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Each panel on the cover is a color representation of the tunnel junction differential
conductance of sample AgsnlV 20 predicted (left column) and measured (right column)
as a function of the probe potential V (horizontal axis) and of the magnetic field B
(vertical axis). From top to bottom, the bias potential of the wire U is changed from
0.05mV to 0.3 mV by steps of 0.05 mV. These data are presented p. 110 of this thesis.
The color codeisillustrated below for U =0.15mV andB =15T.
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Decoherence mechanisms in mesoscopic conductors

In mesoscopic electronic systems, quantum coherence is not characterized by a unique
parameter such as a length scale, but depends on the physical property that is concerned, on
the energy range which is probed, and often on other circuit dependent parameters. For
instance, the conductance of a nanostructure in which electrons behave as independent carriers
is affected by quantum interference effects up to a length scale that depends on temperature
and on the applied voltage. In some systems, this length scale can even overcome the circuit
size, as demonstrated by recent interference experiments in a multi-path circuit carved in a 2D
electron gas [1]. Understanding the limitations to quantum coherence in the independent
electron transport regime is presently a fundamental issue, which also has practical
implications since the loss of quantum coherence hinders the development of quantum devices
fully exploiting quantum interference effects. The issue of quantum coherence becomes more
complex in presence of interactions between electrons, because the Fermi liquid can adopt a
many-body quantum state. Other phenomena than those limiting the intrinsic electronic
guantum coherence come then into play. The goa of this thesis work is to probe gquantum
coherence in diffusive metalic conductors both in the independent electron regime and in
presence of pairing interactions, which induce superconducting order. The experiments are

based on tunnel spectroscopy, atechnique described in the inset.



Tunnel Spectroscopy of Mesoscopic Systems

Tunneling of electrons between metallic electrodes gives spectroscopic information on
the density and filling of the states in the electrodes [2]. In this thesis, the focus is on metallic

wires, and the generic sample geometry that we have used is shown below:
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The metallic wire under investigation is connected to large pads, and it can be current biased

or driven out-of-equilibrium by a voltage. A probe electrode forms a tunnel junction with the
wire. Assuming that the density of states and the filling factors of the probe electrode are
known, the density or filling of the states in the wire at the position of the junction can be

inferred from the differential conductance d/ /dV(V) of the tunnel junction.

The physical quantity that is probed is given below as a function of the nature of the probe

electrode and of the wire (superconducting (S), normal (N), or any (X)).
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In the following, a short overview of the main results of thisthesisis given.

1.1 Electron-electron interaction and Kondo effect

In metals, electron energy levels in the conduction band are associated with extended
wave functions. In the normal state, electrons fill these states according to the Pauli exclusion
principle, up to the Fermi energy. Coulomb interaction modifies this smple independent
electron picture of a Fermi liquid, but the electronic excitations are still almost independent
fermionic particles as proven by Landau [3] and are thus called “quasiparticles”. The issue of
quantum coherence of these quasiparticles has been a main concern during the last twenty
years. In the case of thin films, electronic waves are scattered by structural defects and by film
boundaries, and Landau quasiparticles undergo a diffusion-like motion. In this diffusive
regime, a quasiparticle is predicted to remain coherent over a length scale that depends on its
energy and on the energy distribution functions of all the quasiparticles. For a quasiparticle at
the Fermi level, in absence of other limiting mechanisms than Coulomb interaction, this
length scale is predicted to grow indefinitely as temperature tends to zero. Yet a controversy
stands about the explanation of the commonly observed saturation of the coherence length at
low temperature [4]. It was even claimed that this saturation is a universal feature due to “zero
point fluctuations” [5]. This assessment was later ruled out by counterexamples: the saturation
of 7, is not systematic in samples with similar electrical and geometrical parameters [6]. The
saturation was also attributed to the presence in the samples of magnetic impurities with small
Kondo temperature. Indeed, the scattering rate from magnetic impurities increases when
temperature is lowered, till the Kondo temperature is reached. In contrast, the scattering rate
due to Coulomb interactions decreases. These two scattering mechanisms can thus result in a
plateau in the temperature dependence of the phase coherence time above the Kondo
temperature. If the Kondo temperature is at the edge of the explored temperature range, this

plateau looks like a saturation.

Prior to this thesis work, energy exchange in mesoscopic wires had been measured in the

Quantronics group in order to precisely understand the inelastic scattering mechanisms
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limiting phase coherence. In these experiments, the rates of energy exchange were found
higher than predicted by the theory of Coulomb electron-electron interactions, with
furthermore an unexpected energy dependence, and sample to sample variations [6]. In the
meanwhile, Kaminski and Glazmann [7] proposed that magnetic impurities could also be
responsible for this abnormal energy exchange. Indeed, even if their spin states are degenerate,
scattering from magnetic impurities can mediate energy exchange between electrons at second
and higher orders in the coupling between electrons and magnetic impurities (see Figure 1).
Due to Kondo effect, the coupling constant between electrons and magnetic impurities is
renormalized and reaches a maximum at the Kondo temperature. Kondo-Impurity Mediated
(KIM in the following) interaction between electrons can then dominate Coulomb interaction.
It was calculated that the crossover to a KIM interaction dominated regime takes place at a

very small amount of magnetic impurities, of the order of a part per million (ppm).

E -o . E e . E—
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Initial state Virtual state Final state

Figure 1: Two-step inelastic scattering process involving two electrons (black disks) and a single magnetic
impurity (double arrow). In each panel, the left ladder represents the electrons energy spectrum. The gray disks
and lines represent the non-involved electrons and states. The isolated state on the right side represents the
energy level of the degenerate spin states of the magnetic impurity. In a first step, an electron of energy E’
interacts with the magnetic impurity, gaining an energy & and making the impurity spin flip. In a second step, an
electron of energy E interacts with the magnetic impurity, loosing the energy £ and making the impurity spin
flip back to its initial state. In this second order process, two electrons have exchanged the energy & via a
magnetic impurity.

To test if magnetic impurities are responsible for the saturation of the phase coherence length
at low temperature and play arole in energy exchange, we performed two complementary sets
of experiments. First, we measured the phase coherence time in samples in which a known

concentration of magnetic impurities was implanted [8]. Second, in samples displaying
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anomalous energy exchange, we measured energy exchange between electrons in presence of

amagnetic field [9], which is expected to modify the KIM interaction rate.

1.1.1 Limitation of phase coherence by spin-flip scattering from magnetic
impurities

In this first experiment, we measured the temperature dependence of 7, in wires made
of silver, in which manganese impurities at controlled concentrations were implanted. The

Kondo temperature of manganesein silver is 7,, = 40 mK [10].

The phase coherence time was deduced from the weak localization corrections to the
magnetoresistance of long wires. The temperature dependence of the electronic phase
coherence time for four different samples is shown in Figure 2. The first one, called Ag6N,
was made from a 99.9999 % purity source. The second one, called Ag5SN, was made from a
99.999 % purity source. The third and the fourth ones, called Ag5Ncvno.s and Ag5Nemn1, were
co-evaporated with Ag5N, then implanted with 0.3 ppm and 1 ppm of Mn. The measurements
down to 40 mK were performed at Michigan State University by F. Pierre and N. O. Birge. It
was found that the purer the sample, the higher the phase coherence time at low temperature.
The temperature dependence of 7, is fit with a function taking into account Coulomb
electron-electron interaction, electron-phonon interaction and spin-flip scattering. The
concentration of magnetic impurities was a fit parameter and was found in close agreement

with the nominal purity of sources and the concentrations of implanted Mn atoms.

1.1.2 Energy exchange mediated by magnetic impurities

In order to investigate KIM interaction, we measured energy exchange between
electrons in a metalic wire in presence of a magnetic field B that splits the Zeeman energy
levels of magnetic impurities. If the magnetic field is large enough, the magnetic impurities
are frozen in their ground state and a drastic reduction of the rate of KIM energy exchange is
expected. To access the energy exchange between electrons, we prepare an out-of-equilibrium

situation by placing the wire between two metal contacts biased at different potentials. Since
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T, (ns)

T (K)

Figure 2: Phase coherence time as function of temperature in several silver wires. Sample AgéN is made of the
purest (6N) source. Samples Ag5N, Ag5N¢wno3, and Ag5Nqvn Were co-evaporated using a 5N silver source.
Afterward, 0.3 ppm and 1 ppm of manganese was added by ion implantation in samples Ag5Ngvnos and
Ag5Nevn, respectively. Continuous lines are fits of 7, (T) taking into account the contributions of electron-
electron interaction and el ectron-phonon interaction (dashed lin€), and spin-flip collisions using the concentration

¢, Of magnetic impurities as a fit parameter (dotted line is for ¢, =1ppm). Best fits are obtained using

Cmp =0.13, 0.39and 0.96 ppm respectively for samples Ag5N, Ag5Ncvino.3, and AgSNevini-

energy exchange between electrons tends to establish alocal equilibrium, the electron energy
distribution function along the wire is therefore sensitive to interactions if the time an electron
spends in the wire is of the same order as the typical interaction time. To obtain the energy
distribution function at zero magnetic field, we use the non-linearity of the differential
conductance of a superconducting-normal tunnel junction, as in previous experiments in the
group. To access the energy distribution function in presence of a magnetic field, we take
advantage of the Coulomb blockade of tunneling through a tunnel junction in series with a
resistance (the superconducting probe was designed long and narrow so that it presents a
resistance of the order of 1 kQ initsnormal state) [11]. The differential conductance of such
a junction presents a broad single dip when electron interactions are strong and lead to
electronic thermalization, and a double dip when only little interaction occurs while electrons

travel through the wire (see Figure 3).
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Figure 3: Left: Schematic of the circuit: A normal wire is connected to large reservoirs biased at different
potentials. A normal resistive probe electrode forms a tunnel junction with the wire in its middle. Right: At
equilibrium (U =0), the energy distribution function in the wire is a Fermi function and the differential
conductance dI /dV (V') of the junction displays a dip at zero bias, due to Coulomb blockade of tunneling (left).
When the electrons of the wire are driven out-of-equilibrium by a finite voltage U (right), their energy
distribution function f(E) depends on the interaction rate between electrons. In the absence of interactions,
f(E) isatwo-step function and dI/dV (V) presents two dips (solid lines). With strong interactions, f(E) is
rounded, and dl /dV (V) presentsabroad dip (dashed lines).

We performed measurements on two samples made from the same source of 6N- and 5N-
silver as the samples used to determine the phase coherence time dependence on temperature.
The results are presented in Figure 4. In Ag,, 120, made from the 6N-silver source, sharp
distributions are found at B =0, and no magnetic field effect on the differential conductance
isfound. In contrast, in Ag,, V20, made from the 5N-silver source, rounded distributions are
found at low magnetic field. As B isincreased, the single dip in the differential conductance
splitsinto two dips at afield value that scales with U . Hence extrainteractions, present in this
sample at B=0, are suppressed by the magnetic field, in agreement with the expected
behavior of KIM interaction. The effect of KIM interaction was calculated using a recent
theoretical work that takes into account Kondo effect [12], the concentration of magnetic
impurities c,,, being a fit parameter. Data of Ag,,IV20 are fit with ¢, =17 ppm, a value

two orders of magnitude larger than the one deduced from the phase coherence time

measurement on the sample obtained from the same silver source.

15



6N

Ag,,IV20 Ag. 120

a) 1.0
@ 0.5
00 C 1 1 1 1
-0.15 0.00 -0.15 0.00
C) E(meV) d) E(meV)
B=0T
(calculated)
0.90}
> 0.90} >
3 2
= T
o4 [od
0.85}
0.85}
B=0.3T
0.90 X
3 o090t 3
& 3
0.85
0.85}
2 Q) B=12T
0.90}
> 0.90} >
3 2
=1 3
a4 & 2
0.85}
0.85}
-0.15 0.00 -0.15 0.00
V(mV) V(mV)

Figure 4: a) and b) Symbols: Distribution functions f(E) at zero magnetic field and U = 0.15mV in two silver
wires with same electronic diffusion time. The distribution functions were obtained by deconvolution of the
differential conductance dI/dV (V') of a tunnel junction formed between the middle of the wires and probe
electrodes in the superconducting state [6]. ¢) and d): Top panels. Calculated Coulomb blockade signal
dildv (V) at the junction ends using the measured f(E) a B=0. Other panels: Symbols: Measured
dilav (V) a U=015mV, with B=0.3T and 1.2 T, the probe electrode being in the resistive state. Solid
lines: Fits with theory based on Kondo effect.

Such a comparison between phase coherence time and energy exchange measurements [13]
was also performed on copper wires, in which the phase coherence time is always found to
saturate below 100mK. The concentration of magnetic impurities deduced from 7,

measurements was about 0.3 ppm. Energy exchange measurements on a copper wire showed
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amagnetic field dependence, and the concentration of magnetic impurities deduced from the
fit was 4.8 ppm. Therefore a large discrepancy between both fit concentrations also appears
for copper, suggesting that the description of scattering from magnetic impurities is
inadequate or that pollution arises during the fabrication process of samples for energy

exchange measurements.

The implantation of magnetic impurities at a known concentration in a very pure sample like
Ag,, 120 would be a quantitative test of this theory. Experimentally, the implantation cannot
be performed after fabrication because ion implantation destroys the tunnel junction. Another

fabrication processis being developed in order to circumvent this difficulty.

1.1.3 Conclusion

This set of experiments sheds light on low temperature decoherence by showing that a
minute concentration of magnetic impurities can result in an almost constant phase coherence
time on a broad temperature range, and in a sizeable increase of energy exchange. Since the
nominal purity of commercial sources is warranted to one ppm at best, a minute concentration
of magnetic impurities cannot be excluded. Moreover, pollution of the sample at thislevel can
never be absolutely excluded. Unfortunately, a posteriori analysis measurements on our thin
films are not sensitive enough to detect impurities at the ppm level. It could even be argued
that the phase coherence time measurements are probably the most accurate method to detect

so small concentrations of low- 7, magnetic impurities, particularly in thin metallic films.

1.2 Mesoscopic superconductivity

In presence of attractive interactions between quasiparticles, another quantum
coherence phenomenon, namely superconductivity, sets in at low enough temperature: the
Fermi liquid adopts a many-body quantum state with pair correlations, and an order parameter

characterized by a phase. A fundamental characteristic of the superconducting state is that a
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supercurrent, i.e. a current at zero voltage, can flow. Although the superconducting state is
rather robust against decoherence in the underlying Fermi liquid of quasiparticles, specific
depairing mechanisms tend to weaken and eventually suppress the pairing order. This is the
case when amagnetic field is applied or a current flows through the superconductor, as shown
in the first experiment presented in this part. Conversely, in a proximity effect situation, in
which a superconductor and a normal electrode are placed in contact, the extension of the
induced pairing order in the normal part depends on the coherence length of individual
quasiparticles. In diffusive conductors at equilibrium, both the depairing in a superconductor
and the propagation of pair correlations in a normal metal can be described with the Usadel
equations, derived from the formalism of non-equilibrium superconductivity [14]. This
formalism can also describe out-of-equilibrium proximity effect situations as long as the
superconductors are all at the same potential. In the second experiment presented in this part,
we address a situation beyond this limit: a normal wire connected to two superconductors

biased at different potentials.

1.2.1 Density of states in a superconductor carrying a supercurrent

We have carried out an experiment to test the predicted equivalence of the depairing
induced by a magnetic field or by a supercurrent in a superconducting wire [15]. Indeed both
effects enter as a single “depairing energy” in the Usadel equations. To deal with a simple
case, the superconductor was chosen wire-shaped with thickness and width smaller than the
London length, so that the current flow was homogeneous and the magnetic field penetrated
completely. Moreover, the width and thickness were of the same order as the coherence length
L, = JiD/A o that pair correlations did not vary in the transverse directions. We measured
the single particle density of states, which is agood marker of pair-correlations, in presence of
a supercurrent, or of a magnetic field. The density of states was inferred from the differential
conductance dI / dV(V) of atunnel junction formed between the superconducting wire and a
probe electrode made of normal metal. In absence of magnetic field and supercurrent, the

conductance displaysagap A, and a sharp peak in agreement with the predictions of the BCS
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theory. In Figure 5, measured differential conductance curves are presented for different
values of supercurrent and magnetic field. In both cases, good agreement is found with theory

using the concept of depairing energy.

Figure 5: Open Symbols: Normalized differential conductance of a tunnel junction of resistance R, between a
normal probe and a superconducting wire when the wire sustains a supercurrent I, (left panel) or is exposed to a
magnetic field B (right panel). To a good approximation, the differential conductance is proportional to the
density of states in the superconducting wire. In absence of supercurrent and magnetic field, the density of states
is zero below the gap energy A,. Solid lines: Fits using non-equilibrium superconductivity theory using only the
depairing energy as afit parameter.

