the optical power by shin-
ing only the small diamond region of interest, this poor alignment accuracy is
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not satisfying. In Chapter V, we will present an experiment in which the laser
light is sent through optical windows, and that shows better alignment.

3 S P E C T R O S C O P Y O F T H E R E S O N AT O R - S P I N S S Y S T E M

In this section, we present the spectroscopic measurement of the hybrid circuit
at zero-magnetic field and extract the relevant parameters that will be used
in the following. The resonator is first characterized with the spins effectively
decoupled from the resonator. The hybrid circuit is then measured to extract
the coupled system parameters and spin distributions.

3.1 characterization of the resonator

The resonator is characterized by microwave reflection measurement. To mea-
sure its bare parameters, we need to detune or effectively decouple the spins
from the resonator. For that, we saturate them through the resonator with a
strong microwave tone. When saturated, spins do not absorb photons and are
effectively decoupled from the electromagnetic field of the resonator until they
relax. Accordingly, a 10 s microwave pulse of −20dBm power is first applied
through the resonator at the NV zero-field frequency. The reflection spectrum
of the resonator is then obtained immediately afterwards with a VNA. The
time window during which the measurement takes place is 5 s which is much
shorter than the spin relaxation time ∼ 5min (see next section). The reflection
coefficient S11,sat is shown in Fig. 4.15.

The resonator response appears on the reflected phase as a π shift, with no
signal on the amplitude except on a large-scale frequency dependence. The
absence of dip in the amplitude at resonance here indicates that the internal
loss κL of the resonator is much smaller than its bandwidth κ. The fit of the
reflected phase (using Eq. 1.21 in Section I.1.1.2) yields ωr/2π = 2.88GHz and
Q = 80± 8, equivalent to a damping rate κ = 226.2± 22.6 · 106 s−1. The spectral
measurement performed with the VNA yields a 10% uncertainty for Q due
to the large-scale frequency dependence. Indeed, the reflected phase contains
a ripple and it is difficult to fit the width of the shift of the resonator phase
response and deduce Q from it1.

This large-scale frequency dependence is due to losses and spurious res-
onances in the microwave cables and components of the transmission lines.
The reflection coefficient r(ω) is related to the measured reflection coefficient
S11(ω) through a complex frequency-dependent transmission coefficient2 G(ω):

S∗11(ω) = r(ω)G(ω). (4.5)

1 We will determine Q with better accuracy later in this manuscript.
2 The sign ∗ is not physical but accounts for a difference of sign convention between theory and

the vector network analyzer (see Section I.1.1.2)
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Figure 4.15: Reflection coefficient S11 of the resonator. The amplitude and phase reflected
onto the resonator is shown when the spins are saturated and do not contribute to the signal.
The fit of the phase response (red line) yields resonator frequency ωr/2π = 2.88GHz and
quality factor Q = 80 ± 8. The effect of spurious resonances in the measurement setup is
visible in the amplitude signal.

An important point for the following is that S11,sat is linked by G(ω) to the
steady-state reflection coefficient of an empty cavity rth given by Eq. 1.21 and
thus gives a direct calibration of G(ω). In the following sections, we always
renormalize with S11,sat to get rid of G(ω) and subsequently access the re-
sponse of the spins.

3.2 system spectroscopy at zero-magnetic field

The response of the spins at zero-magnetic field is measured with the VNA
by the same reflection measurement but without applying the saturation pulse.
The probe power corresponds to n̄ ≈ 20 photons in the resonator so that the
Holstein-Primakoff approximation is valid and the method developed in Sec-
tion I.3.3.2 can be used to extract the coupled system parameters and the spin
distribution. The reflected amplitude and phase as a function of the probe fre-
quency is shown in the left panel of Fig. 4.16 with the spins at equilibrium.
Compared to the case where spins are saturated (black curve), dips are visible
in the reflected amplitude |S11|. These dips correspond to absorption by the
NVs. For reaching the information of the spins, we convert S11(ω) into the
reflection coefficient r(ω), and subsequently into the spin susceptibility χ"(ω)

(and equivalently the coupling density profile ρ(ω)) using Eqs. 1.111, 1.112 in
Section I.3.3. To calibrate for the frequency dependence of the transmissions
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lines (G(ω)), we renormalize S11 by S11,sat and express the reflection coeffi-
cient r(ω):

r(ω) =
S∗11(ω)

S∗11,sat(ω)
rth(ω) (4.6)
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Figure 4.16: Response of the spins at zero magnetic field as seen through the resonator.
(top left) Amplitude and phase of the reflection coefficient S11 showing the resonator resonance
on the phase and the spin absorption on the amplitude. (top right panel) Corresponding cali-
brated reflection coefficient. (bottom) Measured spin signal expressed in spin susceptibility χ"
(on the left vertical axis) and in coupling density profile (on the right vertical axis).

The right and bottom panels of Fig. 4.16 show respectively the reflection coef-
ficient r and the spin susceptibility χ"(ω). In the following, we use this mea-
surement to extract the coupled system and distribution of NV Hamiltonian
parameters.

3.2.1 The coupled system parameters

At zero magnetic field, both degenerate spin groups Orth and N-Orth con-
tribute to the absorption. The reflected amplitude on the right panel of Fig. 4.16

shows two broad peaks corresponding to ω− and ω+ transitions. On the |0〉 →
|+〉 transition, the spin absorption reaches a maximum at ωe/2π = 2.8795GHz
with r = 0.905. We can deduce directly the cooperativity for the spins at equi-
librium (using Eq. 1.115 in Section I.3.3.2):

Ceq =
1− r

1+ r
≈ 0.05� 1. (4.7)
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We then extract the ensemble coupling constant for the spins at equilibrium by
integrating the spin coupling density profile on the bottom panel of Fig. 4.16

over the frequency range available (dividing by 2 to account for one transition
only):

geqens =

√∫
ρ(ω)dω/2 ≈ 2π · 1.15 MHz (4.8)

Since gens depends on the spin polarization, the measured geqens cannot be com-
pared to gthens estimated for the spins completely polarized in Section IV.2.1.3
at this stage. The spin polarization at equilibrium is measured later in this
chapter, to make possible the comparison.

3.2.2 The distribution of NV Hamiltonian parameters

It is possible to quantitatively understand the shape of the measured spin sus-
ceptibility in Fig. 4.16, assuming phenomenological distributions of the param-
eters entering the NV centers Hamiltonian. The main idea is that our ensemble
of NV centers has a certain frequency distribution because the Hamiltonian
parameters have a distribution: the z component of the field b has a distribu-
tion ρb(b) due to the local environment of each NV, the strain parameter E
has another distribution ρE(E), and the zero-field splitting D has a distribution
ρD(D). The reasoning is further described in Appendix B.

χ"
 (a

.u
)

Figure 4.17: Rescaled spin susceptibility
χ"(ω,BNV = 0). Open red circles are experimen-
tal data, solid blue line is the theory computed
with the bi-exponential strain distribution ρE(E)

shown in the inset, with a Lorentzian ρb(b) and
ρD(D) with respective widths dB0 = 0.21Gs and
dD0/2π = 150 kHz.

Here we apply the method that
we have developed to determine
the distributions of NV Hamilto-
nian parameters ρ(D), ρ(E) and
ρ(dB) to be used for analysis in
the following. To do so, we as-
sume a Lorentzian distribution
for both ρb(b) and ρD(D) with
respective widths db0 and dD0
and guess the function ρE(E). We
find that a bi-exponential distri-
bution ρE(E) = [exp(−E/E1) +
A1 exp(−E/E2)]/(E1+A1E2) yields
a computed χ̃"(ω,BNV = 0) that
reproduces semi-quantitatively the
data. In total we use the follow-
ing parameters: db0 = 0.21Gs,
dD0/2π = 0.15MHz, E1/2π =

0.5MHz, E2/2π = 10MHz, A1 =

0.2. In this way we obtain the spin
susceptibility at BNV = 0mT (see Fig. 4.17). The corresponding ρE(E) distribu-
tion is shown in inset.
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These distributions of Hamiltonian parameters will be used in the following
to compute theoretical spin susceptibility at arbitrary magnetic BNV . We re-
mind that the experimental susceptibility includes contributions both from
the spins that are orthogonal to BNV and from those that are non-orthogonal,
each of those having a very different resonance frequency dependence on
BNV as seen in Section I.2.2.1. Each group contains exactly half of the total
number of spins contributing to the signal; however, we have seen in Section
IV.2.1.3 that spins from each group have a different coupling constant to the
resonator field due to the angle they make with this field. This difference in
coupling constant can be incorporated using the angular factor α (entering
in the expression of the coupling constant in Eq. 1.101) such that the total
χ"(ω,BNV) =

αN−Orth
αOrth

χ"N−Orth(ω,BNV) + χ"Orth(ω,BNV).

4 A C T I V E R E S E T O F T H E S P I N S

NV centers having transition frequency close to 3GHz are mainly polarized
in the spin ground state at mK temperatures. Once excited however, they re-
lax extremely slowly in the spin ground state due to their long relaxation
time [38, 23]. In the experiments of Chapter III, we worked at the single-photon
level so that the amount of excited spins was always negligible compared to
the total number of spins. In the experiments which follow instead, we apply
strong refocusing pulses that aim to invert the whole spin ensemble: at the end
of the experimental sequence, the amount of excited spins is of order the total
numbers of spins. Repeating this experimental sequence at a reasonable rate
thus requests to implement an active reset of the spins. For that, we use the op-
tical repumping property of NV centers described in Section I.2.2.2 and imple-
ment it in a setup compatible with superconducting qubit technology. Optical
irradiation is uncommon in cQED and the effect of shining light on supercon-
ducting circuits is not well known. In the following we thus first study the
effect of light irradiation on the superconducting resonator. We then measure
the dependence of the spin polarization on the optical power for continuous
light irradiation and finally determine the spin reset efficiency of optical pulses.
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4.1 effect of light irradiation on the superconducting res-
onator

4.1.1 Protocol and setup for light effects measurement
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Figure 4.18: Protocol and setup for light irradi-
ation effects measurement.

The effects of light irradiation
on the superconducting resonator
are studied with the sample de-
scribed in Section IV.2.1.3 with the
diamond already on top of the
superconducting resonator. In this
experiment, we want to measure
the effects on the resonator with-
out being disturbed by the dy-
namics of spins under light irradi-
ation. For that, we can take advan-
tage of the difference in timescale
between the two processes. We
will see in the next sections that
in our optical setup configuration,
the active reset by optical pump-
ing of the spin ensemble takes a
time of order one second, whereas
the effects of light irradiation on
the resonator are expected to oc-
cur on a millisecond timescale.
Spins can thus be saturated and
the resonator measured shortly af-
terwards under light irradiation
within a time window sufficiently
short for the spins to remain sat-
urated. The protocol is illustrated
in Fig. 4.18. The spins are first
saturated with a 20 µs strong mi-

crowave pulse and the reflected amplitude of an applied weak 2ms measure-
ment pulse is measured by homodyne detection. During this measurement
pulse, a 1ms optical pulse with power PL is applied. To minimize the leakage
of the strong (Psat = −24dBm) saturation pulse at the position of the weak
(Pmeas = −132dBm) measurement pulse, the saturation pulse is shaped with
160dB on/off ratio by two microwave switches in series. The first switch is
the one of the Agilent E8267 microwave source, the second a Miteq microwave
switch. The microwave and optical setup at room temperature for this mea-
surement is shown on the bottom panel of Fig. 4.18.
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4.1.2 Experimental characterization of the modified resonators parameters

We extract the resonator parameters from measurements under continuous op-
tical irradiation. We show in Fig. 4.19 a time domain measurement with 20ns
resolution of the reflected amplitude and phase of the measurement pulse
at 2.88GHz for a 1.6mW optical pulse, with averaging over 500 identical se-
quences.
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Figure 4.19: Time-domain measurement during an applied optical pulse of power
PL = 1.6mW, with the spins saturated. (main panel) Reflected amplitude and phase
of the measurement pulse at 2.88GHz during the application of the 1ms optical pulse at
PL = 1.6mW. The spins remains saturated along the measurement. (left) and (right) are zooms
on the transients which appears at the beginning and the end of the optical pulse.

At the position of the optical pulse, we observe that the reflected phase of the
measurement pulse undergoes a phase shift and its amplitude is reduced. The
optical pulse extends from point I (107.5µs after the beginning of the mea-
surement pulse) to point F. The beginning and the end of the optical pulse
is followed by a transient during which the effects of the laser irradiation re-
spectively appear and relax (see inset). In both cases, the steady state regime
is reached within ∼ 15µs. We denote S11,A (respectively S11,B) the average over
the region A (B) in which the resonator field is in the steady state regime with
(without) laser irradiation.

The top panel of Fig. 4.20 compares the resonator spectrum S11,B(ω) to its
counterpart S11,A(ω) with 1.6mW optical irradiation. Compared to S11,B, a dip
is visible in the amplitude of S11,A showing that the resonator is no longer in the
over-coupled regime but is closer to the critical coupling regime seen in Section
I.1.1.2. This indicates that optical irradiation induces additional internal losses
for the resonator. To go further we extract the modified resonator parameters
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(ωc,las, κlas, κL,las) from S11,A. To do so, we need again to get rid of the com-
plex frequency-dependent transmission coefficient G(ω) which links reflected
signals S11 to reflection coefficients r by renormalizing |S11,A|

2 by |S11,B|
2. In ab-

sence of optical irradiation, the internal losses rate κL of the resonator is much
smaller than the external damping rate κ.
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Figure 4.20: Reflected amplitude |r| under optical irradiation at PL = 1.6mW, with
the spins saturated. (top) The resonator spectrum is probed under laser irradiation ON (red)
and OFF (blue). Under laser irradiation, the reflected amplitude reaches almost 0 indicating
that the internal losses κL are on the same order than the external damping rate κ (see Section
I.1.1.2). The additional internal losses are attributed to the effect of the optical irradiation on the
resonator. (bottom) Measured (dots) and fit (red line) of the corresponding calibrated reflected
amplitude. The fit with Eq. 4.10 yields ωc,las/2π = 2.888GHz, κlas = 191.6± 1.2 · 106 s−1

and κL,las = 164± 1.9 · 106 s−1.

The steady-state value of the reflected signal with spins saturated |S11,B|
2 gives

thus approximately |G(ω)|2:

|S11,B|
2 = |rth(ω)G(ω)|2 =

(κ− κL)
2 + 4(ω−ωr)

2

(κ+ κL)2 + 4(ω−ωr)2
· |G(ω)|2 ≈ |G(ω)|2 (4.9)

so that the quantity |S11,A|
2/|S11,B|

2 rewrites:

|S11,A|
2

|S11,B|2
=

(κlas − κL,las)
2 + 4(ω−ωc,las)

2

(κlas + κL,las)2 + 4(ω−ωc,las)2
(4.10)

This allows us to fit the 3 parameters with good accuracy. The fit of |S11,A|2/|S11,B|2

with Eq. 4.10 for 1.6mW optical irradiation yieldsωc,las/2π = 2.888GHz, κlas =
191.6± 1.2 · 106 s−1 and κL,las = 164± 1.9 · 106 s−1 as shown on the bottom panel.
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The same measurement has been performed for different optical power. The
dependence of the resonator parameters on the optical power PL is shown in
Fig. 4.21.
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Figure 4.21: Parameters of the resonator under optical irradiation. Resonator frequency
ωr,las (top), damping rate κlas (middle) and internal losses κL,las (bottom) as a function of
the optical power PL. The origin of the linear fit (red lines) gives a precise measurement of the
resonator parameters without optical irradiation.

The error bars in the y-axis are set by the precision of the fit, in the x-axis
by the 3% percentage error on PL. We observe that all resonator parameters
vary linearly with the optical power and can be fitted using y = a+ bPL (with
good approximation for κlas. The origins a of the fits give the values (ωc, κ,κL)
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that corresponds to the resonator without optical irradiation. In this way, we
obtain ωr/2π = 2.8801± 0.0001GHz, κ = 206.7± 1.9 · 106 s−1 and κL = 23.9±
0.6 · 106 s−1. This set constitutes a more precise measurement of the resonators
parameters than the direct spectroscopic measurement we have done in Section
IV.3.1 and we use these values in the following.

4.1.3 Interpretation

We have seen in the previous section that the superconducting resonator is af-
fected by laser irradiations. This is attributed to two effects: first, the laser beam
heats up the circuit locally inducing the generation of quasiparticles in the su-
perconductor, second since the frequency of the optical light is above the Silicon
bandgap, it generates carriers in the Silicon. These effects take place in few tens
of microseconds as evidenced by the transients observed in Fig. 4.19, and relax
with similar time constants. In the steady state regime, both effects contribute
to increase κL and their relative contributions are difficult to separate. They
however have opposite effects on the resonator frequency: on the one hand, the
generation of quasiparticles in the superconducting film increases the kinetic
inductance which lowers the resonator frequency; while on the other hand, the
carriers generated in the substrate reduce its dielectric constant (according to
a Drude model description [115]), and thus reduces both the resonator capac-
itance C and the coupling capacitance Cc, which leads to an increase of the
resonator frequency and a decrease of the resonator external damping rate.

As seen in the top panel of Fig. 4.21, we observe that the resonator frequency
increases with PL, which shows that the relative decrease in capacitance in-
duced by the carriers in the silicon is larger than the relative increase of the
inductance induced by the quasiparticles in the Niobium film. It is however
difficult to identify more precisely the separate contributions of these two ef-
fects. In the same way, the increase of κL observed in the middle panel can be
attributed both to the carriers in silicon and to the quasiparticles in the film.
The measured 10% decrease of κ for PL = 1.47mW can however to our knowl-
edge only be explained by a decrease in the dielectric constant of silicon due
to carrier generation.

An interesting question is then whether the resonator capacitance C and the
coupling capacitance Cc are changed by the same amount, as would be the
case if the light was homogeneously distributed over the chip area, or if the
carriers generated by the laser absorption were able to diffuse over millimetric
distances in the substrate (which seems very unlikely). We note that the cou-
pling rate κ is given by the formula (Eq. 1.12 in Section I.1.1.1) κ = ω3rC

2
cZ0Zr,

which can be rewritten as κ = (Cc/C)
2Z0/L. According to this expression, if the

dielectric constant change was the same in C and Cc, we shouldn’t observe any
change in κ contrary to our measurements. We are thus led to the conclusion
that probably the laser light was more intense in the region of the coupling
capacitor than in the region of the resonator capacitor. This is somewhat in
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contradiction to our attempts to align the laser spot with the resonator induc-
tance, which is closer to C than to Cc, which could indicate a bad alignment of
the laser spot. As discussed below, this is nevertheless indirectly confirmed by
measurements of the spin repumping efficiency.

4.2 continuous irradiation : dependence of the spin polariza-
tion on the optical power

We investigate here the spin polarization as a function of the optical power
by measuring the reflection spectrum of the resonator under continuous laser
irradiation and continuous microwave probing. We find a slight dependence
of the steady-state polarization on the applied optical power.

4.2.1 Measuring the spin susceptibility under continuous laser irradiation
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Figure 4.22: Reflected amplitude |S11| un-
der continuous optical irradiation. The
absorption of the spins under optical irradi-
ation with 0.2 (red), 0.69 (light blue) and
1.63mW (blue) is compared to the one at
equilibrium (black line). The curves show the
|0〉 → |±〉 spectroscopic transitions of the
spins, with a spin absorption that increases
with PL because of increasing spin polarisa-
tion. The additional broad peak at ωr that
increases with PL corresponds to the internal
losses induced by the optical irradiation.

The hybrid circuit under optical irra-
diation is characterized again by mi-
crowave reflection measurement. The
reflected spectrum is obtained with
the VNA using probe power corre-
sponding to n ≈ 20 photons in the
resonator, sufficiently low to avoid
changing the spin polarization with
the microwave. In this condition, the
Holstein-Primakoff approximation is
valid and the method developed in
Section I.3.3.2 to express the spin
susceptibility can be used. The re-
flected amplitude |S11| under contin-
uous irradiation with 0.2, 0.69 and
1.63mW optical power is shown in
Fig. 4.22.

Compared to the data without opti-
cal irradiation (black curve), the curves
are distorted around the resonator fre-
quency and an additional broad dip at
resonance is even visible at large opti-
cal power. This broad dip is caused by
the resonator losses under optical irra-
diation that we have evidenced in Sec-
tion IV.4.1, an effect that we need to de-
convolve from the spin contribution to
determine the spin polarization. To do
so, we first get rid of the complex trans-

mission coefficient G(ω) by renormalizing S11 with S11,sat to access the reflec-
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tion coefficient r and then use the modified resonator parameter values that
we have measured in the previous section to convert with Eqs. 1.111, 1.112 the
reflected field into spin susceptibility χ". The spin susceptibility for 0.2mW
continuous irradiation is shown in Fig. 4.23.
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Figure 4.23: Spin susceptibility χ" under con-
tinuous optical irradiation at PL = 0.2mW.
The measured reflected amplitude |S11| has been cal-
ibrated for the measurement lines (G(ω)), and |r|

further converted in spin susceptibility χ". The spin
susceptibility under continuous optical irradiation
at PL = 0.2mW (red) is larger than at equilibrium
(black) by a factor 6.7.

The spin susceptibility varies with
frequency as the one measured at
equilibrium (black curve). How-
ever, the spin susceptibility in
the case of continuous irradia-
tion with 0.2mW optical power
is larger than the one mea-
sured at equilibrium by a fac-
tor 6.7. Since the spin suscepti-
bility is proportional to the spin
polarization, it means that the
spins under irradiation are polar-
ized at a lower effective tempera-
ture than at thermal equilibrium.
We conclude from this measure-
ment that we are able to polar-
ize the spins by optical pump-
ing.
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Figure 4.24: Imprecisions on the conversion from |S11| to χ". (top) The spin susceptibility
χ" under continuous optical irradiation at PL = 0.2mW with its error bars and (bottom) the
one-standard deviation. The imprecisions increase when getting far from resonance, suggesting
that the spin susceptibility is not reliable in the wings.

To analyze the evolution of the spin polarization with the optical power, it
is desirable to estimate the accuracy we have on the frequency-dependent
spin susceptibility curve as obtained with the above method. First, the finite
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uncertainty on the bare resonator parameters (ωc, κ) introduces uncertainty
in the conversion from reflected field S11 to reflection coefficient r, which
induces uncertainty on the scaling of χ"(ω). Second, the finite accuracy on
the modified resonator parameters (ωc,las, κlas, κL,las) introduces uncertainty
in the conversion from reflection coefficient r to spin susceptibility r which
induce uncertainty on the symmetry of χ"(ω). We have estimated in the pre-
vious sections ∆ωr/2π = 0.1MHz, ∆κ = 1.9 · 106 s−1, ∆ωc,las/2π = 0.01MHz,
∆κlas = 1.9 · 106 s−1 and ∆κL,las = 1.2 · 106 s−1. We show in Fig. 4.24 the spin
susceptibility under continuous 0.2mW irradiation together with its standard
deviation. We see in particular that the uncertainty on the spin susceptibility
increases as expected far from the resonator frequency.

4.2.2 Dependence on the optical power

We perform the same measurement than in the previous section for increasing
optical power. We show in Fig. 4.25 a selection of these measurements. The spin
susceptibility is obtained using Eqs. 1.111, 1.112 with the modified resonator
parameter values measured in Section IV.4.1.2. We observe that χ ′′(ω) keeps
the same shape but increases with increasing optical power which suggests an
optical power dependence of the spin polarization.
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Figure 4.25: Dependence of the spin susceptibility on the optical power χ"(PL). The
shape of the spin susceptibility is unchanged but its amplitude increases with the optical power
PL suggesting an increasing spin polarization. The slight asymmetry which appears at high
optical power is attributed to the imprecisions on the conversion from |S11| to χ", that increases
with the optical power.

In order to make this effect more visible, we have to get rid of the uncertainty
on the scaling of χ ′′(ω) discussed in the previous section. For that, we con-
sider the difference d = χ ′′(ωe) − χ ′′(ω0), with ωe = 2π · 2.8795GHz the point
of maximum absorption and ω0 = 2π · 2.775GHz the zero-field splitting point.
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Its renormalization by the value at the optical power at which the spin suscep-
tibility saturates defines the spin polarization:

pcont(PL) =
d(PL)

d(PL,max)
(4.11)
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Figure 4.26: Spin polarization under continuous optical irradiation pcont(PL)/pmax.
The spin polarization increases exponentially with PL with characteristic power PL,cont =

0.45mW and reaches the maximum allowed by optical repumping pmax ∼ 90%. The optical
pumping is dependent on the optical power PL due to a weak excitation by thermal photons
that counteracts the repumping process.

The spin polarization pcont(PL) as a function of the optical power for contin-
uous irradiation is shown in Fig. 4.26. The spin polarization increases expo-
nentially with PL with characteristic power PchL,cont = 0.45mW and saturates
around PsatL,cont ∼ 1mW. This dependence suggests that two opposite effects con-
tribute. On one hand, the spins are continuously polarized by optical cycling,
on the other hand they are continuously slightly excited by thermal photons
coming from the microwave measurement lines. The two effects have different
timescales. For optical repumping, the timescale is set by the number of optical
cycle which is proportional to the number of optical photons that participate
in the process. The optical repumping is thus dependent on the optical power.

For a given optical power, the spin polarization reaches a steady state regime
in which both effects compensate. The fact that the steady-state spin polariza-
tion saturates with increased optical power suggests that in our experiments
we reach the maximum spin polarization reachable with optical pumping, 90%
according to [71]. In the following we apply optical pulses to reset the spin en-
semble between experimental sequence, in contrast to the continuous irradia-
tion investigated in this section. We will use the dependence pcont(PL) obtained
from Fig. 4.26 to renormalize to spin polarization.
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4.3 pulsed irradiation : active spin polarization

4.3.1 Pulsed spectroscopy with optical repumping
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Figure 4.27: Protocol and setup for active spin po-
larization measurement.

At this point, we switch from
continuous to pulsed experiments.
To demonstrate optical reset of
the spins, we use the same mi-
crowave and optical setup at
room temperature Fig. 4.18 as for
the pulsed experiment of Section
IV.4.1.1, but with a different syn-
chronization sequence. The proto-
col is illustrated in Fig. 4.27. Mi-
crowave pulses are applied close
to the bare frequency of the res-
onator at ωd/2π = 2.884GHz.
The spins are first saturated by a
20µs long microwave pulse with
frequency ωd and applied power
−24dBm to start the experimen-
tal sequence from a reproducible
spin polarization. They are then
optically repumped with a laser
pulse of power PL and duration
TL. Finally the spin polarization is
probed by measuring the reflected
amplitude of an applied weak
(−132dBm) 20ms long measure-
ment pulse after the laser pulse.
A delay of 300µs between optical

and measurement pulses is introduced to let the effect of light irradiation on
the resonator we have discussed in Section IV.4.1 to relax. At the time of prob-
ing, the resonator parameters are thus equal to their values without optical
irradiation. To minimize frequency distortion, we keep the probe pulse fre-
quency at resonance and sweep the external magnetic field BNV .

The results are shown in Fig. 4.28 for PL = 1.47mW and TL = 4 s. Without
laser pulse, the reflected pulse amplitude is independent of BNV , proving that
the spins are efficiently saturated by the initial microwave pulse. With laser
pulse, absorption peaks with the triplet shape characteristic of the NV hyper-
fine structure are observed, indicating a sizeable NV polarisation. To quantify
the effect, we convert the absorption signal into the imaginary part of the spin
susceptibility (using Eqs. 1.111, 1.112 in Section I.3.3) using the resonator pa-
rameters (ωr, κ and κL). The spin susceptibilty after laser pulse (red curve)
is compared to the spin susceptibility measured at thermal equilibrium (blue
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curve), that is without saturating and optical pulse. We measure a factor 6.3 be-
tween spins optically repumped and at equilibrium which suggests as already
mentioned that the repumped spins are polarized at an effective temperature
lower than the one of equilibrium. To link χ ′′ to spin polarization, we have to
determine the optical pulse parameters that yield the maximum spin polariza-
tion.
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Figure 4.28: Polarization of the spins with an optical pulse. The signal of the spins after
an optical pulse of power PL = 1.47mW and duration TL = 4 s (red line) is compared to
the one at equilibrium (blue line) and saturated (black line). (top) Reflected amplitude. The
curves show the hyperfine split mS = 0 to mS = ±1 spectroscopic transitions of the N-Orth
sub-ensemble. (bottom) Corresponding imaginary part χ ′′(BNV) of the spin susceptibility. The
calculated spin susceptibility (see Appendix B) and rescaled by a global factor to match the
experimental spin polarization is shown (dash-dotted line).