1.2.2 QOut-of-equilibrium proximity effect

We investigated proximity effect in a normal (N) diffusive silver wire connected to
two aluminum superconducting (S) contacts biased at different potentials [16]. The aim of this

experiment was to probe proximity effect in a simple out-of-equilibrium situation.

The equilibrium transport properties in such a set-up have been previously investigated by
Dubos et al. [17]. The observed supercurrent was quantitatively explained by Usadel
equations. When superconductors are biased at different potentias, their phase difference
depends on time, and this theory cannot be directly used. Yet, in our experiment, it appears

that some out-of-equilibrium properties can be accounted for by a simplified picture of
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proximity effect, which neglects the modifications of the density of states but takes into
account the Andreev reflections at the NS contacts, which are responsible for the conversion
of the quasiparticle current in the normal conductor into a supercurrent. In the normal wire,
the current is exclusively carried by electrons and holes. In the superconductor, the current is
carried by the pairs in the superconducting condensate, and single particle excitations are not
possible below the gap energy A. At an NS interface, an electron in the normal metal with
energy smaller than A isreflected into a hole while a Cooper pair enters the superconductor.
In an SNS configuration, these Andreev reflections manifest themselves directly in the shape
of the energy distribution of electrons in the normal wire. Indeed, as shown in Figure 6, low
energy electrons and holes bounce back and forth between the superconductors, gaining
energy at each traversal until they can enter a superconductor. As a conseguence, the energy

distribution function in the wire presents multiple steps.

In the experiments, the out-of-equilibrium distribution functions were obtained by numerical
deconvolution of the differential conductance of a tunnel junction formed between the normal
wire and a superconducting probe [2]. The position of the steps in the measured distribution
functions is well accounted for by the picture of Andreev reflections occurring at the NS
interfaces (see Figure 6). Yet, these steps are rounded, revealing a redistribution of energy
among the electrons. To account for this rounding, €l ectron-electron interaction and electron-
phonon interaction need to be included in the calculation, within the framework of the
stationary Boltzmann equation [6], Andreev reflections at the NS interface entering as
boundary conditions. As shown in Figure 7, this approach leads to a precise description of the

measured distribution functionsin wires that are long enough.

Even if this ssmple approach accounts successfully for the energy distribution functions in the
normal wire, it fails in explaining the current-voltage characteristic of the SNS system, which
presents a structure that was also observed by Hoss ef al. [18]. In contrast, the Boltzmann
equation approach predicts a linear current-voltage characteristic. It appears hence that the
modification of the density of states near the NS interfaces due to proximity effect, which
leads to a renormalization of the diffusion coefficient, cannot be neglected to understand the

current-voltage characteristic. It is only because the length scale on which the density of states
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is modified is small compared to the wire length that this effect could be neglected in the

calculation of the distribution functions.

E(meV)

Figure 6: Left: Layout of the experiment: A voltage U is applied between two superconductors (S) connected
through a normal wire (N) of length L. A superconducting probe, represented by an arrow, forms a tunnel
junction with the central part of the wire. Right: Top: Representation in the energy (horizontal axis) and position
(vertical axis) space of the quasiparticle paths responsible for the current transport. The excitation spectra of the
top and bottom superconductors have a gap 2A centered on their electrochemical potentials 1, and L,
(u, -, =eU), with electron states occupied at negative energies (dark areas) and empty at positive energies
(light gray areas). Quasiparticle paths consist of electrons (dark disk) and holes (light gray disk) trajectories at
symmetric energies about 4 and p, , connected by Andreev reflection. The area of the disk is proportional to
the occupation factor of the quasiparticle state, which varies linearly along the path from 1 to 0. The bottom plot
shows the energy distribution measured at the center of a 5-um long silver wire connected to two aluminum
superconducting pads (symbols), and the prediction (solid line) of the theory without interactions between
quasiparticles.

Hence, we find that even if some manifestations of out-of-equilibrium proximity effect can be
understood by ad-hoc adaptations of existing theories, a theory that includes interactions

between electrons and that treats non-stationary casesis missing.
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f(E)

Figure 7: Symbols: Distribution functions measured at two positions in a 5 um-long silver wire, connected at
both ends (x =0and x =1) to superconducting electrodes biased at the potential 0 and 700 V. Solid lines:
Solution of the Boltzmann equation accounting for the Andreev reflections at the reservoirs and electron-electron

interactions within the wire.
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PART 1

EXPERIMENTAL TECHNIQUES






Chapter 2 Tunnel spectroscopy of mesoscopic
systems

Tunneling of electrons between metallic electrodes provides spectroscopic information
on the densities and filling of the states of the electrodes [1]. Tunnel spectroscopy is thus a
powerful technique to probe mesoscopic effects, and has been used extensively in this thesis.

In the following, the principles of tunnel spectroscopy are described.

2.1 Tunnel junctions

2.1.1 Description

A tunnel junction consists of two conductors separated by a thin insulating layer (see

Figure 1).
2nm
(= d
metal metal
Insulating
layer
Capacitor Tunneling Tunnel junction

Figure 1: Top: Tunnel junction between metallic electrodes. The thin insulating layer is a barrier that conducting
electrons cannot cross according to classical physics. However, if the insulating layer is thin enough, quantum
tunneling of electrons through the barrier leads to a measurable conductance. Bottom: Model of atunnel junction:
The junction is decomposed into atunnel element of resistance R, in parallel with a capacitance C .
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Although electrons cannot propagate in the insulator, the barrier is thin enough to allow
electron transfer by quantum tunneling, which leads to a measurable conductance. A tunnel
junction is decomposed into the parallel combination of atunnel element of resistance R, and
a capacitance C, which accounts for the possible charging of the metallic electrodes on both

sides of theinsulating layer.
2.1.2 Current through an N-X tunnel junction

The expression of the current through a tunnel junction with at least one electrode in
the normal state (N), embedded in an electromagnetic environment, involves the distribution
functions ( f, and f,) and the density of states (DOS) of both electrodes (», and n, in units of
the density of states at the Fermi level v, of the considered metal), and the probability
P(s,T) that a part £ of the available energy is released to the electromagnetic environment
of the junction when atunnel event occurs[2]:

1(7) :ij’:dE m (E)f " de P(T) (,(E)m(E=ev=£) (1= (E-ev =e))

(1)
(11 (E))ne(E=ev +e) £y (E=eV +¢)),

where ¢ isthe absolute value of the electronic charge (see Figure 2).

Left E Right
electrode electrode

i

(£) o(E)

Figure 2: Tunneling process through a junction when the junction is voltage biased: el =y, — i, . The current
through the junction depends on the density of states in the electrodes », and n,, the filling of these states
f, and £, , and the probability P(&,T) that the energy ¢ isreleased to the electromagnetic environment.
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When the tunnel junction is formed between a superconducting electrode S and a normal

metal N with negligible resistance, Eq. (1) simplifies considerably:
1+
I(V):Ef—«» dE ng(E=eV)(f, (E)-O©(E-eV)), 2

with the function ©(E£)=1if £<0 and ©(£)=0if E=0.

2.2 Principle of tunnel spectroscopy

To perform tunnel spectroscopy, we take advantage of simple configurations with
normal and superconducting electrodes, embedded or not in a resistive environment, for
which the current-voltage characteristic is non-linear. Then, if only one quantity in Eq. (1) is
unknown, spectroscopic information on the density or filling of the states is obtained from the
measurement of the differential conductance dI/dV of the junction. The different

configurations used in thisthesis are presented in Figure 3.

- AnNStunnel junction alowsto perform the tunnel spectroscopy of the density of statesin
the superconducting part (case 1), or of the energy distribution function in the normal part
(case 2).

- When an NN junction is embedded in a resistive environment, the quasiparticle energy
distribution in one of the normal electrodes can be inferred from the differential
conductance of the tunnel junction. This set-up allows to measure the quasi particle energy

distribution in presence of a magnetic field.

In set-ups aiming at the measurement of the energy distribution of quasiparticles f (E) the
differential conductance is not directly proportional to f(£) but to a convolution of f(E)
with a known function that depends on the physical process involved. The procedure to infer

£ (E) from the differential conductance is detailed in the following.
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Figure 3: 1), 2) and 3): Top: A tunnel junction is formed between a probe electrode (left) in which the density of
states and the filling factor are well known and an electrode (right) in which either the density of states n(E), or
thefilling factor f(E) areto be probed. Bottom: Representation of the electronic states and their filling for both
electrodes. In each case, the unknown quantity in the right electrode, and its relation with the differential

conductance of the junction are given.
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2.3 Tunnel spectroscopy of the quasiparticle energy distribution
function in a normal metal

2.3.1 Relation between the tunnel junction differential conductance and
the distribution function

When performing the tunnel spectroscopy of the distribution function, the differential
conductance can be written in the generic form:

dl
RTW(V):1+qu(eV), ©)

where ¢ (E) is afunction dependent on the junction and on the environment characteristics.

2.3.1.1 Case of a superconducting-normal junction

When the probe electrode is superconducting, ¢ (E) is the derivative of the density of
states n, in the superconducting electrode. In our experiments, this density of states ng is

well described by the BCS function:
2

2.3.1.2 Case of a normal-normal junction: dynamical Coulomb blockade of tunneling

When both eectrodes are normal, ie. n,(E)=n,(E)=1, but in presence of a
resistive environment for the junction, a convolution product is also found as a result of
Coulomb blockade. The current through the junction can be written from Eqg. (1):

1) = [ e p(e) (7 (8)a s (E et -e) .

~(1-1,(E)) £ (E+eV +£)).
The differential conductance can be written as (using the normalization I: de P (5, T ) =1):

a(fR(E+eV+£g;fR(E+eV—£)) E ©)

)=2
dV R,

§+ f de P(&,T) J’ dE f,(E)
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which can be recast in the form (3) with:

O(fu(E+e)=fu(E=¢))
0E

q(E)=[ _de P(e.T)

The determination of P(s,T) is based on the Coulomb blockade theory (see Appendix). The
function q(E) depends then on the impedance of the environment, the capacitance of the
junction and the electronic temperature in the probe electrode. Practically, the quasiparticle
energy distribution function in the norma probe electrode f, is assumed to be a Fermi

function at atemperature close to the fridge temperature.

2.3.2 Experimental procedure

To characterize the function ¢(E) entering in the expression of the differential
conductance (Eg. (3)), the differential conductance dI /dV(V) Is first measured with both
electrodes at equilibrium. The distribution functions are in this situation Fermi functions at a
temperature close to the refrigerator temperature. The characteristics of the probe electrode are
then determined from a fit of dI/dV (V) with Eq. (3). When the probe electrode is
superconducting, the parameters to be determined are the tunnel resistance of the junction R,
and the gap A of the BCS density of states (Eq. (4)). When the probe electrode is normal, the
parameters to be determined are the tunnel resistance of the junction R, the resistance R,
and the temperature 7 of the probe electrode, and the capacitance of the junction C.

Examples of fits are shown in the top of Figure 4 for both cases.

After this calibration step, the differential conductance obtained with a modified 7 (E) in the
wire is measured (see Figure 4). When the probe electrode is superconducting, the data are
deconvolved using Eg. (3) to obtain the corresponding f (E) [3] (see Chapter 7). The
deconvolution procedure uses a steepest descent method [4]. When the probe electrode is
normal, the deconvolution procedure could not be applied in our experiments. The reason is
that the Coulomb singularity is not as sharp as the BCS singularity so that the signal to noise
ratio istoo small to avoid additional numerical noise during the deconvolution procedure. We

have then chosen to fit the measured differential conductance with EqQ. (3) using the function
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q(E) as determined in the calibration step and a function f(£) calculated with a mode! in

which few fit parameters enter (see Chapter 7).

(V) (uS)

= diidv

~

di/dV(V) (uS)

V(mV)

b)
R =48 kQ
A=0.240 meV
T=45 mK
)
2
S
>
°
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0.5
g ' :
2 =
> 2
g ®
: %)
2
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>
S
o
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R,=185 kQ
C=0.9fF

R =2.0 kQ
T=40 mK

Figure 4: Top: 8 Symbols: Measured differential conductance of an NS junction. Line: Fit using Egs. (3) with
R, =48kQ, A=0240meV, and a distribution function f(E) equal to a Fermi function at 45mK .
b) Symbols: Differential conductance of a normal-normal tunnel junction, embedded in a resistive environment.
Solid line: Fit using Eq. (6) with the parameters: R, =185kQ, C =0.9fF, R, =2kQ and 7 =40 mK. Bottom:
a) and b) Open symbols. Same curves as in top panel. Full symbols. Example of measured differential
conductance when the quasi particle energy distribution function is modified in the normal electrode to be probed.
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Appendix: Dynamical Coulomb blockade

A review on dynamical Coulomb blockade can be found in [2]. In this appendix, we
just present the equations used to calculate the function ¢ (E) to be convolved with the energy

distribution function in the case of anormal resistive probe el ectrode (see Section 2.3.1.2).

When a tunnel junction is embedded in an electromagnetic environment, the probability
P(&,T) that apart £ of the available energy in atunnel event is released to the environment
is determined by the environment impedance Z (w) [2]:

P(e,T):Ij%exp(J(t,T)ﬂst/h)
. e _ (7)
J(or)= [ " pperf @R L

R

with R, =h/e® = 25.813kQ the resistance quantum.

In the case of aresistive environment, the circuit can be modeled as shown in Figure 5.

Figure 5: Electrical circuit representing a tunnel junction in a resistive environment: the junction between the
wire and the probe is decomposed into a tunnel element of resistance R, in parallel with a capacitance C,
whereas the probe electrode is represented as aresistance R, . The environment impedance Z (w) isthe parallel
combination of R, and C .

The environmental impedance Z (a)) consists of the parallel combination of the junction

capacitance C with the probe resistance R, :

Z(w)=R, /(1+iRpr).

For thisimpedance, J(¢) has an analytical expression fromwhich P(&,7) can be calculated

[S]:
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where w, =2m k,7/h are the Matsubara frequencies and
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2

27Tn(6«)n2 —wf)

w. =1/(R,C)

C
L (8)

-

is the cutoff

frequency of Z(w). The probability P(&,7) isrepresented in Figure 6 in acase similar to the

experiments( C =0.9fF, R, =2.0kQ and 7' =40 mK).
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Figure 6: Left: Probability P (&) that apart £ of the energy is released to the electromagnetic environment when
atunnel event occurs, calculated at 7 =40 mK for a junction with capacitance 0.9fF, embedded in a resistive
environment of R, =2.0kQ . Right: Log-log plot of P (&) in the same conditions for £ >0 (solid line) and of
the asymptotic limit at 7 =0 (dashed lines). For low energies, P(&)=ale,(e/¢,)’ " and for large energies,
P(e)=a g/ with a=2R IR, and &, =h/(R,C). The effect of temperature is to increase P(&) and to
alow the environment to emit energy, resulting in the non-zero value of P (5) at negative energies.
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Chapter 3 Sample processing

3.1 Sample fabrication

In the following, we describe the different steps of sample fabrication. The samples are
made using electron-beam lithography and standard deposition techniques. Most of them are
fabricated in a single pump-down, using deposition at several angles through a suspended

shadow mask.

A typical fabrication schemeisoutlined in Figure 1.

a) bilayer b) standard dose exposition

N =
MAA ballast /j / \

oxidized silicon —2#%Z

c) additionnal low dose exposition d) development
suspended mask

° y

N ARNA

ucpuoltlul 1 f) iIfI-Off

/ >//[\/ i, 7

Figure 1: Typical fabrication scheme: a) Substrate coated with a bilayer of resists; b) and c) e-beam exposure; d)
suspended mask after development; €) metal deposition through the suspended mask. f) structure after the final
lift-off step.
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3.1.1 Wafer preparation

3.1.1.1 Monolayer coating

This process is used for the lithography of large numbers of samples at once. An
oxidized silicon wafer is coated with UVIII™ [1], a highly electrosensitive polymer (12
uC/cm?). After having spun a primer at 2000 rpm/min for 1 min, UVIII™ is spun at 2000
rpm/min for 2 min and prebaked at 135 °C on a hot plate for about 1 min; the obtained

thickness is 500 nm.

3.1.1.2 Bilayer coating

This process is used when a suspended mask over a ballast layer is required. The
process begins with the coating of an oxidized silicon wafer with two layers of
electrosensitive polymers. The ballast layer sustains the second layer, which constitutes the
mask. The bottom layer is a copolymer whose chains are more easily broken by exposure to
the electron beam than those of the top polymer, so that an undercut is obtained. We have
used the following coating procedure:

Bottom layer: Copolymer polymethyl-meta-acrylate/meta-acrylate acid (PMMA/MAA)
diluted in mass at 10 % in ethyl-lactate. The molecular mass of the MAA is 8.5 K. Spun at
4000 rpm/min for about 60 s and baked on a hot plate at 180 °C for 10 min, the thickness is

about 500 nm.

Top layer: PMMA of molecular mass 950 K diluted at 3 % in anisole. Spun at 8000 rpm/min
for about 60 s and baked on a hot plate at 180 °C for 30 min, the obtained thickness is about
100 nm.

The coated wafer is then cut into 6x6 mm? chips, which are processed individually.
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3.1.2 Sample processing

3.1.2.1 Wafer processing

3.1.2.1.1 Electron beam exposure

The patterning is done by steering the beam of a Philips XL30 SFEG scanning electron
microscope. The exposure pattern, dose and blanking of the beam are controlled by the Elphy-
guantum software from Raith. We currently use a beam acceleration voltage of 25 kV. The

sample holder is shifted between each pattern.

3.1.21.2 Development

Monolayers of UVIII™ resist are post-baked on a hot plate at 140°C for 1 min,
developed in MEGAPOSIT® MF CD-26 for 60 s and rinsed in pure water.

3.1.2.2 Single chip processing

3.1.2.2.1 Exposure to electron beam

The patterning of each chip is done with the beam of a JEOL 840A scanning electron
microscope. The exposure pattern, dose and blanking of the beam are controlled by the Proxy-
writer software from Raith. We use a beam acceleration voltage of 35 kV, for which the

standard exposure dose for PMMA is about 200 uC/cm?.

3.1.2.2.2 Development
Bilayers are developed in a solution of MIBK diluted in isopropanol (MIBK: 1 IPA: 3)

while being sonicated for 45 s, then rinsed in IPA. A suspended mask is then obtained.

3.1.3 Metal deposition and oxidation

Metal deposition and tunnel junction fabrication proceed in an electron gun
evaporator. The sample is positioned on a tiltable sample holder. Junctions between different

materials are obtained by deposition through several slits in the suspended mask, as shown in
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Figure 2. The first image of one dit overlaps with a part of the image of another dlit. Tunnel
barriers are formed by oxidizing aluminum with an oxygen-argon mixture (20-80 %). After
deposition, the mask and resist are lifted off in acetone at 65 °C. The fine details on UVIII™

wafers are lifted off in ethanol at room temperature, with a few seconds sonication at the end.

(MDA (@ oxidation (3)

LIAILIIIILIIIS LIS,

Figure 2: Fabrication of a superconducting/normal tunnel junction in a two-angle deposition process. In our
experiments, the superconductor is aluminum, the insulating layer is aluminum oxide, and the norma metal is
silver, copper or gold.

3.2 Example: Sample used for energy exchange measurements in
presence of an applied magnetic field

As explained in Chapter 2, information on energy relaxation in a magnetic field was
inferred from the differential conductance of a tunnel junction formed between a wire and a
resistive probe. The wire itself was connected to two much thicker pads, which played the role
of reservoirs. Two different fabrication processes have been developed. In the first one, we
processed chip by chip: the whole design was defined in a single lithography step, followed by
a three-angle evaporation. In the second one, two lithography steps were used: the first one to
form the wire and its reservoirs, the second one to form the probe electrode. This more
complex process allows the implantation of magnetic impurities before junction fabrications,

which avoids the destruction of the barrier by the ion beam.
3.2.1 One-step processing

A typical mask used is shown in Figure 3. The zones defining the wire, the reservoirs

and the shifted long probe finger are exposed with the nominal dose. The area around the long

40



probe finger is exposed with a low dose so that an undercut is created below the PMMA
mask. Therefore, the image of the probe at an angle falls on the substrate and below the wire.
The additional low dose exposure in other regions just helps the formation of this undercut.
The probe finger is obtained by depositing 17 nm of aluminum at +55 ° angle, oxidized
afterwards; the wire is obtained by depositing 45 nm of metal (silver, copper, gold or
aluminum) at 0° angle, and the reservoirs are obtained by depositing 430 nm of gold (or
aluminum) at -50 °. Since there is no undercut around the wire, its Al image lies on the side
of the ballast and is removed by the lift-off. The unwanted aluminum projection of the wire,
which would have been connected in parallel with the tested wire, is thus avoided. The gold

images of the fine wires in the third step are avoided because the slits defining the wires clog

before the end of evaporation.

DETAIL OF e-BEAM
EXPOSURE PATTERN

Q 3d evap
\
@/ (Au)
@ 2nd evap
(Ag)
/ K\1st evap
(A))

additional low-dose exposure

SAMPLE AFTER METAL
DEPOSITION THROUGH
MASK, AND LIFT-OFF

Figure 3: One-step fabrication of a sample for the energy exchange measurement in a magnetic field. Top:
exposure pattern of the center of the chip, with dose encoded in levels of gray. The arrows indicate schematically
the order and angle of deposition of the different metals. Bottom: Actual sample, seen at an angle.
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3.2.2 Two-step processing

This process is used to perform experiments with controlled impurity concentrations,
obtained by ion implantation. The previous process cannot be used because the tunnel
junctions are too fragile: in afew hours they evolve from afew kiloohms resistance to an open
circuit. Moreover, the tunnel barriers turn to short-circuit during ion implantation. These
difficulties are circumvented with the two-step process. In a first step, a complete wafer,
coated with UVIII™, is e-beam exposed, defining 64 patterns (see Figure 4). These patterns
consist of 120 nm-wide wires of different length (5, 10, 20, and 40) connected to two large
pads, together with a third pad used in the second step (see Figure 5) and 895-um long wires
to allow weak localization measurements. Then, 45 nm and 100 nm of silver are deposited at
angles 0° and 50°, respectively. After lift-off, the wafer is split in two parts so that part of the
wires can be implanted with manganese ions. Afterwards, the wafer is coated with MAA-
PMMA! to realize the second lithography step. The coated wafer is then cut into small chips,
which are processed individually. In the second step, we pattern the measure probe, realigned
on the first pattern of silver. To obtain good quality junctions, the silver is cleaned by ion
milling before deposition (in 10“ mb of Ar, ¥ =500V, 1 =5mA for 5 s). Afterwards 3 nm
of aluminum is deposited at 30° angle and oxidized at 1 torr for 10 min to form the tunnel
junction. Finally, 12 nm of aluminum is deposited at 30° to form the resistive probe in a

magnetic field.

+ + + + £
e NN B
7N VAN VAN

e lcm

Figure 4: Part of the wafer processed to be ion-implanted. In the middle, eight samples are dedicated to weak
localization measurements. The other ones are processed individually in a second lithography step.

! The bilayer of MAA-PMMA is only baked at 140°C instead of 180°C. We prefer to heat our samples as little as
possible because the silver films deposited in a first step degrade with temperature.
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/ \ 2nd evap
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\ evap (Al)
+ +

second step

Figure 5: Two-step fabrication of a sample for the energy exchange measurement in a magnetic field. Exposure
pattern of the center of the chip for both steps. The arrows indicate schematically the order and angle of
deposition of the different metals. Right: Optical image of the center of the final chip.

3.3 Implantation of magnetic impurities in thin films

The implantation of manganese in silver wires, for the experiments on electron-
electron interaction, was realized at the CSNSM at Orsay University by O. Kaitasov, S.

Gautrot, and J. Chaumont in the medium energy implantor IRMA [2]. A MnCl, sourceis first



vaporized in vacuum (1.810° mb). A plasmais formed by electronic arc discharge to obtain
charged manganese ions *Mn". These ions are first accelerated at 40 keV and separated
electromagnetically from other isotopes and elements obtained from the impurities (mainly
FeCl) in the source. They are once again accelerated at 30 keV, a vaue calculated to obtain a
Gaussian impurity concentration in the thickness of the silver film. The ion beam is focused
thanks to an el ectrostatic quadripolar triplet lensing system. Theion beam, of section 1 cm?, is
swept on the sample holder so that the dose is homogeneous. During the implantation process,
the current flowing from the sample holder to ground is monitored to control the total amount
of ions received. Secondary electrons are repelled towards the sample by a negative polarized
grid. Typically, the measured current was of 10 nA on a surface of 56.5cm?. In 195 s, a
1 ppm concentration of Mn impurities is implanted in 0.045 um thick silver films. This

corresponds to 5300 ionsin the volume of a 0.045x0.1x20 um?® wire.

References of chapter 3
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Chapter 4 Measurements at low temperature

Once processed, the chip is glued with silver paint on a sample holder fitted with
connectors. The circuit pads are bonded to the pins of the connector with 25 pm-diameter
aluminum wires. The sample holder is thermally anchored to the mixing chamber of a dilution

refrigerator through a copper braid (see Figure 1).

Electrical connections to the sample are made through filtered coaxial lines (see Figure 2).
Microfabricated distributed RC filters shaped as meander lines [1] are used as well as lossy
coaxial cables. The voltage drop across the sample is measured in series with the last filter
stage, using a twisted-pair connection and a low-noise, battery-powered room-temperature
pre-amplifier (NF LI-75A). The current in the sample is produced by applying a voltage to a
bias line consisting of a voltage divider in series with a resistance. The current is calculated
from the input voltage, the measured voltage across the sample and the resistance values of
filters and lines. To measure differential conductance curves, a small AC modulation is added
to the DC voltage and a lock-in detection is performed. The bias and output voltages are

recorded on a computer through IEEE connections.

It is possible to measure in a single cool-down several circuits with a single bias line and a
single twisted pair thanks to a 12-position rotary switch connected to the bias and measuring
lines at the output of the last filter. Six resistors of known values, connected in-between, mark
the positions. Positions are switched by a motor thermally anchored to the still of the dilution

refrigerator.
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microwave filter

thermometers

rotary switch

coaxial cables

copper braid

samples

Figure 1: : Photographs of the insert in the dilution refrigerator and details of the sample holder.
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polarization data acquisition

77

10-100 kQ D T 300 K
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Figure 2: Schematic of the electrical wiring in the dilution refrigerator for the experiment measuring the
distribution function in a normal wire connected to superconducting pads. Current isinjected to the sample by the
source V, through the biasing line. Voltage across the sample in series with a filter F is measured with an
amplifier at room temperature connected by a shielded twisted pair.
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PART 2

MAGNETIC IMPURITIESIN METALS






Chapter 5 Introduction to Kondo effect

Kondo effect arises from the interaction between single magnetic atoms and the
electrons of a metal. It results in the renormalization of the coupling between electrons and
magnetic atoms and an enhanced scattering of electrons from magnetic atoms, observed in the

temperature dependence of the resistivity.

It was proposed that Kondo effect explains previous energy exchange and phase coherence
time measurements in metals that were not accounted for by the theory of electron-electron
interaction. In this chapter, we describe the consequences of Kondo effect, in the limit of non-

interacting magnetic impurities, on resistance, phase coherence and energy exchange.

5.1 Kondo effect and low temperature resistance

The theory of Kondo effect was first developed to account for the temperature
dependence of the resistivity of metals containing magnetic impurities. In such materias, it
was found that the resistivity presents a minimum at finite temperature, with a logarithmic
increase when the temperature is lowered further, instead of decreasing as predicted from

theories of electron-electron and el ectron-phonon interactions.

The electrical resistance is determined by the amount of back-scattering of electrons from
phonons, defects, or impurities that hinders the electronic motion through the crystal. The
coupling between a magnetic impurity of spin S and electrons was described by Kondo with

the Hamiltonian:

Hc = JOZ ((C; ck’x _C; ck’i )Sz +cl:1 ck’rS+ +C; ck’LS_) ! (1)
where ¢, and ¢, are respectively the annihilation and creation operators of an electron of
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momentum % and spinup, S*, S* and S~ are the magnetic impurity spin operators, and J, is
the coupling constant between electrons and magnetic impurities. In 1964, Kondo found out
that when calculating the scattering of electrons by magnetic impurities using perturbation
theory, the second order term is of the same order as the first order term [1]. Afterwards, it
was calculated that the series of perturbations with this Hamiltonian diverges for energies

~1/(vgJo)

equal to the Kondo temperature, defined as k,7, =De , with &, the Boltzmann
constant, D the energy bandwidth of conduction electrons in the host metal, and v, their
density of states at the Fermi level (see appendix). The divergence arises from the non-
commutation of spin operators. For scalar interactions like Coulomb interaction, the
perturbation theory is still valid. For temperature larger than 7., the resistance is found

proportional to —c,,, In(k,7/ D), where ¢,

imp

is the impurity concentration.

In 1974, Wilson solved the Kondo problem within the renormalization theory and ruled out
the zero-temperature divergence of the resistance [2]. Physicaly, at temperatures much
smaller than the Kondo temperature, the spin of the magnetic impurity is totally screened by
the conduction electrons. For conducting electrons, the screened impurity appears then as a

potential scattering center.

5.2 Kondo effect and phase coherence time

Scattering from magnetic impurities results in spin-flip for electrons. Within the Suhl-
Nagaoka approximation for the Kondo effect, the temperature-dependent spin-flip scattering

rate is approximated by [3]:

1 _ G TS(S +1)
17 mhv, mS(S+D)+In*(T/T,)’

2

with S the spin, and 7 the Kondo temperature of the magnetic impurities. This formula was
first derived to determine the spin-flip scattering rate in superconductors [4]. The phase
decoherence rate due to spin-flip scattering can be identified to the spin-flip scattering rate in
a superconductor only for 7> T,. Yet, in previous experiments of phase coherence time

measurements using electronic weak localization, it was found that this formula describes
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correctly experimental results downto 7, [4,5].

The relation between the spin-flip scattering rate 1/7¥ and the decoherence rate 1/ r;f
depends on the comparison between the spin-flip scattering time of conduction electrons 7
and the spin relaxation time 7 (Korringa time) of the magnetic impurity [6]. Due to
dynamical effect, the decoherence rate can be enhanced. The decoherence rate due to magnetic
impurity iswritten:

1 L
i
i if 77 >1,

: 3
1 — . Sf
=—if ¥ <r,.

sf sf
T(p T

In practice, 7¥ > 7, aslong as

C,
T<—2.
V. k

F'"B

In gold, silver, or copper, this criterion reads 7' <40mK x¢, [ppm], in which ¢, is now

imp

given in parts per million atoms (ppm).

5.3 Kondo effect and energy exchange between electrons

In the past, theories of Kondo effect focused on the renormalization of the scattering
rate of electrons from magnetic impurities and, as far as mesoscopic physics is concerned, on
the corresponding spin-flip rate. When considering the scattering of a single electron from a
magnetic impurity (processes presented in the appendix), the electron energy is conserved as
long as the spin states of the impurities are degenerate, i.e. at zero magnetic field. In contrast,
processes involving two electrons only conserve the sum of the energies and energy exchange
is possible even at zero magnetic field (see Figure 1). This mechanism of energy exchange
between electrons mediated by magnetic impurities has been proposed only recently by
Kaminsky and Glazman [7]. We call this type of interaction Kondo-Impurity-Mediated

interaction (KIM interaction).
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Figure 1. Scattering process involving two electrons and a single magnetic impurity, at lowest order. In each
panel, the left ladder represents the energy spectrum of the electrons and the line on the right side represent the
energy level of the degenerate spin-up and spin-down of the magnetic impurity.

At second order in perturbation, the scattering of two electrons from a given magnetic
impurity is equivalent to an effective electron-electron interaction with a matrix element
M (5) proportional to the inverse of the exchanged energy €. According to the Fermi Golden
Rule, the exchange of energy £ by the KIM interactions leads to the rate y(E,s) of change

of the population of an electronic state at energy £ and of occupation number f (E) :
y(E.£)=K(e) (f(E+e) (1= f(E)) = F(E) (1= f(E-8)) [dE"F(E) U~ F(E+e)),(4)
with

=k, &%,

imp—e

K(g)O |M(£)|2 =717 l%S(s +1) (V;f)

where J isthe renormalized coupling constant between electrons and magnetic impurities by
Kondo effect. This result obtained by Kaminski and Glazman is in agreement with the
phenomenological result K [01/&* inferred from previous experiments [8,5], which was not
accounted for by theory of electron-electron interaction. The renormalization of the coupling
constant must be performed using processes involving two electrons and a single magnetic
impurity which were neglected in the calculation of the resistance because they enter at second
order. Examples of diagrams to be included in the calculation are shown on Figure 2.
However as pointed out by Kaminski and Glazman, Kondo effect is expected to modify the

coupling constant in a way depending on &, 7, and f(E) A complication arises in the
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renormalization calculation when the electronic energy distribution function is out-of-
equilibrium and when the spin-states of magnetic impurities are no more degenerated. Y et the
complete calculation has been performed using poor-man scaling, by Goppert ez al. in [9] and

will be presented in the Chapter 7 of this thesis.