Note that independently of the scaling that is proportional to the spin polar-
ization, the shape of χ ′′(BNV) can be quantitatively understood from the dis-
tributions of Hamiltonian parameters we have determined in Section IV.3.2.2.
The susceptibility χ ′′(ωd,BNV) computed without further adjustable parame-
ters is plotted with a global scaling factor to match the experiment in Fig. 4.28

(dash-dotted line). All the features are reproduced but not exactly with the ap-
propriate weight. These remaining discrepancies might be due to a spatial de-
pendence of the strain distribution, in which case ρ(E(r)) would be correlated
with the coupling constant distribution ρ(g), making the method developed in
Appendix B inaccurate.
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4.3.2 Spin susceptibility as a function of the optical pulse parameters

Dependence on the length of the optical pulse The results are shown in
Fig. 4.29. The top panel shows the reflected amplitude |S11| and bottom the
corresponding spin susceptibility at different TL for PL = 1.5mW. We ob-
serve that χ ′′(BNV) keeps the same triplet shape characteristic of the NV hy-
perfine structure but its amplitude increases with the optical pulse duration,
indicating an increased spin polarization. The bottom panel shows the ratio
χ ′′(TL,BNV)/χ ′′(Tmax,BNV) as a function of BNV . This ratio is roughly indepen-
dent of BNV , which confirms that the optical pulse only induces spin polariza-
tion without distorting its susceptibility.
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Figure 4.29: Dependence of the spin susceptibility on the optical pulse duration TL.
(top) Reflected amplitude and corresponding imaginary part of the spin susceptibility χ ′′(BNV)
as a function of the optical pulse duration TL for a fixed pulse power PL = 1.47mW. The dura-
tion TL is swept from Tmin = 0 s to Tmax = 4 s. The left panel shows a selection. (bottom) Ra-
tio χ ′′(TL,BNV)/χ ′′(Tmax,BNV) showing that the shape of the spin susceptibility χ ′′(BNV)
is independent of the optical pulse duration.

Dependence on the power of the optical pulse We show in Fig. 4.30 the results
at different PL for TL = 7 s. The reflected amplitude |S11| and the corresponding
spin susceptibility are shown on the top panel, and the ratio χ ′′(PL,BNV)/χ ′′(Pmax,BNV)
as a function of BNV on the bottom. Again, the ratio is roughly independent of
BNV which confirms that the optical pulse only induces spin polarization with-
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out distorting its susceptibility. We analyze in the next section the spin reset
efficiency as a function of the optical pulse parameters.
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Figure 4.30: Dependence of the spin susceptibility on the optical pulse power PL. (top)
Reflected amplitude and corresponding imaginary part of the spin susceptibility χ ′′(BNV) as a
function of the optical pulse power PL for a fixed pulse duration TL = 7 s. The power PL is swept
from Pmin = 0mW to Pmax = 1.47mW. The left panel shows a selection. (bottom) Ratio
χ ′′(PL,BNV)/χ ′′(Pmax,BNV) showing that the shape of the spin susceptibility χ ′′(BNV) is
independent of the optical pulse duration.

4.3.3 Spin reset efficiency

As evidenced in the previous section, the spin polarization increases with
the energy contained in the optical pulse. To measure the spin polarization
as a function of the optical pulse parameters, we choose a magnetic field
B0 = 0.27mT at which we probe the spins and measure the spin suscepti-
bility χ ′′(TL,B0) (respectively χ ′′(PL,B0)). The relative spin polarization curves
prel = χ ′′(PL)/χ ′′(Pmax) for an optical pulse duration TL = 6 s is shown on the
left panel of Fig. 4.31. We observe that the polarization increases with PL and
then saturates. This saturation is consistent with our observations of Section
IV.4.2, demonstrating that the maximum spin polarization accessible using op-
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tical repumping is reached, corresponding to p = 0.9 according to [113]. From
now, we use a laser power PL > PsatL,cont = 1mW to be as close as possible to
this maximum spin polarization and express the spin polarization:

p = 0.9× prel(TL)× pcont(PL). (4.12)

The dependence of the relative spin polarization with the optical pulse dura-
tion TL for PL = 1.47mW is shown in the right panel of Fig. 4.31. The polar-
ization increases with TL and then saturates around T satL ∼ 4 s. This suggests
that the maximum polarization allowed by optical repumping is reached. The
corresponding optical pulse energy is ∼ PL × T satL = 6mJ.
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Figure 4.31: Spin reset efficiency p/pmax. (left) The relative spin polarization for TL = 6 s as
a function of PL increases then saturates. This corresponds to our observation in Section IV.4.2,
suggesting that the maximum polarization accessible by optical repumping is reached. (right)
The relative spin polarization for PL = 1.47mW as a function of TL increases then saturates.
Since PL > PL,max, the saturation corresponds to the maximum polarization accessible by
optical repumping.

The black point in Fig. 4.31 corresponds to the polarization level of the spins
at equilibrium. We note that the polarization at equilibrium is1 peq = 0.14,
equivalent to an effective temperature Teq = 900mK significantly higher than
the temperature of the sample stage (30mK). This higher spin temperature
is attributed to thermal excitation of the spin ensemble by thermal photons
coming from RT through the input microwave lines. Indeed, we have seen in
Section IV.2.2.1 that the attenuation in the input line is not sufficient, implying
thermal field with ∼ 5 photon in the resonator.

1 peq = 0.9× 0.16× 0.967
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In the following experiments (except when noted), we use a 1 s optical pulse
at 1.47mW as reset operation which polarizes the spins at2 p = 0.72. The exper-
imental sequences are repeated at a rate close to 1Hz with duty cycle close
to 1. Note that with these parameters, the refrigerator cold stage is heated
up to 400mK. Such a high temperature would not be acceptable for a quan-
tum memory experiment, and one can wonder whether it is possible to reduce
it. Experiments with single NV centers, where the laser spot is well focussed
with a spot size of 1µm2, polarize a NV center in 10ns using 100µW. The same
power on a 100× 100µm area should thus achieve polarization in 100µs, which
is 5 orders of magnitude more efficient than our observations. We are thus led
to the conclusion that our laser spot very likely is not well aligned with the
resonator inductance. As explained in Chapter V we have indeed confirmed
in a later experiment that more efficient repumping was indeed possible with
less laser power, which will be crucial to implement the full quantum memory
protocol.

4.4 spin relaxation time measurement

To measure the spin relaxation time, one can first excite the spins with a strong
microwave pulse and measure their relaxation towards the thermal equilib-
rium. In our case however, the effective temperature of the spins is already
quite high and this measurement technique provides insufficient signal. In-
stead, we polarize the spins by optical repumping and measure their relaxation
towards equilibrium. For that, a series of 20ms resonant microwave pulses sep-
arated by 10 s is applied following the optical reset of the spins. The average
reflected amplitude of each pulse is plotted in Fig. 4.32. Note that the same
measurement performed at different probe pulse rate yields no change in the
relaxation time. This confirms that the probe microwave pulses have a weak
enough power (Pprobe = −120dBm) not to create sizeable excitation during the
relaxation process.
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Figure 4.32: NV spin relaxation time. Blue dots are the average reflected amplitude of each
probe pulse. A bi-exponential fit (red solid line) yields T1,a = 35 s and T1,b = 395 s, with
respective weights A1,a = −0.022 and A1,b = −0.020.

2 p = 0.9× 0.83× 0.964
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We observe a bi-exponential response with time constants T1,a = 35 s and
T1,b = 395 s. The presence of two rates for the relaxation process has already
been reported in [31] but its interpretation is not clear in our case. A possi-
ble explanation is that the resonator is coupled to two regions of the diamond
with different nominal dipolar coupling strength between spins. The existence
of two such regions is possible if the diamond have two regions with different
spin density within the mode volume of the resonator.

Note finally that the two time constants are very long compared to the
timescale of operation in superconducting circuit, which confirms the neces-
sity of an active reset of the spins for the read experiment.

5 M U LT I M O D E R E T R I E VA L O F F E W P H O T O N F I E L D S

S T O R E D I N A S P I N E N S E M B L E

We now perform echo experiments, in the goal of making progress towards the
implementation of the read step of our memory protocol. The experiment aims
at storing classical microwave pulses with ultra-low power (corresponding to
few photons in the resonator), and to retrieve them with a single refocusing
pulse with as high fidelity as possible. In the following, we first present a Hahn
echo at high power. We then demonstrate multimode storage and retrieval of
few photons fields in the spin ensemble and finally discuss the factors limiting
the retrieval efficiency.

5.1 applying hahn echoes to the spin ensemble

The response of the spins to Hahn echo pulse sequences is presented in this sec-
tion. The time-domain response to microwave pulses of different power is first
investigated and the echo of high power stored microwave pulse analyzed. The
experiments are performed at zero magnetic field, with a microwave frequency
ωe/2π = 2.8795GHz corresponding to the maximum of the spin absorption
(see Fig. 4.16).

5.1.1 Response of the spins to an incoming square microwave pulse

Hahn echo sequences require to apply strong microwave pulses inducing spin
rotations of angle π on the Bloch sphere, therefore bringing the spin ensemble
well beyond the Holstein-Primakoff approximation. As a first step, we probe
the spin dynamics by investigating the response of the spins to microwave
pulses of increasing power [23].
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Figure 4.33: Protocol and setup for response of
the spins measurement.

The spins are first polarized at
72% with an optical pulse of du-
ration 1 s and power 1.47mW, and
the reflected field of an applied
1µs square microwave pulse of
varying power P is measured by
homodyne detection. A first ex-
periment is performed with a sat-
uration pulse applied before the
pulse to obtain the resonator re-
sponse alone and calibrate the
signal-line and amplifier response.
The microwave and optical setup
at room temperature for this mea-
surement is shown in Fig. 4.33,
together with the protocol. We
use two microwave switches in se-
ries to have a 160dB on/off ra-
tio on the saturation pulse, pur-
posely to limit leakage to the mea-
sured pulse. The output demod-
ulated signal is low-pass filtered
with 200MHz bandwidth, aver-
aged over 200 identical sequences,
and rescaled by

√
P for easier com-

parison.

We start by discussing the data taken at low microwave power (P0 = −90dBm),
for which the Holstein-Primakoff approximation (the linear regime) is valid.
They are compared to the bare cavity response obtained by saturating the
spins prior to the microwave pulse in Fig. 4.34. The pulse extends from 0.3µs
to 1.3µs. We first note that the cavity response is dominantly on the in-phase
quadrature. A small response on the other quadrature Q arises from the slight
detuning between the microwave frequency ωe, chosen at the maximum of the
spin absorption, and the cavity frequency ωr.

Note also that the cavity field damping time Tr = 1/κ ≈ 5ns is barely visible
on the scale of the figure and is anyway washed out by the detection bandwidth
of 200MHz; the slow increase of the cavity field on the saturated curve is
thus not due to the cavity response but either to an imperfect profile of the
AWG pulse, or to incomplete spin saturation. With the spins polarized, the in-
phase quadrature of the reflected field first increases at the same rate as in the
saturated case, before turning down when it reaches a certain value, and finally
stabilizing at a lower value, after some oscillatory transient, corresponding to
≈ 33% of the initial value.
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Figure 4.34: Response of the spins to
an incoming weak microwave pulse. In-
phase quadrature (blue) and out-of-phase
(green) quadratures of the reflected field for
an applied square microwave pulse of power
P0 = −90 dBm. The dashed lines correspond
to the same measurement with the spins sat-
urated.

This behavior is due to the progressive
buildup of a steady-state transverse
magnetization in the spins, whose radi-
ated field interferes destructively with
the intracavity field. After the pulse
is switched off, a transient output mi-
crowave field is measured, which de-
cays in ∼ 200ns. It is radiated by the
spin transverse magnetization, which
decays in T∗2 ≈ 200ns from its steady-
state value to 0. This microwave emis-
sion by the spins following an exci-
tation pulse is a generic feature in
Electron Spin Resonance, called "Free-
Induction Decay" (FID). All the dynam-
ics described in this paragraph is quan-
titatively reproduced by simulations
performed by Brian Julsgaard along the
lines described in Section I.3.4, taking
into account the distributions of spin frequencies (see Fig. 4.16) and coupling
strengths (see Fig. 4.7) as seen in Fig. 4.35.
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P/P0 for easier comparison, with P0 = −90 dBm. Dash-dotted

lines are simulations (see text).
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The same measurements performed at higher microwave powers show a pro-
gressively modified dynamics, because the spins undergo larger Rabi angles
under the drive, leading to a breakdown of the linear approximation. This ef-
fect is easier to see on the reflected amplitude (see Fig. 4.36). At low power
(the linear regime), after the initial transient where resonator and spins ex-
change energy, the reflected amplitude reaches half of the saturated value in
steady state (region S), indicating that the spins absorb ≈ 75% of the incoming
power. This steady-state value of the reflected amplitude increases with incom-
ing power, indicating reduced spin absorption caused by progressive satura-
tion of the ensemble. This regime is precisely the regime of interest to apply
refocusing pulses.

We note that no clear Rabi oscillations are observed, because of the spatial
inhomogeneity of the microwave field generated by the planar resonator (see
Fig. 4.7), which causes a spread of Rabi frequency within the ensemble. This in-
homogeneity prevents the application of accurate π pulses to all the spins [116],
which is an issue for Hahn echo sequences.
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Figure 4.36: Response of the spins to an incoming square pulse. Amplitude of the reflected
field for P = −90, −60, −55, and −50dBm. The curves have been rescaled by

√
P/P0 for easier

comparison, with P0 = −90 dBm. The pulse extends from 0.3µs to 1.3µs, followed in the non-
saturated case by the free induction decay signal of the spins. S denoted the steady state region.
Dash-dotted lines are simulations (see text).

The temporal details in Fig. 4.35 and Fig. 4.36 are well reproduced, which con-
firms the validity of the calculations, both in the linear and non-linear regime.
The ensemble is assumed of spin-1/2 particles, which is an approximation in
the case of NV centers having a spin of 1. However, in the linear non-saturated
regime, this description is exact, and for the non-linear saturated regime, we
expect the approximation to be justified since the applied π-pulse has a narrow
frequency bandwidth and is tuned predominantly to the |0〉 → |+〉 transition
of the NV centers.
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5.1.2 Hahn echo pulse sequences

The two-pulse Hahn echo sequence described in Section II.2.2.1 consists in
storing a weak pulse θ into the spin ensemble at time t, and applying a strong
refocusing pulse R at time τ which triggers the emission of an echo pulse at
time 2τ− t. We present in the following first Hahn echo measurements, and
study the dependence of the echo amplitude on the refocusing pulse parame-
ters.
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Figure 4.37: Protocol and setup for Hahn echo
at high power.

The microwave and optical setup
at room temperature for this mea-
surement is shown in Fig. 4.37, to-
gether with the protocol. At the
beginning of the sequence, we
first polarize the spins at 55%
with an optical pulse of duration
4 s and power 0.2mW. A weak
microwave pulse (θ) is then ap-
plied creating a transverse mag-
netization, followed after a delay
τ by a strong refocusing pulse
(R). As in the previous experi-
ments, we use two different mi-
crowave sources for the weak and
strong microwave pulses. Doing
so makes it possible to use the
internal switch of the microwave
source used for the refocusing
pulse as a second switch, and thus
to reach large on/off ratio (160dB
ratio). Note that for all the echo
experiments that follow, it is criti-
cal that the two sources conserve
their relative phase constant since
the phase of the echo φe is fixed

by the respective phase of storage φθ and refocusing φR pulses (see Section
II.2.2.1). A 1GHz phase synchronization chain is used purposely, instead of
the standard 10MHz, to phase-lock the two microwave generators and reduce
the phase drift between them. The signal is measured by homodyne detection
and low-pass filtered with 2MHz bandwidth. The measurement are averaged
over 40 identical sequences thanks to the active reset of the spins. We show in
Fig. 4.38 the time evolution of the output signal obtained by applying a 1µs
θ-pulse with power −60dB, followed τ = 5µs later by a 1µs refocusing pulse
with power PR = −20dBm. The expected spin-echo is observed at 2τ.
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Figure 4.39: Spin echo coherence time T2 mea-
surement. Measured (crosses) decay of the echo
maximum amplitude as a function of τ. Dashed and
solid lines are an exponential fit yielding a charac-
teristic time T2 = 8.4µs and a bi-exponential fit
f(τ) yielding T2A = 4.7µs and T2B = 14.3µs, re-
spectively.

Hahn echo coherence time mea-
surement To compare experi-
ments to simulations in the rest
of this chapter, we determine the
Hahn echo coherence time T2 of
the spin ensemble. The sequence
depicted in Fig. 4.37 is repeated
with increasing duration τ be-
tween the storage and refocus-
ing pulses. The decay of the echo
maximum amplitude as a func-
tion of the duration τ is shown
in Fig. 4.39. As seen on the graph,
this decay is better fitted by a bi-
exponential than by a single expo-
nential decay, with time constants
T2A = 4.7µs and T2B = 14.3µs. The
corresponding function writes

f(τ) = A exp (−2τ/T2A)

+ B exp (−2τ/T2B) (4.13)

with weights A = 0.78 and B = 0.22. This implies that two spin classes with
different coherence times contribute to the echo signal. This effect is the object
of Section IV.6.1; in the following we use the above weights and times constants
at zero-magnetic field for the simulations.

Echo amplitude dependence on the refocusing pulse power We show in
Fig. 4.40 a selection of measured spin echo signals for a 1µs refocusing pulse
with increasing power PR. For each of these curves, a 1µs θ-pulse with −60dBm
power is applied at the beginning, followed by a 5µs waiting period. The power
of the refocusing pulse ranges from −70dBm to −20dBm, which corresponds
to the non-linear regime of Fig. 4.36. We observe that the shape of the echoes
depends on PR and that their amplitude increases and then saturates. This
saturation indicates that in average half of the spins are inverted.
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Figure 4.40: Dependence of the echo shape on the refocusing pulse power. Measured
(black) and simulated (red) Hahn echo for a selected refocusing pulse power PR. The simulations
are rescaled to match the area of the echo pulses. Saturation of the amplifiers (blue dashed line)
limits the measurable amplitude to about 2V.

To go further, we perform a simulation as described in Chapter I, using the co-
herence time corresponding to the single-exponential fit of Fig. 4.39. The results
are superimposed on the measurements in Fig. 4.40. The details of the shape
are captured by the simulations: (i) the echo pulse shape is well reproduced,
(ii) the free-induction decay following both the θ and the π pulse is reproduced
in a qualitative manner. If the amplitude of the echo is found to depend as ex-
pected on PR, even the shape of the pulse varies from a rounded Gaussian-like
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pulse at low PR up to a sharp rectangular pulse at higher PR values. This strik-
ing shape dependence is well reproduced in the simulations as well. It can be
qualitatively understood by reasoning in the frequency domain. Indeed, for the
shape of the initial pulse to be well reproduced as an echo, all the frequency
components of the spin polarization profile generated by the θ pulse need to
be refocused as efficiently. At large PR, the large Rabi frequencies reached by
the spins cause all spin frequency components generated by the θ to be equally
rephased, but this is no longer the case at lower PR. Then the echo results from
the convolution of the two pulses, and gets more rounded.

To compare the dependence of the echo amplitude quantitatively, we plot the
experimental and simulated area of the echo as a function of the refocusing
pulse power PR on the left of Fig. 4.41. The agreement is quantitative, and in
particular the power PR,sat = −55dBm at which the echo amplitude saturates
is well predicted by the simulations. This brings further evidence of the va-
lidity of calculated coupling strengths and of the spin-1/2 approximation. In
the following, we keep the refocusing pulse power higher than the saturation
power PR,sat to maximize the echo efficiency.
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Figure 4.41: Dependence of the echo amplitude on the refocusing pulse power. Experi-
mental (crosses) and simulated and rescaled (open circles) area of the echo as a function of the
refocusing pulse power PR.

5.2 retrieval of few-photon pulses stored in the spin ensemble

In the previous section, we have seen that applying Hahn echoes at high power
in a hybrid quantum circuit is possible. Coming back to the perspective of
developing a quantum memory, we now store and retrieve much weaker mi-
crowave pulses down to the few-photon level, and demonstrate the multimode
ability of the spin ensemble.
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5.2.1 Experimental results
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Figure 4.42: Protocol and setup for multimode
storage and retrieval. Experimental sequence in-
cluding a spin reset pulse, a train of six microwave
pulses θi (i = 1, .., 6) with an identical ampli-
tude (corresponding to ∼ 104 photons in the res-
onator) and different phases ϕi=1,2,4 = −π/4 and
ϕi=3,5,6 = π/4, and a 50 dB stronger refocusing
pulse R with phase ϕr = 0.1 rad.

Since our chip does not include
a superconducting qubit, we use
a train of weak microwave pulses
with varying phase to quantify
the retrieval efficiency. The pro-
tocol and experimental setup are
shown in Fig. 4.42. At the begin-
ning of the sequence, spins are
polarized at 72% with an op-
tical pulse of duration 1 s and
power 1.47mW. Six consecutive
microwave pulses θi (i = 1, ..., 6)
with different phase and identi-
cal amplitude corresponding to
≈ 104 photons in the resonator
are applied to the spin ensemble,
followed 10µs later by a refocus-
ing pulse R to trigger their re-
trieval. The pulses θi are Gaus-
sian pulses of duration 1.2µs
with peak power −89.7dBm and
phases ϕ1,2,4 = −π/4 and ϕ3,5,6 =
π/4. The refocusing pulse is a 1µs
squared pulse at −40.6dBm with
phase ϕR = 0.1 rad. As in the pre-
vious section, the strong refocus-
ing pulse has a 160dB on/off ratio
obtained by using two microwave
switches in series, and the stor-
age pulse is obtained using an IQ
mixer driven by an AWG. The out-
put microwave signal is low-pass

filtered with 5MHz bandwidth and measured by homodyne detection. The se-
quence is repeated 104 times at 1Hz rate, which is made possible by the active
reset of the spins. The resulting averaged amplitude and IQ quadratures of the
reflected field are shown in Fig. 4.43. In the inset of this figure, we also show
the energy of the reflected θi pulses with the spins saturated and reset in their
ground state, showing that about 75% of the incident power is absorbed by the
spins, in agreement with the measurements shown in Fig. 4.36.
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Figure 4.43: Retrieval of multiple weak microwave pulses initially stored in the spin
ensemble. (top) Amplitude of the measured output signal showing the reflected pulses θi (after
partial absorption by the spins) and R (its amplitude being trimmed by amplifier saturation,
shown in red), as well as the six re-emitted echoes ei (magnified by a factor 5). inset: The com-
parison between the energies of the reflected θi pulses with the spins saturated (black line) or
reset in their ground state (blue line) shows that about 75% of the incident power is absorbed by
the spins. (bottom) IQ quadratures of the output signal, showing that the ei pulses (magnified
by 10) are recovered with phase −(ϕi −ϕr), as expected.

The reflected amplitude shows the pulses θi after partial absorption by the
spins, the refocusing pulse R (with its amplitude trimmed by amplifier satura-
tion), as well as the six re-emitted echoes ei (magnified by a factor 5). The six
pulses are recovered up to 35µs after their storage, with an amplitude reduced
by ∼ 102 compared to the incoming pulse, corresponding to ∼ 1 photon in the
resonator. The in-phase and out-of-phase quadratures (bottom panel) shows
that the pulses are re-emitted in reverse order, as explained in Chapter II, with
phase −(ϕi −ϕR). We conclude from these observations that the strong refo-
cusing pulse (∼ 109 photons in the cavity) does not prevent detection of fields
at the single-photon level few microseconds later, a prerequisite for the im-
plementation of the full quantum memory protocol. Note that, as discussed
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in [102], the multimode storage and retrieval only works because of the low
power used for the θi pulses, otherwise each pulse would act as a refocusing
pulse for the previous ones, which would generate a wealth of spurious echoes.
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Figure 4.44: Protocol and setup for few photon
pulse storage and retrieval. The local oscillator
of the IQ demodulator is pulsed to suppress the re-
focusing pulse from the reflected signal.

We were able to detect a mea-
surable spin-echo signal with a
reasonable measurement time for
pulses containing up to 100 times
lower energy than in Fig. 4.43,
thus populating the resonator
with n̄ ≈ 100 photons on av-
erage. We performed this exper-
iment with a single storage mi-
crowave pulse because of the re-
duced bandwidth of the detection
(1MHz). The setup (see Fig. 4.45)
differs from the one of the previ-
ous experiment in order to reach
the sensibility required. An addi-
tional amplifier after the IQ de-
modulator is added. To avoid sat-
uration of its saturation, the local
oscillator of the IQ demodulator
is pulsed to suppress the refocus-
ing pulse from the reflected sig-
nal. The protocol is shown on the
top of Fig. 4.45. As in the previous
measurements, at the beginning
of the sequence the spins are first
polarized at 72% with an optical
pulse of duration 1 s and power
1.47mW. The storage pulse is a
square pulse of duration 2µs with peak power −110dBm, the refocusing pulse
identical to the one of Fig. 4.43. The experiment is averaged over more than 106

identical sequences to increase the signal to noise ratio.

The measured reflected amplitude is shown in Fig. 4.45. A spin-echo e of
∼ 0.02 photons in the resonator is observed. Coming back to the figures of merit
defined at the beginning of this chapter, these measurements reach nMW ≈ 3,
nsp ≈ 0.1, n̄ ≈ 100, and E ≈ 2 · 10−4.
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Figure 4.45: Retrieval of a few-photon field initially stored in the spin ensemble. The
echo e with ∼ 0.02 photons in the resonator is obtained for a θ pulse populating the resonator
with only ∼ 100 photons. The refocusing pulse (dashed line) was suppressed in the room-
temperature detection chain by a microwave switch to avoid saturating the follow-up amplifiers.

5.2.2 Analysis
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Figure 4.46: The retrieval efficiency. The field
recovery efficiency of the experimental (red) and
simulated (blue) echo pulses versus the delay 2τ.
The function [f(τ)]2 (green) is scaled such that
f(τ = 0) = 1 and shown for comparison. The ex-
perimental and simulated retrieval efficiencies fol-
low the function [f(τ)]2 as Ee = 0.03|f(τ)|2 and
Et = 0.21|f(τ)|2, respectively. The dash-dotted line
corresponds to the retrieval efficiency with infinite
T2.

retrieval efficiency

An important figure of merit for
this experiment is the field re-
trieval efficiency E, that we de-
fined at the beginning of this
chapter as the ratio between the
energy recovered during the echo
and the energy of the incom-
ing pulse. The amplitude of the
echo is seen to decrease with τ

due to spin decoherence follow-
ing the function f(τ) fitted in
Fig. 4.39. Accordingly the experi-
mental retrieval efficiency Ee fol-
lows approximately the relation
Ee = 0.03|f(τ)|2, reaching Ee =

2.4 · 10−4 for 2τ = 17µs (see
Fig. 4.46). Reaching the quantum
regime however requires a recov-
ery efficiency E close to 1, and
therefore calls for a quantitative
understanding of our measure-

ments imperfections. In this aim, we compare our experimental findings to the



184 experiment 2 (read): multimode retrieval of few photon fields

results of the numerical simulations performed by Brian Julsgaard at Aarhus
University. Compared to what is described in Section I.3, it is necessary to
consider the two spin classes with different coherence time T2,A and T2,B (see
Fig. 4.39). This was achieved by running the simulations twice with a single co-
herence time T2A (respectively T2B) and combining the results1 according to the
spin class weights A and B. The simulations and experimental data are com-
pared in Fig. 4.46 and 4.47. The measurements are quantitatively reproduced,
although with a discrepancy in the amplitude of the echo by a factor 2.5.
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Figure 4.47: Retrieval of multiple weak microwave pulses initially stored in the spin
ensemble: the comparison with numerical simulations.

We attribute this discrepancy to the imperfect modeling of decoherence. In-
deed, our simulations treat spin decoherence in the Markov approximation,
which is not adequate for a spin bath environment which displays strong mem-
ory effects. In particular this Markov approximation describes improperly the
dynamics of a spin under the action of a microwave drive, as happens during
the refocusing pulse. This non-Markovian bath causes the Rabi oscillation of a
single spin to decay faster than the spin-echo damping time T2 as was observed
in [73] for instance. This effect is not included in our simulations and might
explain the remaining discrepancy between the simulations and experimental
data.

factors limiting the retrieval efficiency

We can extract from the simulations an interesting figure of merit, which is
the efficiency that would be obtained if the NVs had infinite T2. Indeed, the

1 Further simulations have shown that this approximation is well justified.
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simulated retrieval efficiency in Fig. 4.46 is well fitted by the relation Et =

0.21|f(τ)|2. This indicates that Et would reach 0.21 if the coherence time was
infinite. The finite spin coherence causes a ∼ 103 reduction of the retrieval
efficiency, thus appearing as the main limitation to the retrieval efficiency in
this hybrid circuit.

The second limiting factor to the retrieval efficiency is the finite spins cou-
pling to the cavity. When repumped, spins absorbed only 75% of the incom-
ing microwave pulses in the present experiment (see inset in Fig. 4.43), and
inversely, they re-emit in the cavity with the same efficiency. The finite spin
absorption and re-emission in the cavity thus causes a ∼ 0.752 reduction of
the retrieval efficiency. This effect depends only on the cooperativity, which
is a parameter adjustable by the choice of the resonator quality factor. With a
cooperativity superior to 1 (as in the experiment reported in Chapter III), the
absorption and re-emission would be perfect.