Figure 2 : “First” and “second” order inelastic processes involving two electrons and one magnetic impurity and
equivalent diagram with a bubble to summarize the different coupling.
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Appendix: Perturbative approach of the Kondo effect

The Kondo Hamiltonian H, describing the coupling between a magnetic impurity of

spin S and electrons is written in the second quantification formalism:

kL kL kt k'L

H, = J()Z((c,;ck,T -c' ¢ )Sz t¢) ¢, S el c S‘) : (5)

where ¢, (¢, ) annihilates (creates) an electron of momentum k& and spin up and
S*, ST and S are the magnetic impurity spin operators. In the Kondo model, magnetic
impurities are assumed to be so diluted that they are independent; the RKKY model does not
apply here [10].

The calculation presented here aims at showing how the minimum in the resistance was first
explained by Kondo (for more details, see [11]). For simplicity, we have chosen S =1/2. As
a convention in the following, only the electronic states of interest that are occupied are
specified in the notation of the initial and final states. When considering the elastic processes
that let the spins of electrons down and the magnetic impurity spin-up (see Figure 3), the
electron energy &, =k’ /(2m) =hk'*/(2m) being conserved, one finds for the first order

jprocess.

A, : (6)

N |~

f=(k 1,0

k'l,D>

As shown on Figure 3, four terms, numbered from 1) to 4) are included in the calculation of

the second order term in perturbation.

. (k'v,0H,|&, 1,0)(k, 1,0[H,|% 1,0)
* £ £ —E,
(k, 1,0[H k"4, O)(k +,0JH, | &, 1,0)
2 . ™
. (k'4,0|H,|%, +.O)(k, +,0[H,|% +,0)
2 gk_gz
(k, 1,O[H,] &1, 0)(k 1,0[H, | &, +,0)
- £ —&, '
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This leads to:

ckick xck Tckl

J? )
tzzggk_£2<ki ki><D |D>

+z Jo <k’lcccc >

kot Tkl Tk T kpt

+z Jo <k’lcccc >

k'L Tkt Thyt Tk

+z Jo <k’lc+cc+c kl> D|SZ|D

kot kL TR Tkt

Using the anticommutation rules for the fermion operators and knowing that <D N

Eq. (8) becomes:

:<k,l

+0
+<k’i D) ng—ggz i.c, (1- ckrckr)‘kl><D|Sf|D>
+<k’l —z Js ¢, c.c ¢ l><D|Sf|D>.

LTk Tk, TRy
fzgk 82

J02 + +
ng_gzckx ki (1 ckrck )‘kl><|:|

(8)

0,

9)

To take into account the many-body case, one can simply state that c;c, = f(&,), with

7 (&,) the occupation factor of the state &, . Equation (9) is written:

:<k’l - ki><D

+<k'¢ l><D|Sf|D>.

Besides, since <D|Sf| D> =1/4, Eq. (9) can be written:

b e (1-7(2)

J: o,
_Z : ck'i ckl k
£ &,

&2 “

1)

_ SJ 1 f(&)
c Zngk—serngFzsk—;'

£

(10)

(1D)

Thefirst termin 7, leadsto small correction to the scattering rate, whereas the second one due

to the introduction of a cut-off in energy by 1 (52) leads to the logarithmic contribution:
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Jv, IOD de, _r =J, Ing.

k 2

where D is the bandwidth of the conduction electrons and v, their density of states at the

) this second order term is

Fermi level per unit of volume. For energies such as € <De
larger than the first order one. Note that if we chose the magnetic impurity spin-down, the
second term in Eq. (8) would have lead to the logarithmic correction whereas the first one
would have been zero. The logarithmic correction arises from the non-commutativity of the
spin-operators S* and S”.

Starting from other spin configurations leads to the same result. When adding all the

processes, one finds an effective coupling constant for electrons of energy & :

Jg(&)=J,+Jv, Ing+...

J, (12)

B D
1_‘]0VF |n;

the last equality following from a summation using the renormalization group technique [12].

Onefinds

1
J =
x(£) veIn(elTy)

U(Jovr)

For the characteristic energy, £ =k,7, =De , corresponding to the Kondo temperature,

J ,diverges. All the electronic transport properties are determined by this energy scale.

Starting from an independent electron model, the conductivity is determined by an average of

the scattering times r(s) , which areinferred from the values of ¢,, near Fermi energy:

2
)
a:(lzif) v, daa—g (¢)=1+2Jv, (In(D/k,T)+constant) . (13)

The resistivity varies logarithmically with temperature above 7, .
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Figure 3: First and second order elastic processes involving one electron and one magnetic impurity in a case

whereinitial and final electron spin states are identical.
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Chapter 6 Phase coherence time and Kondo
effect

In this chapter, the focus is on phase coherence at low temperature in metallic wires.
There is currently an experimental and theoretical controversy concerning the very low
temperature behavior of the phase coherence time. The standard theory of electron-electron
scattering predicts that the phase coherence time increases as a power law as the temperature
goes to zero. Yet, many experiments show a saturation of the phase coherence time at sub-
kelvin temperatures. Do those experimental observations reveal a fundamental, intrinsic

decoherence mechanism, or an extrinsic, sample-dependent source of decoherence?

The aim of the experiments presented in this chapter was to test if a very dilute amount of
magnetic impurities with arather small Kondo temperature could cause an apparent saturation

of the electronic phase coherence time.

6.1 Magnetoresistance and phase coherence time

The phase coherence time 7, is one of the few parameters that determine the weak
localization correction to the magnetoresistance of a wire, and it is the only one that depends
on temperature. This is why measurements of the magnetoresi stance versus temperature allow

determination of 7, over alarge range of magnitude.
6.1.1 Quantum coherence and transport properties

In diffusive thin films, electrons undergo a large amount of scattering events from

sample boundaries, phonons, lattice defects, impurities and other electrons. Although the
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mean free path between collisionsis /, =10 nm, quantum coherence effects persist on a much
larger scale than [, (typically of the order of a micrometer) because scattering is mainly
elastic. Elastic scattering can be pictured as resulting from static potential, on which the
diffusive-like electronic quantum states are built, and determines the low-temperature
resistivity. The phase coherence of the states leads to a small correction to the resistivity,
which depends on the magnetic field. This so-called weak |ocalization correction results from
quantum interferences between electronic paths. The probability P to go from an initial point
P, to afinal point P,, isthe modulus squared of the sum of the probability amplitudes 4, for

all the paths connecting these two points:

54,
= SAf 3 a4

Thefirst term in Eq. (1) is the sum of classical probabilities aong the different paths, whereas

2

P=

D

the second term accounts for quantum interferences.

Figure 1: The weak localization corrections to the conductance of a diffusive metal result from the constructive
(destructive if the spin-orbit coupling is strong) interference between the paths (+) and (-) following the same
loop in opposite directions.

For arbitrary paths a and [, the interference term has a random phase, and the average
contribution of such pathsto P iszero. Yet, if a enclosesaloop and £ differsfrom a only
by the direction in which the electrons travel on the loop (see Figure 1), a and S interfere

constructively (destructively if spin-orbit coupling is strong):
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2

A +A[ =44,

)

This results in P in an increased (decreased) weight of the paths enclosing loops. Electron
propagation along such paths is in average slower than on other paths. As a consequence, the

electron mobility, thus the metal conductivity, decrease (increase) due to quantum coherence.

The amplitude of this effect, called weak (anti-)localization, depends on the electronic phase
coherence time 7, because only loops of size smaler than the phase coherence length
L,=./Dr, contribute to the weak localization correction to the conductance. Indeed, the
addition of the amplitudes of paths @ and [ only makes sense if electron coherence is

maintained while traveling around the loop.
6.1.2 Magnetic field effect

When a magnetic field is applied, time-reversal symmetry is broken. The two paths (+)
and (-) of Figure 1 are then dephased by:

5=2% €)
@

where ¢, isthe magnetic flux enclosed in theloop, and ¢ =7 /e the flux quantum.

As a consequence, the magnetic field suppresses significantly the weak localization correction
in ametallic wire of width w when 0 =,/Dr, w/ L, with L, =./¢ /B the magnetic length
(w is assumed to be smaller than L,)". The weak localization correction to the resistance R

of ametallic wire of length L reads[1,2]:

-1/2

-1/2
AR (g (4 1owed 181 a0esd R @
R Rel 2 » 3L, 304 Dﬁ 2@[@ 304 Dﬁ g’

where R, = h/e? isthe resistance quantum and L, isthe spin-orbit diffusion length related to

the intensity of the spin-orbit coupling, characteristic of a given metal. Expression (4) holds
for metallic wires in the diffusive regime, far from the metal-insulator transition, and in the

quasi one-dimensiona regime: /, <w,r and L,,L,, < L with ¢ the sample thickness. Typical

! This expression of J holds when the magnetic field B is applied perpendicularly to the wire.
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calculated magnetoresistances using Eq. (4) are shown on Figure 2 for a given spin-orbit

length L, andtwo L, values L, =6L,, (solidline) or L, =L, (dashed line).

AR/R

Figure 2: Generic magnetoresistance curves calculated with Eq. (4). The amplitudes and characteristic fields are
given by the spin-orbit length L_ and the phase coherence length Z,. Solid line: L, =6L,, dashed line: Same
L,and L,=1L,.

6.1.3 Finite length effect

The magnetoresistance was measured on wires long compared to Z,, connected to
large reservoirs at their ends. We evaluate here the effect of finite length. At zero magnetic
field, in the strong spin-orbit coupling limit relevant to our experiments, the amplitude of the
weak localization correction is proportional to the number of loops smaller than L,. The ratio

AR/ R istherefore proportiona to L,

__2RL,
(0)==7 (5)

N

AR
R

Due to finite length of the wires, the loops starting from a point near the reservoir are cut
because as soon as an electron enters in areservair, its probability to return in the wire is very

small. As a consequence, the number of loops participating to the weak localization signal is
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reduced. To evaluate this correction, we first write the classical probability P(x,7) for an
electron to be at position x at time ¢ in awire of length L, knowing that it was at position x,
atr=0:
< . [nm .DmD-D’L”EZf

P(x,t)—ZSInBTXO%nB?xHe , (6)

where D is the diffusion coefficient. Here, the absorption in the reservoirs is taken into

account in the boundary conditions: P(0,7)=P(L,t)=0. The return probability at position
X, inatime shorter than r, isthen:

S I 7/ Sl il

P(x, - xO)DJ'dte “ZSInB?xO%nBTer : (7

For the whole wire, the amount N of loops of size smaller than L, = \/D_Q, isfor L, <L

proportional to:

(£-1,) LT
N= - Dr 0L -—2r. 8
f (o = %) 07, al, “”%L LE ®)
Therefore, Eq. (5) must be replaced by
L
:—_Rl% _‘ﬂE (9)
R R, L LT

Fits with Eq. (9) instead of Eq. (5) result in significant increase of the larger values of L, at
the lowest temperature in samples in which L, becomes comparable to L. This finite size
effect is illustrated on Figure 3, in the most spectacular case for our experiments. The
measurements are on 200 um-long silver sample Ag(6N)c where the finite size effect is

rather large because L, reaches 20 um at the lowest temperature.
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Figure 3: Phase coherence time 7, versus temperature in the sample Ag(6N)c (see paper below). Open symbols:

Phase coherence time obtained by fitting the magnetoresistance data with Eq. (5). Full symbols. Phase coherence
time obtained when taking into account effect of the finite length of the wire using Eq.(9).

6.2 Dephasing of electrons in mesoscopic metal wires

We reproduce here our article published in Phys. Rev. B 68, 085413 (2003). The silver
samples were obtained with the same 6N- and 5N- sources as the one used to make the

samples for energy exchange measurements (see Chapter 7 and Chapter 8).
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PHYSICAL REVIEW B 68, 085413 (2003

Dephasing of electrons in mesoscopic metal wires

F. Pierret®3* A. B. Gougam®" A. Anthore? H. Pothier? D. Esteve? and Norman O. Birge
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-2320, USA
2Service de Physique de I'Etat CondenBirection des Sciences de la Mate CEA-Saclay, 91191 Gif-sur-Yvette, France
3Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
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We have extracted the phase coherence tief electronic quasiparticles from the low field magnetore-
sistance of weakly disordered wires made of silver, copper, and gold. In samples fabricated using our purest
silver and gold sources,, increases a$ 2 when the temperaturBis reduced, as predicted by the theory of
electron—electron interactions in diffusive wires. In contrast, samples made of a silver source material of lesser
purity or of copper exhibit an apparent saturationf starting between 0.1 dnl K down to our base
temperature of 40 mK. By implanting manganese impurities in silver wires, we show that even a minute
concentration of magnetic impurities having a small Kondo temperature can lead to a quasisaturagjon of
over a broad temperature range, while the resistance increase expected from the Kondo effect remains hidden
by a large background. We also measured the conductance of Aharonov—Bohm rings fabricated using a very
pure copper source and found that the amplitude ofhifeeconductance oscillations increases strongly with
magnetic field. This set of experiments suggests that the frequently observed “saturatioy irofveakly
disordered metallic thin films can be attributed to spin—flip scattering from extremely dilute magnetic impu-
rities, at a level undetectable by other means.

DOI: 10.1103/PhysRevB.68.085413 PACS nunider73.23—b, 73.50—h, 71.10.Ay, 72.706tm

l. MOTIVATIONS power law 7, T~ 2?3 was first observed in 1986 by Wind
et al® betwea 2 K and 5 K inaluminum and silver wires
The time 7, during which the quantum coherence of anand then by Echternacét al® down to 100 mK in a gold
electron is maintained is of fundamental importance in mewire. However, in 1997, Mohanty, Jariwala, and Wéphb-
soscopic physics. The observability of many phenomena spdished a series of measurementsrgfon gold wires with a
cific to this field relies on a long enough phase coherencéroad range of diffusion coefficients. They observed that the
time.! Amongst these are the weak localization correction taphase coherence time tends to saturate at low temperature,
the conductancéWL), the universal conductance fluctua- typically below 0.5 K, in apparent contradiction with theo-
tions (UCF), the Aharonov-BohniAB) effect, persistent cur- retical predictions. That same year, measurements of the en-
rents in rings, the proximity effect near the interface betweerergy exchange rate between electrons in copper Hrivese
a superconductor and a normal metal, and others. Hence it feund to be at odds, both qualitatively and quantitatively,
crucial to find out what mechanisms limit the quantum co-with the prediction for electron—electron interactions. Both
herence of electrons. experiments suggested that electrons in mesoscopic metallic
In metallic thin films, at low temperature, electrons expe-wires interact with each other differently and more strongly
rience mostly elastic collisions from sample boundaries, dethan predicted by theory.
fects of the ion lattice and static impurities in the metal. To shed some light on this issue we present here several
These collisions do not destroy the quantum coherence afets of experiments probing the phase coherence time at low
electrons. Instead they can be pictured as resulting from temperature in mesoscopic metal wiféale summarize our
static potential on which the diffusivelike electronic quantummost important conclusions here. First, we measurgd)
states are built. down to 40 mK in several wires made of copper, silver, and
What limits the quantum coherence of electrons are ingold and fabricated from source materials of various purities.
elastic collisions. These are collisions with other electronsVe found in the four very pure silver wires and in the very
through the screened Coulomb interaction, with phononspure gold wire thatr,(T) does not saturate in the investi-
and also with extrinsic sources such as magnetic impuritiegated temperature range, but continues to increase as the
or two level systems in the metal. Whereas above about 1 Kemperature is lowered in agreement with the theoretical pre-
electron—phonon interactions are known to be the dominardiction. Since these samples have comparable resistances
source of decoherenéeglectron—electron interactions are and geometries as some measured in Ref. 7, this observation
expected to be the leading inelastic process at lower temperaasts doubt on the assertloat saturation ofr, is a uni-
tures in samples without extrinsic sources of decohergnce.versal feature of weakly-disordered metals. Second, we
The theory of electron—electron interactions in the diffu-tested the impact of very dilute magnetic impurities with a
sive regime was worked out in the early 198&fts a review, small Kondo temperature on the temperature dependence of
see Ref. 4 It predicts a power law divergence of, when  7,. We found that even at concentrations lower than one part
the temperaturd goes to zero. Effects of quantum interfer- per million (1 ppm), such impurities can causey(T) to
ence are therefore expected to grow significantly upon cooldisplay a plateau over a large temperature range. This could
ing down the electrons. In mesoscopic wires, the predicte@xplain why saturation of , at low temperature is frequently
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TABLE |. Geometrical and electrical characteristics of the mea-
sured samplegRef. 14. The diffusion coefficientD is obtained
using Einstein’s relation p~ vge?D with the density of states in
copper, silver and gold respectively:=1.56x 10*7, 1.03x 10%,
and 1.1410* 3 *m~3, and the resistivityp extracted from the
"""""""""""" resistanceR, thicknesst, lengthL, and widthw of the long wire.
Length and width were measured with a scanning electron micro-
scope(SEM). The thickness of most samples was measured with an
1 atomic force microscop€AFM); for others the value given by a
calibrated thickness monitor in the evaporator was used. A rectan-
gular cross section is assumed.