The remaining ∼ 0.43 reduction of the retrieval efficiency is attributed to the
imperfection of the refocusing pulse. We inferred in Section IV.2.1.3 and con-
firm experimentally in Section IV.5.1.1 that precise π-pulses cannot be applied
to all the spins due to the strong field spatial inhomogeneity of the microwave
field generated by the planar resonator. This means that only the fraction of the
spins which are inverted by the refocusing pulse participate to the emission of
the echo. To summarize, the efficiency budget is:

2.4 ·10−4 = 10−3︸︷︷︸
finite coherence time

× 0.752︸ ︷︷ ︸
finite coupling to the cavity

× 0.43︸︷︷︸
imperfections of the refocusing pulse

The progress margins are discussed in Chapter V.

6 N V C L O C K T R A N S I T I O N S F O R L O N G C O H E R E N T
S T O R A G E

The previous experiments demonstrate that the storage and retrieval in a spin
ensemble is possible, paving the way towards the development of an oper-
ational quantum memory for superconducting qubits. A quantum memory,
however, is only useful if it has long enough memory times. In our experi-
ments, the storage time was limited to few microseconds due to the relatively
short coherence time of the spin ensemble. This decoherence was caused by
the magnetic environment of the spin ensemble, mainly due to the large con-
centration of P1 centers in our samples, which interact with the NVs by dipolar
interactions. If the NV frequency was stationary with respect to magnetic field,
they would become insensitive to first order to the P1 centers and hence should
have an enhanced coherence time. The spin mixing caused by the strain that
we described in Section I.2.2.1 induces such sweet spots: they are called clock
transitions (CTs) because of their high-finesse that can be used in the context
of frequency standards. An enhancement of the echo coherence time at the CTs
has been reported by G.Wolfowicz et al. [40] with bismuth donors in silicon.
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In the following, we investigate the echo coherence times at the CTs with NV
center.

6.1 atomic clock transitions in nv centers in diamond
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Figure 4.48: Origin. The NV eigenstates present
sweet spots dωNV/dB = 0, at which the NV en-
ergy is insensitive to first order magnetic field fluc-
tuations. These points originate from an effect of
strain and are mI-dependent.

To understand the origin of the
clock transitions, we have to take
a closer look to the NV Hamil-
tonian. As explained in Section
I.2.2.1, the degeneracy at zero
magnetic field is lifted due to
the effect of strain and local elec-
tric fields. The NV eigenstates
are shown for a typical value of
the strain parameter E in Fig. 4.48

as a function of B the magnetic
field along the NV axis. At zero-
magnetic field, the frequency is
stationary, which yields a first or-
der insensitivity to magnetic field
fluctuations. This point B = 0 cor-
responds to a clock transition. Ad-
ditionally, in our sample the hy-
perfine coupling with the I = 1

nuclear spin of the 14N nitrogen
atom causes the two transition fre-

quencies between mS = 0 and |±〉 to become mI-dependent, resulting in 6 dif-
ferent possible transition frequencies ωmI,±(B). As a result, dωmI,±/dB = 0 at
B = mIBhf with Bhf = A‖/|γe|, defining three mI-dependent points where the
NV energy is insensitive to first order magnetic field fluctuations. These three
clock transitions are positioned at B = −Bhf for mI = −1 (CT1), B = 0 for
mI = 0 (CT2) and B = +Bhf for mI = +1 (CT3) as shown in Fig. 4.49. At the
CTs, the contribution of the magnetic field fluctuations to the NV linewidth is
reduced to second order and the strain and electric field fluctuations become
dominant.

We have seen in Fig. 4.17 that in our sample the strain E increases approach-
ing the zero-field splitting, which broadens the NV linewidth. This means that
contrary to the isolated NV center case where the free induction decay time
T∗2 becomes longer at the CTs (as evidenced in [117]), T∗2 decreases in our case.
Strain fluctuations, however, are expected to be mainly static implying that
their effect can be refocused. As a result, at the CTs we thus expect to see an
enhancement of the echo coherence time T2.
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Figure 4.49: The three atomic clock transitions in NV center spins. The clock transitions
are positioned at B = −Bhf for mI = −1 (CT1), B = 0 for mI = 0 (CT2) and B = +Bhf for
mI = +1 (CT2).

6.2 full system spectroscopy

In this section, we extend the spectroscopy performed in Section IV.3.2.2 to
different magnetic field to identify experimentally the three clock transitions
points. We then verify that the spectrum can be quantitatively understood at
all magnetic fields with the distributions of NV Hamiltonian parameters we
have extracted at zero field.

6.2.1 Magnetic field dependent spin susceptibility

The linear resonator was designed purposely to have a large linewidth (see
Section IV.2.1.2). This makes it possible to probe the spins within a relatively
large magnetic field span around the zero-field splitting. The NV spectrum is
probed as in Section IV.3.2 by measuring the complex reflection coefficient S11
of a continuous microwave signal with frequency ω for various applied mag-
netic field BNV . A continuous optical irradiation at PL = 0.2mW is applied to
polarize the spins at p = 0.68. The probe power corresponds to n ≈ 20 photons
in the resonator, sufficiently low to avoid changing the spin polarization, and
for the Holstein-Primakoff approximation to remain valid. We show in Fig.4.50

the corresponding spin susceptibility calculated using the formulas Eqs. 1.111,
1.112 in Section I.3.3, taking into account the losses induced in the resonator by
the laser irradiation.

Noteworthy the energy levels are well resolved. At large |BNV |, one identi-
fies the two spin groups: the first one shows a linear BNV dependence which
originates from the N-Orth group, the other has a quadratic dependence with
the magnetic field coming from the Orth group. The contributions from the
two groups overlap, the lines broaden, and a complicated pattern emerges at
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magnetic fields closer to 0. We distinguish the three CTs for the N-Orth group
at BCT1,BCT2,BCT3 = −0.09, 0,+0.09mT.
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Figure 4.50: Full NV spectroscopy. The spin susceptibility is measured as a function of the
magnetic field BNV by microwave reflection measurement. The spin signal is increased by
polarizing the spins by a continuous 0.2mW optical irradiation. Blue, red and green curves are
cut at BNV = 0, 0.09, 0.6mT.

6.2.2 Comparison to the results of numerical simulations

In Section IV.3.2.2, we have extracted the mI-dependent distributions of NV
Hamiltonian parameters for the two spin groups (Orth and N-Orth). These dis-
tributions can be used to quantitatively understand the spin susceptibility at
any magnetic field of Fig. 4.50. In this aim, the susceptibility is computed for
BNV without further adjustable parameters and rescaled to match the spin po-
larization of the experiment. The comparison between the experimental and
computed susceptibilities is shown in Fig. 4.51. The mI contributions to the
susceptibility are also shown (sum of the hyperfine components of two spin
groups Orth and N-Orth). One observes that the agreement is semi quantita-
tive with some discrepancies visible at high magnetic fields.

The contributions of the six spin classes (mI = 0,±1 for the two spin groups
Orth and N-Orth) to the spin susceptibility provide information on the relative
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weight of the spins that are at the CT (IN CT) and not (OUT CT), for a fixed
magnetic field. For the N-Orth group, at BNV = BCT2, spins mI = 0 are IN CT
while spins mI = ±1 are OUT CT. At BNV = BCT1 (respectively BNV = BCT3 ),
spins mI = −1 (respectively mI = +1) are IN CT while spins mI = 0 and mI =

+1 (respectivelymI = −1) are OUT CT. For the Orth group, this is different due
to its quadratic dependence on the magnetic field. The hyperfine component
mI = 0 is IN CT and the two others mI = ±1 are OUT CT independently of
the magnetic field (true at low magnetic field).
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Figure 4.51: Comparison of the measured spin susceptibility with the results of numer-
ical simulations. Measured (top left) and computed (top right) two-dimensional plots of the
spin susceptibility. The bottom panel shows the spin susceptibility at BNV = 0, 0.09, 0.6mT.
The dash-dotted line is the computed spin susceptibility, rescaled to match the experimental spin
polarization. The computedmI contributions to the spin susceptibility are also shown (red, pur-
ple and light blue dash-dotted lines). At BNV = 0mT, the contributions from mI = −1 and
mI = +1 add up (green dash-dotted line).

Two spin contributions (IN and OUT CT) are thus expected for the echo, sum-
marized in the Table. This suggests an echo decay with two time constants
T2,IN and T2,OUT and relative weight AIN/AOUT corresponding to the relative
weight of the IN and OUT CT computed spin classes contributions to the spin
susceptibility.
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BNV = BCT1 BNV = BCT2 BNV = BCT3

IN CT mI = 0 Orth mI = 0 Orth mI = 0 Orth
mI = −1 N-Orth mI = 0 N-Orth mI = +1 N-Orth

OUT CT mI = ±1 Orth mI = ±1 Orth mI = ±1 Orth
mI = 0,+1 N-Orth mI = ±1 N-Orth mI = −1, 0 N-Orth

For CT2, this model is not approximate, since the slopes δω
δBNV

of the spin
classes within IN CT (respectively OUT CT) are identical. For CT1 and CT3,
this is an approximation: the six spin classes involve strictly speaking six time
constants since the slope δω

δBNV
of the spin classes energies levels are different.

Within IN CT (respectively OUT CT) the slope δω
δBNV

of the spin classes are
close, which justify for CT1 and CT3 the dissociation in two time constants at
the CTs rather than six. In the following, we measure the echo coherence times
for various magnetic fields and use the predicted relative weight to deconvolve
the contribution to the echo decay of the spins which are IN and OUT CT.

6.3 dependence of the echo coherence time on the magnetic

field

6.3.1 Protocol and setup for coherence time measurement
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Figure 4.52: Variation of the probe frequency
with BNV . The echo coherence time dependence on
the magnetic field BNV is measured on resonance
with the mI = 0 component of the NV.

The protocol and setup for this
measurement are identical to
Fig. 4.37 of Section IV.5.1.2. The
spins are first polarized at 55%
with an optical pulse of duration
4 s and power 0.2mW. A 2µs stor-
age pulse with power −60dBm is
then applied, followed by a 1µs
refocusing pulse after a variable
delay τ. The echo signal of am-
plitude A is detected at time 2τ
by homodyne detection. Note that
the duration of the microwave
pulses and of the subsequent free
induction decay signal makes it
possible to properly measure A

only for τ > τ0 with τ0 = 3µs. This restriction will be a constraint for the de-
termination of the echo decay in the following because it implies that we miss
the beginning of the curve, which is important to determine the shape of the
echo. The echo coherence time dependence on the magnetic field is measured
at the central NVs resonance. To do so, the probe frequency is varied with BNV

according to the function ω(BNV) = A+

√
E2 + (geµBBNV cos(β))2, an approx-

imation of the NV Hamiltonian with D = 2.8775MHz and E = 1MHz. We
show in Fig. 4.52 the function ω(BNV) superimposed on the NV spectrum.
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6.3.2 Experimental result and analysis

The resulting A(BNV , τ) is shown in Fig. 4.53a. The echo is seen to decay slower
in the region around zero-field and longer decay tails are observed at the three
magnetic field values B = −0.09, 0,+0.09mT corresponding precisely to the
CTs positions. This is shown more quantitatively in Fig. 4.53b where the time
τ1 at which A(2τ1)/A(2τ0) reaches 0.1 is plotted.
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Figure 4.53: Dependence of the echo decay on the magnetic field BNV . (left) Two-
dimensional plot of the echo amplitude A(BNV , τ). The spins of the N-Orth group contribute
induce longer decay tails at the three magnetic field values BNV = −0.09, 0,+0.09mT cor-
responding to the clock transitions. The overall effect in the zero-field region arises from the
mI = 0 spins of the N-Orth group contribution. (right) Corresponding time Tdec at which the
amplitude of the echo is reduced by 10. At the CTs, the characteristic decay time Tdec shows
an enhancement by a factor ∼ 2.
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Figure 4.54: Two-dimensional plot of the char-
acteristic decay time Tdec(ω,BNV). At BNV =

BCT1,BCT2,BCT3, the measured characteristic de-
cay time is long independently of the probe fre-
quency, confirming the absence of spurious effect.

To verify that the enhancement
at the CTs is indeed linked
to the magnetic field bias and
not to the frequency for in-
stance, we repeat these measure-
ments for different frequencies
ω. To do so, both the mag-
netic field and the probe fre-
quency are swept linearly and
the echo signal detected. The re-
sulting Tdec(BNV ,ω) is shown in
Fig. 4.54. We observe that the co-
herence time enhancement at the
CTs is verified at all frequencies
that lift the ambiguities on the ef-
fect of the frequency adjustment
ω(BNV).
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We return to Fig. 4.53. The three hyperfine components mI = −1, 0,+1 of the
N-Orth group contribute successively to the echo decay with a long coherence
time resulting in Tdec,CT=1,2,3 = 13.5, 13, 14 µs at the three clock transitions re-
spectively; outside these three points, Tdec is shorter. The overall effect in the
region around zero-field is attributed to the Orth group: for low magnetic fields,
the frequency of the mI = 0 component of the Orth group stays stationary with
BNV to a good approximation, which results in a stable long coherence time
contribution from this group to the echo decay all along the scan. When the
magnetic field increases however, the probe frequency ω(BNV) departs from
the Orth group resonance and its long coherence time contribution to the echo
signal vanishes.

To quantify the enhancement in term of coherence time, the difficulty is to
deconvolve the contribution to the echo decay of the spins that are in and out
the clock transitions. Indeed, at all magnetic field, the contribution to the echo
decay of the three hyperfine components mI = 0,±1 of the two groups Orth
and N-Orth add up, which make it difficult to identify respective spin classes
coherence times. The solution is to dissociate the IN and OUT CT contributions
as introduced in Section IV.6.2.2. This suggests to fit the decay with two time
constants T2,IN and T2,OUT with weight AIN and AOUT .

80706050403020108070605040302010
0.01

0.1

1

8070605040302010

0.1

1

 Data
 Fit Simple Exp
 Fit Dbl Exp

0.1

1 BNV = -1.08 mT BNV = -0.76 mT BNV = -0.43 mT

BNV = -0.33 mT BNV = -0.29 mT BNV = -0.23 mT

BNV = -0.09 mT BNV = -0.04 mT BNV = 0.00 mT

2τ (µs) 2τ (µs) 2τ (µs)

M
ax

 A
m

p.
M

ax
 A

m
p.

M
ax

 A
m

p.

Figure 4.55: Convergence from double to single exponential decay at large field. Mea-
sured (dots) decay of the echo maximum amplitude as a function of τ. Green and red lines
are respectively an exponential and bi-exponential fit. At large field, the single exponential fit
becomes reasonable.

We show in Fig. 4.55 in log scale a double exponential fit of the echo decay at
various magnetic fields together with an exponential fit (in red) for compari-
son. The fit with two time constants yields a good agreement, which validates
the interpretations. At large fields however, the single exponential fit becomes
reasonable which suggests that we approach a single spin contribution. This
can be understood coming back to the mI-dependent susceptibility of Fig. 4.51:
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at large magnetic field the contribution to the echo signal of the Orth group
which is IN CT vanishes because the probe frequency ω(BNV) get far from
their resonance and the only left contribution to the echo decay comes from
the N-Orth group which is OUT CT. This results in a single exponential decay
at large field in Fig. 4.53 and 4.55.

We show in Fig. 4.56a the echo decay together with single and double expo-
nential fits at the three clock transitions. One sees that the fit with two time
constants is well justified at these magnetic field points. We attribute the long
time constant of the double exponential fit to the spins which are IN CT and
find T2,CT1 = 19.5µs, T2,CT2 = 14.1µs and T2,CT3 = 19.8µs.
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Figure 4.56: Measurement of the coherence times IN and OUT CT. (top) The coherence
time of the spins IN CT corresponds to the long coherence time of the bi exponential fit of the
echo decay at the three CTs. (left) The single exponential fit at large field gives the coherence
time of the spins IN CT.

To quantify the enhancement, we need to compare to the coherence time value
out of the clock transitions T2,oCT . The shortest time constant T2,OUT fitted here
however is not a good estimation of T2,oCT because at the CTs the energy lev-
els slopes of the spin classes which are OUT CT are slightly different. Instead,
at large magnetic field we have mentioned above that there is a single con-
tribution form the N-Orth group which are OUT CT with a slope identical
for the three hyperfine components. We show in Fig. 4.56b a single exponen-
tial fit of the echo decay at large magnetic field (BNV = −0.76mT) and find
T2,oCT = 3.1µs. The Hahn-echo time T2 thus shows an enhancement by a fac-
tor T2,CT/T2,oCT ∼ 5 at each of the three clock transitions. The limitation of the
coherence time at the CTs is attributed to dynamical fluctuations of the charge
(i.e strain E) around the NVs.
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6.4 advanced analysis : spin classes contributions to the echo

decay

As discussed above, it is difficult to measure the coherence times of the spins
which are IN and OUT the CTs with the echo signals because we only measure
the sum of the echoes from all the spins. This calls for a deconvolution of
the spin classes contributions if possible. One way to do this is to look at the
frequency dependence of the echo decay curves. Indeed, our model predicts a
non-trivial frequency dependence of the ratio between spin classes IN and OUT
CT. A difficulty arises from our lack of knowledge of the shape (exponential,
Gaussian,...) of the decay curves. In this section, we focus on the clock transition
at zero magnetic field (CT2), for which the model with two spin contributions
IN and OUT CT is exact and investigate the echo as a function of the probe
frequency.

6.4.1 Theoretical predictions
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Figure 4.57: Theoretical predictions at CT2.
(top) IN and OUT CT contributions to the spin
susceptibility. (bottom) Corresponding AIN and
AOUT weights.

We compare the experimental
weights to the weights of the
IN and OUT CT spin contribu-
tions predicted by numerical sim-
ulations. The predicted spin sus-
ceptibility is shown in Fig. 4.57,
together with the IN and OUT
CT spin contributions at CT2 (see
Section IV.6.2.2). To be compared
to the experimental weights, we
further renormalize the two spin
contributions to 1. One observes
that the contributions from the
spins which are OUT CT domi-
nate far from the zero field split-
ting, as expected from the energy
levels. Close to it, an inversion
of the spin contributions with a
major contribution from spins IN
CT while minor one from the
OUT CT appears. This inversion
is smooth because of the spin fre-
quency distribution induced by
strain. There is a second effect of
the strain distribution which ap-
pears far from the zero field split-
ting: spins IN CT are still present.
In the following, we measure the
echo decay at BNV = BCT2 as a
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function of the probe frequency and perform fit with various functions to com-
pare the experimental weight to these predictions.

6.4.2 At zero magnetic field (CT2)
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Figure 4.58: Dependence of the echo decay on the probe frequency at BCT2. Two peaks
are visible, corresponding to the spin transitions |0〉 → |±〉.

Echo measurements are performed in the same conditions as in Section IV.6.3.
The measured echo decay as a function of the probe frequency is shown in
Fig. 4.58. In the middle, one distinguishes the zero field splitting where there
is almost no spins. The |0〉 → |−〉 transition is visible below this freq, and the
|0〉 → |+〉 above. The two transitions are broadened by the strain distribution as
explained above. In the following, we fit the echo decay with various fit func-
tions with a short τ1 and long τ2 components and compare the experimental
weights A1 and A2 to the predictions AOUT and AIN of Fig. 4.57.

We show in Fig. 4.59 the results of the fit with a double exponential f1(2τ) =
A1 exp(−2τ/τ1) +A2 exp(−2τ/τ2) together with few fit examples. The quality
of the fit is good (Fig. 4.59a), justifying further analysis. In Fig. 4.59b, one ob-
serves a long time constants τ2 with weight A2, and a shorter one τ1 with
weight A1. The long component is attributed to the spins which are IN CT, the
short to the spins OUT CT. One sees that τ1 is almost independent of the probe
frequency, which confirms that the magnetic field fluctuations is the main lim-
itation to coherence for these spins. The long time constant, however, presents
symmetrical peaks at 6MHz from the zero field splitting. This symmetry sug-
gests that this is not an artifact of our measurements. One possible explanation
is an effect of the strain distribution. We note that the further from the zero-
field splitting, the larger the strain splitting, and the more protected the spins
against first order magnetic field fluctuations, implying longer T2.
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Figure 4.59: Double exponential fit of the echo decay. (top) Measured (dots) and fitted
(red line) echo decay for a selection of probe frequency. (bottom) Corresponding fitted A1,2 and
decay times τ1,2 as a function of the probe frequency.

Far from the zero-field splitting, there are two spin classes: those having large
zero field splitting (more protected) and those having small zero field splitting
(less protected) but being coupled to neighboring 13C that shift their resonance
frequencies (on the order of 1− 100MHz). The opposite contributions to coher-
ence from the two spin classes might explain the peaks. Note that this long time
constant dependence on the probe frequency will be found in all the following
fits.
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To estimate the pertinence of the
fit, we compare the experimental
weights to the predicted one. For
that, A1 and A2 are first renor-
malized to 1 (see Fig. 4.60) and
superimposed to the theoretical
predictions in Fig. 4.61. Far from
the zero field splitting (out of the
central region), the experimental
weighs are in reasonable agree-
ment with the predictions. In the
central region however the agree-
ment is not satisfying. We at-
tribute part of this discrepancy to
an artifact of the fit. In the central
region, τ2 → τ1 suggesting a sin-
gle exponential fit: it becomes dif-

ficult to dissociate A1 from A2. As a result, the 5 central points are irrelevant
in the plot shown in Fig. 4.61.
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Figure 4.61: Comparison of the double exponential weights to the theory. The red area
corresponds to the region in which the fit are irrelevant.
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A double exponential fit is
a natural shape to try, but
we can improve it. Indeed,
it is known that decoherence
due to dipolar interactions
with a spin bath should
rather lead to a Gaussian
or cubic Gaussian shape for
the echo [118]. Since on the
other hand the long-term de-
cay seems to be well fitted
by an exponential, we also
fit our data in the following
by a sum of an exponential
decay (for the IN CT spins)
and of a Gaussian and cubic
Gaussian (n = 2, 3) for the
OUT CT spins. The result is
shown in Fig. 4.63 and 4.64, with good fit quality.
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decay for a selection of probe frequency.

There is a qualitative resemblance of the fitted weights with the predictions of
the model, with in particular the inversion between the two contributions IN
and OUT CT which is reproduced.
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In conclusion, the fit above suggests an echo decay sum of an exponential
decay and a higher order one (n > 2). Our predictions are semi quantitatively
validated. The omission of the first echo decay points in our measurements
however, does not make it possible to determine this higher order echo decay
type with sufficient accuracy.



7 C O N C L U S I O N O N E X P E R I M E N T 2 : T H E R E A D S T E P

We have demonstrated the multi-mode retrieval of few-photons microwave
pulses initially stored in the spin ensemble, with active reset by optical pump-
ing and refocusing by a strong microwave pulse. Coming back to the figures of
merit defined in the introduction, the experiment reaches nMW ≈ 3, nsp ≈ 0.1,
n̄ ≈ 100, and E ≈ 2 · 10−4, many orders of magnitude closer to the quantum
regime than previous state-of-the-art experiments [102].

Reaching the quantum regime however requires a recovery efficiency E close
to 1. The factors limiting the efficiency in this experiment were identified with
the help of the numerical simulations, showing that a one order of magni-
tude increase of the coherence time would be necessary to reach the quantum
regime. A sample with better coherence properties was provided to us after
this experiment, with which preliminary experiments were performed. This is
the object of the next Chapter.

Beside this result, we have identified 3 magnetic field values, for which the
echo coherence time is enhanced. Put back in the perspective of the develop-
ment of a quantum memory for microwave quantum field, those points have
potential interest for memory operation.





V
T O WA R D S A N O P E R AT I O N A L Q U A N T U M

M E M O RY

This chapter concludes the work we have made towards a spin ensemble
quantum memory. It gathers a selection of experiments and realizations
initiated at the end of this thesis work that illustrate the next steps to reach
the operational level.
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1 R E A C H I N G E F F I C I E N T M E M O RY O P E R AT I O N S

In order to reach the operational level, the fidelity of the write and read steps
of the memory protocol must be close to 1 and the reset operation compatible
with the timescale of operation of superconducting circuits. The experiment
reported in Chapter III suggests that the fidelity of the write step required to
operate the quantum memory is within reach. The limiting factors for the reset
and read steps have been well identified; it remains to address them experi-
mentally. In the following, we present a first experiment showing significant
improvement of the read and reset efficiency and propose solutions for bringing
it up to the operational level.

1.1 storage and retrieval of photon fields at the single pho-
ton level with improved efficiencies

In the experiment of Chapter IV, the main limitation to the retrieval and reset
efficiencies were respectively the short echo coherence time of the spins and the
poor alignment of the laser beam. Here we reproduce the same experiment, but
with a new diamond crystal with longer NV coherence times and in a setup
compatible with alignment optimization. These combined improvements make
it possible to store and retrieve microwave pulses at the single photon level, a
prerequisite to reach the operational level.

1.1.1 Experimental realization

Figure 5.1: The diamond sam-
ple. The picture of the diamond
is taken under continuous irra-
diation at 532 nm. The red color
corresponds to the photolumi-
nescence of the NVs. An inclu-
sion is visible on the top face.

The experiment The hybrid circuit we developed
for this experiment follows the same design strate-
gies we employed for the experiment described in
Chapter IV. In particular we keep the same geom-
etry, perform optical repumping of the spins and
ensure that the resonator and the spins are in the
low cooperativity regime for stabilizing the spins
after refocusing. The diamond sample we use
for this experiment however is enriched isotopi-
cally in 12C and has lower P1 concentration yield-
ing longer coherence times (picture on Fig. 5.1).
It was prepared by our collaborator Pr. Isoya at
Tsukuba University, with a concentration ρNV ∼

1.76 ·105 µm−3 (1ppm) of NV centers and nitrogen
impurities of the same order. The spin linewidth
is estimated to be w/2π ∼ 300 kHz for each peak,
and the echo coherence time T2 ∼ 100µs (using the

relations in Section I.2.3). The resonator parameters are designed accordingly
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with a frequency ωr/2π = 2.93GHz and quality factor Q ∼ 103, in order to
satisfy C < 1 while still keeping sufficient signal.

Vacuum chamber of the dilution refrigerator

Optical window

Figure 5.2: The optical access. The
laser beam enters in the vacuum cham-
ber of the dilution refrigerator via an
optical window, and is aligned to hit
the diamond region above the induc-
tance of the resonator.

The diamond crystal is placed on top of
the resonator inductance and oriented such
that the applied magnetic field BNV is par-
allel to the [1, 1, 0] crystalline axis. As in
the experiment described in Chapter IV, half
of the spins (group N-Orth) make an an-
gle β = 35.5 °with BNV and the other ones
(group Orth) are orthogonal to it. The esti-
mate of the coupling strengths for the two
spin groups yields gens,Orth/2π = 3.18MHz
and gens,N−Orth/2π = 2.47MHz. The use of
a sample with better coherence properties is
not the only difference with the experiment
described in Chapter IV. We also performed
the experiment in a new dilution refrigera-
tor, which contrary to the previous one offers
optical access to the low temperature stage.
This makes it possible to optimize the laser spot position with the sample al-
ready cold. The laser beam is sent from the outside through an optical window
(see the picture on Fig. 5.2), and aligned using a setup at room temperature.
A convergent lens is associated to the alignment stage to focus on the small
diamond region above the inductance only.

Spectroscopy of the system The resonator reflection spectrum S11 is mea-
sured with a vector network analyzer, with microwave power corresponding
to ∼ 100 photons, sufficiently low to avoid altering the equilibrium spin po-
larization. The complex resonator reflection coefficient r(ω) at zero magnetic
field is shown on the left panel of Fig. 5.3, yielding ωr/2π = 2.915GHz and
Q = 650± 100, corresponding to a damping rate κ = 2.8 · 107 s−1. The spins
are not visible at zero field since the resonator frequency is far from the NV
resonance at ∼ 2.88GHz.

The NV characteristic 3-dips response is obtained for BNV ≈ 1.74mT (right
panel of Fig. 5.3), corresponding to the spin group N-Orth. The fit yields ≈
200 kHz1 spin linewidth for each line of the triplet, much narrower than in
previous work due to the lower P1 center concentration and to the isotopic
enrichment in 12C. We keep this magnetic field BNV unchanged throughout
the experiments reported in the following.

1 Upper estimate for the spin linewidth. The resolution of this measurement is 200 kHz, which
makes it impossible to measure narrower linewidth.
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Figure 5.3: Spectroscopy of the system. (left) Reflection spectrum S11 of the resonator.
The fit of the phase response (red line) yields resonator frequency ωr/2π = 2.915GHz and
quality factor Q = 650± 100. (top right) Reflected amplitude |S11| as a function of the applied
magnetic field BNV . The three dips characteristic of the NV hyperfine structure are observed.
On the bottom, the measured (dots) and computed (line) reflection spectrum at the resonator
frequency ωr.

1.1.2 Reset efficiency
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Figure 5.4: Active reset of the spins. The relative
spin polarization for PL = 280µW as a function
of TL increases then saturates around TsatL = 1 s.
Since PL > PL,max, the saturation corresponds
to the maximum polarization allowed by optical re-
pumping.

The spin reset efficiency is mea-
sured as described in Section IV.4.
The spin polarization was first
probed under continuous irradi-
ation (data not shown) to deter-
mine the power PL,sat = 280µW
at which the spins reach the max-
imum spin polarization ∼ 90%
achievable by optical repumping.
The relative spin polarization af-
ter repumping with an optical
pulse of increasing length TL was
then measured with a 20ms reso-
nant probe pulse with microwave
power corresponding to n̄ ∼ 1 in
the resonator. The result of this
measurement is shown in Fig. 5.4.
The relative spin polarization in-
creases with a characteristic time

TL,wp = 0.150 s and then saturates around TL,sat = 1 s suggesting that the
maximum polarization is reached. This result can be compared to those re-
ported in Chapter IV in term of energy contained in the optical pulse. Here
the complete spin polarization is obtained for an optical pulse of energy
∼ PL,sat × TL,sat = 0.280mJ instead of ∼ 6mJ, thus with an improvement on
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the reset efficiency of more than one order of magnitude. This demonstrates
that the physical limit on the optical pulse energy needed is not reached yet.
Note again that, for technical reasons, the alignment was not optimized in this
experiment, suggesting that the time needed to repump the spins can be fur-
ther reduced.

In the experiments which follow (except where specified), the spins are po-
larized at p = 75% with an optical pulse of duration 200ms and power 280µW.
The experimental sequence is repeated at 4Hz and the refrigerator cold stage
heated up at 95mK, an improvement by a factor 4 on the temperature com-
pared to the experiment described in Chapter IV.

1.1.3 Read efficiency

The storage and retrieval of microwave pulses are performed as in the experi-
ments described in Section IV.5. Hahn echoes at high power were first obtained
to determine the refocusing power PR,sat = −20dBm at which the echo ampli-
tude saturates. The echo coherence time T2 was then measured by applying a
microwave pulse (θ) with power −71dBm followed by a 1µs refocusing pulse
(R) with power PR,sat (see Fig. 5.5). The exponential fit yields2 T2 = 84 µs, con-
firming that the spin ensemble has ten times longer echo coherence time than
the one used in the experiment reported in Chapter IV.
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Figure 5.5: Hahn echo sequences and spin coherence times. (left) The echo (e) is observed
at time 2τ = 100µs. Saturation of the amplifiers (shown in red) limits the measurable ampli-
tude to about 1.5V. (right) Measured (dots) and calculated (red solid line) decays of the echo
maximum amplitude as a function of τ. The calculated decay is a combination of the decays
due to the bath of 213 ppm of 13C (dashed orange curve), 0.6 ppm of P1 centers causing spec-
tral diffusion (dashed green line) and 0.2 ppm of NV centers causing instantaneous diffusion
(dashed blue line). An exponential fit (black solid line) yields a coherence time T2 = 84 µs.

Decoherence occurs due to dipolar interactions with the bath of paramagnetic
species present in the sample (13C nuclei, P1 centers, and NV centers), whose
dynamical evolution causes a randomization of the phase acquired by NV cen-
ters during the two halves of the spin-echo sequence. The 13C nuclei bath pre-

2 Note that there is only one time constant here since we operate at large magnetic field (see
Section IV.6).
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cesses at the Larmor frequency γnBNV = 2π · 130 kHz (γn being the 13C gyro-
magnetic ratio), giving rise to a characteristic oscillation pattern [75, 76, 119]
in the spin-echo amplitude, visible in the data on the right panel of Fig. 5.5.
The dynamics due to flip-flop events within the P1 center bath is responsible
for a decoherence process known as spectral diffusion [120]. Finally, the bath
consisting of NV centers at frequency ωr (only half of the total NV concen-
tration) unavoidably undergoes spin flips due to the refocusing pulse itself,
which constitutes an efficient decoherence process called instantaneous diffu-
sion [121]. The various contributions of each bath were calculated using the
cluster-correlation expansion method [122], with concentrations [P1] = 0.6ppm,
[NV−] = 0.4/2 = 0.2 ppm, and [13C] = 213ppm, compatible with the sample
parameters. Good agreement with the data is obtained. Overall, dipolar inter-
actions between NV centers appear to be the dominant source of decoherence
in our experiment.

Since the echo efficiency was limited by the finite spin coherence time in the
experiment of Chapter IV, a significant improvement is expected with this new
sample. For the experiments at the few photons level, we keep the refocusing
pulse power PR,sat and delay time τ = 50 µs. The storage and retrieval of a
microwave pulse corresponding to ∼ 60 photons in the resonator is shown in
the left panel of Fig. 5.6. By comparison with the reflected θ pulse with the
spin saturated (black curve), we determine that 29% of the photons contained
in the microwave pulse are absorbed by the spins.
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Figure 5.6: Retrieval of few-photon fields initially stored in the spin ensemble with
0.3% efficiency after 100µs. The echo e is obtained for a low power incoming θ pulse pop-
ulating the resonator with only ∼ 60 photons (left) and < 1 photon (right). The refocusing
pulse was suppressed in the room-temperature detection chain by a microwave switch to avoid
saturating the follow-up amplifiers. The results of numerical simulations performed by Brian
Julsgaard are superimposed on the graphs (dash-dotted red lines).

The efficiency of the read step of the memory protocol described in Chapter II,
defined as the ratio EREAD = Ee/Eabs between the energy recovered during the
echo and the energy absorbed by the spins, reached EREAD = 0.3% after 100µs
storage. The storage and retrieval of a microwave pulse corresponding to < 1
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photon in the resonator is shown on the left panel of Fig. 5.6. Note that for this
experiment, the spins are polarized at p = 51% with an optical pulse of du-
ration 100ms to reduce the acquisition time, and subsequently absorbed only
20% of the incoming pulse. The echo is observed, demonstrating that when the
retrieval efficiency is sufficient, we can indeed retrieve an echo out of a single
photon field.

These measurements are accurately reproduced (dash-dotted red lines) by
numerical simulations performed by Brian Julsgaard at Aarhus University. The
simulations use a 130 kHz spin linewidth and a collective coupling constant
gens/2π = 410 kHz (when all spins are polarized) for each HF peak, in agree-
ment with the experimentally determined parameters. Noteworthy, the dis-
crepancy between the simulations and experiments is negligible in this new
experiment in which the coherence time is ten times longer compared to the
previous experiment (see Section IV.6.2.2), which strengthens the hypothesis
that the discrepancy observed in Chapter IV is due to the imperfect modeling
of the decoherence during the refocusing pulse. These simulations confirm that
finite T2 and the imperfection of π pulse are the main factors limiting the effi-
ciency, while the finite cooperativity C = 0.22 limits both the absorption and
the echo emission out of the cavity.

1.1.4 Conclusions

We obtain an improvement of the reset efficiency by more than one order of
magnitude compared to the experiment reported in Chapter IV, thanks to a bet-
ter alignment of the laser beam. This demonstrates that the physical limit on
the optical pulse energy needed for reset is not reached yet, opening the way
for further optimization. Note in addition that the refrigerator cold stage was
stabilized below 100mK, a pre requisite for the operation of complex supercon-
ducting circuits, that was not reached in the experiment reported in Chapter IV.

Furthermore, thanks to the better coherence properties of the spin ensemble,
we were able to demonstrate the retrieval of few photon field after 100µs with
EREAD = 0.3% efficiency, again a one order of magnitude improvement in both
storage time and retrieval efficiency compared to the experiment reported in
Chapter IV (EREAD = E/0.75 = 2.6 · 10−4 after 17 µs storage). In this new exper-
iment, the purposely designed low cooperativity is the main limiting factor to
the retrieval efficiency with a factor 0.292 for absorption and re-emission, fol-
lowed by the finite coherence time with a factor |f(τ)|2 = |exp(−2τ/T2)|

2 = 0.1
and the imperfection of the refocusing pulse with a factor 0.43 identical for
this resonator geometry. This confirms that better fidelity can be obtained with
experimental progress. Finally, the experiment with < 1 photon demonstrates
that when the efficiency of retrieval is sufficient, we can achieve storage and
retrieval out of a single photon field, as required to reach the quantum level.
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1.2 reaching the operational level

At present, the coherence of the NV spin ensemble is at a level sufficient to
not remain a prohibitive limitation to the retrieval efficiency. To reach efficient
memory operation [28] however, a technical limitation must be addressed: the
imperfection of the refocusing pulse. As explained in Chapter IV, it is indeed
impossible to apply well-defined π-pulses in our hybrid circuits because of the
large inhomogeneity of coupling strength within the ensemble. This inhomo-
geneity arises from that of the magnetic field sustained by the superconducting
resonator. There are several approaches to overcome this issue. Two of them
have been studied and partially developed during this thesis work: the adia-
batic inversion of the spin ensemble and the control of the spatial distribution
of the spins. These two strategies constitute interesting future directions of this
project.

Performing an adiabatic inversion of the spins The adiabatic inversion of a
spin proceeds along the same line as the adiabatic transfer of population we
made in Chapter III between the qubit and the resonator. In the latter, we made
use of a crossing of the qubit and the resonator states to transfer the popula-
tion instead of using a resonant transfer. Similarly, there are two possibilities
to invert the spins: either applying a resonant π-pulse at the spin transition
frequency or bringing adiabatically the spin from one state to the other. These
two techniques are illustrated in Fig. 5.7. To perform an adiabatic inversion,
the spin is submitted to a drive with time-dependent frequency and ampli-
tude, the conditions for an adiabatic flip from spin down to spin up. Whereas
the resonant π-pulse requires a precise pulse area, the adiabatic passage is
robust against small-to-moderate variations of the interaction parameters, i.e
against variations of the spin coupling strength, reducing the refocusing pulse
imperfections.

Non adiabatic
inversion

Adiabatic inversion

Figure 5.7: Adiabatic VS non-adiabatic
inversion. The resonant inversion makes
use of the Rabi oscillations of the popula-
tions, for which inversion from the initial
state | ↓〉 to the other state | ↑〉 occurs when-
ever the pulse area (i.e the time-integrated
Rabi frequency) equals an odd multiple of
π, while the population returns to | ↓〉
when the pulse area equals an even multiple
of π. The adiabatic passage is based upon
adiabatic following of an eigenstate of the
full Hamiltonian (an adiabatic state), which
links the bare states | ↓〉 and | ↑〉.

This technique borrowed from NMR [123] is used for echo experiments with
ensemble in the optical domain [25] and was recently adapted for the manipu-
lation of a spin ensemble in a superconducting resonator [41].
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diamond substrate

Implantation

Figure 5.8: The diamond as a substrate for
the superconducting circuit. The circuit is pat-
terned on the diamond substrate and the Nitro-
gen atoms implanted at posteriori. A mask is
placed on the superconducting layer, such that
the region in which the spins are implanted is re-
stricted to the gap between the central conductor
and the ground planes.

Tailoring the spin spatial distribu-
tion The second approach is to con-
fine the spin ensemble in a region
where the magnetic field sustained
by the resonator is uniform. A pos-
sible way to achieve this is to use
NV centers created by implantation
of Nitrogen atoms through a resist
mask, patterned to fill a region of
the substrate on which is fabricated
the superconducting resonator (see
Fig. 5.8). The difficulty is to obtain
a large enough spin concentration
to reach the strong coupling regime.
Implantation as a method of nanopo-
sitioning NV centers has been used in several experiments, i.e in [43].

2 R U N N I N G T H E F U L L Q U A N T U M M E M O RY
P R O T O C O L

Running the full quantum memory protocol we proposed in Chapter II re-
quires the development of a physical setup made of a resonator with both
frequency and quality factor tunable. This task is challenging compared to
what was developed up to now in microwave circuit engineering [35, 124]:
when strong refocusing pulses are applied, usual ways of tuning the resonator
parameters by inserting a SQUID (as used in Chapter III) are not allowed be-
cause the resonator current would be above the junction critical current. We
have worked on the development of alternative solutions which are compati-
ble with the refocusing sequence. In the following, we present an experimental
demonstration of one of the two functionalities required, the frequency tunabil-
ity, and propose solutions for the implementation of the full physical setup.

2.1 step 1/2 : realization of a frequency tunable resonator com-
patible with refocusing pulse applications

In the memory protocol (summarized in Fig. 5.9), the requirement for the fre-
quency tunability arises for two reasons : (i) to carry the information from
the external processor to the spin ensemble (demonstrated in Chapter III), (ii)
to silence the primary echo. This experiment aims to demonstrate the second
point. The design relies on the fact that in the protocol, strong refocusing mi-
crowave pulses need to be applied only when the cavity frequency is resonant
with the spins (called "1"), and not when it is detuned (called "2"). This implies
essentially that we can design a frequency tunable resonator which does not
conserve its functionality during the refocusing pulse applications but remains
stable in frequency and quality factor at these times.
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Figure 5.9: Dynamical tuning of the resonator along the memory protocol. The periods
of resonance with the spins are marked in red. In 1, the resonator is on resonance with the spins
and contains a large intracavity field due to the applications of the refocusing pulses. In 2, the
resonator is detuned and contains low intracavity field.

2.1.1 Experimental realization

κ
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ωs

ωTF

gB-TF

MW
B
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Figure 5.10: Schematic of the circuit.
The main resonator, with frequency ωB and
damping rate κ, is coupled to the spin ensem-
ble (frequency ωs) with a coupling constant
gens. It is strongly coupled with strength
gB−TF to a second resonator with frequency
ωTF.

Design The approach consists in cou-
pling the resonator (B) to a second
resonator (TF) itself made tunable in
frequency by inserting a SQUID loop
(see Fig. 5.10). In this scheme, the res-
onator B is a linear resonator designed
at the frequency of operation (ωB), the
resonator TF a frequency tunable res-
onator designed at higher frequency
(ωTF) and both are strongly electrically
coupled (gB−TF). When TF is far de-
tuned from B, the resonator B is at
ωB, while when approaching the B res-
onance, a normal mode splitting man-
ifested by the apparition of two res-
onances separated by 2gB−TF appears.
As a result, when TF is tuned exactly on
resonance with B, the spectral region
ωB ± gB−TF becomes exempt of reso-
nance. This effect can be used to realize
a frequency tunable resonator compat-

ible with the refocusing sequence with TF made tunable in frequency by an
embedded SQUID loop:

• When |ωTF−ωB|� gB−TF, the exchange between both are negligible and
current in B cannot pass through the Josephson junction embedded in TF:
B is stable at its bare resonance frequency ωB and refocusing pulses can
be applied, satisfying the requirements for the region 1 of the protocol.
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• When |ωTF −ωB| � gB−TF, the spectral region ωB ± gB−TF is exempt of
resonance: B is not anymore at ωB, satisfying the requirements for the
region 2 of the protocol.

The hybrid circuit The superconducting circuit that we developed to demon-
strate the compatibility of this design with refocusing pulse applications is
shown in Fig. 5.11. The resonator B which is coupled to the spins is a CPW
resonator and TF a lumped element resonator. B is coupled at both ends to
measuring lines through coupling capacitances. The design parameters are
ωB/2π = 2.93GHz, ωTF/2π = 3.4GHz, gB−TF/2π = 40MHz, κ1 = 75.4 · 106 s−1

and κ2 = 1.9 · 106 s−1.

The diamond used for this experiment is the same as the one used in the
experiment reported in Chapter IV with parameters ρNV ≈ 3.52 · 105 µm−3

(2ppm), w/2π = 1MHz and T2 = 8.4µs. It is placed on top of the resonator
B and positioned in the middle of the resonator mode. As in the experiment
described in Chapter IV, there are two spins groups with respect to the applied
magnetic field BNV , Orth and N-Orth, resulting in two different ESR frequen-
cies ωOrth,± and ωN−Orth,±. The cooperativity with the N-Orth spin group is
estimated to C = 0.92, bringing theoretically the experiment in the low cooper-
ativity regime.

Figure 5.11: The fabricated circuit with panels zooming on its most important features.
The resonator B of CPW type extends from the left to the right panels. It is designed in meanders
in the middle where the diamond crystal is positioned. The resonator TF of lumped element type
is visible on the right panel, with the current line used for tuning its frequency. The circuit
is made in Niobium on a silicon substrate using the process described in the Appendix A. The
SQUID is fabricated on top by double-angle evaporation of aluminum through a shadow mask
patterned using e-beam lithography.

The circuit is cooled in the same dilution refrigerator as the one used for the
experiment reported in Chapter IV with identical microwave setup (see Fig. 4.8),
plus an additional transmission line to tune the frequency of the resonator TF.
Note that the fiber was not attached to the sample for repumping the spins
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in this experiment. The active reset is however not crucial since we perform
Hahn echoes at high power and subsequently there is no need to repeat for
averaging1.

2.1.2 Tuning the resonator frequency

We first study the circuit at BNV = 0mT, that is with the spins out of resonance
(at 2.88GHz). For that, a vector network analyzer is used to measure the re-
flection spectrum S11, with probe power corresponding to n̄ ∼ 1000 photons in
resonator B. The result is shown in Fig. 5.12, as a function of the flux f = Φ/Φ0
applied to the SQUID loop embedded in TF.
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Figure 5.12: Reflection spectrum S11 of the circuit. Reflected phase (top left) and amplitude
(top right) as a function of the applied flux f = Φ/Φ0, at BNV = 0mT. Two f-dependent
resonances are visible, showing successive anticrossings at fV ,a = 0.32 and fV ,b = 0.67. The
reflected phase at f = 0, fV ,a, fW is plotted in the bottom panel.

1 We wait 20min between each Hahn echo sequence for the spins to relax in the ground state.
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f

Spins

Figure 5.13: The anticrossing at f = fV ,a. The
red line is a fit with the model described in Section
I.1.3.1, yielding gB−TF/2π = 37MHz.

Two resonances are visible in
the resonator spectrum. They are
both f-dependent, showing two
successive anticrossings at fV ,a =

0.32 and fV ,b = 0.67. These anti-
crossings correspond to a normal
mode splitting between the two
eigenmodes of the coupled B-TF
system, confirming that both res-
onators are in the strong coupling
regime. Note that far from reso-
nance, we can distinguish the TF
resonance from the one of B. At
this probe power indeed, the res-
onator TF with a SQUID embed-
ded is slightly non linear (see the
bottom panels of Fig. 5.12). At f =
0, the linear resonance at 2.90GHz
corresponds to the B resonance
and the second at 3.08GHz, which shows a slight non linearity, corresponds to
the TF resonance.
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Figure 5.14: Spectrum of the resonator B at fW .
The fit of the phase response (red line) yields res-
onator frequency ωB/2π = 2.907GHz and quality
factorQ = 195±5. The effect of spurious resonance
in the measurement setup is visible in amplitude.

The spectrum around the an-
ticrossing at fV ,a is shown in
Fig. 5.13. The fit of the eigen-
modes (using Eq. 1.56 in Section
I.1.3.1) yields gB−TF/2π = 37MHz.
Note that the spins are visible at
2.88GHz. At fW = 1/2, the res-
onator TF is far detuned and only
the resonator B response is visi-
ble (see Fig. 5.14). The fit of the
reflected phase yields resonance
frequency ωB/2π = 2.907GHz
and quality factor Q ∼ 195, corre-
sponding to a resonator linewidth
κ = 93 · 106 s−1. In the next section,
we study this point fW , to deter-
mine if the photon exchange with

the resonator TF is sufficiently small to allow for the application of strong refo-
cusing pulses in B.
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2.1.3 Applying refocusing pulses to the spins

We bring the spin group N-Orth on resonance with the resonator B frequency at
fW by applying an external magnetic field BNV = 1.26mT. The NV absorption
is visible at 2.907GHz on the reflected amplitude (see Fig. 5.15).
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Figure 5.15: Reflection spectrum |S11| at BNV = 1.26mT. The spin absorption is visible on
the reflected amplitude at ωB/2π = 2.907GHz. At f = fW , the spins are on resonance with
the resonator and refocusing pulse can be applied. At f = fV ,a, the spins are out of resonance.
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Figure 5.16: Hahn echo at fW . A 0.5µs mi-
crowave pulse (θ) with power −68.5 dBm is applied
creating a transverse magnetization in the spin en-
semble, followed 6µs later by a 2µs refocusing
pulse (R) with power −30.5 dBm. The echo (e) is
observed at time 2τ, confirming that the circuit is
not affected by the application of strong refocusing
pulses. Saturation of the amplifiers (shown in red)
limits the measurable amplitude to about 1.8V.

In these conditions we apply
a typical spin-echo sequence as
used in Chapter IV. The recovered
echo is shown in Fig. 5.16, which
proves that it is indeed possible
to refocus the spins in this cir-
cuit. As a next step towards the
echo silencing described in Chap-
ter II, we test that the application
of the strong refocusing pulse still
makes it possible to detune dy-
namically the resonator a few mi-
croseconds later. To do so, as de-
scribed on the top of Fig. 5.17,
we measure the reflection coef-
ficient during a detuning pulse,
and compare the results with and
without an initial strong refocus-
ing pulse applied to the spins.
The sequence is repeated for in-
creasing flux f and the circuit
measured with probe power of
−128dBm, corresponding to n̄ ∼ 5 photons in the resonator B. The spectra
obtained with and without the initial application of refocusing pulse are com-
pared in Fig. 5.17. They are identical, demonstrating that it is indeed possible to
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detune the resonator after the application of a refocusing pulse. This validates
the compatibility of the hybrid circuit with the full quantum memory protocol.
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Figure 5.17: Demonstration of dynamical tuning of the resonator frequency after the
refocusing pulse. (top) Experimental sequence. A strong refocusing pulse (R) is applied on
resonance with B at ωB(fW), followed after a 1µs delay by a fast tuning of the resonator
frequency at ωB(f). The circuit is measured afterwards by homodyne detection. The sequence
is repeated for increasing f. (bottom) Measured reflected phase after the dynamical frequency
tuning without (left) and with (right) the initial application of a strong refocusing pulse. The
spectra are identical, confirming that the circuit can be detuned after the application of strong
refocusing pulses.

2.1.4 Silencing the echo by detuning the cavity

To demonstrate this part of the protocol, we apply on resonance the same
microwave pulse θ and R than in the previous section and compare the echo
obtained on resonance to the one obtained after detuning the cavity at ω(fV ,b)

1µs after the application of the refocusing pulse. The results are shown in
Fig. 5.18, with in blue the echo obtained on resonance, and in red the echo
obtained with the cavity detuned. We observe that the echo is reduced by 34%
in energy compared to the echo obtained in normal condition, validating an
effect of the detuning of the resonator on the spin emission. The silencing of
the echo by detuning is however partial. This remaining emission by the spins
is attributed to the insufficient detuning of |∆B| = 40MHz given the coupling
constant between the two resonators.
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Figure 5.18: Partial silencing of the echo by dynamical detuning of the resonator. (top)
Protocol. The Hahn echo sequence at f = fW of Fig. 5.16 is applied, followed 1µs after the
application of the refocusing pulse by a detuning of the cavity at ωB(fV ,a). The sequence is
repeated without detuning for comparison. (bottom) Measured reflected amplitude with (red)
and without (blue) detuning after the refocusing pulse. The echo obtained when the resonator
is at ωB(fV ,a) is reduced by 34% in energy.

2.1.5 Conclusions

This experiment demonstrates the operation of a frequency tunable resonator
in which refocusing of the spins can be performed. One of the two require-
ments of the physical setup is thus met to run the full quantum memory proto-
col. The silencing of the echo was also tested and showed a partial reduction of
the echo amplitude by 34% in energy, bringing a proof of concept of this part
of the protocol. The achievement of full echo silencing calls however for the
implementation of the same circuit with larger coupling strength gB−TF. Such a
circuit has been realized at the end of this thesis work and in a geometry com-
patible with the reset operation. We characterized this circuit with no diamond
on top (see Fig. 5.19). The detuning |∆B| observed is ∼ 2π× 250MHz, a result
promising for the full silencing of the echo in a next experiment.
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Figure 5.19: Towards a complete silencing of the echo. (left) Fabricated circuit showing
the resonators B and TF. The resonator B, to which the spins are coupled, is made in a geometry
compatible with the reset operation. It is coupled to the frequency tunable resonator TF by
a large coupling capacitance (CB−TF ∼ 300 fF). (right) Reflected phase onto the circuit. A
detuning ∆B ∼ 2π× 250MHz is achieved at f = 0.

2.2 realizing a hybrid circuit able to run the full memory pro-
tocol

In the quantum memory protocol described in Chapter II, we need not only
the resonator frequency to be tunable, but also its quality factor. Here we sim-
ply want to indicate two possible approaches to achieve this goal, which we
unfortunately had no time to test experimentally.
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Figure 5.20: Schematic of the circuit. The circuit
B-TF is coupled to the external measurement lines
via a resonator RQ, that can be detuned dynami-
cally.

Coupling through a tunable res-
onator The first approaches con-
sists in replacing the coupling ca-
pacitor that couples the resonator
B to the external measurement
lines by an auxiliary frequency
tunable resonator (RQ), which can
be tuned IN and OUT resonance
with B (see Fig. 5.20). When RQ is
resonant with B, photons can eas-
ily leak out of B and the quality
factor of B is low, while when RQ
is detuned, the leak of photons
through RQ is reduced and the
quality factor of B is high. Since

the circuit must enable the application of refocusing pulses, the dynamical de-
tuning of RQ is obtained as explained previously, by coupling Q to a fourth
resonator (TQ), itself made tunable in frequency by inserting a SQUID loop. At
total:

• When |ωTQ −ωRQ|� gRQ−TQ, the resonator B has a low quality factor.

• When |ωTQ −ωRQ|� gRQ−TQ, the resonator B has a high quality factor.
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Note that this implementation makes it necessary to carefully design the res-
onator Q, B and the coupling capacitances Cc, gRQ−B to obtainωRQ = ωB when
TQ and TF are far detuned.
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Figure 5.21: Schematic of the circuit and simu-
lations. The microwave tee can be either a commer-
cial tee connected to the circuit K and B-TF (placed
in separated sample box) via microwave cables, or
patterned directly together with K and B-TF on a
single circuit. The simulations of this circuit relies
on the formulas in [125].

Using destructive interference at
the input of the resonator This
approach is inspired by the work
of Lehnert and coworkers on co-
herent feedback network [125]. It
relies on 3 elements (see Fig. 5.21):
the resonator B which is coupled
to the spin ensemble, a frequency
tunable resonator K and a mi-
crowave tee connecting the two
first elements to the external mea-
surement channel. In this scheme,
microwave signals leaving B and
carrying information on the spins
are split at the tee, with most
of the amplitude evenly between
the external measurement lines
and the tunable resonator K in-
put, and a small fraction reflected
back to B. K reflects the signal
with a frequency phase shift, fur-
ther split by the tee with a por-
tion which interferes with the B-
to-external signal, enhancing or
diminishing the rate of informa-
tion leaving B. This interference
enhances or diminishes the effec-
tive microwave damping rate κB
of B, as seen by the microwave input port. This effective tuning of the damp-
ing rate κB is controlled by the resonator K center frequency, which is made
tunable in frequency with pulsed local magnetic flux through an embedded
SQUID loop. The length of the transmission lines between the tee and both
elements is designed to obtain an effective high damping rate κB,max when K
is tuned on resonance with B, while recovering the intrinsic low damping rate
κB,0 when K is far detuned from B. Note that this implementation does not
impose strict conditions on the parameters of the resonator K.

We simulated, designed and fabricated two circuits along these design strate-
gies, which should be measured in a future experiment (see Fig. 5.22).
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Figure 5.22: Two realizations towards a circuit able to run the full memory protocol.
(left) A realization using the first approach. The design parameters are ωB/2π = ωRQ/2π =

2.88GHz, ωTF/2π = ωTQ/2π = 3.20GHz and gB−TF/2π = gRQ−TQ/2π = 300MHz.
A coupling capacitance Cc = 200 fF to the external measurement lines was added to set the
lower limit of the quality factor of B at ∼ 100. (right) A realization using the second approach.
The circuit B-TF, the tunable resonator K and the tee are patterned on a single circuit (K not
shown on this picture). The design parameters are ωB/2π = 2.88GHz, ωTF/2π = ωK/2π =

3.20GHz and gB−TF = 300MHz. The coupling capacitance of B to the external measurement
lines is designed to set the lower limit of the quality factor of B at ∼ 200.
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In this thesis work, we designed a memory protocol able to store and retrieve
on-demand the state of a large number of qubits in a spin ensemble and we
demonstrated building blocks of its implementation with NV centers in di-
amond. The protocol requires a challenging combination of advanced tech-
niques of superconducting quantum circuits and pulsed electron spin reso-
nance. The experimental results we obtained are summarized in Fig. 6.1. The
first step, the coherent storage of a qubit state into the spin ensemble, was
achieved in a first experiment with ∼ 95% efficiency. The second step, the re-
trieval using refocusing techniques of a single photon stored in the spin ensem-
ble, was obtained in the classical regime in a second experiment with ∼ 0.3%
efficiency after 100µs memory time. The third step, the reset of the spin mem-
ory by optical repumping, was adapted in a dilution refrigerator and achieved
with ∼ 90% efficiency in 1 s. Finally the multi-mode character of the NV spin
ensemble memory was evidenced in a multiple microwave pulses storage and
retrieval experiment.
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ψ ψ ρ11 2 n
ρ2 ρn
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POLARIZATION

ERESET ~ 90%, in 1s at 100mK EWRITE ~ 95% EREAD ~ 0.3%, after 100µs storage

Figure 6.1: Summary of the experimental results.