1

1

1

X Sample Made L t w R D
]

Lm s e e e e at (um) (m (hm (kQ) (cn?/s)
Lock-In

Ag(6N)a Saclay 135 45 65 1.44 115
Ag(6N)b Saclay 270 45 100 3.30 70
Ag(6N)c Saclay 400 55 105 1.44 185
Ag(6N)d MSU 285 35 90 1.99 165
Ag(5N)a Saclay 135 65 108 0.68 105
Ag(5N)b Saclay 270 65 90 1.31 135

Ag(5N)Gyos Saclay 135 65 110 0.47 150
Ag(5N)dyn1 Saclay 270 65 95 1.22 135

Au(6N) MSU 175 45 90 1.08 135
Cu(6N)a MSU 285 45 155 0.70 145
Cu(6N)b MSU 285 20 70 7.98 60
Cu(6N)c MSU 285 35 75 4.37 65

FIG. 1. Photograph of a silver sample taken with a scannin
electron microscope, and schematic of measurement circuit. Th u6N)d MSU 285 20 80 8.50 o0
wire resistance is obtained by a four-lead measurement in a bridgg4oN)a Saclay 270 45 110 1.68 70
configuration: the current is injected by two arms through the bia<CUGN)b Saclay 270 45 100 095 160
resistor and the voltage is measured across two other arms in ordet

to probe only the wire resistance; a ratio transformer is used to o .
enhance sensitivity to small variations of the sample resistance. Placed inside a carbon liner, whereas copper and gold were
put directly in the buckets of the e-gun system. Metal evapo-

observed. Finally, we probed the magnetic field dependend@tion took place at a base pressure of about'Idbar with
of the phase coherence time by measuring the magnetores? €vaporation rate of 0.2, 0.5, and 1 nm/s for silver, gold,

tance of copper Aharonov-Bohm rings showing a&nd copper, respectivelgee Ref. 1L
temperature-independen, at low temperature. The ampli- Samples made at Michigan State Universi§SU) were

tude of the Aharonov-Bohm conductance oscillations in-€VaPorated on a Si substrate with only the native oxide in a
creased strongly on a field scale proportional to the temperdhermal evaporator used only for silver, aluminum, gold,
ture, indicating that the phase coherence time at zero fielgoPPer and titanium. The source material and boat were re-

was limited by spin-flip scattering from magnetic impurities. Placed before each evaporation and manipulated using plas-
tic tweezers. The pressure during evaporation was about

10" ® mbar and the evaporation rate ranged between 0.2 and
IIl. EXPERIMENTAL TECHNIQUES 0.5 nm/st?

We measured the low field magnetoresistance of copper,
gold, and silver wires fabricated using source materials of
Figure 1 displays the photograph of a typical sample topyrity 99.999%(5N) and 99.9999%6N). Electrical and geo-
gether with a schematic of the measurement setup. metrical characteristics of the samples are summarized in

All samples were fabricated using standard e-beam lithogTaple |.
raphy techniques. A bilayer resist, consisting of a copolymer
P(MMA/MAA ) bottom layer and a PMMA top layer, was
first spun onto an oxidized Si substrate wafer. This bilayer
was then patterned by e-beam lithography to tailor a mask. The samples were immersed in the mixing chamber of a
The metal—gold, copper, or silver—was deposited directlytop loading dilution refrigerator. Electrical lines to the
through this mask in evaporators used only for nonmagnetisample were filtered by commercial “pi” filters at the top of
metals'® the cryostat and by discrete RC filters in the mixing chamber.

Samples made at Saclay used a Si substrate thermalfyesistance measurements were performed using a standard
oxidized over 500 nm, and metal evaporation was performedc four-terminal technique with a room temperature preamp-
in an electron gun evaporator. The silver source material wakifier of input voltage noise 1.5 n\4/Hz and a lock-in am-

A. Sample fabrication

B. Experimental setup
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AR/R

FIG. 2. Magnetoresistance ddgymbols and
fits to EqQ. (1) (solid lineg. Top panels are mea-
surements of two silver samples made of source
materials of nominal purity 6N99.9999%, top
left pane) and 5N (99.999%, top right pangl
Bottom panels display data measured on gold
(bottom left panel and copper(bottom right
pane) samples made of 6N nominal purity source
materials. The curves are offset vertically for
clarity.

AR/R

plifier operated at frequencies between 100 and 30Qsde in the magnetoresistance of samples(@d)c and AY6N)

Fig. 1). To avoid significant heating of electrons we used acdbecomes deeper and narrower upon cooling down to base
voltagesV,. across the samples such tledt,<kgT. Thisis  temperature whereas it stops changing at low temperature in
particularly important at temperatures below 100 mK forsamples AGN)b and CU6N)d.

which the length scale for electron—phonon interactions, re- The magnetoresistandeR=R(B) — R(x) is fit with the
sponsible for cooling down the electronic fluid, can be asquasi-1D expression for the weak localization correction,
large as several millimetefsee Appendix A A bridge cir-

cuit with a ratio transformer on one arm was used to enhance AR 2R (31 4 1 271-1/2
the measurement sensitivity to small changes in sample re- R Sl eI (i
sistance. A magnetic field was applied perpendicular to the R Reb(2[L7 3L, 3\Lj

plane of the sample using a superconducting coil.
1

1 N 1{ w 21-1/2 .
lll. LOW FIELD MAGNETORESISTANCE 2 Li 3 La ' @
MEASUREMENTS

The most accurate way to extrax;l; at low magnetic field whereR is the resistance of a wire of |engthand W|dthW,
in metallic thin films is to measure the magnetoresistanc&x=h/€” is the resistance quantuin,= D, is the phase
and to fit it using weak localization theotyBoth the ampli- ~ coherence lengttD is the diffusion coefficient of electrons,
tude and width of the weak localization peddtip when Ly=+7%/eB is the magnetic lengthB is the magnetic field
spin—orbit coupling is strongn the resistance are sensitive applied perpendicularly to the sample plane, ahg,
to the phase coherence length. = /D 74, is the spin—orbit length that characterizes the inten-
Figure 2 displays the low field magnetoresistance ofsity of spin—orbit coupling. Expressidi) holds for metallic
samples AgBN)c, Ag(5N)b, Au(6N), and CU6N)d at several wires in the diffusive regime, far from the metal—insulator
temperatures. The positive magnetoresistance indicates th@aansition, and in the quasi-1D regime].<w,t
spin—orbit scattering is stronger than inelastic scattering<Ly,L,,Ls<L, with t the sample thickness arid the
(750<74). Raw magnetoresistance measurements already refastic mean free path of electrogsee Refs. 15,16 and Ap-
veal a qualitative difference between these samples: the dipendix B.
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TABLE Il. Fit parameters of the magnetoresistance data to weak T T T T T —
localization theory: maximum phase coherence tizrjjj@‘, obtained
at the lowest temperature of40 mK; spin—orbit length_, and
effective widthw,,, . We also recall the widtlw obtained from
SEM pictures. The upwards arrow' indicates thatr, keeps in-
creasing down to 40 mK. In the other samplegjs nearly constant
at low temperature.
Sample 7He Leo Wy (W) @

(ns (um) (nm) =

Ag(6N)a 9/ 0.65 57(65) -
Ag(6N)b 127 0.35 85(100
Ag(6N)c 22/ 1.0 90(105
Ag(6N)d 127 0.82 75(90)
Ag(5N)a 2.9 0.65 108108
Ag(5N)b 35 0.75 8290
Au(6N) 117 0.085 85(90)
Cu(6N)a 0.45 0.67 155155
Cu(6N)b 0.95 0.4 7070 T T L
Cu(6N)c 0.2 0.35 7575) 0.1 1
Cu(6N)d 0.35 0.33 8080) T(K)
CusN)a 1.8 0.52 110110 FIG. 3. Phase coherence timg versus temperature in wires
Cu(5N)b 0.9 0.67 1001100

made of copper G6N)b (M), gold Au6N) (*), and silver Ag6N)c
(®) and Ag5N)b (O). The phase coherence time increases con-
tinuously with decreasing temperature in wires fabricated using our
In the fit procedure, we use the measured sample resipurest(6N) silver and gold sources as illustrated respectively with
tance and length given in Table I. Our experimental setupamples AgN)c and AUEN). Continuous lines are fits of the mea-
being designed to measure resistance changes with an highted phase coherence time including inelastic collisions with elec-
accuracy than absolute valuesR is known only up to a trons and phononEEq. (4)1. The dashed line is the prediction of
small additive constant that we adjusted to fit each magneqlectron—electron interactions orilq. (3)] for sample AEN)c. In

toresistance curve. The width was fixed at a v iv- contrast, the phase coherence time increases much more slowly in
: alyg 9 samples made of coppéndependently of the source material pu-

ing the best overall fits for the complete set of data at variou§ity) and in samples made of silver using our source of o0&
temperatures. The difference between the widtmeasured  ominal purity.

from scanning electron microscope images and the best fit
valuewy,_(see Table i was found to be always less than |v. COMPARISON WITH THEORETICAL PREDICTIONS
15%217 The spin—orbit length_, was obtained from fits of AND DISCUSSION
the magnetoresistance measured at the highest temperature.
These parameters being determinkg,remains as the only _ _ _ o
fit parameter for each magnetoresistance curve. Examples of Theory predicts that, in samples without extrinsic sources
fits are displayed as solid lines in Fig. 2. of decoherencer,(T) is limited by the contributio_ns of

In order to getr, from L, the diffusion coefficienD electron—electrom,, and electron—phonon,, interactions.
was determined using the measured geometrical and electff? Principle, decoherence by electron—electron scattering is
cal sample characteristics given in Table I. Figure 3 show&0t Purely an exponential process, hence the decoherence
74 as a function of temperature for samples (Blg)c, rates from electron—electron and electron—phonon scattering

Ag(5N)b, Au(6N), and Cu6N)b. This confirms quantita- do not simply add. In pract!c(asee A.pp.en('j|x' B t.he exact
. . . formula for the magnetoresistance is indistinguishable from
tively the differences between samples already mentione

from the raw magnetoresistance data. On the one hand, theq' (1) with a total decoherence rate,

A. Purest silver and gold samples

samples AgGN)c and AUEN), fabricated using our purest 1 1 1
(6N) silver and gold sources, present a large phase coherence ™ = i + ik (2
time that keeps increasing at low temperature. On the other T Tee Tph

hand, the copper sample GIN)b and the sample A§N)b,
fabricated using a silver source of smaller nominal purity
(5N), present a much smaller phase coherence time and e
hibit a plateau inr4(T), in contradiction with the theoretical

For our wires, whose width and thickness are smaller than
L,, the quasi-1D prediction for electron—electron interac-
fions applie&®

prediction for electron—electron interactions. This trend, il- 13
lustrated in Fig. 3, has been confirmed by the measurements — (4/m)(Re /R)veSL = 1 ' 3
of several samples, as summarized in Table 1. (kgT)? Ay T3
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cess. Nevertheless, if the exponenfldk left as a fit param-
eter, better fits are obtained with smaller exponents ranging
from 0.59 for samples A@N)d and AUEN) up to 0.64 for
sample Ag6N)c. This issue will be discussed in Sec. VB.
The dashed line in Fig. 3 and Fig. 4 is the quantitative pre-
diction of Eq. (3) for electron—electron interactions in
sample Ag6N)c. The dephasing times are close, though al-
ways slightly smaller, to the theoretical prediction of E8).
Table 11l lists the best fit parametefs B, together with the
predictionAy,, of Eq. (3).

This data set casts doubt on the claim by Mohanty, Jari-
wala, and Webb(MJW) that saturation ofr, is a universal
phenomenon in mesoscopic wires. One can always argue that
the saturation temperature for our silver samples is below 40
mK, hence unobservable in our experiments. However, the
resistivity and dimensions of sample @&iN)a are similar to
those of sample Au-3 in the MJW pagewhich exhibits
saturation ofr, starting at about 100 mK, and has a maxi-
mum value of7g™=2 ns. In contrasty, reaches 9 ns in
Ag(6N)a.

FIG. 4. Phase coherence time vs temperature in samples
Ag(6N)a (M), Ag(6N)b (¥), Ag(6N)c (®), Ag(6N)d (A), and
Au(6N) (*), all made of 6N sources. Continuous lines are fits of the B. Silver 5N and copper samples
data to Eq.(4). For clarity, the graph has been split in two part, | sjlver samples made from a 5N purity source, the phase
shlftc_ed_vertlcally one with respect to the _other. '_I'he quantltatlvecoherence time is systematically shorter than predicted by
predlctlorj of Eq.(3) for electron_—electron interactions in sample Eq. (3) and displays an unexpectedly flat temperature depen-
Ag(6N)c is shown as a dashed line. dence below 400 mK. The same is true for all the copper

. . . samples we measured, independently of source pirity.
wherevg is the density of states per unit volume at the Fermitpase trends are illustrated for samples (Rgb and
energy, andSis the cross section of the wire. é:u(6N)b in Fig. 3.

In order to test the theoretical predictions, the measured \ynat can be responsible for this anomalous behavior?

74(T) curves were fit with the functional form, There have been several theoretical suggestions regarding
1 3 3 sources of extra dephasing. Some of these, such as the pres-
Ty =ATTHBT, 4 ence of a parasitic high frequency electromagnetic

. _radiation'® can be ruled out purely on experimental grounds.
where the second term describes electron—phonon scatterlrmdeed some samples do show a saturationrof while

dominant at higher temperaturéSits are shown as continu- others of similar resistance and geometry, measured in the

ous lines in Fig. Athe fit parameters minimize the distance same cryostat, do not. This indicates that, in our experiments

E?qtt\f;eti?)r; t(t;)e gztsir?&r;tsai23$2§t t?]l:arvt?a rlr?pirlgt%?(laosgfé%tnat least, the observed excess dephasing is not an artifact of
. the measurement. The main suggestions to explain the
dence of 74(T) for samples A@N)a, b, ¢ and, with a 99 P

slightly reduced fidelity, for samples AgN)d and sample anomalous behavior af, are dephasing by very dilute mag-

. ; netic impurities:**?° dephasing by two-level systems associ-
Au(EN). In all these samples, fabricated using 6N sourcey .y \ith |attice defectd:?? and dephasing by electron—
materials of silver and golds;,(T) follows very closely, be-

low about 1 K, the T dependence expected when theﬂﬁgtézzg interactions through high energy electromagnetic
electron—electron interaction is the dominant inelastic pro- The correlation between source material purity and excess
dephasing amongst silver samples fabricated using the exact
same process but with either our 5N or 6N source material
suggests that impurities are responsible for the anomalous
temperature dependence nf. The fact that, among all the

6N silver samplest,(T) deviates the most from the predic-
tion of electron—electron interactions in &iN)d, fabricated

in MSU (see Fig. 4 would mean that the 6N silver source

TABLE IIl. Theoretical predictions of Eq.3) and fit parameters
for 74(T) in the purest silver and gold samples using the functional
form given by Eq.(4).

Sample Atny A B
(ns 1K ~2R) (nstK™2B (nstK™3)

Ag(6N)a 0.55 0.73 0.045 material used at MSU contains more “dangerous” impurities
Ag(6N)b 0.51 0.59 0.05 than the one at Saclay.

Ag(6N)c 0.31 0.37 0.047 The phase coherence time in the copper samples is always
Ag(6N)d 0.47 0.56 0.044 almost independent of temperature below about 200 mK
Au(6N) 0.40 0.67 0.069 down to our base temperature of 40 nfg€e Refs. 11,24,25

However, as opposed to silver samples, this unexpected be-
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TABLE IV. Kondo temperaturely (K) of common, lowTy,
magnetic impurities in Ag, Au, and Citaken from Ref. 2).

hanty, Jariwala, and Webb studied the effect of intentionally
doping their gold wires with iron impurities. They found that
74 in those samples did not truly saturate, but rather reached
a plateau arouh1 K and increased again below about 0.3 K.

Host\Impurlty Cr Fe Mn In addition, the presence of the iron impurities could be de-
tected by a logarithmic contribution to the temperature de-
Ag ~0.02 ~3 0.04 pendence of the resistanRéT), known as the Kondo effect.
Au ~0.01 0.3 <0.01 They concluded from those data that magnetic impurities
Cu 1.0 25 0.01 were not the cause of the saturationmgf they observed in

their nominally pure gold samples. However, it is well
known that the spin-flip scattering rate peaks near the Kondo
havior is not correlated with the source material pufBN  temperaturél , then decreases at lower temperature. While
or 6N). A likely explanation is provided by early measure- MJW showed convincingly that “saturation” of,, in gold
ments showing that the surface oxide of copper can causeould not be caused by iron impurities witly ~0.3 K, their
dephasing® data do not exclude an effect of impurities with a lower
Kondo temperature, such as manganese or chronfaea
Table V).