These results bring a proof of concept of a spin-based quantum memory for
superconducting qubits. In this perspective, the efficiency of the write step re-
quired to operate the memory is almost reached. The read step efficiency how-
ever must be enhanced by two orders of magnitude. The simulations [21, 28]
and experiments we made in the first part of Chapter IV indicate that the phys-
ical limits are not reached yet, suggesting that the implementation up to the op-
erational level still requires new experimental developments. On the memory
side, the coherence time of the NV spin ensemble we used in our experiments
was improved by two orders of magnitude since the beginning of this thesis
work thanks to the rapid progress on highly-doped diamond fabrication made
in Tsukuba University. At present, the memory time is around ∼ 100µs and
should probably be further extended up to seconds by including dynamical
decoupling [120, 17] in the protocol.

The realization in the near future of a quantum memory able to store tens
of qubits states for milliseconds and retrieve them on demand seems not an
impossible task. The next challenges is to combine the building blocks demon-
strated in this thesis work in a single experiment, in which the retrieve state
would be reconstructed by quantum state tomography to be compared to the
encoded one. This requires the development of a circuit made of a resonator
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with both frequency and quality factor tunable that is compatible with refo-
cusing of the spins. By developing an alternative approach for the frequency
tunability in the second part of Chapter V, we made one of the two steps to-
wards the implementation of this physical setup.

The work presented in this thesis also opens the way towards new direc-
tions for a spin-ensemble quantum memory, which might be explored in future
projects in the group. A first interesting possibility would be to harness the hy-
perfine interaction of each NV center with the nuclear spin of the nitrogen atom
to transfer quantum information from the electron spin degree of freedom into
the nuclear spin ensemble, in order to benefit from the much longer coher-
ence times of nuclear spins. A prerequisite would be to polarize the nitrogen
nuclear spins into a well-defined quantum state, which could be possible by
adapting techniques demonstrated for single NVs at room-temperature, based
on optical pumping [126], to NV ensembles at millikelvin temperatures. The
optical NV reset demonstrated in this work is a first step in that direction. An-
other path is to use other types of electron spins, with potentially interesting
properties. An outstanding system is the bismuth dopant in silicon, which has
been shown to possess prominent clock transitions at which remarkably long
Hahn-echo coherence times of several seconds were reported in isotopically
purified silicon [40], which makes it an ideal system for a quantum memory.
In collaboration with J. Morton’s group at UCLondon, a project led by J. Pla is
presently making efforts in that direction.

Besides realizing a quantum memory at microwave frequencies, spin-based
hybrid quantum circuits as studied in this thesis have other potential applica-
tions as an emergent quantum technology. A first one would be the coherent
conversion of a microwave photon into the optical domain, which should be
feasible as discussed in two recent proposals [127, 128]. Alternatively, spin-
based hybrid circuits are ideal playgrounds to investigate magnetic resonance
detection with ultimate sensitivity. In that spirit, the sample described in Chap-
ter III was also used to demonstrate qubit-based microwave detection of the NV
centers spin resonance, with a gain of several orders of magnitude compared
to more traditional ESR spectrometers [129].
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Figure 6.2: Optical litography pro-
cess.

The resonators, transmission lines and flux
lines are fabricated by optical lithography on
a niobium thin-film. The substrate used is
a 2-inch high resistivity (> 1000Ωcm) sili-
con wafer, covered with 50nm of thermally
grown SiO2. The lithography consists in five
steps:

1. Sputtering of a niobium thin-film by a
DC electric discharge in a low density
(10−2 mbar) argon plasma, that bom-
bards a niobium target. The duration of
the process determines the thickness of
the film: 200nm to 300nm in our case
to support the application of strong mi-
crowave pulses.

2. A layer of photosensitive resist (Shipley
S1805) is spun on the wafer and baked.

3. The wafer is UV-exposed through a
chromium on quartz mask and devel-
oped to dissolve the exposed resist.

4. Etching of the uncovered niobium, by
Reactive-ion etching (RIE) with a SF6
plasma at a pressure of 0.3mbar.

5. Dissolution of the remaining resist.

This process is performed with wafers con-
taining 45 chips, which are then diced on 3×
10mm2 chips, containing various resonators
for hybrid circuit experiments. The Josephson junctions are fabricated after-
wards, by double-angle evaporation of Aluminium through a resist mask pat-
terned by e-beam lithography.
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B N V C E N T E R D I S T R I B U T I O N

The method which follows is used to extract the distribution of NV Hamilto-
nian parameters in Section IV.3.2.2. It reminds us that the NV center Hamilto-
nian (for 14N nucleus) in the secular approximation is

H/ h = DS2Z + E(S
2
X − S

2
Y) +QI

2
Z +AIZSZ + geµB(SXBX + SYBY + SZBZ)

with D ' 2π× 2.8775 GHz the zero-field splitting, E the strain splitting, Q =

2π×−5 MHz the nuclear quadrupole momentum, A = 2π×−2.14 MHz the
hyperfine coupling of the NV to the 14N nucleus, and B the magnetic field felt
by the NV. Our ensemble of NV centers has a certain frequency distribution
because the Hamiltonian parameters have a distribution, that we assume to be
static. We consider in the following that both A and Q are fixed for all NVs.
On the other hand, BZ has evidently a certain distribution characterized by a
function ρB(BZ) such that the number of spins seeing a certain magnetic field
between BZ and BZ + dBZ is given by N(BZ) = ρB(BZ)dBZ. This distribution
originates from the different magnetic environments due to the local random
distribution of P1 centers and 13C nuclei. Note that although one can safely
assume that BX, BY and BZ have the same distribution, we will only consider
the BZ distribution because it is the one that couples most strongly to the NV
center, a good approximation when D � E, |geµBB| as is the case here. In the
following we write B ≡ BZ, and we note that B = BNV cosα+ b, BNV being
the applied magnetic field at an angle α from the NV axis and b the z compo-
nent of the field due to the local environment of each NV. What is constant in
the problem is the distribution of b, ρb(b) The strain parameter E has another
distribution ρE(E). And finally, the zero-field splitting D is distributed with
density ρD(D), which is validated by recent work [130].

The Hamiltonian diagonalization leads to 9 states, corresponding to the 3

nuclear spin states IZ = +1, 0,−1, and the 3 NV center states due to their spin
S = 1. This gives 6 transition frequencies ωmI,±[E,B,D]. Our goal is now to
express ρ̃(ω) as a function of ρb, ρD,ρE. We write

ρ̃(ω,BNV) =
∑
mI,±

∫ ∫ ∫
dbdEdDρb(b)ρE(E)ρD(D)

× δ (ω−ωmI,±[E,BNV ,D,b])

For ρb and ρD we will assume a Lorentzian shape, which at least for ρb has
a physical justification (the linewidth of a dipolar broadened spin ensemble is
usually Lorentzian), with a width that will be "guessed" or adapted to fit the
data. For ρE we use the BNV = 0 dataset (see Fig. 4.16 of Chapter IV) to find an
appropriate distribution.
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The formula above is in principle sufficient to compute ρ̃(ω) numerically given
ρb, ρD,ρE; however it would lead to very long calculation times and we need
to simplify it. The first simplification is that instead of explicitly diagonalizing
the Hamiltonian to obtain ωmI,±[E,BNV ,D,b] we use approximate formulas:
ω0,±[E,BNV ,D,b] = D±

√
E2 + (geµB)2(BNV cosα+ b)2

ω+1,±[E,BNV ,D,b] = D±
√
E2 + (geµB)2(BNV cosα−Bhf + b)2

ω−1,±[E,BNV ,D,b] = D±
√
E2 + (geµB)2(BNV cosα+Bhf + b)2 with Bhf =

|A/(geµB)|, considering the hyperfine interaction with the nuclear spin as a
nuclear-spin-state dependent effective magnetic field of modulus Bhf. These
formulas are valid when D � E, |geµBB|, a very good approximation in our
case. This allows to very easily invert the formula yielding, for given frequency
ω, strain E and zero-field splitting D, the local magnetic field bmI,± needed
so that ωmI,±[E,BNV ,D,b] = ω. This equation has either zero or two solutions
depending onω. For the 0→ + transitions there are two solutions ifω > D+E,
and zero else; for the 0 → − transitions there are two solutions if ω 6 D− E,
and zero elsewhere. For the 0→ + transitions:
b
(1)
0,+[ω,E,BNV ,D] =

√
(ω−D)2 − E2/geµB −BNV cosα

b
(2)
0,+[ω,E,BNV ,D] = −

√
(ω−D)2 − E2/geµB −BNV cosα

b
(1)
+1,+[ω,E,BNV ,D] =

√
(ω−D)2 − E2/geµB −BNV cosα+Bhf

b
(2)
+1,+[ω,E,BNV ,D] = −

√
(ω−D)2 − E2/geµB −BNV cosα+Bhf

b
(1)
−1,+[ω,E,BNV ,D] =

√
(ω−D)2 − E2/geµB −BNV cosα−Bhf

b
(2)
−1,+[ω,E,BNV ,D] = −

√
(ω−D)2 − E2/geµB −BNV cosα−Bhf

Identical equations apply for the 0→ −. Using that for any function g(x) which
has roots xi the equality δ(g(x)) =

∑
i δ(x− xi)/|g

′(xi)| holds, we can rewrite

ρ̃(ω,BNV) =
∑
mI,±

∫∫∫
dbdEdDρb(b)ρE(E)ρD(D)δ (ω−ωmI,±[E,BNV ,D,b])

=
∑
mI,±,i

∫∫
dEdDρE(E)ρD(D)

ρb

(
bmI,±(i) [ω,E,BNV ,D]

)
∣∣∣∂ωmI,±

∂b (bmI,±[ω,E,BNV ,D])
∣∣∣ .

Note that from the previous formulas it is clear that the density of NV centers
at a given frequency ω can have a strong dependence on the nuclear spin state.
This might explain in particular why the relative contributions of the mI = ±1
and mI = 0 to the spin echo signal at ωe/2π = 2.8795GHz were found to be
slightly different from the expected 0.66 and 0.33 by fitting the decoherence
signal (see Fig. 4.39 in Chapter IV).

A difficulty arises when
∂ωmI,±
∂b vanishes, giving rise to a divergence. To

smoothen this out, we discretize the problem: we choose some small frequency
scale dω0 and we solve the equationωmI,+[E,BNV ,D,b+db]−ωmI,+[E,BNV ,D,b] =
dω0. This equation has always two solutions, we take the Min of the two yield-
ing the quantity db[E,BNV ,D,b]. The new formula is
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ρ̃(ω,BNV) =
∑
mI,±,i

∫∫
dEdDρE(E)ρD(D)ρb

(
bmI,±(i) [ω,E,BNV ,D]

)
×db[E,BNV ,D,bmI,±[ω,E,BNV ,D]]/dω0.
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We report the storage of microwave pulses at the single-photon level in a spin-ensemble memory
consisting of 1010 NV centers in a diamond crystal coupled to a superconducting LC resonator.
The energy of the signal, retrieved 100µs later by spin-echo techniques, reaches 0.3% of the energy
absorbed by the spins, and this storage efficiency is quantitatively accounted for by simulations.
This figure of merit is sufficient to envision first implementations of a quantum memory for super-
conducting qubits.

Superconducting qubits are attractive candidates for
solid-state implementations of quantum information pro-
cessing, but suffer from coherence times shorter than
∼ 100µs [1–3]. To circumvent this issue, it has been pro-
posed to use ensembles of spins in semiconductors[4–9]
as a multimode quantum memory, able to store multi-
ple qubit states over longer periods of time, and to re-
trieve them on-demand [10]. Inspired by research on op-
tical quantum memories [11–13], realistic protocols have
been proposed recently [14, 15]. The state of a super-
conducting qubit is first converted into the state of a mi-
crowave photon, propagating or trapped in a resonator.
This photon is then resonantly and collectively absorbed
by the spin ensemble, resulting in a transverse magneti-
zation which, due to the spread of resonance frequency
within the ensemble, decays in a time T ∗

2 called the free-
induction decay (FID) time. The write step is later fol-
lowed by the need to read the stored quantum state. Both
protocols [14, 15] propose to apply sequences of π pulses
to the spins, combined with dynamical tuning of the res-
onator frequency [16, 17] and quality factor [18, 19] in
order to trigger the rephasing of the spins, resulting in
the emission of an echo at a chosen time that faithfully
reproduces the initial quantum state.

Whereas the transfer of a qubit state into a spin en-
semble has been demonstrated experimentally [20–23],
implementing the read step remains the major obstacle
to an operational microwave quantum memory. An in-
termediate goal consists in storing a classical microwave
pulse with an ultra-low power corresponding to an aver-
age of 1 photon in the resonator and to retrieve it as an
echo after a refocusing pulse, as was achieved at optical
frequencies [24, 25]. First results in this direction were

obtained using ensembles of negatively-charged nitrogen-
vacancy (NV) colour centers in diamond [26, 27] and of
rare-earth ions in a Y2SiO5 crystal [28]. The NV’s elec-
tronic spin is a spin triplet (S = 1) well suited for a
quantum memory because of its long coherence times in
pure crystals [29, 30] and the possibility of repumping it
into its ground state mS = 0 by optical irradiation at
532 nm [31] (see Fig. 1). In [27], successive low-power
microwave pulses were stored in an NV ensemble, and
retrieved later as a series of echoes after a refocusing
microwave pulse was applied. A key aspect in this ex-
periment was an active reset of the NVs to increase the
repetition rate of successive experimental sequences to
obtain sufficient statistics; this was achieved by applying
optical pumping laser pulses injected through an optical
fiber introduced in the cryostat. The echo efficiency, de-
fined as the ratio of the echo energy and the stored pulse
energy, was, however, not sufficient in [27] to observe an
echo below 100 photons on average in the resonator.

Here, using a sample with a longer coherence time and
an improved optical pumping scheme, we increase the
echo efficiency and the storage time by one order of mag-
nitude. This allows us to observe an echo with an initial
pulse power corresponding to on average only one photon
in the resonator. The diamond single crystal was synthe-
sized by the temperature gradient method at high pres-
sure and high temperature (HPHT) using 99.97% 12C-
enriched pyrolytic carbon prepared from 12C-enriched
methane as a carbon source [32], resulting in a nomi-
nal 300 ppm concentration of 13C nuclei. The original
1.4 ppm concentration of substitutional nitrogen impuri-
ties (so-called P1 centers) was partially converted into
NV centers by 2 MeV electron irradiation at room tem-
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FIG. 1. (a) Experimental setup and principle of the exper-
iment. An ensemble of ∼ 1010 spins is inductively coupled
to a planar superconducting LC resonator of frequency ωr

(with a collective coupling constant gens), cooled at 10 mK.
The resonator is measured in reflection through an input cou-
pling capacitance. Microwave pulses are produced by mix-
ing a continuous microwave source with dc pulses generated
by an arbitrary waveform generator (AWG). They drive the
spins via the microwave current induced in the resonator in-
ductance. The reflected microwave signal (including the emit-
ted echo) is amplified at low-temperature and demodulated
at room-temperature, yielding its amplitude A(t) and phase
φ(t). (b) The spins are Nitrogen-Vacancy color centers in dia-
mond, which consist of a nitrogen impurity next to a vacancy
of the diamond lattice. A dc magnetic field BNV applied par-
allel to the chip along the [110] crystalline axis so that only
NV centers whose axis are non-orthogonal to the field (shown
in blue on the figure) are Zeeman-shifted and contribute to
the signal. Laser pulses can be sent onto the diamond via a
direct optical access to the cryostat mixing chamber. (c) NV
centers energy levels in a weak magnetic field. The electronic
ground state is a spin triplet S = 1, with a zero-field split-
ting D/2π = 2.88 GHz, coupled by hyperfine interaction to
the 14N nuclear spin triplet I = 1. This splits each of the
|mS = 0〉 → |mS = +1〉 transitions into a triplet of lines.

perature followed by annealing for 2 hours at 1000◦C,
yielding a final [NV −] = 0.4 ppm and [P1] = 0.6 ppm.
A scheme of the experimental setup is shown in Fig. 1a.
The diamond is glued onto the inductance of a supercon-
ducting planar lumped-element LC resonator patterned
in a niobium thin-film on a silicon substrate. Microwave
pulses can be sent to the resonator input; the reflected
signal is amplified at 4 K and its amplitude and phase are
measured at room-temperature by a homodyne detection
setup. For resetting the spins, laser pulses at 532 nm can
be sent onto the sample through direct optical access in
the dilution cryostat.

The resonator reflection coefficient S11(ω), measured
with a network analyzer, is shown in Fig. 2a, yielding
the resonance frequency ωr/2π = 2.915 GHz and quality
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FIG. 2. (a) Phase φ of the resonator reflection coefficient
S11(ω) measured with a vector network analyzer (blue dots),
yielding ωr/2π = 2.915 GHz and Q = 650 (red line is a fit to
the data). (b) S11(ω) as a function of BNV around 1.8 mT,
showing the NV centers as a triplet of absorption dips. The
inset shows |S11|(BNV ) at ω/2π = 2.915 GHz; blue dots are
data, and red line is a fit to a sum of three Lorentzians with
linewidth 0.012 mT. (c) Measured spin polarization for a laser
pulse of power PL = 280µW as a function of its duration TL,
renormalized to its maximal value. Dashed red and black lines
indicate the laser pulse durations TL = 0.2 and 0.1 s used in
the experiments shown in Figs. 3 and 4, corresponding to
relative polarizations p/pmax = 0.72 and 0.62.

factor Q = 650, fixed by the coupling to the measure-
ment line through the input capacitor. NV centers are
detected by their absorption of the microwave whenever
their transition frequency matches ωr. The energy levels
of the NV centers are schematically shown in Fig. 1c. The
electronic spin is coupled by hyperfine interaction to the
spin-triplet (I = 1) nuclear spin of the 14N atom, result-
ing in a splitting of the |mS = 0〉 → |mS = +1〉 transition
into three resonances separated by 2.2 MHz correspond-
ing to the three different mI states of the 14N . A dc
magnetic field BNV is applied parallel to the chip, along
the [110] crystalline axis of the diamond. Out of the four
possible orientations of NV centers along [111] crystalline
axes, two are perpendicular to the field and are there-
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fore not Zeeman-shifted, so that they do not contribute
to the signal. The remaining two families are brought
into resonance with ωr at BNV ∼ 1.8 mT, as shown in
Fig. 2b where the hyperfine triplet is clearly seen as dips
in |S11(ω)| when they cross the resonance. A ∼ 200 kHz
Full-Width Half Maximum (FWHM) linewidth is mea-
sured for each line of the triplet, much narrower than in
previous work [20, 27], due to a lower P1 center concen-
tration and to the isotopic enrichment in 12C.

For optical pumping of the NV centers, the laser beam
is focused to a 0.6 mm diameter at the sample level, with
a power of 0.28 mW. In this geometry, it is straightfor-
ward to optimize the laser beam position on the sam-
ple in order to minimize the amount of power needed
to reset the spins in their ground state. The efficiency
of the optical pumping is measured as explained in [27].
The experimental sequence includes an initial strong mi-
crowave pulse that saturates the spins, followed by a
laser pulse of varying duration TL. After a 300µs delay
necessary for relaxation of the quasiparticles generated
in the superconducting thin film and in the silicon sub-
strate, the reflected amplitude of a few-photon microwave
pulse reveals the spin polarization. The extracted po-
larization level p(TL) is shown in Fig. 2c. It changes
only slightly above TL = 1 s, indicating that the maxi-
mum NV polarization possible with irradiation at 532 nm
(pmax = 90% according to [33]) is reached. Compared
to earlier work [27] where the laser position could not
be optimized, the maximum polarization can be reached
with ∼ 20 times lower pulse energy. This makes it possi-
ble to perform the experiments at a faster repetition rate
(0.2 Hz) and at a cryostat temperature of 100 mK instead
of 400 mK [27].

High-power Hahn echoes are measured at BNV =
1.74 mT, using microwave pulses at ω = ωr according
to the sequence shown in Fig. 3a. The sequence starts
with a laser pulse of duration TL = 0.2 s, resulting in a
spin polarization p = 0.72 pmax = 0.65. At t = 0, a first
pulse generates a transverse magnetization in the ensem-
ble, followed by a refocusing microwave pulse at t = τ
which induces rephasing of the spins at 2τ and emission
of a spin-echo into the measuring line, as seen in Fig. 3a.
Note that due to spatial inhomogeneity of the microwave
field generated by the planar inductance, it is not possible
to apply a well-defined Rabi angle to all the spins, which
results in a reduced echo visibility. The echo amplitude
is measured as a function of the delay 2τ between the
first pulse and the echo, and is found to decay approx-
imately exponentially with a time constant T2 = 84µs
(see Fig. 3b). Decoherence occurs due to dipolar inter-
actions with the bath of paramagnetic species present
in the sample (13C nuclei, P1 centers, and NV centers),
whose dynamical evolution causes a randomization of the
phase acquired by NV centers during the two halves of
the spin-echo sequence. The 13C nuclei bath precesses at
the Larmor frequency γnBNV = 2π · 130 kHz (γn being
the 13C gyromagnetic ratio), giving rise to a characteris-
tic oscillation pattern [34–36] in the spin-echo amplitude,
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FIG. 3. (a) Hahn echo sequence. The spins are first reset
in their ground state by a laser pulse of power 280µW and
duration 0.2 s. A first 1µs microwave pulse θ at ωr, of power
−71 dBm, induces a transverse magnetization which decays
within T ∗

2 . A 1µs-long microwave refocusing pulse (R) of
power −20 dBm is applied at τ = 50µs, which rephases the
spins at 2τ . The microwave amplitude (blue curve) shows
both the reflection of the two microwave pulses driving the
spins (with their amplitude trimmed by saturation of our de-
tection chain, as indicated in red), as well as the echo emit-
ted at 2τ upon rephasing of the spins. (b) Measured decay
of the echo amplitude A as a function of 2τ (open circles).
Calculated decay due to a bath of 213 ppm of 13C (dashed or-
ange curve), 0.6 ppm of P1 centers causing spectral diffusion
(dashed green line), 0.2 ppm of NV centers causing instanta-
neous diffusion (dashed blue line), and the combination of the
three contributions (solid red line). The theory curves have
been scaled in amplitude according to the data. An exponen-
tial fit (black solid line) yields a coherence time T2 = 84µs.

visible in the data of Fig. 3b. The dynamics due to flip-
flop events within the P1 center bath is responsible for a
decoherence process knwon as spectral diffusion [37]. Fi-
nally, the bath consisting of NV centers at frequency ωr

(only half of the total NV concentration) unavoidably un-
dergoes spin flips due to the refocusing pulse itself, which
constitutes an efficient decoherence process called instan-
taneous diffusion [38]. The various contributions of each
bath were calculated using the cluster-correlation expan-
sion method [39, 40], with concentrations [P1] = 0.6 ppm,
[NV −] = 0.4/2 = 0.2 ppm, and [13C] = 213 ppm, com-
patible with the sample parameters. Good agreement
with the data is obtained (see Fig. 3b). Overall, dipolar
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FIG. 4. Spin-echo at the few-photon level. The experimental
sequence is the same as in Fig. 3, but with an initial microwave
pulse having a power corresponding to (a) 60 and (b) 1 photon
inside the resonator. The signal was averaged over 3×104 (a)
and 5 × 105 (b) sequences, with a repetition rate of 5 Hz (a)
and 10 Hz (b), limited by the laser pulse duration. Blue solid
lines are experimental data, red dashed-dotted lines are the
results of simulations as explained in the text.

interactions between NV centers appear to be the domi-
nant source of decoherence in our experiment.

Since the echo efficiency was limited by the finite spin
coherence time in earlier work [27], a significant improve-
ment is expected with this new sample. The echo effi-
ciency is first measured by performing a Hahn echo se-
quence with a low-power microwave pulse. The experi-
mental sequence, shown in Fig. 4, starts with a 0.2 s re-
pumping laser pulse, followed after 300µs by a microwave
pulse populating the resonator with on average 60 pho-
tons, and, τ = 50µs later, by a refocusing pulse. A spin-
echo is detected at t = 2τ . The efficiency, defined as the
energy recovered during the echo divided by the absorbed
energy, reaches E = 0.3%.

The whole spin-echo sequence was simulated by numer-
ical integration of the coupled differential equations ob-
tained after discretizing the resonance frequency and cou-

pling constant distribution in the spin ensemble (see [14]).
A 130 kHz linewidth of each HF peak and a collective
coupling constant gens/2π = 410 kHz (when all spins are
polarized), are compatible with the experimentally deter-
mined parameters and yield quantitative agreement with
the shape of both the absorbed microwave pulse and the
spin-echo amplitude. The discrepancy noted in [27] is
absent in the present experiment, probably because de-
coherence is negligible during the driven evolution. The
finite T2 and the imperfect π pulse due to the spread in
Rabi frequencies are the main factors limiting E, while
the finite cooperativity C = 0.22 [14] limits both the ab-
sorption and the echo emission out of the cavity.

Owing to the larger value of E, it becomes possible to
reach the level where a spin-echo can be observed for an
initial pulse populating the resonator with only a single
microwave photon on average. This is shown in Fig. 4b.
Note that a shorter repumping time of 0.1 s (with the
same laser power) was used, in order to enable a larger
number 5 × 105 of repetitions of the experiment. The
shorter repumping step yields a lower spin polarization
p = 0.56 as shown in Fig. 2 and a lower cooperativity
of 0.19, which results in a correspondingly lower echo
efficiency than in Fig. 4a. These results are again quan-
titatively reproduced by the simulations with the same
parameters as mentioned earlier, using the experimen-
tally determined repumping efficiency.

The coherence times demonstrated in this experiment
match those requested in a realistic quantum memory
protocol [14], which suggests that a first implementation
is within reach. The remaining challenges are the im-
provement of the refocusing pulse using adiabatic pas-
sage as demonstrated recently [41], and the integration
of dynamical tuning of the resonator frequency and qual-
ity factor with more elaborate spin-echo sequences. The
latter is needed in particular to silence the echo emis-
sion [11, 12] in-between the two π pulses in the course
of the read step of the procotol. The microwave currents
needed to drive the spins during the refocusing pulses are
much stronger than typical Josephson junctions critical
currents. This precludes the use of integrated SQUIDs as
in [20, 42], while a combination of coupled linear and tun-
able resonators [43] may be employed as tuning elements
in the resonator.

In conclusion we report the measurement of a spin-echo
with an initial microwave pulse at the single-photon level.
The figures of merit reached are sufficient to envision first
implementations of a spin-ensemble multi-mode quantum
memory for superconducting qubits.
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Roch, A. Auffeves, D. Vion, D. Esteve, and P. Bertet,
Phys. Rev. A 85, 012333 (2012).

[43] C. Grezes, Towards a spin-ensemble quantum memory for
superconducting qubits, Ph.D. thesis, Université Pierre-
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A quantum memory at microwave frequencies, able to store the state of multiple superconducting qubits
for long times, is a key element for quantum information processing. Electronic and nuclear spins are
natural candidates for the storage medium as their coherence time can be well above 1 s. Benefiting from
these long coherence times requires one to apply the refocusing techniques used in magnetic resonance, a
major challenge in the context of hybrid quantum circuits. Here, we report the first implementation of such
a scheme, using ensembles of nitrogen-vacancy centers in diamond coupled to a superconducting
resonator, in a setup compatible with superconducting qubit technology. We implement the active reset of
the nitrogen-vacancy spins into their ground state by optical pumping and their refocusing by Hahn-echo
sequences. This enables the storage of multiple microwave pulses at the picowatt level and their retrieval
after up to 35 μs, a 3 orders of magnitude improvement compared to previous experiments.

DOI: 10.1103/PhysRevX.4.021049 Subject Areas: Condensed Matter Physics,
Quantum Information

I. INTRODUCTION

The ability to store a quantum state over long times is a
desirable feature in many quantum information protocols.
In the optical domain, quantum memories are necessary to
implement the quantum repeaters needed for future long-
distance quantum networks and are the object of active
research [1–5]. Quantum memories at microwave frequen-
cies have also become of great interest in recent years
because of the development of superconducting qubits,
which have their resonance frequency in the GHz range, in
the perspective of implementing holographic quantum
computing [6–8]. For such schemes, the memory should
act as an ideal multiqubit register, able to store the state of
large numbers of qubits over long times and to retrieve
them on demand.
Spin ensembles have emerged as promising candidates

for such a microwave quantum memory because of their

long coherence time [9–12] and because a spin ensemble
withstands many orthogonal collective modes that are well
suited to store multiple qubit states. Existing proposals
[13,14] (inspired by optical quantum memory protocols
[4,5]) proceed in two distinct steps. In the write step, the
microwave field prepared in a well-defined quantum state
jψi (for instance, by a superconducting qubit) is absorbed
by the spin ensemble. This generates a transverse mag-
netization that decays rapidly in a time T�

2 due to the spread
of resonance frequencies in the ensemble. Given the
weakness of the coupling constant of a single spin to the
microwave field, efficient absorption requires embedding
the ensemble in a high-quality factor microwave resonator
in order to reach the so-called high-cooperativity regime
[15–19]. The second step (read) of the memory operation
consists of retrieving the initial state. It relies on the
principle of Hahn echoes [20]: dephasing due to inhomo-
geneous broadening can be counteracted by applying a π
pulse to the spins at time τ, which acts as a time reversal
and, thus, causes all the magnetic dipoles to return in phase
(refocus) at time 2τ. Quantum memory proposals [13,14]
combine two consecutive refocusing π pulses applied to the
spins with dynamical tuning of the resonator frequency and
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quality factor, thereby retrieving the amplitude of the input
microwave field while preventing the addition of noise, as
required for a high-fidelity memory performance [21]. The
maximum storage time of the memory is approximately the
Hahn-echo decay time T2, so that the maximal number of
stored quantum states is of order T2=T�

2, a figure which can
be very large in many spin systems.
The write step of this protocol (quantum state transfer)

has been demonstrated at the single-photon level in recent
experiments [22,23]; the remaining obstacle to a multimode
microwave quantum memory is therefore the implementa-
tion of Hahn-echo refocusing sequences at the quantum
level in a hybrid quantum circuit. The object of this work is
precisely to identify the challenges posed by this task and to
demonstrate experimentally that they can be solved. For
simplicity, we consider a protocol simpler than the full
quantum memory [14] but which constitutes an essential

building block: the two-pulse echo (2PE). As depicted in
Fig. 1(a), the 2PE consists in storing weak pulses θi into the
spin ensemble at times ti and applying a single refocusing
pulse at time τ, which triggers the emission of echo pulses
ei at times 2τ − ti (therefore, in reverse order) in the
detection waveguide [24].
Performing the 2PE at the quantum level imposes a

number of requirements that represent experimental chal-
lenges. For quantum states to be well defined, thermal
excitations should be absent from the system. This implies
both that the spin ensemble has a high degree of polari-
zation and that the microwave field is in its ground state
with high probability, which can only be achieved if the
experiments are performed at millikelvin temperatures. At
these temperatures, however, spins tend to relax very
slowly towards their ground state, and an active spin reset
is therefore needed in order to repeat the experimental

R

R e e e
n

n

FIG. 1. Principle of the experiment. (a) Scheme of the multimode two-pulse echo (2PE) protocol applied to an ensemble of spins
placed in an electromagnetic cavity: successive low-power microwave pulses θi are stored in the spin ensemble. A refocusing pulse R
acts as time reversal for the spins and triggers the retrieval of the stored pulses as echoes ei in reverse order. Top and bottom time lines
show the applied and the reflected and echo signals, respectively. (b) Setup placed in a dilution refrigerator: the cavity is a lumped-
element parallel LC resonator in niobium coupled to a coplanar waveguide by a capacitor Cc. It consists of an interdigitated capacitor C
and a meander wire inductor L creating the ac magnetic field shown in the inset, for a 10 μW incident microwave power at resonance.
The spin ensemble consists of NV centers in a diamond monocrystal pressed on top of the inductor. Laser pulses can be shone on it
through an optical fiber glued to its top face. A tunable dc magnetic field BNV is applied parallel to the [110] direction of the crystal.
(c) Negatively charged NV centers in diamond consist of a nitrogen atom next to a vacancy of the diamond lattice, having trapped an
electron. Their electronic spin S ¼ 1 is coupled by hyperfine interaction to the nitrogen nuclear spin I ¼ 1 (for the 14N isotope). Half of
the electronic spins (subensemble denoted N-Orth. in blue) make an angle α ¼ 35.3° with BNV, whereas the other half (subensemble
Orth. in red) is orthogonal to the field. (d) NV simplified energy diagram (top) showing the ground 3A and the excited 3E electronic
states as well as the Zeeman and hyperfine structure of 3A, with D=2π ¼ 2.8775 GHz the zero-field splitting. (bottom) Magnetic field
dependence of the allowed transitions for both N-Orth. (blue) and Orth. (red) subensembles, showing, respectively, a linear and a
quadratic Zeeman effect. NVs can be optically repumped in their mS ¼ 0 ground state by application of green (532 nm) laser pulses
exciting the 3A-3E transition.

C. GREZES et al. PHYS. REV. X 4, 021049 (2014)

021049-2



sequence at a reasonable rate (> 1 Hz) as required by
experiments at the single-photon level. Then, applying
refocusing pulses to the spins requires large microwave
powers potentially incompatible with the detection of
quantum fields. Finally, the echo emitted by the spins
should faithfully restore the initial field, which implies that
the echo recovery efficiency E, which we define as the ratio
of the energy radiated during the echo to the energy of the
incoming pulse, should be close to 1. To summarize,
reaching the quantum regime requires a mean excitation
per mode (both microwave and spin) nmw;sp ≪ 1, input
microwave fields with intracavity photon number n̄ ≈ 1,
and an echo efficiency E close to 1.
These stringent requirements have never been met in an

experiment, by far. The multimode character of the 2PE has
been recently benchmarked in the classical regime [25]
with an ensemble of phosphorus donors in silicon at 10 K in
the three-dimensional microwave cavity of an electron
paramagnetic resonance spectrometer. That experiment
reached nmw;sp ≈ 20, n̄ ≈ 1014, and an echo recovery
efficiency E ≈ 10−10. Here, we use negatively charged
NV centers in diamond, which are color centers consisting
of a substitutional nitrogen atom sitting next to a vacancy of
the lattice [see Fig. 1(c)] with properties suitable for a
quantum memory. Indeed, their spin triplet (S ¼ 1) elec-
tronic ground state has a long coherence time [9] and can be
optically repumped in the spin ground state jmS ¼ 0i [see
Figs. 1(c) and 1(d)] as a result of spin-dependent inter-
system crossing from the electronic excited triplet state to a
metastable singlet state [not shown in Fig. 1(d)] [26]. We
revisit the 2PE protocol with an ensemble of NV centers at
400 mK coupled to a planar superconducting resonator, in a
setup compatible with hybrid quantum circuits, with active
reset of the spin at the beginning of each experimental
sequence, and we demonstrate the storage of multiple
pulses at the picowatt level into orthogonal collective
modes of the spin ensemble for 35 μs, 3 orders of
magnitude longer than in earlier experiments [27]. Our
experiment reaches nmw ≈ 3, nsp ≈ 0.1, n̄ ≈ 100, and
E ≈ 2 × 10−4, and, therefore, comes closer to the quantum
regime than previous work by several orders of magnitude.
We quantitatively identify the present limitations and show
that they can be solved in future experiments, opening the
way to the implementation of quantum memory protocols.

II. EXPERIMENTAL SETUP AND NV
HAMILTONIAN

The experimental setup is sketched in Fig. 1(b) (see also
the Supplemental Material [28]). A diamond crystal homo-
geneously doped with NV centers (½NV−� ≈ 2 ppm) is
glued on top of the inductance of a planar superconducting
LC resonator cooled in a dilution refrigerator. For optical
pumping, 532 nm laser light is injected through a single-
mode optical fiber, glued on top of the crystal, 1.5 mm
above the resonator inductance. A magnetic field ~BNV is

applied parallel to the chip along the ½110� crystalline axis
[see Fig. 1(c)].
NV centers in their ground state are described [29] by

the Hamiltonian HNV=ℏ ¼ DS2z þ EðS2x − S2yÞ þ AzSzIzþ
γe ~BNV · ~SþQ½I2z − IðI þ 1Þ=3�, with ~S (~I) the spin oper-
ator of the S ¼ 1 NV electronic spin (the I ¼ 1 nitrogen
nuclear spin), D=2π ¼ 2.8775 GHz the zero-field splitting
between states mS ¼ 0 and mS ¼ �1, Az ¼ −2.1 MHz the
hyperfine coupling, and Q ¼ −5 MHz the nuclear quadru-
pole momentum [30]. Local electric field and strain couple
the spin eigenstates jmS ¼ �1i with strength E [31]. The
energy eigenstates j�i, shown in Fig. 1(d), are thus linear
combinations of states jmS ¼ �1i; in particular, at zero
magnetic field, states j�i¼ðjmS¼þ1i�jmS¼−1iÞ= ffiffiffi

2
p

are separated in energy by 2E. In the experiment, we use
transitions between the spin ground state jmS ¼ 0i and the
two excited states j�i at frequencies close to the zero-field
splitting.
The resonator is capacitively coupled to measurement

lines through which microwave signals are applied, with
the amplitude and phase of the reflected field detected by
homodyne demodulation after amplification at 4 K. The
reflection coefficient S11, shown in Figs. 2(a) and 2(b),
yields the resonator frequency ωc=2π ¼ 2.88 GHz and
quality factor Q ¼ 80. Such a low Q was chosen to avoid
spin relaxation by superradiant spontaneous emission after
excitation by the refocusing pulse [32]. Dips in jS11j are due
to absorption by the NVs, as evidenced by their dependence
on BNV.

III. ACTIVE RESET OF THE SPINS

To demonstrate optical repumping of the NVs in
jmS ¼ 0i, we probe the spin polarization after a laser pulse
of power PL and duration TL by measuring the absorption
of a microwave pulse at ωd=2π ¼ 2.884 GHz. In addition
to repumping the spins, the laser generates quasiparticles in
the superconductor and carriers in the silicon substrate. We
thus introduce a delay of 300 μs between the two pulses for
these excitations to relax. In order to start from a repro-
ducible spin polarization, a strong microwave pulse is
applied before the laser pulse, which saturates all the spins
at the beginning of each sequence [see Fig. 2(c)].
The results are shown in Fig. 2(d) for PL ¼ 1.5 mW.

Without laser pulse, the reflected pulse amplitude is
independent of BNV, proving that the spins are efficiently
saturated by the initial microwave pulse. For nonzero TL,
absorption peaks with the triplet shape characteristic of the
NV hyperfine structure are observed, indicating sizable NV
polarization. To quantify the effect, we convert the absorp-
tion signal into the imaginary part of the spin susceptibility
χ00ðTL; BNVÞ [see Fig. 2(e) and the Supplemental Material
[28]], which yields the relative spin polarization
pðTLÞ ¼ χ00ðTL; BNVÞ=χ00ðTmax; BNVÞ, with Tmax the maxi-
mum repumping time. The polarization increases with TL
and then saturates [see Figs. 3(a) and 3b)], which shows

MULTIMODE STORAGE AND RETRIEVAL OF MICROWAVE … PHYS. REV. X 4, 021049 (2014)

021049-3



that the spins reach the maximum polarization allowed by
optical pumping at 532 nm, close to 90% according to
earlier work [33]. The refrigerator cold stage was heated to
400 mK due to laser power; all of the following results were
obtained under these conditions. Better alignment of the
fiber with the resonator should reduce the power needed by
2 orders of magnitude.
Using the optical pumping, we measure the energy

relaxation of the spins. The spins are first repumped, after
which a series of a 20 ms resonant probe microwave
pulse separated by 10 s are applied. The average reflected
amplitude of each pulse is plotted in Fig. 3(c) and shows
a biexponential response with time constants T1;a ¼ 35 s
and T1;b ¼ 395 s, similar to recent measurements [18].
These very long values confirm the need of actively
resetting the spins for operating a quantum memory.

IV. PULSED RESPONSE OF THE SPINS

As a first step towards the application of refocusing pulses
to the spins, we measure their time-domain response to
microwave pulses of varying power. The experiments are
performed at BNV ¼ 0 mT. The zero-field spin

PL

TL

300 s

FIG. 2. Spectroscopic signals and optical repumping. (a) Measured (open circles) and fitted (solid line) phase of the reflection
coefficient S11 showing the resonator resonance at ω0=2π ¼ 2.88 GHz with quality factor Q ¼ 80, when the spins are saturated and do
not contribute to the signal. (b) Measured reflection coefficient modulus jS11j around the center of the resonator line, showing the
absorption by the spins for different magnetic fields. Top line (6 mT, black) corresponds to all spins (Orth. and N-Orth.) being far detuned
and shows no absorption. Other lines show several absorption peaks moving with magnetic field (subensemble N-Orth.) or not
(subensemble Orth). (c) Optical reset of the NV center spins. The spins are first saturated by a 20-μs-longmicrowave pulsewith frequency
ωd and applied power −24 dBm; they are then optically repumped to their ground state with a laser pulse of power PL and duration TL.
After letting the system cool down during 300 μs, the reflected amplitude of an applied weak (−132 dBm) 20-ms-long measurement
pulse at ωd=2π ¼ 2.884 GHz is measured. (d) Reflected amplitude for PL ¼ 1.5 mW and different TL. The curves show the hyperfine
split mS ¼ 0 to mS ¼ �1 spectroscopic transitions of the N-Orth. subensemble, with an amplitude that increases with TL because of
increasing spin repolarization. (e) Corresponding imaginary part χ00ðBNVÞ of the spin susceptibility. In addition, the dashed and dash-
dotted lines show, respectively, χ00ðBNVÞmeasured at thermal equilibrium (30 mK, no saturating nor optical pulse) and calculated (see the
Supplemental Material for methods and Figs. S3 and S4 [28]) and rescaled by a global factor to match the experiment at TL ¼ 4 s.
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FIG. 3. Spin reset efficiency and relaxation. (a),(b) Relative spin
polarization dependence on TL for PL ¼ 1.5 mW and on PL for
TL ¼ 6 s. The experimental sequence is shown in Fig. 2(c). (c) NV
spin relaxation time measurement. A series of Δτ ¼ 20 ms weak
microwave pulses (−120 dBm) atωd=2π ¼ 2.884 GHz, separated
by τ ¼ 10 s, is applied following optical reset of the spins. Blue
dots are the average reflected amplitude of each pulse. A biexpo-
nential fit (red solid line) yields T1;a¼35s and T1;b¼395s.
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susceptibility χ00ðωÞ [see Fig. 4(a)] shows two broad peaks
corresponding to the j0i → j−i and j0i → jþi transitions.
The width of these peaks is governed by the inhomogeneity
of local electric fields and strain acting on the NVs, which
results in a broad distribution of E, causing the hyperfine
structure to be barely resolved, as seen in Fig. 4(a). On the
j0i → jþi transition, the spin absorption reaches a maxi-
mum at ωe=2π ¼ 2.8795 GHz, which we will use as the
frequency of all microwave pulses in the following. Square
microwave pulses of varying input power Pin are sent to the
sample, and their reflected amplitude A is measured. The

data are shown in Figs. 4(b) and 4(c), rescaled by
ffiffiffiffiffiffi
Pin

p
, and

compared to the reflected amplitude of the same microwave
pulse with the spins initially saturated by a strong pulse. At
low power (the linear regime), after an initial transient where
resonator and spins exchange energy, A reaches half of the
saturated value in steady state, indicating that the spins
absorb≈75% of the incoming power. The steady-state value
ofA increases with incoming power, indicating reduced spin
absorption caused byprogressive saturation of the ensemble.
Note that no clear Rabi oscillations are observed. This is
due to the spatial inhomogeneity of the microwave field

A
A

300 s
A

FIG. 4. (a) Measured (solid line) and computed (dash-dotted line) imaginary part χ00ðωÞ of the spin susceptibility at BNV ¼ 0 mT. The
calculated curve (see Supplemental Material [28]) was rescaled by a global factor to match the experiment. (b) Reflected field amplitude
A for a square input microwave pulse of power Pin. Solid lines are experimental data with Pin ¼ −90, −60, −55, and −50 dBm (blue,
green, yellow, and red, respectively), dashed lines are simulations. The black curve is obtained when spins have
been saturated by an initial strong pulse. The curves have been rescaled by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pin=P0

p
for easier comparison, with P0 ¼ −90 dBm.

(c) In-phase (blue) and out-of-phase (green) quadrature of the reflected field for Pin ¼ −90 dBm. (d) Spin-echo sequence. An incoming
microwave pulse θ with power −60 dBm is followed by a delay τ and a 1-μs-long refocusing pulse (R) with power −20 dBm, yielding
an echo e at time 2τ. Saturation of the amplifiers (shown in red) limits the measurable amplitude to about 2 V. (e) Experimental (crosses)
and simulated and rescaled (open circles) area of the echo as a function of the refocusing pulse power PR. (f) Measured (crosses) decay
of the echo maximum amplitude as a function of τ. Dashed and solid lines are an exponential fit yielding a characteristic time
T2 ¼ 8.4 μs and a biexponential fit fðτÞ yielding T2A ¼ 4.7 μs and T2B ¼ 14.3 μs, respectively.
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generated by the planar resonator [see Fig. 1(b)], which
causes a spread of Rabi frequency within the ensemble; in
particular, this prevents the application of precise π pulses to
all the spins [34],which is an issue forHahn-echo sequences.
In order to understand in detail the spin dynamics, we

compare the experimental data to the result of numerical
simulations. These simulations consist of a number of
mean-value equations along the lines of Ref. [14] and
explained in further detail in the Supplemental Material
[28]. In particular, the inhomogeneity in both spin fre-
quency and coupling strength is taken into account by
dividing the ensemble into a sufficiently large set of
homogeneous subensembles and integrating the equations
of motion for the resonator field and the spin components
of all of the subensembles. The distribution of spin
frequencies follows from the spin susceptibility shown in
Fig. 5(a), and the distribution of coupling strengths depends
on the resonator-field vacuum fluctuations, whose spatial
distribution is calculated using the COMSOL simulation
package and exemplified in the inset of Fig. 1(b). The
actual distributions used are shown in Fig. S5 of the
Supplemental Material [28].
The simulations employed assume an ensemble of spin-

1=2 particles, which is an approximation in the case of NV
centers having a spin of 1. However, in the linear,
nonsaturated regime this description is exact, and for the
nonlinear, saturated regime we expect the approximation to
be justified since the applied π pulse has a narrow frequency
bandwidth and is tuned predominantly to the j0i → jþi
transition of the NV centers. In Figs. 4(b) and 4(c), the
measured and calculated reflected field are compared and
show a convincing agreement, without any adjustable
parameter. This confirms the validity of the calculations,
both in the linear and nonlinear regime, and proves, in
particular, that the frequency distribution used is correct.

V. SPIN ECHO AT HIGH POWER

Despite the impossibility of applying well-defined π
pulses to the spins, we implement a spin-echo sequence
with an initial microwave pulse creating a transverse
magnetization, followed after τ by a refocusing pulse. Its
power PR ¼ −20 dBm is chosen such that spin saturation
is reached within the pulse duration, as required for spin
echo. The reflected signal amplitude is shown in Fig. 4(d),
with the expected spin echo observed at 2τ. We study the
amplitude of this echo as a function of PR, and compare this
curve to the result of the simulations. The agreement is
quantitative, as shown in Fig. 4(e); in particular, the power
at which the echo amplitude saturates is well predicted by
the simulations. This shows further evidence of the validity
of calculated coupling strengths and of the spin-1=2
approximation.
The dependence of the echo amplitude on τ is fitted

by a biexponential function fðτÞ ¼ A expð−2τ=T2AÞþ
B expð−2τ=T2BÞ, with two different coherence times

T2A ¼ 4.8 μs and T2B ¼ 14.3 μs, and A ¼ 0.78 and B ¼
0.22 [see Fig. 4(f)]. Such a dependence is expected for an
ensemble of NV centers in zero magnetic field. Indeed, the
coherence time of NV centers is limited by dipolar
interactions with the surrounding spin bath, either para-
magnetic impurities (P1 centers) or 13C nuclear spins. This
spin bath can be approximated as generating a fluctuating
magnetic field that blurs the phase of the NV center. In zero
magnetic field, an interesting situation occurs: the nuclear
spin state mI ¼ 0 becomes immune to first order to
magnetic fluctuations [31] because of the strain-induced
coupling between states mS ¼ �1, which gives rise to an
avoided level crossing, and thus to a transition frequency
independent of magnetic field to first order [see Fig. 1(d)].
This was shown in previous work to make the free-
induction decay time T�

2 1 order of magnitude longer in
zero magnetic field [31], and should equally lead to a
longer Hahn-echo time T2. However, this is not true for
states with mI ¼ �1, which should, therefore, have a
shorter decoherence time T2 in zero magnetic field.
More details will be given in future work.

VI. MULTIMODE 2PE PROTOCOL AND
DISCUSSION

Finally, we implement the multimode 2PE protocol with
weak microwave pulses. Six consecutive microwave pulses
with a varying phase and identical amplitude corresponding
to ≈104 photons in the resonator are first absorbed by the
spin ensemble, and a strong refocusing pulse is then applied
10 μs later [see Fig. 5(a)]. The sequence is averaged 104

times at a repetition rate of 1 Hz, made possible by the
active reset of the spins. As shown in Fig. 5(b), the six
pulses are recovered after the refocusing pulse up to 35 μs
after their storage, with an amplitude reduced by ∼102
compared to the incoming pulse, corresponding to ∼1
photon in the resonator. As expected, the pulses are
reemitted in reverse order [see Fig. 5(c)]. Note that the
strong refocusing pulse (∼109 photons in the cavity) does
not prevent detection of fields at the single-photon level few
microseconds later. We were able to detect a measurable
spin-echo signal for pulses containing up to 100 times
lower energy, thus populating the resonator with n̄ ≈ 100
photons on average [see Fig. 5(d)].
An important figure of merit is the field retrieval

efficiency E, defined as discussed in the Introduction as
the ratio between the energy recovered during the echo and
the energy of the incoming pulse. In the data shown in
Fig. 5(b), E is seen to decrease with τ due to spin
decoherence, following approximately the relation
Ee ¼ 0.03jfðτÞj2, which yields E ¼ 2.4 × 10−4 for
2τ ¼ 17 μs. Coming back to the figures of merit defined
in the Introduction, our measurements reach nmw ≈ 3,
nsp ≈ 0.1, n̄ ≈ 100, and E ≈ 2 × 10−4, many orders of
magnitude closer to the quantum regime than previous
state-of-the-art experiments [25].
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Reaching the quantum regime, however, requires a
recovery efficiency E close to 1, and, therefore, calls for
a quantitative understanding of our measurement imper-
fections. For that purpose we perform simulations of the
multimode 2PE protocol. As seen in Fig. 5(b), the mea-
surements are well reproduced, although a 7 times higher
efficiency Et ¼ 0.21jfðτÞj2 is predicted. We attribute the
discrepancy between Ee and Et to the imperfect modeling
of decoherence. Indeed, our simulations treat spin
decoherence in the Markov approximation. This is not
an adequate treatment since it is well known that the spin
bath environment displays strong memory effects. In
particular, this Markov approximation is expected to
improperly describe the dynamics of a spin under the
action of a microwave drive, as happens during
the refocusing pulse. This non-Markovian bath causes
the Rabi oscillation of a single spin to decay faster than
the spin-echo damping time T2, as was observed in
Ref. [35], for instance. This effect is not included in our
simulations and might explain the remaining discrepancy
between theory and measurements. Overall, we infer from
the simulations that Et would reach 0.2 for a sample with
infinite T2; this number quantifies the reduced efficiency
caused by refocusing pulse imperfections and finite spin
absorption. In the measured efficiency Ee ≈ 2 × 10−4, finite
spin coherence causes a further 10−3 reduction, thus

appearing as the main limitation of the field retrieval
efficiency in the present experiment.
According to the previous analysis, a 1 order of

magnitude increase of the coherence time would be
sufficient to reach an echo efficiency ≈0.1, which would
enable first experiments in the quantum regime. This can be
achieved [9] with samples having a reduced concentration
of nitrogen paramagnetic impurities as well as isotopic
enrichment of 12C. Further improvements of the echo
efficiency will be reached thanks to better refocusing
pulses using rapid adiabatic passage [14,36], or by tailoring
the spin spatial distribution [37]. These combined advances
should make it possible to reach the figures of merit
required to implement a complete quantum memory pro-
tocol [13,14] at the single-photon level and to experimen-
tally explore its fidelity. Optical pumping in a hybrid
circuit, as demonstrated here, is also a first step towards
the polarization of the nitrogen nuclear spins [38], and in
the longer term towards a nuclear-spin-based quantum
memory.
In conclusion, we implement the multimode storage and

retrieval of microwave fields in an ensemble of NV centers
in diamond at millikelvin temperatures, with active reset by
optical pumping and refocusing by a strong microwave
pulse. These results demonstrate that complex dynamical
control of spin ensembles is compatible with hybrid

300 s

FIG. 5. Test of the 2PE protocol for multimode storage of few-photon pulses. (a) Experimental sequence including a spin reset
pulse, a train of six microwave pulses θi (i ¼ 1;…; 6) with an identical amplitude (corresponding to ∼104 photons in the resonator)
and different phases φ1 ¼ φ2 ¼ φ4 ¼ −π=4 and φ3 ¼ φ5 ¼ φ6 ¼ π=4, and a 50 dB stronger refocusing pulse R with phase
φr ¼ 0.1 rad. (b) Amplitude of the measured (solid line) and calculated (dash-dotted line) output signal showing the reflected pulses
θi (after partial absorption by the spins) and R (its amplitude being trimmed by amplifier saturation, shown in red), as well as the six
reemitted echoes ei (magnified by a factor of 5). Inset: Comparison between the energies of the reflected θi pulses with the spins
saturated (black line) or reset in their ground state (blue line) shows that about 75% of the incident power is absorbed by the spins.
(c) In‐phase (blue solid line) and Out‐of‐Phase (purple solid line) quadratures I and Q of the output signal, showing that the ei pulses
(magnified by 10) are recovered with phase −ðφi − φrÞ, as expected. (d) Spin echo e of ∼0.02 photons in the resonator for a low-
power incoming θ pulse populating the resonator with only ∼100 photons. The refocusing pulse (dashed line) was suppressed in the
room-temperature detection chain by a microwave switch to avoid saturating the follow-up amplifiers.
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quantum circuits, thus enabling the long-term storage of
quantum information in electronic or nuclear spin ensemble
quantum memory.
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We propose a multimode quantum memory protocol able to store the quantum state of the field in a

microwave resonator into an ensemble of electronic spins. The stored information is protected against

inhomogeneous broadening of the spin ensemble by spin-echo techniques resulting in memory times

orders of magnitude longer than previously achieved. By calculating the evolution of the first and second

moments of the spin-cavity system variables for current experimental parameters, we show that a memory

based on nitrogen vacancy center spins in diamond can store a qubit encoded on the j0i and j1i Fock states
of the field with 80% fidelity and outperform classical memory strategies for storage times � 69 �s.

DOI: 10.1103/PhysRevLett.110.250503 PACS numbers: 03.67.Lx, 42.50.Ct, 42.50.Pq, 71.55.Cn

Quantum memories are indispensable in quantum infor-
mation applications such as quantum repeaters and hybrid
quantum computing architectures. The study of quantum
memories [1] is hence a very active research field, and
impressive performance has been demonstrated for the
storage of quantum states of light in gaseous [2] and in
solid-state atomic ensembles [3–5]. Superconducting cir-
cuits resonate at microwave frequencies, and ensembles of
electronic spins have been proposed as quantum memories
in hybrid architectures for quantum computing including
superconducting qubits [6–9]. Progress in this direction
was reported in a number of experiments, demonstrating
first strong coupling of an ensemble of spins in a crystal to
a superconducting resonator [4,10–15], and more recently
reversible storage of a single microwave photon in the spin
ensemble [16,17]. From these results it clearly appears that
inhomogeneous broadening of the spin ensemble is a major
obstacle, which needs to be overcome for hybrid quantum
circuits to fully benefit from the long spin-coherence times.
Due to inhomogeneous broadening, quantum information
leaks from the ‘‘bright’’ collective degree of freedom
coupled to the cavity into dark modes of the spin ensemble
[18–20]. An appealing possibility is to actively and coher-
ently restore it using refocusing techniques, inspired from
magnetic-resonance methods [21] and based on the appli-
cation of � pulses to the spins acting as time reversal.
However, these ideas face a number of challenges: (i) the
spatial inhomogeneity of the microwave resonator field
may make it difficult to apply a � pulse efficiently to
each spin, (ii) after the �-pulse inversion, the spin en-
semble should remain stable despite its coupling to the
cavity, and (iii) the whole statistics of the collective spin
must be restored at the single quantum level. The present
work proposes a protocol, which addresses all these issues,
and we exemplify its feasibility for the specific case of
nitrogen vacancy (NV) centers in diamond [22], using
currently available experimental techniques. The proposed
memory extends the storage times by several orders of

magnitude compared to Refs. [16,17]. It is intrinsically
multimode and thus allows us to reversibly store a number
of quantum states, paving the way to the realization of a
genuine quantum Turing machine [7,23].
In our proposal the � pulses are performed by rapid

adiabatic passage [24] through the electron spin resonance,
a method known to tolerate an inhomogeneous microwave
field. Stability of the ensemble against super-radiant decay
after inversion is ensured provided the cavity quality factor
is sufficiently low [25]. Since this is incompatible with a
faithful transfer of quantum information from the cavity
into the spins, we propose to use a cavity with a quality
factor that can be tuned in between the steps of the proto-
col, as was recently demonstrated with SQUIDs [26]. In
addition, inspired by a recent proposal of atomic-ensemble
quantum memories for optical photons [5], we employ two
� pulses in the refocusing scheme. To avoid emitting a
microwave echo from the inverted spin ensemble, which
would otherwise be more noisy than the original quantum
state [27], we detune the cavity from the spins in between
the two pulses (effectively ‘‘silencing’’ this noisy first echo
[5]). The second echo, formed in a noninverted ensemble,
restores the quantum information.
The proposed physical setup is shown schematically

in Figs. 1(a) and 1(b); a diamond crystal containing NV
centers [22] is placed on top of a transmission waveguide
cavity whose frequency !c [26] and coupling to the mea-
suring line � [28] can be tuned on a nanosecond time scale
using control lines (not shown in Fig. 1). The crystal is
subjected to a constant bias magnetic field BNV, lifting the
degeneracy of themS ¼ �1 states, and bringing the 0 ! 1
transition to an average frequency !s ¼ 2�� 2:9 GHz.
In the frame rotating at !s the free evolution of the cavity
field and the spin ensemble is described by the Hamiltonian

Ĥ0 ¼ �csâ
y
c âc þP

j�j�̂
ðjÞ
z =2, where âc is the cavity field

annihilation operator, �cs ¼ !c �!s is the (adjustable)
spin-cavity detuning, �j ¼ !j �!s, !j is the resonance

frequency of the jth spin, and �̂ðjÞ
z is the corresponding
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Pauli operator. Nitrogen vacancy centers are coupled by
hyperfine interaction to the nuclear spin of their nitrogen
atom (having a spin 1), causing the mS ¼ 0 ! 1 transition
to split into a triplet separated by �hfs=2� ¼ 2:2 MHz
[29]. In addition, they are coupled by dipolar interactions
to a bath of magnetic dipoles (see the Supplemental
Material [30]), which is known to govern their coherence
time [31–33]. This bath broadens each of the hyperfine
resonances, with a Lorentzian line shape [32] of width w,
corresponding to a free-induction decay time T�

2 ¼ 2=w.
A Hahn-echo pulse sequence [21] partially refocuses this
coherence, yielding a coherence time T2 which can be
several orders of magnitude longer than T�

2 . In this work,

we thus model the system by the static inhomogeneous
spin distribution shown in Fig. 1(c) of characteristic width
� � w (see the Supplemental Material [30]), and damped
at a rate �? ¼ T�1

2 in the Markov approximation (see the

Supplemental Material [30]). The spin-cavity interaction

is described by ĤI ¼ P
jgjð�̂ðjÞ

þ âc þ �̂ðjÞ� âyc Þ, where the

coupling constant gj of the jth spin is distributed as

shown in Fig. 1(d) (see the Supplemental Material [30]).