V. INFLUENCE ON 7, OF VERY DILUTE MAGNETIC
IMPURITIES
A. Can dilute magnetic impurities account for a plateau

Dephasing of conduction electrons by paramagnetic im- in 7,(T)?

purities has been known since 198ence it may come as . . . . _
a surprise that this issue is still under debate today. In their To answer this question experimentally, we fabricated si-

Letter on the “saturation” ofr, at low temperaturé,Mo- ~ Mmultaneously three silver samples (&d)b, Ag(5N)Gno.3,
and Ag(5N)dq;,;, and very dilute manganese atoms were

introduced by ion implantatidfiin two of them. Manganese
] atoms form Kondo impurities in silver with a Kondo tem-
N peratureT =40 mK.

T (ns)

10 b

~e The phase coherence times extracted from WL corrections

are shown as symbols in Fig. 5. Sampleg&)c, evapo-
rated separately, is shown as a reference. At the time of this
experiment only the 5N purity silver source was available.
Sample Ag5N)b, in which no manganese atoms were im-
planted, already shows very little temperature dependence of
74~3.5 ns below 0.3 K. Nevertheless, introducing more
manganese reduces further the phase coherence time as illus-
trated with samples Ag(5N)gos and Ag(5N)qs,; in
which, respectively, 0.3 and 1 ppm of manganese were im-

planted. For instance, by adding 1 ppm of manganege,
was reduced by a factor of 6 while leaving, still nearly
independent of temperature.

The effect of manganese ar), is now compared with the
existing theory of spin—flip scattering in the Kondo regime.

FIG. 5. Phase coherence time as function of temperature in sev-
eral silver wires. Sample AGN)c (@) is made of the purest silver . . .
source. Samples A§N)b  (O), Ag(5N)Guos (), and In the presence of spin—flip scattering the phase coher-
Ag(5N)dyn; (©) were evaporated simultaneously using our 5N €nce time reads
silver source. Afterward, 0.3 ppm and 1 ppm of manganese was
added by ion implantation respectively in samples Ag(5N)& 1 1 1 1
and Ag(5N)gn;. The presence of very dilute manganese atoms, a T_¢ - 7-_ee+ T_ph + T’ S
magnetic impurity of Kondo temperatuiig =40 mK, reducesr,,
leading to an apparent “saturation” at low temperature. Continuousyhere 1f; is the spin—flip rate of electrons. This expression
lines are fits ofr,(T) taking into account the contributions of s valid when the spin—flip scattering time of the conduction
electron—electron and electron—phonon interacti@eshed ling electrons is |onger than the Spin relaxation t|m (or Ko-
and spin—flip collisions using the concentratiop,q of magnetic  ringa time of the magnetic impurities themselves, i.ey
impurity as a fit parametédotted line is7 for .= 1 ppm). Best > 7y 29 This holds if
fits are obtained using,,4=0.13, 0.39, and 0.96 ppm, respectively,
for samples A@GN)b, Ag(5N)Gunoz, and Ag(5N)gy,q, in close c
agreement with the concentrations implanted and consistent with T= ﬂ, (6)
the source material purity used. vekg

B. Comparison with the theory of spin-flip scattering
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TABLE V. Fit parameters forr,(T) in silver and gold samples
made of our 6N sources, taking into account, on top of the contri-
butions of electron—electron and electron—phonon interactions, the
additional contribution of dilute Kondo impurities of spin-1/2 as
described by Eq95) and(8). The corresponding fits are displayed
as continuous lines in Fig. 6.

Sample A (Atny) B Crnag Tk
(nstK™#)  (ns'K™%) (ppm) (K)
Ag(6N)a 0.68(0.55 0.051 0.009 0.04
11 Ag(6N)b 0.54(0.51) 0.05 0.011 0.04
Ag(6N)c 0.35(0.3) 0.051 0.0024 0.04
Ag(6N)d 0.50(0.47 0.054 0.012 0.04
Au(BN) 0.59(0.40 0.08 0.02 0.01

s s Continuous lines in Fig. 5 are fits of the measurgdT)
0.1 T(K) 1 to Eq. (5) using Eq.(8), with magnetic impurities of Kondo
temperaturel =40 mK as expected for manganese atoms.
FIG. 6. Phase coherence time vs temperature measured obhe parameteré& and B in Eq. (4) could not be extracted
samples AGN)a (H), Ag(6N)b (V), Ag(6N)c (®), Ag(6N)d  independently for samples &A&&N)b, Guno3, and dy,. TO
(A), and AUBN) (*). For clarity the graph has been split in two avoid increasing unnecessarily the number of fit parameters,
parts shifted vertically, as was done in Fig. 4. In contrast to Fig. 4the values ofA and B deduced from the fit of sample
continuous lines are fits of the data to E¢S) and (8), with the Ag(6N)c (dashed lingwere used. Sample AGN)c was cho-
concentration of magnetic impurities as an additional fit parameteka 45 a reference because its predicted electron—electron
(see Table V. The quantitative prediction of E@3) for electron— : :
electron interactions in samples @iN)b (top par} and Ag6N)d scattering rate is close to that Of Samples (FgD,
: AJ(5N)Gyno 3, and Ag(5N)g,,,. Following this procedure,
(bottom part are shown as dashed lines.
the measurements could be reproduced accurately3h

wherec,4is the concentration per unit volume of magnetic = 1/2 andcpag=0.13, 0.39, and 0.96 ppm, respectively, for
impurities. In silver, gold, and copper this criterion reads ~ Samples AGN)b, Gung 3, and gyny, in close agreement with
implanted concentrations of manganese and compatible with

T=40 mKXCmad ppm), (7)  the nominal purity of the Saclay 5N silver source. This con-
firms that the effect onry of the implantation of magnetic

in which ¢, ppm) is now written in parts per million atoms . o . )
(ppm). In the opposite limit £4< 7¢), the impact of spin flip impurities with a low Kondo temperature is well understood,

scattering onr,, depends on the physical effect probed. ForbOth quglitatively and quantitatively.
weak localization corrections with strong spin—orbit cou- L00King back at ther, data for samples AGN)a, b, c, d
pling, spin—flip scattering enters then as2in Eq. (5).202° and AU6N) shown in Fig. 4, we note that the fits to those

As long asT=Ty, 7 is well described by the Nagaoka- data would also improve with the addition of a very small

Suhl formuld®3?t guantity of magnetic impurities. We performed new fits to
those data using Eq&5) and(8), with c,,,gas an additional
1 Crag m?S(S+1) adjustable parameter. For the silver samples we Kegpt

= 2 2 ' ® =40 mK as for manganese impurity atoms, whereas for the
Tst  Thvep 72S(S+1)+In3(T/Ty) gold sample A(6N) we choseT, =10 mK as for chromium
with SandTy, respectively, the spin and Kondo temperatureimpurity atoms. The values afy,,q from the fits are 0.009,
of the magnetic impurities. 0.011, 0.0024, 0.012, and 0.02 ppm, respectively, for samples
Upon cooling down;rs decreases wheh approached Ag(6N)a, b, c, d, and A(BN). The new fits are shown as
(dotted line in Fig. 3, whereas the electron—electron scatter-continuous lines in Fig. 6 and the fit parameters are given in
ing time 7¢e increases. The combination of both contribu- Table V. Note that these concentrations are about 100 times
tions can result in a nearly constant phase coherence timgnaller than the nominal total impurity concentrations of the
aboveTy, as shown by the solid lines in Fig. 5. sources. As a striking example to show how small these
A quick way to estimate the concentration of magnetichymbers are, 0.01 ppm of impurities in sample@d)d cor-
impurities corresponding to a plateau in the phase coherenggsponds to about 3 impurity atoms every micrometer in the
time is to comparer,***at the plateau to the prediction of wire. Such small concentrations of Kondo impurities are es-
Nagaoka-Suhl aT =Ty . In samples made of copper, gold sentially undetectable by any means other than measuring

and silver this gives the phase coherence time, especially in thin films. Moreover,
latea._ no commercial provider can guarantee such a high purity for
Ty =0.6 NSEmad ppm. (9 the source material.
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FIG. 7. Resistance of sample Ag(5N)d (¢ ) and Cy6N)d
(O) plotted as function of 3/T. Continuous lines are fits using the
functional formAR(T)/R=C/\/T, with C=2.4x10"* (left pane)

FIG. 8. Comparison between the predictive powers of the con-
ventional theory of electron—electron interactidiRef. 3, and of
the theory of Golubev and Zaiki(Refs. 23,35 The X coordinate

and 7.6<10™ % K2 (right pane), close to the predictions of E¢LO) . . ;
_ s . D the ratio of the phase coherence time measured at the lowest
Cyy=1.8xX10"% and 7.2¢10~* K2 respectively. The logarithmic  9'V€S )
thy pectively garithmi temperaturer’}™, to 757, calculated from Eq(11) with b=1. The

contribution toR(T) from the Kondo effect is invisible in both ) / .
(M) Y coordinate is the ratio of g™ to e Trmin), the value calculated

samples, as it is masked by the much larger contribution from ;
P y 9 sing the conventional theoffEq. (3)] at the lowest temperature

electron—electron interactions in the wires. From the comparison o 0 bol dat ints f hich the oh h
Figs. 5 and 7, it appears clearly that the phase coherence time is_d"n" pen symbols are data points for which the phase coherence

much more sensitive probe of very dilute magnetic impurities tharﬁmﬁa congnlues t&lncrer:\js? at thet Iofwesthmﬁatiurer;ent tenr:perature.
the temperature dependence of the resistance. Uil Symbols andk< are data points for which the phase coherence

time is nearly constant at low temperature. The conventional theory

predicts that all data points lie on the horizontal dotted line if no

extrinsic degrees of freedom, such as magnetic impurities, limit the

phase coherence time. The GZ theory predicts that all data points lie
The temperature dependence of the resistaR¢€), is  on a vertical line if the phase coherence time already saturates, and

often used as a probe of magnetic impurities, because of the the left of that line ifr, still increases at low temperatur@he

well-known Kondo effect. Nevertheless, in thin wires, wheredashed line corresponds to the casel in the GZ theory.

the resistance also varies due to electron—electron interac-

tions, it must be pointed out tha®(T) is not sensitive VI. OTHER EXPLANATIONS OF ANOMALOUS

enough to detect small amounts of magnetic impurities. The DEPHASING

contribution of electron—electron interactiols,

C. Extremely dilute magnetic impurities and temperature
dependence of the resistance

The evidence presented in the previous section shows that
very dilute magnetic impurities could explain the anomalous
AR(T) _ R I-T= % (10) dephasing frequently observed at low temperature. But are

B there other viable explanations?

R 3126 T T

with L= VAD/kgT the thermal length, is much stronger and A. Dephasing by high energy electromagnetic modes
varies much more rapidly with temperature than the Kondo

term, determined byA pxonge=— Bk IN(T),*> where B - ) . !
~0.2 2 cm/ppm® In ouIFOQ/v?res wﬁere the resistivityK is ture dephasing by high energy electromagnetic modes is re-

aboutp~3 xQ cm, the corresponding relative variation of sponsible for the frequently observed saturatior pfn me-

the resistance is about 19 per decade of temperature for 1 taIIic' thin films. This theory, Whif:h is_controversfd,
ppm of Kondo impurities. This is more than an order ofpredlcts that the phase coherence time saturates at low tem-

GZ ; 5
magnitude smaller than the typical contribution of electron—Perature atp™ given by’
electron interactions between 100 mK and 1 K.

Golubev and ZaikiGZz) propose&®*°that zero tempera-

This is illustrated in the left panel of Fig. 7 with sample 1 V2p b 3 1)
Ag(5N)dy,1 in which we implanted 1 ppm of manganese. 7.OGZ_ 3RK’7T\/B Te]

The resistances are measured in a magnetic figld
~20-50 mT, large enough to suppress the WL correctionsvhere b is a constant numerical factor expected to be of
but small enough to avoid freezing out the spin—flip scatterorder 1. It is interesting to point out that for a given material
ing of conduction electrons by magnetic impurities. We 75% is proportional toD® and is insensitive to the actual
checked on several samples showing anomalous dephasiggometry of the sample.
thatR(T) is independent of the applied magnetic field. Using this prediction, GZ were able to account for a sub-
A striking conclusion is that the phase coherence time is &et of the experimental results published in Refs. 24,37 using
much more sensitive probe of very dilute magnetic impuri-the overall prefactor of the dephasing rate as an adjustable
ties than the temperature dependence of the resistance, whiphramete?® Note that, as explained by GZ in their latest
is dominated by electron—electron interactions at low temarticle® the comparison with MJW data performed in Ref.
perature. 38 should be ignored because it was done using an expres-

085413-8



DEPHASING OF ELECTRONS IN MESOSCOPIC METAL WIRES PHYSICAL REVIEW@B, 085413 (2003

sion for ng that does not apply to the experiment, but isgime where the Kondo temperature is larger than the tunnel-

. : ; d 4142 ; : .
valid only when the elastic mean free path exceeds the tran§2d level splitting.~"“ From the experimental point of view,

verse dimensions of the wires. measurements af, from the weak localization contribution
Since the exact prefactor is unknown, it is not possible td0 the magnetoresistance cannot discriminate between mag-
rule out this theory by comparison with a single experimentnetic impurities and TLS.
Instead, we propose here to compare the predictive power of
the GZ theory with the conventional theory of electron—viI. TEST OF THE MAGNETIC IMPURITY HYPOTHESIS:
electron interactions for many samples. This is done in Fig. PROBING 7,4(B)
8. This figure includes all gold, silver and gold—palladium o o )
samples for which it has not been shown that magnetic im- A definitive test of the role of spin-flip scattering for the
purities are the main source of decoherence at low temper&aturation ofz, at low temperature is to probe how the
ture, plus sample GEN)a which was used by GZ for com- dephasing time depends on magnetic field. It is expected that
parison of their theory with experimerits(We do not show SPIn—flip scattering is suppressed when the dynamics of
other copper samples or samples made from our 5N silvéiagnetic impurities is frozen by application of a sufficiently
source, because they clearly contain magnetic impurities. Sdar9e magnetic field. Indeed, if the Zeeman splitting is
Sec. VIl and Ref. 39.The X coordinate in Fig. 8 gives the Much larger tharkgT, magnetic impurities stay in their
ratio of the phase coherence time measured at the lowe§found state. As a result spin—flip collisions vanish and
temperaturesy®, to 7%, calculated from Eq(11) with b 5|h°“|d climb up to (tjhe v:(:;lue eépeclted fromh electlron—
=1. TheY coordinate is the ratio of}* 0 7eg(Tpn), the electron mt_eractlongn ependent oB as long as the cyclo-
value calculated using the conventional thepBg. (3)] at tron radius is much !arger t.han th? elastic mean ”?e)th
the lowest temperaturg,,,. Open symbols are samples for the presence of s_pln—1/2 impurities, and neglectmg_ Kondo
which 7, continues to increase at the lowest measuremer] ffect,.the spin—flip scattering rate of electrons vanishes at
temperature; upon cooling they move to the right. Full sym- arge field asisee Appendix C and Ref. 43
bols are samples for which, is nearly constant at low tem- -~
perature; they move dow:%vard when the temperature is re- s(B=0) = guBlKeT
duced. As for theory, GZ predict that all full symbols should 7s(B)  sinh(guB/kgT)’
SZ—p%2 whereas open

be aligned on a vertical line’,* 7, . . _
whereg is the renormalized gyromagnetic factor of the mag-
symbols would be located af;®/ 75%<b32. In contrast, the netic ir%purities. 9y g g

conventional theory predicts that all data points should be oo possible method to detect a variatiorrjwith mag-

aligned on the horizontal ””?’anl_"ee(-rmin)zl- On this  netic field is to measure the average amplitud® ce of
plot the data scatter in both directions. The most salient feaynjyversal conductance fluctuations in a metallic wire as a
ture of the plot, however, is that the scatter in the horizontafnction of magnetic field. This method has two drawbacks.

direction extends over more than five orders of magnitUdeFirstAGUC,:oc T(lf)/4 depends only weakly on the phase coher-

whereas the scatter in the vertical direction extends OV€Lnce time. Second the large correlation fiekBcr

slightly more than one decade. The horizontal scatter indi—_ h/(ewLy) of conductance fluctuations in mesoscopic

cates that GZ theory does not reproduce the dependence \mres makes it difficult to obtain accurate estimates of the

74 On sample parameters. In particularf the_ GZ pre‘_jif:tiorhveragedAGUCF(B) at low temperature in the field range
depends _much too strongly on the. diffusion Coeﬁ'c'em’below the relevant magnetic field scag@B~kgT. For ex-
which varies considerably in MJW's six gold samples. ample, in C@N)b, AB_ce=25 mT at 40 mK, whereas the

'Wh|le no thegry explains all of .the experimental datacharacteristic field needed to freeze the magnetic impurities
without any additional parameters, it appears that the CON 25 low askgT/2u=55 mT

ventional theory does a better job than the GZ theory to
predict the low temperature value of,.