This distribution is of no concern for storing the quantum
state [16]; however, it prevents the application of a ‘‘hard’’
� pulse since each spin has a different Rabi frequency for a
given drive amplitude. So-called hyperbolic secant pulses
[34], where the pulse amplitude and phase are modulated
as ac ¼ amax

c ½sechð�sechtÞ�1þi�, are known to remedy this
issue [35]. The pulses are applied by an external drive �

modeled by the Hamiltonian Ĥext ¼ i
ffiffiffiffiffiffi
2�

p ð�âyc � ��âcÞ.
Note that to achieve the desired temporal dependence of
âc, � must be further tailored in order to account for the
cavity filtering and the coupling to the spins (see the
Supplemental Material [30]).
The quantum memory protocol, shown schematically in

Fig. 2(a), aims to store a cavity-field state given at t ¼ 0
and retrieve it again at t ¼ Tmem with the cavity tuned
to a ‘‘target frequency’’ �t

cs. This quantum state could be
delivered by, e.g., a superconducting transmon qubit along
the lines of Ref. [16]. The cavity state is then transferred
to the spins by setting �cs ¼ 0 for a time Tswap after which

the cavity is parked at�p
cs. In a lowest-order approximation

Tswap¼�=2genswheregens ¼ ½R g2�ðgÞdg�1=2 corresponds
to the resonator-spin ensemble swap rate [16,17,20], but in
reality is optimized numerically. For a high-fidelity storage,
we set � ¼ �min ¼ !c=2Qmax withQmax ¼ 104 so that the

FIG. 1 (color online). (a) Quantum memory circuit. The reso-
nator, with frequency !c and damping rate � tunable at the
nanosecond scale, is coupled to the spin ensemble (frequency
!s) with an ensemble coupling constant gens. Drive pulses of
amplitude �ðtÞ are applied to the spins via the resonator,
which can be initialized in a well-defined quantum state j�i.
(b) Amplitude of the microwave field generated by a coplanar
resonator with quality factor Q ¼ 100 and driven by a pulse of
100 �W power. A static magnetic field BNV is applied parallel
to the spins, which are distributed uniformly throughout the
crystal. (c) Subensemble distribution fð�Þ of spin-resonance
frequencies (circles) consisting of three hyperfine-split
Lorentzian lines. The solid line shows the excitation probability
for the chosen secant hyperbolic inversion pulses (see text).
(d) The solid line shows calculated coupling-strength distribu-
tion function �ðgÞg2. The histogram and circles show the
subensemble distribution used in the calculation. The low- and
high-frequency cutoffs in �ðgÞ originate from, respectively, high
(40 �m) and low (0:5 �m) cutoffs in the distance from the
resonator to NV centers.

FIG. 2 (color online). (a) Schematic timing of pulses and
cavity parameters �cs and �. Periods of resonance (�cs ¼ 0)
are marked by gray areas. (b) Cavity-field mean values Xc

(black) and Pc (gray) versus time. The inset replots the
dashed-line region with jhâcij on the logarithmic vertical scale.
(c) The g-weighted transverse-spin-component mean value

Seff? ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Seff2x þ Seff2y

q
(black) normalized to N, the excitation

probability pexc (gray, dashed curve), and the g-weighted exci-
tation probability peff

exc (gray, solid curve).
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spin ensemble and resonator are in strong coupling. Next,
in order to refocus the reversible spin dephasing we apply
two� pulses at�Tmem=4 and�3Tmem=4with�cs ¼ 0, and
to stabilize the inverted spin ensemble, we set � ¼ �max ¼
!c=2Qmin with Qmin ¼ 100 before the � pulses so that the
effective cooperativity parameter fulfills C ¼ g2ens=��< 1
[25]. An additional constraint comes from the fact that
tuning the cavity frequency or quality factor with SQUIDs
is possible only if the cavity field is sufficiently low
(jhâcij & 10), which requires sufficient delay to allow it to
decay after the � pulses. Between the two � pulses, we set
�cs ¼ �p

cs in order to silence the first spin echo [5]. After
the second � pulse the quantum state is retrieved from the
spin ensemble by setting �cs ¼ 0 during Tswap after which

the cavity is tuned to �t
cs.

The numerical calculation of the dynamical evolution is
made tractable by dividing the spins into M subensembles
along the lines of Ref. [25] keeping account of the mean
values and covariances between cavity-field quadratures

X̂c ¼ ðâc þ âyc Þ=
ffiffiffi
2

p
and P̂c ¼ �iðâc � âyc Þ=

ffiffiffi
2

p
, and spin

components ŜðmÞ
k ¼ P

Mm
�̂ðjÞ

k , of the mth subensemble

Mm with k ¼ x, y, z (see the Supplemental Material
[30]). Such a representation is convenient for determining
the memory performance for, e.g., coherent input states.
Specific for our NV-center example we use gens ¼ 2��
3:5 MHz, w¼2��2MHz corresponding to T�

2¼0:16�s,
T2 ¼ 100 �s (see the Supplemental Material [30]), an
infinite population decay time, and hyperbolic secant �
pulses truncated at a duration of 1 �s with � ¼ 3:5 (prac-
tically making the inversion curve in Fig. 1(c) flat over the
inhomogeneous distribution), and ��sech¼2��7:5MHz.
We assume that a microwave drive of peak power up to
100 �W can be applied to the sample input without caus-
ing too much heating.

Typical results of our calculations are shown in Fig. 2.

Figure 2(b) shows the mean values of X̂c and P̂c when a
weak coherent cavity-field state is given at t ¼ 0. Even
though the cavity field is very strong during the inversion
pulses at t � 2:5 �s and t � 7:5 �s, it relaxes to negligible
levels prior to memory retrieval. Due to an imperfect stor-
age process [marked by the arrow in Fig. 2(b)] a minor part
of the field is left in the cavity (14% in field strength or 2%
in energy units), but most importantly jhâcij recovers at
t ¼ Tmem a value comparable to the one at t ¼ 0. Regarding
the spin state, we consider the effective, g-weighted spin

observables Ŝeff	 ¼ P
j�̂

ðjÞ
	 gj= �g, with 	 ¼ x, y and �g ¼

gens=
ffiffiffiffi
N

p
, which couple directly to the cavity field âc

through the interaction Hamiltonian ĤI. Figure 2(c) shows
the magnitude of these transverse spin components; in the
storage part it grows as the quantum state is swapped from
the cavity and then decays within T�

2 due to inhomogeneous

broadening. Despite the excitation of very large mean spin
components by the� pulses, the much weaker mean values
of the stored spin states are recovered as a primary echo

[arrow in Fig. 2(c)] and at the final memory retrieval.
Figure 2(c) also shows the excitation probability pexc ¼
ðSz þ NÞ=2N and the effective, g-weighted excitation

probability peff
exc ¼ ðPj�̂

ðjÞ
z g2j= �g

2 þ NÞ=2N versus time.

The latter reaches 89% between inversion pulses and levels
off at 8% after the second inversion pulse.
The above results can be extracted from mean-value

equations alone and demonstrate the feasibility of the
spin ensemble as a classical memory. In order to assess
the quantum properties of the memory we also calculate
the evolution of variances by the coupled first- and second-
moment equations detailed in the Supplemental Material
[30] (see Fig. 3). Figure 3(a) shows the summed variance of

X̂c and P̂c, which deviates from the coherent-state value of
unity during inversion pulses. At the memory retrieval the
variance also increases when the cavity is tuned to reso-
nance withQ ¼ Qmax due to emission from spins left in the
excited state by a nonperfect inversion process (in analogy
to Ref. [27]), but most importantly this excess noise of only
11% maintains easily the quantum nature of the memory.

FIG. 3 (color online). (a) Summed variance of cavity-field
quadratures. (b) The summed, g-weighted spin-component
variance normalized to 2N. (c) Various input states (black) and
output states (gray, sign reversed) examined in the protocol. The
centers of circles mark mean values whereas the radii mark the
standard deviation � of the state. (d) Open symbols: the depen-
dence of gain G (blue triangles), qubit fidelity Fq (magenta

circles), effective excitation probability peff
exc (red squares), and

summed variance 2�2 (green diamonds) on the peak power Ppeak

of the external driving field during inversion pulses. Closed
symbols: simulations with Ppeak ¼ 100 �W and homogeneous

coupling g ¼ 2�� 12:5 Hz, leading to G ¼ 0:82, 2�2 ¼ 1:02,
and Fq ¼ 87%.
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Figure 3(b) shows the summed variance of the spin

components Ŝeffx and Ŝeffy , which relaxes almost to the

coherent-state value at the memory retrieval.
We note one advantageous property of the spin-

frequency inhomogeneity: for a resonant cavity in low-Q
mode the effective cooperativity parameter becomes
C ¼ g2ens=�max� � 0:38. According to Ref. [25] this

ensures (i) that the excess variance of X̂c, P̂c, Ŝ
eff
x , and

Ŝeffy converge to moderate, finite values during the resonant,

inverted period (see, e.g., Figs. 3(a) and 3(b) at 3 �s &
t & 4 �s), and (ii) that mean values of the coupled
spin-cavity system observables relax sufficiently fast
from possibly imperfect � pulses as exemplified in the
inset of Fig. 2(b). For the off-resonant cavity the first and
second moments of the spin components are damped on the
T�
2 time scale as seen in Fig. 2(c) prior to the primary echo

and in Fig. 3(b) at t � 4 �s, respectively. This is essential
for the performance of the protocol; any reminiscence of
the inversion pulses and excess noise in the spin ensemble
must vanish both at the time of the primary echo and of the
memory retrieval.

To assess the performance of the quantum memory, we
repeat the above simulation with various other coherent
input states. A selection of these are shown in Fig. 3(c) in
terms of retrieved mean values and variances (gray circles)
as compared to those of the input states (black circles). We
confirm that the input-output relations constitute a linear
map, which (i) essentially maps vacuum to vacuum (with a
slightly increased variance) demonstrating that the remains
of the inversion pulses are negligible, and (ii) presents a
gain factor G ¼ 0:79 for the mean values. The quadrature

variances of the retrieved states amount to 2�2 ¼ h
X̂2
ci þ

h
P̂2
ci ¼ 1:11. Since any quantum state can be expressed as

a superposition of coherent states the memory should work
for arbitrary input states, e.g., cat states [36], and qubit
states encoded in the j0i and j1i Fock states of the cavity.
The storage time depends on the quantum state and the
desired fidelity. Following Ref. [37] we obtain a qubit
fidelity Fq ¼ 80% for Tmem ¼ 10 �s.

To investigate the implications of the limited peak power
available for inversion pulses, the above-mentioned analy-
sis is repeated for a selection of peak powers ranging from
20 to 500 �W leading to the results presented in Fig. 3(d)
with open symbols. Furthermore, a simulation is carried out
at Ppeak ¼ 100 �W but with a homogeneous distribution

of coupling strengths g=2� ¼ 12:5 Hz [solid symbols in
Fig. 3(d)]. Clearly, increasing Ppeak presents an increase in

G due to a better inversion process, but since in an inter-
mediate regime a fraction of spins experiences a poor
inversion process due to insufficient Rabi frequency [limit-
ing the inversion performance illustrated by the dashed
curve in Fig. 2(c)] we observe the nonmonotonic behavior
of 2�2 shown in Fig. 3(d). While increasing driving powers
may be infeasible from an experimental point of view an
alternative route to improvement lies in tailoring a more

homogeneous distribution of coupling strengths, e.g., by
limiting the distance between NV centers and the cavity.
Continuing the analysis with a homogeneous coupling-

strength distribution [solid symbols in Fig. 3(d),Fq ¼ 87%],

we find the limiting factors for the obtained fidelity, which
in terms of gain can be written approximately as G¼
G0 expð��½�=2gensþ 2Tchirp�Þexpð��?½Tmem� 0:7 �s�Þ.
The �-dependent factor yields � 0:92 due to cavity
decay during the resonant swapping process and during
the initial and final frequency chirp of duration Tchirp. The

�?-dependent factor yields � 0:91 due to spin decoher-
ence (partly suppressed when the quantum state resides in
the cavity or a population degree of freedom). The main
contribution to excess noise arises from imperfect inver-
sion processes, e.g., due to the dephasing rate �? during �
pulses. In the limit T2, Qmax ! 1 the qubit fidelity
becomes� 97%, and the origin of the remaining infidelity
(G0 � 0:97 and 2�2 � 1:01) includes a nonperfect cavity-
to-spin transfer [arrow in Fig. 2(b)] and residual imperfec-
tions in the inversion processes.
As demonstrated experimentally for classical pulses

[38], the spin-ensemble quantum memory is multimode
in nature, which we confirm by simulating the storage and
retrieval of four pulses (see Fig. 4). The number of storage
modes (proportional to T�

2=T2) that can be faithfully

addressed and refocused is estimated to be �100 (see the
Supplemental Material [30]).
In summary, a multimode spin-ensemble-based quantum

memory for cavity fields has been proposed and analyzed
for a specific realization using NV centers in diamond.
To outperform classical memory strategies a fidelity of
Fq > 2=3 is required, which is indeed predicted by our

analysis for Tmem � 69 �s with present-day experimental
parameters. The protocol could be modified to include
dynamical decoupling pulse sequences [39]. Polarizing
the ensemble nuclear spin would both improve the fidelity
of the refocusing pulses and enable quantum state transfer
from the electron to the nuclear spins [40]. In that way,
second-long [41] multimode storage of microwave photons
would be within reach.
The authors acknowledge useful discussions with

T. Chanelière, D. Esteve, and Y. Kubo and support from

FIG. 4 (color online). The cavity field jacj versus time in a
multimode storage examplewith four input fields (jacj¼3, 0, 1, 2)
separated by 0:29 �s, with memory time 12 �s. The amplitude
cross talk is below 3%.
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Note added.—A similar memory protocol for propagat-
ing micro-wave photons is discussed in Ref. [42].
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A new method for detecting the magnetic resonance of electronic spins at low temperature is demonstrated.
It consists in measuring the signal emitted by the spins with a superconducting qubit that acts as a single-
microwave-photon detector, resulting in an enhanced sensitivity. We implement such an electron-spin resonance
spectrometer using a hybrid quantum circuit in which a transmon qubit is coupled to a spin ensemble consisting
of nitrogen-vacancy (NV) centers in diamond. With this setup we measure the NV center absorption spectrum at
30 mK at an excitation level of ∼ 15 μB out of an ensemble of 1011 spins.
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I. INTRODUCTION

Electron spin resonance (ESR) spectroscopy at low tem-
peratures is often complicated by the long spin-lattice energy
relaxation time, which can reach minutes at sub-Kelvin
temperatures. For continuous-wave (CW) ESR spectroscopy,
this implies working at low powers to avoid saturating the
spins; in pulsed ESR this imposes low repetition rates. In both
cases a higher sensitivity for detecting the signal absorbed
or emitted by the spins would be desirable. Recently, tools
borrowed from superconducting quantum electronics have
been applied to high-sensitivity ESR spectroscopy. High-Q
superconducting coplanar waveguide resonators have been
used for CW-ESR at millikelvin temperatures with a cryogenic
low-noise high electron mobility transistor (HEMT) amplifier
followed by homodyne detection,1–4 and for pulsed ESR at
kelvin temperatures with a commercial ESR spectrometer,5

yielding promising results in terms of sensitivity. Here we
go one step further and use an on-chip single microwave
photon detector6 based on a superconducting qubit7 to realize
a high-sensitivity low-temperature ESR spectrometer.

The principle of our experiment is compared to more
conventional ESR techniques in Fig. 1. In conventional ESR
spectroscopy, a microwave pulse is applied to an ensemble
of spins close to their resonance frequency ωs through a
low-Q cavity of frequency ωc with which the spins are tuned
in resonance (ωs = ωc) by a magnetic field. After being
excited by the pulse, the spins reradiate coherently part of
the absorbed energy through the cavity into the detection
waveguide, giving rise to a free induction decay (FID) signal
measured by homodyne detection, which yields the spin
absorption spectrum after Fourier transform.8 What limits the
sensitivity of a typical commercial CW spectrometer operating
at 300 K to ∼1010spins/

√
Hz for a line width of 0.1 mT and

an integration time of 1 s is the overall noise temperature of
the detection chain. In this work, we replace the detection
chain by a superconducting qubit and its readout circuitry.
This results in an increased sensitivity since a superconducting

qubit is a nearly ideal single microwave photon detector6 at
its resonance frequency ωge. In order to transfer part of the
excitation of the spins to the superconducting qubit, the ESR
resonator is made frequency tunable and with a high-quality
factor. Spectroscopy is performed by first exciting the spins
with a weak microwave pulse, collecting the radiated FID
signal with the resonator tuned at ωs , then transferring this
signal to the qubit at ωge, and measuring its final state.
Repeating this experimental sequence yields the probability
Pe to find the qubit in its excited state, which reproduces
the spin absorption spectrum. The sensitivity of such an ESR
spectrometer is set by the efficiency at which signal photons
can be transferred from the spins to the resonator, then to the
qubit, and by the fidelity with which the qubit state can be
measured.

II. DEVICE AND EXPERIMENTAL SETUP

We implement this method using a recently reported hybrid
quantum circuit9 that includes an ensemble of electronic spins
magnetically coupled to a superconducting resonator, itself
electrically coupled to a superconducting qubit, as sketched in
Fig. 2(a). The spins are negatively charged nitrogen-vacancy
(NV) color centers in diamond, whose structure and energy
levels are summarized in Figs. 2(b) and 2(c). The ground state
of NV centers has a spin one with splitting ω±/2π � 2.88 GHz
between states mS = 0 and mS = ±1 at zero magnetic field.10

Each of the two mS = 0 to mS = ±1 transitions is further
split into three peaks separated by 2.2 MHz due to the
hyperfine (HF) coupling to the 14N nuclear spin.11 In the
experiment a static magnetic field BNV = 1.1 mT12 is applied
along the [1,1,1] crystallographic axis to lift the degeneracy
between states mS = ±1. Centers having their N -V axis
along [1,1,1] (called ensemble I in the following) undergo
a different Zeeman shift from those along the three other
〈1,1,1〉 axes (ensemble III), resulting in two different ESR
frequencies ω+I/2π = 2.91 GHz and ω+III/2π = 2.89 GHz

064514-11098-0121/2012/86(6)/064514(6) ©2012 American Physical Society
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(b)

FIG. 1. (Color online) Comparison between conventional pulsed
electron spin resonance (ESR) and qubit-detected ESR. (a) Conven-
tional ESR: A spin ensemble is placed in a cavity with a frequency ωc

and driven with a microwave pulse resonant with the cavity. When the
ESR frequency ωs matches ωc, the spins absorb the microwave pulse,
and emit immediately after a free-induction decay (FID) signal into
the waveguide connected to the cavity. (b) Qubit-detected ESR: The
cavity is now frequency tunable and embeds both the spin ensemble
and a superconducting qubit with a frequency ωge. In a first step
(1), the spins are probed by a spectroscopy pulse with a frequency
ωp , which excites them if its frequency matches ωs . In a second
step (2), the cavity frequency is tuned to ωc = ωs , receives the FID
signal from the spins, and is afterwards tuned to transfer this signal
to the superconducting qubit at ωge. Finally (3) the qubit excited
state probability Pe(ωp) is measured, mapping the spins absorption
spectrum. Very low excitation powers can be used given the high
sensitivity of the method.

for the mS = 0 to mS = +1 transition on which we will
exclusively focus in the following.

The diamond crystal used is of the high-pressure high-
temperature (HPHT) Ib type and has a NV center concen-
tration of ∼3 ppm and a residual nitrogen concentration
of ∼20 ppm. In our setup, it is glued on top of the ESR
cavity C, a coplanar waveguide superconducting resonator13

of quality factor Q ∼104 made of a niobium thin film sputtered
on a silicon substrate. The spin ensemble S detected in the
experiment consists of the ∼1011 NV centers that lie within
the mode volume of C, thus within a few microns of the
diamond surface. The cavity frequency ωc(�) can be tuned
on a nanosecond timescale by a flux � applied through
the loop of a superconducting quantum interference device
(SQUID) inserted into C.1,14–16 The superconducting qubit
is a Cooper-pair box of the transmon type17,18 with resonance
frequency ωge between its ground state |g〉 and excited state |e〉.
It is coupled to an additional resonator R which is nonlinear
and used to read-out the qubit state. As explained in detail
in Ref. 19, this read-out is performed in a single shot by
measuring the phase of a microwave pulse reflected on R. This
phase takes two different values depending on the qubit state,
and repeating ∼104 times the same experimental sequence
yields the qubit excited state probability Pe.

IIII
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FIG. 2. (Color online) (a) Sketch of the implementation of qubit-
based ESR. The spin ensemble S consists of nitrogen-vacancy (NV)
centers in a diamond crystal. They are coupled to the frequency-
tunable coplanar waveguide resonator C used as the ESR cavity. C

also embeds the ESR-detector qubit Q, a superconducting qubit of the
transmon type whose state can be read-out with another resonator R.
Microwave pulses for spin spectroscopy as well as for qubit read-out
are sent via an input port coupled both to C and to R. (b) and (c)
Sketch and energy levels of NV centers in diamond. In our setup a DC
magnetic field BNV is applied along the [1,1,1] direction, resulting in
different Zeeman splittings for centers having the N -V axis parallel
to BNV (ensemble I, in red) and those having their axis along the
three other 〈1,1,1〉 axes (ensemble III, in blue). The ESR frequencies
ω±I,III are further split in three resonance lines due to the hyperfine
interaction with the spin-1 14N nuclear spin.11

III. SINGLE PHOTON STORAGE AND RETRIEVAL

As reported in an earlier work9 (see also Ref. 21), it is
possible with this circuit to coherently exchange a single
quantum of excitation between the spin ensemble S and
the qubit Q via the tunable cavity C. To demonstrate that,
the qubit is prepared in |e〉; its excitation is transferred to the
cavity by sweeping adiabatically ωc(�) through ωge, which is
then tuned suddenly in resonance with the spins at ωK (where
K = +I, + III ) for some interaction time τ . The excitation
left in the cavity is finally transferred back into the qubit,
which is then read-out. As shown in Fig. 3, the resulting
qubit excited state probability Pe(τ ) is found to oscillate,
revealing the conversion of a single microwave photon into
an elementary collective excitation of the spin ensemble. For
well-defined interaction times τs,K (see Fig. 3), the excitation
in the qubit is swapped into the spin ensemble;9 at a later time
it is recovered in the qubit with a fidelity ∼0.1.

A quantum-mechanical description of this experiment22,23

is useful in the discussion of the ESR results presented
below. Each of the NK effective spins of the ensemble at
ωK is modelled as an effective harmonic oscillator with
frequency ωjK

and annihilation (creation) operator bjK
(b†jK

),
an approximation valid in the low-excitation limit as is the case
throughout this article. The spin ensemble and cavity are then
described by Hamiltonians

∑
h̄ωjK

b
†
jK

bjK
and h̄ωc(�)a†a,

a (a†) being the cavity annihilation (creation) operator. The
coupling between the resonator and the spin ensemble is
described by a Hamiltonian HK = −ih̄

∑
gjK

(b†jK
a + H.c.),
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FIG. 3. (Color online) Single photon transfer between qubit and
spins (Ref. 9). (inset) Pulse sequence used to excite the qubit in state
|e〉 and transfer its excitation to S via C back and forth. (panel) Swap
oscillations for the two spin frequencies ω+I and ω+III. Swap times
τs,I and τs,III are indicated by arrows. Note that the two curves are
shifted vertically for clarity with corresponding scales on the left (for
ensemble I) and the right axes (ensemble III).

with gjK
the coupling constant of spin jK to the resonator. This

Hamiltonian can be rewritten as HK = −ih̄gK (b†Ka + H.c.)
with gK = (

∑
g2

jK
)1/2 the spin ensemble resonator collective

coupling constant and bK = (1/gK )
∑

gjKbjK the annihilation
operator of the collective spin excitation coupled to the cavity.
This super-radiant mode has a spatial profile given by the
spatial dependence of the coefficients gjK

, which reproduces
the profile of the magnetic field inside the cavity mode. Note
also that bK involves all the spins belonging to group K ,
even if they have different frequencies due to slightly different
magnetic environment in the crystal, also including the three
possible states of the 14N nuclear spin causing the hyperfine
structure; as a result this mode is coupled to NK − 1 dark
modes that act as a bath.16,22–24 Using these notations, one
describes the oscillations shown in Fig. 3 as occurring between
states |1c,0K〉 and |0c,1K〉, where |1c〉 = a†|0c〉 is the usual
Fock state with one photon in the cavity, and |1K〉 = b

†
K |0K〉

is the first excited state of the super-radiant mode; damping
of these oscillations is due to inhomogeneous broadening, and
can be interpreted as damping of state |1K〉 into the bath of
dark states.16

IV. ELECTRON SPIN RESONANCE
PROTOCOL AND DISCUSSION

The ESR protocol is shown in Fig. 4. It consists of an
experimental sequence similar to the one used for single
photon storage (see Fig. 3), but with the spin ensemble initially
excited at several photons level instead of the qubit prepared
in its excited state. More precisely, a low-power microwave
pulse of duration �t = 2 μs and varying frequency ωp is
applied to the spins while ωc(�) is far detuned; the resulting
excitation is transferred first into the cavity by tuning ωc(�)
suddenly in resonance with ωK for the swap time τs,K , then
into the qubit by an adiabatic swap interaction; the qubit state is
finally measured. Provided the average number of microwave
photons emitted by the spins into the ESR cavity stays much
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FIG. 4. (Color online) (a) Experimental pulse sequence used for
qubit-detected ESR: (1) The spins are first weakly excited by a 2 μs
microwave pulse with a frequency ωp; (2) the resulting spin excitation
is transferred to the cavity C by a fast flux pulse, which brings ωc in
resonance with ωK (K = +I, + III ) for a swap time τs,K , and then
to the qubit Q by an adiabatic swap (aSWAP). (3) The qubit excited
state probability Pe is finally measured. (b) Measured (open circles)
and calculated (solid line) Pe(ωp) for spin ensemble +III (left) and +I
(right). The spin density ρ(ω) used in the calculation is shown as a
dashed line.

lower than 1 to avoid saturating the qubit, the resulting
excited state probability Pe(ωp) is expected to reproduce the
spin ensemble absorption spectrum. Experimental results of
Fig. 4(b) indeed display the characteristic HF structure of NV
centers consisting in three peaks separated by 2.2 MHz for both
spin ensembles + I and + III. This validates the concept of
electron spin resonance detected by a superconducting qubit.
Note that Pe(ωp) � 1 showing that qubit saturation is avoided
as wanted.