12

We have chosen instead to probe the magnetic field de-
pendence of, by measuring the Aharonov-Boh(AB) os-

cillations in the magnetoresistance of ring-shaped samples.
B. Dephasing by two level systems For this purpose, we have fabricated two copper rings of

Two approaches to electron dephasing by two-level tuntadiusr =0.5 and 0.75um, respectively, on the same chip as
neling systemgTLS) have been proposed. The first, by Imry, samples C(6N)c and C@6N)d. The ring perimeters are cho-
Fukuyama, and Schwéﬂ),requires a nonstandard distribu- Sen to be larger than or similar to the phase coherence length
tion of TLS parameters. It was shown later that such a disat B~0 in order to increase the sensitivity to variations of
tribution would lead to large anomalies in the low- 74. The averaged/e AB oscillations amplitudeAGg is
temperature specific heat, and in acoustic attenuation at vefglated to the phase coherence time thrdtigh
low temperaturd® The second approach describes the cou-
pling between the conduction electrons and the TLS via the e Lt Ly F{ wr}

L, (13

two-channel Kondo effec® In this model, the effect of TLS AGag=Crr —\ 7 &X
is very similar to that of magnetic impurities in the Kondo

regime, at least at=T, . The main criticism raised against whereC is a geometrical factor of order 1. The short period
this explanation is that, starting from any realistic model of aof AB oscillations with B(5.5 and 2.5 mT for =0.5 and
TLS, it may be impossible to reach the strong coupling re0.75um, respectively allows to estimate accurately the
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0.1 T T T - T The impurity g-factors obtained from these fits, 1.08 and
0.90, are small, like the valug=1.36 found for electrons by
neutron scattering in bulk Cufs.

This set of experiments confirms that spin—flip collisions

= are responsible for the apparent low temperature saturation
Né of 7, we observe in copper samples.
2
(g VIIl. COMPARISON WITH ENERGY EXCHANGE
MEASUREMENTS
0.01

Parallel to this work, a systematic correlation was found
between dephasing and energy exchange between electrons:
all samples made of the same source material, using the same
deposition system, either followed the theory of electron—

L L L : L electron interactions for both energy exchange and phase co-

20 -10 0 10 20 herence, or displayed anomalous behaviors for both
2uB/k T phenomend>?+°0*1Thijs correlation suggests that magnetic

impurities could also be responsible for anomalous energy

FIG. 9. Symbols: mean amplitude of the ABe oscillations  exchange. Such a possibility had not been considered until
(AGyye) across the ring in sample @GN)d atT=40 (A) and 100  recently because, all spin states being degenerate at zero
mK (M), plotted in units ofe’/h as a function of the reduced magnetic field, magnetic impurities do not contribute to en-
ma_lgnetic field 2ugB/kgT. So_lid lines: fits t(_) the two data sets ergy exchange in first order. However, Kaminsky and
using Egs(5), (12), and(13) with C andg as fit parameters. At 40 |azman have pointed out that energy exchange in the pres-
mK, the ABloscHIatlons are unmeasurably small.a-tB; the fit to ence of magnetic impurities may take place with an appre-
those data includes the noise floor of the experiment. ciable efficiency by a second-order procé%é’.he experi-
magnetic field dependence A 5 on the much larger field Mental proof that excess energy exchange observed in
scale needed to freeze the magnetic impurities. samples made of the 5N silver and copper sources results

This experiment was performed on copper samples befom dilute paramagnetic spins was obtained recently by
cause it is the material in which the presence of magnetiéheasuring the dependence of energy exchange upon mag-
impurity was most questionable: no correlations were foundetic field>® Similarly to what was observed on the dephas-
betweenr,, and the copper source material purity; moreover,ing rate, the application of a large magnetic field on these
whereas in some samples saturates at values as small assamples reduces the rate of energy exchange. Note however
0.2 ns[3 times smaller than in Ag(5N)g,] we observed that the amount of magnetic impurities needed to account for

neither a nonmonotonic temperature dependence,(T), the measured energy exchange rates seems to be significantly
as in Ag(5N)gh,: (see Fig. 5, nor a Kondo contribution to larger than the estimations from,(T); in the case of cop-
R(T). per, the obtained-factor g=2.3 is also different. More ex-

Our experimental procedure and data analysis are detailegeriments are needed to clarify these issues.
in Ref. 25. Figure 9 shows the amplitude of AB oscillations
measured across the ring in sample(@Nj)d at T=40 and
100 mK (symbols as a function of reduced magnetic field
2uB/kgT. The data in Fig. 9 show that the amplitude of AB By measuring the phase coherence time as a function of
oscillations increases with magnetic field by a factor 8 at 10@emperature on wires made of silver, gold, and copper, from
mK and a factor 7 at 40 mK5 on a characteristic field scale source materials of different purities, we have found that
proportional toT. anomalous dephasing is correlated to source material purity

The solid lines in Fig. 9 are fits to the simple model rep-in silver and gold samples, and systematic in copper samples.
resented by Eq$12) and(13), explained in Appendix C. We We showed experimentally that the presence of very dilute
assumed thatr, at large B is limited only by electron— magnetic impurities with a low Kondo temperature in the
electron interactions and used the values given by theoreticlost material can result in a broad plateaurj(T) while
prediction[Eq. (3)]: 7,=5.4 and 9.9 ns at 100 and 40 mK, being undetected in the temperature dependence of the resis-
respectively. The two remaining parameters, namely the gytance. Measurement of the magnetic field dependence of
romagnetic factog and the geometrical const&hC, were  Aharonov-Bohm oscillations on relatively large copper rings
adjusted to reproduce accurately our data. The best fit irevealed that the phase coherence time increaseBuitha
obtained withg=1.08 andC=0.17. Note that a more rigor- field scale proportional to the temperature. This confirms that
ous approach to the magnetic-field dependence of AB oscilan apparent “saturation” o, can be attributed to very di-
lation amplitude has been published recently by Vavilov andute magnetic impurities
Glazmartt’ Using their predictiofEgs.(62) and(63) in Ref. In the silver and gold samples discussed in this paper, we
47) with a magnetic impurity spfff S=1/2 andg=0.90, we  impute the presence of magnetic impurities to the purity of
obtain a fit indistinguishable from the solid lines calculatedthe material sources. We found that large coherence times at
with the simple model. 40 mK could be obtained in samples fabricated with the

IX. CONCLUSION
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silver sources of the highest purity commercially available
(6N). However, it is very difficult to rule out a small con-
tamination during the evaporation process and eventually
sample preparation. In the case of copper, the Kondo impu- 45 |
rities probably originate from the copper oxide at the
surface?® e ;
11 F 4
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plantation in samples Ag(5N)fo.z and Ag(5N)gy,1. We =3 and for phonon temperatur&s- 100 and 200 mK, respectively,
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Vavilov, and A.D. Zaikin for interesting discussions. position X/L in the wire, taking into account electron—phonon in-
teractions[see EqQ.(A2)]. Dotted lines: electron temperature as

function of position neglecting phonofisee Eq(A1)]. Dashed line
in the right panel: electron temperature neglecting electronic heat
transport(in the left panel this line would stand &t /T=1.87).

Joule heating is a concern when transport measurements
are performed at low temperatures. Any current results in theonductance measurement is needed to get a signal to noise
production of heat, which can be either transferred directly taatio of 10. In fact, this estimation is often too pessimistic
the phonons in the wire, or to the electrons in the contacbecause cooling by phonons does play a role for long
pads, assumed to be much larger than the wire. At subwires>* In order to evaluate this effect precisely, one has to
Kelvin temperatures, the first process becomes very ineffisolve the complete heat equation, which can be written in
cient. The reason is that the phonon emission rate for areduced unitstg(x)=T(X)/T, v=eV/kgT),
electron with an excess energikgT goes liké!

APPENDIX A: ELECTRON COOLING IN TRANSPORT
MEASUREMENTS AT LOW TEMPERATURES

~5kpn(kgT)?, with xp=10 ns *meV 3. The distance it , md T\® . B
will travel before losing its extra energy is theydD/y v +€&te(x)— Teo (tex)=1)=0,  (A2)

=18 umX (T/1 K) 32 for a typical diffusion coefficient
D=100 cnf/s. At T=40 mK, VD/y=2.2 mm, a very mac- in which the first term describes Joule heating, the second the
roscopic distance! Therefore one must take care that the elethermal conductivity of electrons, assuming Wiedemann-
tron’s energy never gets so large at low temperature. TakeRranz law, and the last one the coupling to phondrigwe
alone, the cooling by the contact pads through electronic hedtave defined a crossover temperature

transport results in a temperature profile in the wire

Teo=(2pL2(elkg)?) %, (A3)
To(x)= \/T2+ ix(l—x)(i/)z (A1) with L the length of the wire,p its resistivity, 3 the
¢ 2 kg/ ' electron—phonon  coupling  const#ht (typically 3

_ _ ~1-10 nW/jum3/K® in metallic thin films on Si substrate
with T, the electron temperature in the contacts placed at thgp resulting temperature profile is shown in Fig. 10 for
ends of the wire, assumed to be equal to the temperature %tpical values: we consider a silver wire 3(
the phononsx the relative position along the wire, antthe 5 nW/um3/KS from Table Il)) with D=100 cn?/s, L
voltage across the wire. Far=0, the maximum temperature _q o mm, aff =100 and 200 mK, foeV/kgT=3. The dot-
is (\3/2m)(eVikg)~3.2 KXV/(1 mV). By limiting the  teq line indicates the solution without phonons, the dashed
voltage across the samplee®&/=kgT, the maximal electron |ine the solution without electronic heat transport. For this
temperature i y1+(3/47°)=1.04T. With such alow ap- set of parameters, the crossover temperature Tig
plied voltage, the phase coherence time, supposed to increase] 20 mK. Hence, at 200 mK phonons reduce significantly
as T, ?® at low temperature, varies through the sample bythe maximum electron temperature, which does not exceed
1-1.04 2®=29%, which is sufficiently small for most pur- the bath temperature by more than 16%. At 100 mK, cooling
poses. However, at very low temperature, a measurement @ phonon emission is inefficient, and the maximum electron
a voltage of ordekgT/e might become very time consuming temperature is 27% abovie
if one considers that the input voltage noise for the best The analysis of the exact solutions of this equation allows
room-temperature commercial amplifiers is about 1 yWZ  to distinguish two opposite regimes: far<T,,, electrons
and that the weak localization correction to the conductancare decoupled from phonorisooling by phonons will be-
is about 103 of the total signal. For example at 10 mK, come active only if the applied voltage is so high that the
10 3kgT/e=1 nV, and an integration time of 100 s for each maximal temperature is aboilg,), and temperature is given
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20 APPENDIX B: DEPHASING BY ELECTRON —ELECTRON

INTERACTIONS

Assuming that we can restrict ourself to two body inter-
actions, the dephasing rate, or inverse lifetime;,LE, T) of
an electron at energy coupled only to the electronic fluid at
temperaturdl results from all collision processes allowed by
the Pauli exclusion principle,

Lo (#m)

Tigl(E,T):f| | de K(e)(1—fr(E—¢))h(e,T),
& zﬁlrd)

(B1)
wheref;(E) is the Fermi function at temperatufe K(¢g) is
the interaction “Kernel” of the screened Coulomb interac-

002 '0'.1 ! T T o7 tion, proportional to the modulus square of the interaction
matrix element for an exchanged energyand
T, Tcalc (K)

FIG. 11. Full symbols: phase coherence length measured on a h(S’T):J dE'fr(E")(1—f1(E' +¢))

6N silver sample as a function of the electronic temperalyg o

calculated using EqA2) for a cryostat temperaturE represented

by the attached open symbc/)l. The continuous line represents the € 82
theoretical predictiorl ;< T~ of electron—electron interactions =1 — .

(data taken at Saclay ’ 1=exp(—e/kgT)

The low energy cut-offe|=#/74 in Eq. (B1) is intro-
by the electronic conductivity alone, see Ef1). Thisisthe duced because fluctuations on time scales longer than the
difficult regime, where the maximal voltage is of the order ofelectron’s lifetime can be considered as stétic.
kgT/e. In the opposite situatioi>T,, heat transfer to the The interaction kerneK(e) depends only ors since the
contacts can be neglected, and cooling by phonons rules tlenergies of interacting electrons are close to the Fermi en-
game. The temperature of the electrons is then nearly hom@rgy Er and e<kgT<Eg. Our samples are quasi-1D be-
geneous, with To/T~(1+(T,/T)%?)Y> and for cause the width and thickness of the wires are smaller than
(Teo/T)%v2<1 the temperature does not exceBdexces- the lengthL,=\%D/e for the probed energy exchanged. For
sively: Te~T+ [ T3,(eV/kg)%T*]. One should thus fabri- quasi-1D samples the interaction kernel reads
cate wires as long as possible, in order to have a small cross-

over temperatureT,, which allows to work at larger K(e)=«kle| "%, (B3)
voltages. with
In order to test the validity of this calculation, we per-
formed a control experiment in which electrons were inten- —7.SLR
tionally heated by applying ac currents. The sample, similar =5/ Z X (B4)

to the others presented in this review, consists of a 1.79-mm-
long, 150-nm-wide, and 45-nm-thick wire made out of a 6N . ] ) o
purity silver source. The diffusion coefficientD The dephasing rate.ﬂe{e_(T) is the inverse lifetime aver-
—139 cnf/s results in a crossover temperaturE,, 2aded over thermal excitations
=30 mK. We extracted the phase coherence lehgtfirom
the magnetoresistance. For each magnetoresistance trace we /. (T):f dEfT(E)(l_fT(E)) +YET). (B5

. . ee n ’ "
show in Fig. 11 two symbols, one open and one full, at a kgT
Y-coordinate given by the corresponding value_gf. Open o . .
symbols are at th&-coordinate given by the cryostat tem-  Injecting Eqs.(B1) and (B3) into Eq. (B5) we obtairt®
perature T at which the measurement was performed,
whereas full symbols are at thecoordinate given by the * ke expelkgT)
calculated electron temperatufe,.. Since the magnetore- UredT)= Jﬁ/T de KeT (1—exp(e/kgT))?
sistance is given by 4« T~ T . was calculated from the o B
time- and position-average Eﬁgl’s, using temperature pro- This expression shows that the effect of electron—electron
files obtained with Eq(A2). For example, the pair of data interactions on quantum coherence in mesoscopic wires is
points at L ,=10.4um corresponds toT=40 mK, V,. dominated by processes with a small exchanged energy
=0.86 mVrms, leading td ;=245 mK. The data points ~7/7,. Itis interesting to point out that this implies that a
with large heating T, T) as well as those with little heat- sample is quasi-1D with respect to decoherence as long as
ing (T.qc=T) fall close to a single Iind=.¢ocT‘1/3, indicating  the phase coherence lendth= D7, is large compared to
that the electron temperature is correctly modeled. its transverse dimensions and small compared to its length.

(B6)
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This is not true for energy exchange, for which the dimen- AR 2R \/T
sionality is determined by the length associated with the larg- ?(B,T)— ReL N 12r 1y (B11)
est exchanged energy.
In order to obtain an analytical expression fQy(T) we A comparison with Eq(1) (neglecting spin—orbit coupling
make the following approximation: allows us to extract the phase coherence time when it is
limited by electron—electron interactions,

expe/kgT) 1 67) y
(1—exp(e/kgT))?  (elkgT)? e (4/7)(Re /R)veSL
2
This approximation is justified since the integral is domi- (keT)
nated by small energy exchanges. This leads to —on (B12)
=27y.
B (7/16)(R¢ /IR) veSL v This expression of the phase coherence tiqgis larger by
Tee™ (kgT)? : (B8) 3 factor 44%3=1.9 than the cut-off-dependent estimation in

Eq. (B8).
where we used EqB4) for the interaction kernel.
The calculation ofr, described above makes use of a low
energy cut-off, therefore the prefactor in E&8) is not re- APPENDIX C: MAGNETIC FIELD DEPENDENCE
liable. To solve this technical difficulty, Altshuler, Aronov, OF SPIN-FLIP SCATTERING
and Khmelnitsky calculated the effect of electron—electron

interactions through the interaction of one electron with theS ;2'”5 iggﬁggg r;rrsr?er?:aanseltri?:pilr?] ?Je::;:iglsaggna ?Jnilt?;:g?
fluctuating electromagnetic field resulting from other elec- P b g 9 P

trons at thermal equilibrium. Within this approach it is pos-]‘:’ilfs[t)l'grdd;ai‘r?nseti'ﬁ_f]'cﬁkBS'C;?tgrﬁ]alcﬁlgtllcglt;ﬁ C?rrgego%t)a;f_
sible to calculate directly the conductivity taking into ac- P P 9. ney 9

count electron—electron interactions. The dephasing rate @Ct' Moreover we consider here, for simplicity, magnetic
mpurities of spin-1/2.

then obtained without reference to the energy decay raté’ o 1 .
Neglecting spin—orbit coupling, this calculation yieldls The spin—flip raters;"(E,B) of an electron at energ is

9 9sp ping y obtained from the Fermi Golden Rule,
AR _ ZR \/DTN Ai(TN/TH)

. 76 (E,B)=Cra\ {P_ (1~ f(E—guB))
REVTRTT Wiymy Y f g '

+P(1-f(E+guB))}, (CD

with
wherec,,4is the concentration of magnetic impuritiesjis
13 proportional to the modulus square of the interaction poten-

W=h|—————| , tial electron-magnetic impurity, ané.. is the probability to
2m(kgT)? have the magnetic impurity in the ug-( or down (—) state
relative to the magnetic field directioB. In absence of
_3ve’RS[ ¢y |2 Kondo effect\ is approximated as independent of energy
= 27wB)/ and magnetic field.