We now discuss the sensitivity of this qubit-based ESR
spectrometer. The qubit state is detected in a single shot with
a fidelity of �0.7 at the end of an experimental sequence
that lasts typically 50 μs, yielding a 1% imprecision on the
probability Pe in one second. To translate this sensitivity in a
magnetic moment unit, one needs to know with what efficiency
the excitation of the spin ensemble is actually transferred to
the qubit. The transfer of one microwave photon from the
cavity to the qubit is performed with an efficiency of order
unity (in our experiment it is around 0.7 limited by losses in
the cavity and qubit), so the limiting factor is the efficiency
of the transfer of the spin ensemble excitation to the cavity
during their resonant interaction. At first sight one might think
that since the spin ensemble and cavity are in the strong
coupling limit, one excitation of the spin ensemble should also
be converted into a microwave photon with an efficiency of
order 1, similar to what happened in the coherent oscillations
shown in Fig. 3. This reasoning is not correct here because
the collective spin mode bωp

excited by the spectroscopy pulse
does not necessarily match perfectly the super-radiant mode
bK . Indeed, although the spatial matching of the two modes
is excellent since the spectroscopy pulse is applied through
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the cavity, this is not the case for spectral matching: only
spins having a resonance frequency within the spectroscopy
pulse bandwidth δ/2π = 150 kHz around ωp contribute to
bωp

, whereas all spins within the hyperfine line (total width
�/2π ∼ 5 MHz) contribute to the super-radiant mode bK . As
a result, one expects an overlap of order

√
δ/� between the

bωp
and bK modes, implying that there should be ∼�/δ =

20 times less excitations in the bK mode (and thus also in
the cavity mode after the swap interaction) than in the bωp

mode.
This argument can be made rigorous and quantitative.

The collective spin mode excited by the spectroscopy pulse
is defined as bωp

= [
∑

gjK
αωp

(ωjK
)bjK

]/
√∑

g2
jK

|αωp
(ωjK

)|2 ,
with αωp

(ω) the pulse Fourier transform. The quantity of inter-
est is then the correlation function β(ωp,τs) = 〈a(τs)b†ωp

(0)〉
giving the probability amplitude for an excitation created in bωp

by the spectroscopy pulse to be transferred into a photon inside
the cavity mode after an interaction time τs . This function can
be computed numerically given a certain spin distribution ρ(ω)
using the formulas derived in Appendix A. In our experiment,
the line width of each hyperfine peak w+I /2π = 1.6 MHz
and w+III /2π = 2.4 MHz, and coupling constants g+I /2π =
2.9 MHz and g+III /2π = 3.8 MHz have been determined from
other measurements,9 so that a direct comparison with theory
without any adjustable parameter is possible as shown in Fig. 4.
The agreement is quantitative [note that we have also included
in the distributions ρ(ω) additional ESR frequencies caused by
the hyperfine interaction of the NV center with neighboring
13C nuclei with the 1.1% natural abundance as expected]. From
this calculation, we deduce that the average excitation of the
spin ensemble at resonance in the data shown in Fig. 4 is ∼ 15,
in agreement with the qualitative argument presented above.
In the present state of the experiment, the qubit-based ESR
spectrometer therefore measures the spectrum of an ensemble
of 1011 NV centers at an excitation level of order 15 μB , in a
total integration time of one minute.

Thanks to this very low excitation level, the experimental
sequence can be safely repeated at 20 kHz, despite the NV
centers energy relaxation time reaching minutes at 30 mK.3,20

More precisely, two factors contribute to make this experiment
possible: i) at the end of each experimental sequence the
excitation of the bωp

mode quickly decays into the bath of dark
modes, allowing the next experimental sequence to start with
bωp

in its ground state and thus keeping the average number of
excitations transferred to the qubit well below 1 as needed to
avoid saturation, ii) the low excitation rate ensures on the other
hand that the ensemble of 1011 spins stays far from saturation
even after repeating the sequence for hours. The upper limit of
possible repetition rate is determined by the qubit relaxation
time, 2 μs in our experiment. Although the experiment was
indeed performed at 20 kHz, it could probably have been
pushed to 100 kHz, resulting in a sensitivity increased by a
factor ∼2.

We finally note that our calculation reproduces a puzzling
feature of the data that was not discussed yet: the middle
peak of the Pe(ωp) curve has a lower amplitude than the
two other peaks, both for the + I and the + III curves as
seen in Fig. 4, although the spin density ρ(ω) used in the
calculation is a simple sum of three Lorentzians with the same
amplitude. Our ESR protocol thus appears to slightly distort

the absorption spectrum. This phenomenon originates from
the ωp dependence of the energy transfer efficiency from the
spins into the cavity, caused by the fact that gK ≈ � in our
sample. It could probably be corrected in future experiments
either by increasing gK or by transferring the spin excitation
to the cavity with an adiabatic passage.

Besides detecting a large ensemble of N = 1011 electronic
spins at near single-excitation level, it is interesting to discuss
what is the minimal number of spins Nmin that could be
detected with a similar experimental protocol in order to
compare it to the sensitivity of existing conventional spec-
trometers. For that we will change perspective in the following
discussion, and assume that the spins being measured can
actually be excited at saturation. We suppose that the N

spins, of inhomogeneous line width �, have been excited by
a hard π/2 pulse. In the weak coupling limit g

√
N � κ � �

(κ = ωc/Q being the cavity damping rate), the spins emit in
the cavity n̄ = g2N2/(4�2) photons (see Appendix B). Taking
a conservative estimate for the minimal average excitation that
can be detected by a superconducting qubit within one second
to be 0.05, a spin-cavity coupling constant g/2π = 10 Hz,
one obtains Nmin = 105 spins/

√
Hz for a 0.1 mT line width

corresponding to �/2π = 2.8 MHz. This figure is five orders
of magnitude better than a commercial spectrometer at 300 K,
and two orders of magnitude better than the record sensitivity
of 106 spins/

√
Hz for a 0.01 mT line width that was recently

reported with a surface loop-gap resonator operated at 10 K26

and a coplanar waveguide resonator at 4 K.5 Note however that
in order to operate such a qubit-based spectrometer in practice,
one would need i) to use a repetition rate around 10 kHz,
which requires a reasonably short spin-lattice relaxation time
or some way to repump rapidly the spins into their ground state
(optically25 or electrically, for instance) and ii) to find a qubit
design that withstands large magnetic fields usually needed for
ESR. Interesting alternative possibilities could be to physically
separate the qubit-detector from the spins, which would allow
more easily the application of large magnetic fields to the spins
without perturbing the qubit, or be to continuously monitor
the qubit state with a parametric amplifier as demonstrated
in recent experiments27 instead of pulsing the qubit state
detection as done here.

In conclusion we have discussed an ESR spectrometer in
which the signal coming from the spins is detected by a
superconducting qubit acting as a single-microwave-photon
detector. We have implemented this idea on an ensemble of
∼1011 NV centers coupled to a transmon qubit, measuring
their absorption spectrum at an excitation level of ∼15 μB ,
with a well-resolved hyperfine structure. Estimates indicate
that this spectrometer would be able to detect 105 spins/

√
Hz

with a 0.1 mT line width, a gain of two orders of mag-
nitude in sensitivity compared to the best reported values
for conventional spectrometers. Our work thus demonstrates
the potential of superconducting circuits for electron spin
resonance spectroscopy.
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APPENDIX A

We now explain in more detail how the theory curves
in Fig. 4 are calculated. As explained in the main text, the
energy transfer efficiency from the resonator to the qubit
is of order unity and can be well modeled by an ideal
adiabatic passage. In this context the quantity of interest is the
resonator population after the interaction with the spins. The
calculations are performed in the Holstein-Primakoff approx-
imation, in which the spins and the resonator are described
by harmonic oscillators. The total system Hamiltonian is
H/h̄ = ωc(�)a†a + ∑

ωjb
†
j bj + ∑

igj(b
†
j a − bja

†), gj being
the coupling constant of spin j with the resonator. We need
to calculate the probability that the excitation created at t = 0
in the spins to be transferred to the cavity after a time t ,
this probability is the square modulus of 〈0|a(t)b†ωp

|0〉. The
spins excitation is created by a microwave pulse of central
frequency ωp with a pulse envelope in frequency described
by αωp

(ω) = α(ω − ωp), a typical envelope is a Lorentzian
function with FWHM δ. We can define an operator b†ωp

that
describes the excitation induced by this pulse as

b†ωp
= 1√∑

j

|αωp
(ωj )|2g2

j

∑
k

αωp
(ωk)gkb

†
k , (A1)

this comes simply from the standard atom-field interaction
for a classical light source such as the one used in the
experiment. As shown in Ref. 22 the quantity 〈0|a(t)b†ωp

|0〉
can be calculated by considering an effective non-Hermitian
Hamiltonian

Heff/h̄ =

⎛
⎜⎜⎝

ω̃0 ig1 ig2 . . .

−ig1 ω̃1

−ig2 ω̃2
...

. . .

⎞
⎟⎟⎠ . (A2)

with complex angular frequencies ω̃0 = ωc(�) − iκ/2 and
ω̃k = ωk − iγ0/2; here, γ0 is the spontaneous emission
rate of each spin (that we take here to be zero since
NV centers at low temperature have negligible energy re-
laxation). Indeed, introducing the vector X(t) of coordi-
nates [〈a(t)a†(0)〉, . . . ,〈bj (t)a†(0)〉, . . .] it can be shown that
dX/dt = −(i/h̄)HeffX. The formal solution to this equation
is then

X(t) = L−1[(s + iHeff/h̄)−1X(0)] , (A3)

which gives 〈0|a(t)b†ωp
|0〉 = xG

† · X(t) = L−1[tωp
(s)] with

xG = (1,0,0, . . .) and L[f (s)] = ∫
e−stf (t)dt (s being a com-

plex number). The initial condition X(0) is the one produced
by b†ωp

given in Eq. (1), thus

tωp
(−iω) =

∑
k αωp

(ωk)gk√∑
j

∣∣αωp
(ωj )

∣∣2
g2

j

[(s + iHeff)
−1]0,k

=
∑

k αωp
(ωk)gk√∑

j

∣∣αωp
(ωj )

∣∣2
g2

j

[
gk t1(−iω)

iγ0 + (ω − ωp)

]
(A4)

= t1(−iω)

iγ0 + (ω − ωp)

∑
k αωp

(ωk)g2
k√∑

j

∣∣αωp
(ωj )

∣∣2
g2

j

,

where t1(−iω) = i/[ω − ω0 + iκ/2 − W (ω)] with W (ω) =∑
j g2

j /[ω − ωj + iγ0/2]. Note that we evaluated tωp
(s) for

s = −iω, this is sufficient to perform the Laplace transform
inversion as there are no singularities in the imaginary axis
of tωp

. We define the spin density ρ(ω) encompassing the
coupling strength, which is possibly different for each spin,

as ρ(ω) = ∑
j

g2
j

g2
K

δ(ω − ωj ). Using this definition in the
equation above we have

tωp
= gK t1(−iω)

iγ0 + (ω − ωp)

(α ∗ ρ)(ωp)√
(|α|2 ∗ ρ)(ωp)

. (A5)

The spectral width of the microwave pulse is, in our case,
much smaller than any scale that characterizes our distribution
ρ(ω). This allows the rewriting of the convolution above as

(α ∗ ρ)(ωp)√
(|α|2 ∗ ρ)(ωp)

= A
√

ρ(ωp) , (A6)

where the constant A =
∫

α(ω)dω√∫ |α(ω)|2dω
is purely characterized

by the pulse envelope with no dependence on ωp, yielding for
example A = √

δ
√

π/2 for a Lorentzian envelope. This means
that if we consider that the spins are distributed at a typical
range � the equation above gives a rigorous justification of the
rule of thumb that says that the efficiency of the spin-resonator
transfer is given by the overlap

√
δ/�.

Finally to generate the theoretical curve in Fig. 4, we
perform a numerical inversion of the Laplace transform for
each ωp and take |〈0|a(t)b†ωp

|0〉|2 at t = τS,III or t = τS,I .

APPENDIX B

We now make explicit the calculation of the sensitivity
of our qubit-based ESR spectrometer in the weak coupling
limit gK � κ � �. The Hamiltonian coupling the spins to
the cavity field is H = h̄g(S−a† + H.c.), where S− = ∑

σi,−,
σi,− being the lowering operator of spin i. In the absence of
driving field, the equation for the intracavity mean field is then
easily obtained as

d〈a〉
dt

= −κ

2
〈a〉 − ig〈S−〉.

Right after a π/2 pulse on the spins, |〈S−〉| = N/2.
Neglecting the back-action of the cavity field on the spins
(which is justified in the weak coupling limit), we simply get
that 〈S−〉 = (N/2)e−�t . From that one shows that 〈a〉(t) =
−igN (e−κt/2 − e−�t )/[κ − 2�], which in the limit κ � �

yields a maximum photon number in the cavity of n̄ =
g2N2/(4�2).
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We report the experimental realization of a hybrid quantum circuit combining a superconducting qubit

and an ensemble of electronic spins. The qubit, of the transmon type, is coherently coupled to the spin

ensemble consisting of nitrogen-vacancy centers in a diamond crystal via a frequency-tunable super-

conducting resonator acting as a quantum bus. Using this circuit, we prepare a superposition of the qubit

states that we store into collective excitations of the spin ensemble and retrieve back into the qubit later on.

These results constitute a proof of concept of spin-ensemble based quantum memory for superconducting

qubits.

DOI: 10.1103/PhysRevLett.107.220501 PACS numbers: 03.67.Lx, 42.50.Ct, 42.50.Pq, 85.25.Cp

Present-day implementations of quantum information
processing rely on two widely different types of quantum
bits (qubits). On the one hand, microscopic systems such as
atoms or spins are naturally well decoupled from their
environment and as such can reach extremely long coher-
ence times [1,2]; on the other hand, more macroscopic
objects such as superconducting circuits are strongly
coupled to electromagnetic fields, making them easy to
entangle [3,4] although with shorter coherence times [5,6].
It thus seems appealing to combine the two types of
systems in hybrid structures that could possibly take the
best of both worlds.

But if superconducting qubits have been successfully
coupled to electromagnetic [7] as well as mechanical
[8] resonators, coupling them to microscopic systems in
a controlled way has up to now remained an elusive
perspective—even though qubits sometimes turn out to
be coupled to unknown and uncontrolled microscopic de-
grees of freedom with relatively short coherence times [9].
Whereas the coupling constant g of one individual micro-
scopic system to a superconducting circuit is usually too
weak for quantum information applications, ensembles of

N such systems are coupled with a constant g
ffiffiffiffi
N

p
enhanced

by collective effects. This makes possible to reach a regime
of strong coupling between one collective variable of
the ensemble and the circuit. This collective variable,
which behaves in the low excitation limit as a harmonic
oscillator, has been proposed [10–13] as a quantum
memory for storing the state of superconducting qubits.
Experimentally, the strong coupling between an ensemble
of electronic spins and a superconducting resonator has
been demonstrated spectroscopically [14–16], and the stor-
age of a microwave field into collective excitations of a

spin ensemble has been observed very recently [17,18].
These experiments were however carried out in a classical
regime since the resonator and spin ensemble behaved as
two coupled harmonic oscillators driven by large micro-
wave fields. In the perspective of building a quantum
memory, it is instead necessary to perform experiments
at the level of a single quantum of excitation. For that
purpose, we integrate on the same chip three different
quantum systems: an ensemble of electronic spins, a super-
conducting qubit, and a resonator acting as a quantum bus
between the qubit and the spins. A sketch of the experiment
is shown in Fig. 1.
The spin ensemble N-V consists of �1011 negatively

charged nitrogen vacancy (NV) color centers [19] in a
diamond crystal. These centers have an electronic spin
S ¼ 1, with electron spin resonance (ESR) transition fre-
quencies !�=2� ’ 2:88 GHz between energy levels
mS ¼ 0 and mS ¼ �1 in zero magnetic field [see
Fig. 1(c)]. The electronic spin of the NV center is further
coupled by hyperfine (HF) interaction to the spin-one 14N
nucleus, which splits !� into three peaks separated by
2.2 MHz [20,21]. In our experiment, the diamond crystal
is glued on top of the chip, and the degeneracy between
states mS ¼ �1 is lifted with a BNV ¼ 1:4 mT magnetic
field applied parallel to the chip and along the [1, 1, 1]
crystalline axis. The NV frequencies being sensitive only to
the projection of BNV along the NVaxis, two groups of NVs
thus experience different Zeeman effects: those along
[1,1,1] (denoted I) and those along either of the three other
h1; 1; 1i axes (denoted III as they are 3 times more numer-
ous). This results in four different ESR frequencies!�I;�III.

The qubit Q is a Cooper-pair box of the transmon type
[5,22] with transition frequency !Q between its ground
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state jgi and excited state jei. It is coupled to a nonlinear
resonator R which is used to readout its state, as in related
circuit quantum electrodynamics experiments [23]. Single-
qubit rotations are realized by applying microwave pulses
at !Q through R. Qubit state readout is performed by

measuring the phase of a microwave pulse reflected on
R, which depends on the qubit state; the probability Pe to
find the qubit in jei is then determined by repeating �104

times the same experimental sequence.
The quantum bus B, a superconducting resonator with

quality factor �104, is electrostatically coupled to the
qubit and magnetically coupled to the spin ensemble. In
order to bridge the difference in frequency between Q and
N-V, the bus frequency !B can be tuned on a nanosecond
time scale [24] by applying current pulses through an on-
chip flux line F, inducing a magnetic flux � through a
SQUID embedded in B [21,25].

We first characterize our hybrid circuit by spectroscopic
measurements. The NV frequencies and coupling
constants are obtained by measuring the microwave

transmission jS21ð!Þj through the bus, while scanning its
frequency !Bð�Þ across the NV resonances. Vacuum Rabi
splittings are observed when!B matches the ESR frequen-
cies at !þI=2� ¼ 2:91 GHz, !�I=2� ¼ 2:84 GHz,
!þIII=2� ¼ 2:89 GHz, and !�III=2� ¼ 2:865 GHz (see
Fig. 1). From the data we extract the coupling constants
g�I=2� ¼ 2:9 MHz and g�III=2� ¼ 3:8 MHz, the differ-
ence between the two values resulting essentially from the
larger number of NV centers in group III. Qubit spectros-
copy is performed by scanning the frequency of a micro-
wave pulse applied through R, and by measuring Pe, which
yields!Q=2� ¼ 2:607 GHz. This spectroscopy, measured

while scanning !B across !Q, shows an anticrossing

[see Fig. 1(c)] that yields the coupling constant gQ=2� ¼
7:2 MHz between Q and B.
Throughout the experiments reported in the following,

the spins and qubit frequencies are kept fixed, and only!B

is varied in order to transfer coherently quantum informa-
tion between Q and N-V. For this purpose, a key operation
is the qubit-bus SWAP gate that transfers an arbitrary qubit
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FIG. 1 (color online). Description of the hybrid quantum circuit demonstrated in this work. (a),(b) Three-dimensional sketch of the
device and corresponding electrical scheme. The ensemble N-V of electronic spins (magenta) consists of 1011 NV centers in a diamond
crystal glued on the chip surface. The transmon qubit Q (in red) is capacitively coupled to a resonator R (in blue) made nonlinear with
a Josephson junction and used to readout its state. The bus B (in yellow) is electrostatically coupled to Q and magnetically coupled to
N-V. Bus B contains a SQUID that makes its frequency!Bð�Þ tunable by applying in its loop a flux� via a fast on-chip current line F
(in green). A magnetic field BNV is applied parallel to the [1,1,1] crystallographic axis. (c), (lower left inset) Energy level structure of
NV centers. Transitions between mS ¼ 0 and mS ¼ �1 at frequency !� are further split in three resonance lines due to the hyperfine
interaction with the 14N nuclear spin [20]. (main panel) Two-dimensional plot of the transmission jS21jð!;�Þ through B in dB units,
with� expressed in units of the superconducting flux quantum�0 ¼ h=2e, for a field BNV ¼ 1:4 mT applied to the spins. Color scale
goes from �55 dB (background, green) to �30 dB (magenta). Four vacuum Rabi splittings are observed whenever !B matches one
NV center resonance frequency. The four transition frequencies !�I;III correspond to the two distinct families I and III of NV centers,

aligned along the [1,1,1] crystal direction parallel to BNV or along one of the three other possible h1; 1; 1i axes, respectively (see upper
right inset). (main panel, bottom right) Qubit excited state probability Pe as a function of the frequency of the exciting microwave and
�. Color scale goes from 0.1 (background, purple) to 0.3 (yellow). When !B matches the qubit frequency !Q ¼ 2:607 GHz, the qubit

spectrum shows an anticrossing demonstrating its coupling to B with constant gQ=2� ¼ 7:2 MHz.
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state �jgi þ �jei into the corresponding photonic state
�j0iB þ �j1iB of the bus, leaving the qubit in jgi. This
SWAP gate could be performed by tuning !B in resonance

with!Q for a duration �=2gQ [26]. Here we prefer instead

to adiabatically sweep !B across !Q as this sequence is

more immune to flux noise in the SQUID loop of B [21].
This adiabatic SWAP (aSWAP) achieves the same quantum
operation as the resonant SWAP except for an irrelevant
dynamical phase. The experiments then proceed by com-
bining single-qubit rotations, aSWAP gates, and flux pulses
placing B and N-V in and out of resonance for properly
chosen interaction times �.

We apply such a sequence with the qubit initially pre-
pared in jei (see Fig. 2). A first aSWAP converts jei into the
bus Fock state j1iB; B is brought in or near resonance with
the spin ensemble for a duration �; the resulting B state is
then transferred back into the qubit, which is finally read-
out. Figure 2(b) shows the resulting curves Peð�Þ when the
bus is brought in resonance either with !�III or !�I. An
oscillation in Pe is observed, revealing a storage in the spin
ensemble of the single quantum of excitation initially in
the qubit at �s;III ¼ 65 ns or �s;I ¼ 97 ns, and a retrieval

back into the qubit at �r;III ¼ 116 ns or �r;I ¼ 146 ns. The
fidelity of this storage-retrieval process, defined as

Peð�rÞ=Peð0Þ, is 0.14 for group III and 0.07 for group I.
These relatively low values are not due to a short spin
dephasing time, but rather to an interference effect caused
by the HF structure of NV centers, as evidenced by the
nonexponential damping observed in Peð�Þ. These mea-
surements are accurately reproduced by a full calculation
of the spin-resonator dynamics [18,21,27,28] taking into
account this HF structure, with the linewidth of each HF
peak as the only adjustable parameter. A linewidth of
1.6 MHz is in this way determined for the spins in group
I [21], and of 2.4MHz for group III. This larger value is due
to a residual misalignment of BNV from the [1,1,1] crys-
talline axis causing each of the three h1; 1; 1i NV orienta-
tions noncollinear with the field to experience slightly
different Zeeman shifts. We finally note that in both curves
shown in Fig. 2(b) Peð�Þ tends towards 0.08 at long times,
as is also found with the qubit initially in jgi. This proves
that the collective spin variable coupled to B is, as re-
quested for experiments in the quantum regime, in its
ground state j0i�I;�III with a large probability �0:92 at

equilibrium, which corresponds to a temperature of
�50 mK. Varying both !B and � with the same pulse
sequence, we observe similar storage-retrieval cycles at
all four spin frequencies [see Fig. 2(c)].
In addition to storing a single excitation from the qubit,

one has to test if a coherent superposition of states can be
transferred to the spin ensemble and retrieved. For that, we
now perform the aSWAP and bring !B in resonance with

!�I after having prepared the qubit in ðjgi þ jeiÞ= ffiffiffi
2

p
instead of jei, and we reconstruct the Bloch vector of the
qubit by quantum state tomography at the end of the
sequence (see Fig. 3). More precisely, we measure h�Xi,
h�Yi and h�Zi by using �=2 rotations around Y, X, or no
rotation at all (I) prior to qubit readout. After substracting a
trivial rotation around Z occurring at frequency (!�I �
!Q), we reconstruct the trajectory of this Bloch vector as a

function of the interaction time �. It is plotted in Fig. 3,
together with the off-diagonal element �ge of the final qubit

density matrix, which quantifies its coherence. We find that
no coherence is left in the qubit at the end of the sequence
for � ¼ �s;I, as expected for a full storage of the initial state
into the ensemble. Then, coherence is retrieved at � ¼ �r;I,
although with an amplitude�5 times smaller than its value
at � ¼ 0 (i.e., without interaction with the spins). Note the
� phase shift occurring after each storage-retrieval cycle,
characteristic of 2� rotations in the two-level space
fj1B; 0�Ii; j0B; 1�Iig. The combination of the results of
Figs. 2 and 3 demonstrates that superpositions of the
two qubit states can be stored and retrieved in a spin
ensemble—although with limited fidelity—and thus rep-
resents a proof-of-concept of a spin-based quantum mem-
ory for superconducting qubits.
To evaluate the time during which quantum coherence

can be stored in the ensemble, we perform a Ramsey-like
experiment on the spin ensemble at the single-photon level
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FIG. 2 (color online). Storage and retrieval of a single quan-
tum of excitation from the qubit to the spin ensemble. (a),
Experimental sequence showing the microwave pulses used for
exciting the qubit in jei (� pulse) and for reading it out (R pulse),
as well as transition frequencies of the quantum bus (B), qubit
(Q), and spins (N-V). (b), Experimental (red dots) and theoreti-
cal (black line—see text) probability Peð�Þ for !B tuned to !�III

(top) or !�I (bottom), showing the storage and retrieval times �s
and �r. (c), Two-dimensional plot of Pe versus interaction time �
and flux pulse height �, showing resonance with the four spin
groups. Chevron-like patterns are observed, showing a faster
oscillation with reduced amplitude when !B is detuned from the
spin resonance, as expected. Note that the difference between the
!� and !þ patterns in the same NV group is simply caused by
the nonlinear dependence of !B on � [25].
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(see Fig. 4): we initially prepare the qubit in jei, transfer its
state to B, then tune !B to !�I for a duration ��=2 ¼
�s;�I=2, after which !B is suddenly detuned by �!=2� ¼
38 MHz for a time �. At this point, the joint bus-spin

ensemble state is an entangled state ðj1B; 0�Ii þ
ei’j0B; 1�IiÞ=

ffiffiffi
2

p
with a phase ’ ¼ �!�. Bus B is then

put back in resonance with the spins for a second interac-
tion of duration ��=2 that converts the phase ’ into popu-

lation of j1B; 0�Ii. This population is finally transferred to
the qubit, and readout. Oscillations at frequency �! are
observed in Peð�Þ as seen in Fig. 4, confirming that the
resonator and the spins are entangled after the first half-
swap pulse. These oscillations are modulated by a beating
pattern, with an overall damping of the oscillations enve-
lope in �200 ns. Quite remarkably, this beating observed
in the qubit excited state probability is directly caused by
the HF structure of NV centers, as proved by the Fourier
transform ofPeð�Þwhich shows the three HF lines. The full
calculation of the system dynamics quantitatively captures
both the beatings and the oscillations damping, which is
thus completely explained by the 1.6 MHz inhomogeneous
linewidth of each HF line taken into account in the
theory.

The previous results suggest that the storage of quantum
information in the NV centers ensemble is at present
limited both by its HF structure and by the inhomogeneous
broadening of its resonance. This broadening is attributed
to dipolar interactions between the NV centers and residual
paramagnetic impurities (likely neutral nitrogen atoms) in
the diamond crystal. Crystals having a nearly complete
conversion of the nitrogen into NV centers should thus
greatly improve the present performance of our device.
Note that the hyperfine coupling to the nuclear spin of
14N could be turned into a useful resource if quantum
information was transferred from the electron spin to the
nuclear spin degree of freedom, which has much narrower
linewidth. Finally, refocusing techniques borrowed from
quantum memories in the optical domain [29] should also
lead to increase in the storage time by 2 orders of
magnitude.
In conclusion our experiments bring a proof of concept

of a spin-based quantum memory for superconducting
qubits. In a longer-term perspective, they open the way to
the implementation of genuine quantum lab on chips,
where superconducting qubits would coherently interact
with electron and nuclear spins as well as optical photons.
We acknowledge useful discussions with K. Moelmer, F.

Jelezko, J. Wrachtrup, D. Twitchen, and within the
Quantronics group, and technical support from P. Sénat,
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FIG. 4 (color online). Ramsey-like experiment on the spin
ensemble at the single-photon level. (a), Experimental pulse
sequence: the qubit is prepared in its excited state jei by a �
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by an aSWAP. A fast flux pulse subsequently brings!B onto!�I,
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two systems. B is then detuned from the spins by �!=2� ¼
38 MHz during a time �, and a second half-swap is performed.
The quantum state of B is then transferred back to the qubit,
which is finally readout. (b), Measured (red circles) and calcu-
lated (black line—see text) probability Peð�Þ, as well as the
Fourier transform of the experimental data (inset) revealing the
NV centers HF structure.
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Note added.—After redaction of this work, a related
work reporting the coupling of a flux qubit to an ensemble
of NV centers was published [30].
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