Since at thermal equilibriur®.. = f{(=guB), we obtain
where ¢o=h/e=4.1x10®Tm? is the flux quantum, a £~ T(=0uB)

Ai(x) is the Airy function and A’i(x) its derivative. The time

7y IS often called Nyquist time in reference to the
fluctuation-dissipation theorem used to evaluate the electro-
magnetic fluctuations for the calculation of weak localization  The spin—flip raters_fl(B) is averaged over electronic ex-

Crnagh (1+EXP(E/KgT))/2

-1 _
7 (B.B)= cosiE/kgT) +cosiguB/kgT) "

(C2

corrections. citations
Since expressiofB9) includes electron—electron interac-
tions, it should be possible to deduce the contributignof . e f(E)1-fH(E) _,
the screened Coulomb interaction on the phase coherence  7sf (B):f_w dE T 7t (E.B),
time. This can be done by pointing out that .
which gives
Al 1 s B10
Al ’ (X) \/1/2—+X( E(X)), ( ) Tsf(B—o) . g,LLB/kBT (C3)

7s(B) sin(guB/kgT) "
where|e(x)|<0.04 forx>0. In practice, the experimental
resolution is not sufficient to distinguish a relative discrep- This result, also given in Ref. 43, is a finite-temperature
ancy smaller than 4% of the amplitude of weak localizationgeneralization of the expression used by Beraitl>° A
corrections, which are themselves smaller than 1% of th&igorous theoretical calculation of the Aharonov-Bohm oscil-
measured signal. Hence we can write lation amplitudeA Gy, in presence of magnetic impurities
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6.3 Complement: Why are interactions between magnetic
impurities negligible ?

Vavilov, Glazman and Larkin [3] have calculated the effect on the electronic
properties of the RKKY interactions between magnetic impurities [4]. RKKY interactions
lead to atransition of the spin system to a spin glass state at a temperature 7, dependent on
the impurity concentration and on Kondo temperature. As far as electrons are concerned, the
prediction is that the interplay between the Kondo effect and the RKKY interaction may result
inanon trivial temperature dependence of the resistivity and the phase coherence time. These
effects have been investigated in [5] for gold samples in which the magnetic impurities, iron,
were estimated to be present at concentrations larger than 15 ppm. In our silver samples with
an impurity concentration smaller than 1ppm, the spin-glass transition temperature is
predicted to be below 1mK . We are thus in the limit of small concentrations 7,, < 7 . Inthe
temperature range 7' 2 7, , the RKKY interactions between magnetic impurities have no effect

on the resistivity and phase coherence timein our samples.

6.4 Conclusion

For the samples presented in this chapter, electronic decoherence at low temperature is
essentially due to electron-electron and electron-magnetic impurity scattering. In the “pure”
samples, the concentration of magnetic impurities found from fits is compatible with the
nominal purity of the source. In the implanted samples, this concentration is in close
agreement with the amount of magnetic impurities implanted. Since such a small amount of
magnetic impurities is almost impossible to rule out in any sample, scattering from
undetermined magnetic impurities likely explains the saturation observed in many

experiments.
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Chapter 7 Energy exchange and Kondo effect:
Kondo-Impurity-Mediated
interaction

Before the beginning of this thesis, energy exchange between quasiparticles was
investigated in the Quantronics group in order to precisely understand the scattering
mechanisms that limit the phase coherence. Energy exchange rates were found higher than
predicted by the theory of Coulomb electron-electron interaction, with furthermore an
unexpected energy dependence, and sample to sample variations [1]. The am of the
experiments presented in this chapter was to determine if the mechanism proposed by
Kaminski and Glazman [2] to explain these results, based on magnetic impurities, was
relevant. By convenience, this interaction mechanism, in which Kondo effect plays a major

role, will be nicknamed “KIM interaction” for Kondo-Impurity-Mediated-Interaction.

Even if at zero-magnetic field the spin states of magnetic impurities are degenerated, magnetic
impurities can mediate energy exchange by a process at second order in the coupling between
electrons and magnetic impurities (see Figure 1, top). According to Kaminski and Glazman
[2], the rate y(E) at which an electronic state of energy E and filling factor f(E) is

populated due to the coupling of electrons with magnetic impurity at second order can be

written as:
y(E)=[de (f(E+e)(1-7(E))-7(E)1-7(E-¢))) W (e.E)
with
W(e.E)=W(£)=K(e) [dE'f(E) (1- £ (E+¢)),
and
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4

— Cimp (VF‘]) =£
K(e)=m W S(s+1) ot D

where c,,, is the concentration of magnetic impurities, S their spin. In this calculation, the
coupling constant between electrons of spins § and a magnetic impurity of spin S is
described by a hamiltonian H,=.J35.5. The kernel function K (&) contains al the
information on the energy exchange mechanism (intensity and energy dependence). The
energy dependence K(E)Dg‘2 is different from the one calculated for pure Coulomb
interaction in diffusive wires: K (£) O ™. Such a £ -dependence of energy exchange was
first inferred by Pothier er al. [3] from measurements in copper wires and later on in wires

made of gold [1]. KIM interaction is therefore a candidate to explain this large set of

experimental results.

To find out if KIM interaction is relevant in mesoscopic wires, we have measured energy
exchange in presence of an applied magnetic field B because it is expected that the rate of the
KIM interaction depends on B. Indeed, in a magnetic field, scattering of an electron on a
magnetic impurity can be already inelastic at first order, with an energy transfer +gu, B (see
Figure 1, bottom), where g is the gyromagnetic factor of the impurity and u, the Bohr
magneton. Magnetic impurities then behave as two-level systems, and the rate of KIM
interaction is expected to be higher than at zero magnetic field as long as gy, B is not too
large. When g, B becomes larger than the width of the electronic energy distribution
function, given by eU in our experiment, magnetic impurities cannot be excited by the
electronic bath. Then the rate of first order processes vanishes. The rate of the second order
process (see Figure 1, top) proportiona to (s— g,LlBB)_Z becomes aso so small when B
increases, that the KIM interaction rate decreases. Since the Pauli constraint imposes that the
energies £ that can be exchanged by this process are such as € <eU, the magnetic field at

which KIM interaction is suppressed is predicted to scale with U.
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In the above presentation, Kondo physics is embedded in the coupling constant J. As
explained in Chapter 5, Kondo effect leads to a renormalization of the bare coupling constant
J, between electrons and magnetic impurities due to the collective effect of all the conduction
electrons. In an out-of-equilibrium situation, the renormalization depends on the local electron
energy distribution function. The complete calculation was developed by Goppert et al. [4]

and is presented in Section 7.1.3.3.

Electron-electron interaction mediated by a magnetic impurity (second order process)

E —e— . E —O— i E —O0—

—O= ) g —O0— o § —O0— L

o A Toup ¢ 7 1 oueB | ¢ gusB

E-e —o— . Et —@—. T . Bt —e—

—— i —or : —o—

—— . et | —o—
E—o— . —e— B —0—

initial state virtual state final state

Direct interaction between an electron and a magnetic impurity (first order process)

—o— —o—
—O0— : —0—
— A ! K
E " —ﬂ\/ gusB E E —0 Y gusB
_Oj"_ R %- O N
E-gugB —@— . E-gugB—@—
—— —o—
—— ——
initial state final state

Figure 1. Description of the processes of energy redistribution between quasiparticles mediated by magnetic
impurities. In each panel, the left ladder represents the energy spectrum of the electrons, and the two states on the
right side represents the energy levels of the spin states of a magnetic impurity. Top: The second order process
implies two electrons and a magnetic impurity. Bottom: The first order process directly exchanges gu, B
between an electron and a magnetic impurity.

7.1 Energy exchange and quasiparticle energy distribution
function

We first present how the energy exchange rate can be inferred from the quasiparticle

energy distribution function.
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7.1.1 Energy distribution function of quasiparticles in a voltage-biased
wire

To access the energy exchange mechanisms between electrons, we prepare an out-of-
equilibrium stationary situation by placing a diffusive metallic wire between two metal
contacts biased at different potentials (see Figure 2). Energy exchange, which tends to
establish alocal equilibrium between electrons, and diffusion, which limits the dwell time of

electrons in the wire, control the energy distribution of electrons.

f(E)A f(E))
;/ Z /1 :/ 1
/ Il >
//// | £ e E

Figure 2: Schematic of the experiment: A wire of length L and electron diffusion coefficient D is connected to
two reservoirs. A potential difference U is applied between the two reservoirs. The distribution functions of
electrons in the reservoirs are Fermi functions shifted in energy by the electrochemical potential difference
eU > k,T . Digtribution functions f(x,E) are plotted for different positions along the wire in the limit of
independent electrons (middle: 7, <<7,,), and in the limit of strong electron-electron interaction (right:

r,>>1,).

7.1.1.1 Independent electrons regime: 7, < T,

If the typical time 7, an electron spends in the diffusive wire is much smaller than the
typical time of interactions between electrons r,,, no inelastic scattering occurs while
electrons travel through the wire, and the total energy of each electron is conserved during its
motion. The energy distribution function f(x,E), which reflects the probability to find an

electron of energy E a position x=x/L, obeys the stationary quasiclassica Boltzmann

equation [5]:
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0’ f (x,E )
——7=0. 2

ox? @
The distribution function thus interpolates linearly between the boundary distribution

functions and reads:
F(x,E)=(1-x) £, (E) +x f, (E+eU), ®)

where f, (E) :(1+ e’”"BT)_l is the Fermi function at the temperature of the reservoir 7. If
k,T < eU , the distribution function has astep at f (x, £) =x for —eU < E <0, as shown in

Figure 2.

7.1.1.2 Thermalized electrons regime: 7, > 17,

If the typical time 7,  an electron spends in the diffusive wire is much larger than the

typical time of interactions between electrons 7, , numerous inelastic scattering events occur,

and electrons thermalize locally (see Figure 2, right panel). At each position in the wire, the
energy distribution function is a Fermi function, with a temperature 7,(x) and an

electrochemical potential eUx that depends on the position:
f(x,E):fTe(x)(E—eUx). 4
The temperature 7, (x) obeys the heat equation [6,7,8]

L 9? (k,T.)°

5o t(eu) =0 5)

with the boundary conditions at the reservoirs 7, (0) =7, (1) =T . The temperature along the

wireis:

Te(x):\/T2+x(1—x)U2/[L, (6)
where L = (77°/3)(k, /)’ = 2.4 V* K* isthe Lorenz number.

7.1.1.3 Intermediate regime: 7, =T,

In the intermediate regime, where 7, =7,,, the energy distribution functions in the
wire are rounded due to energy exchange between electrons. Yet, electrons are not

thermalized, f (x,£) isnot aFermi function, and the rate of energy exchange can be inferred
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from the shape of f (xE) and its dependence on the voltage U. In our experiments, this

intermediate regime is found for wire lengths of the order of 10 um.

7.1.2 Calculation of the electron energy distribution function in presence
of energy exchange

7.1.2.1 Boltzmann equation in the diffusive regime

Following Nagaev [9] and Kozub and Rudin [10], we use the Boltzmann equation to
determine the electron energy distribution f(x,E) in the wire. This equation readsin a

stationary regime:

10°f(x,E
E%-Flmll(x’E'{f}):O’ (7)

where 7, is the diffusion time of an electron in the wire and x the position in reduced units
x=x/ L, with L the wire length. The first term describes elastic collisions and Z,,, (x, £,{ /})

accounts for the inelastic collisions.

The boundary conditions are imposed by the reservoirs:

/(0.E) = £, (E)
F(LE)=f (E+eU),

where f, (E) is the Fermi function at the temperature 7 of the electrodes.

7.1.2.2 Inelastic collisions responsible for energy exchange

The collision term can be written as the difference of two terms: an in-collision term,

the rate at which particles are scattered in the state of energy £, and an out-collision term:
Lo (5 EASY) = L (5 ELSY) = 125 (5 E{ 1) ®)
with
13 (v E{f}) = [de f (x.E+€) (1= f (x.E)) W (x.£.E),

and
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1% (v E{1}) = [de f (x.E) (11 (x.E=€)) W (x,6,E=¢).

The function W(x,e,E) describes the transition between two electron states with energies
E+¢ and E at the position x. This transition is due to the Coulomb interaction with other

electrons, coupling to phonons, or coupling to magnetic impurities[2].
7.1.2.3 Numerical solution

To calculate the electronic energy distribution function f (xE) Frederic Pierre has
developed a C++ code based on a relaxation method. Starting from an initial distribution

f(x,E,r=0), it is let to evolve according to the non-stationary diffusive Boltzmann

equation:
01 0*f(x,E,t C
f(x, E,t+0t) :f(x,E,t)+/\Ea%+lmn (XE{f}f)E 9)

where A is a parameter optimized at each iteration to accelerate convergence. When the
energy distribution function does not evolve any more, the obtained function is the solution of
the stationary Boltzmann equation (7). In the collision term, inelastic processes, such as
electron-electron interaction, electron-phonon interaction, electron-magnetic impurities

interaction are included.
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Figure 3: Graphic interface of the C++ code that calculates the distribution function of electrons f(E) in a
metallic wire connected at both ends to electrodes made of normal or superconducting metal. The calculation
takes into account electron-electron interaction, electron-phonon interaction and coupling with magnetic
impurities. We have added a routine to convolve 7 () with any function to be able to compare calculation with
measurements of the differential conductance of a tunnel junction formed between the out-of-equilibrium wire
and a probe €electrode.

7.1.3 Inelastic scattering mechanisms

In this part, we describe the theoretical predictions for the inelastic collision term of
the Boltzmann equation associated with Coulomb electron-electron interaction, electron-
phonon interaction and electron-magnetic impurity (KIM) interaction. The first two rates have
been described in the thesis of S. Guéron [11] and F. Pierre [1]. For completion, we derive

them again here, together with the KIM interaction rate.
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7.1.3.1 Coulomb interaction between electrons

Altshuler et al. have calculated the energy exchange rate between electrons associated
with Coulomb interaction [12]. They consider quasiparticles with a diffusive motion, which
interact by Coulomb interaction screened by an effective medium constituted by al the

electrons of the metal.

Thisleadsto
W(x.e,E)=W(g)=K(e) [dE"f(x,E") (1= f(x.E+£)), (10)

where the kernel of the electron-electron interaction K (&) is, according to the Fermi Golden

Rule:
K(e)=5 Hrag (mer),,,,. @

where L],.... is the average on the scatterers positions, Q the sample volume, v the density
of states at the Fermi level and M ((c:)|2 the average square of the matrix element for the
interaction between electrons with energy transfer € (see Figure 4).

i e k

Figure 4: Diagram representing the exchange of an energy & between two quasiparticles.

The matrix € ement writes:

M () = <|M,~,k,|2>EJ,_Ei=_£ ,

Ej -k =¢
with
M, :J'drdr'LP,. (r)LP?(r)Um, (r —r') W, (r') W r')

(12)
+ J'drdr'q-’,. (P (r) U, (r=r) W, (r) W) (r)

where the W(r) are the electronic wave functions in real space. Sign (+) corresponds to the
antisymmetric spin state of the initial two-electron system, sign (-) to the symmetric spin state

(The spin state of the final two-electron system remains the same as the initial one). The
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potential U, (r—r") is the temporal Fourier transform of the microscopic interaction

potential between electrons.

The squared of the matrix element |M (&)|2 has two types of contributions (see Figure 5). The
first type (left of Figure5), for which i’=j, j'=i, k’=1[, and [’ =k aways contributes. The
second type (right of Figure 5), for which i’=j, j'=k, k’=1[, and /’=i and for which a
phase associated with the scatterers position remains, contributes only for short range

interaction and is neglected in the following' [13].

b)

Figure 5: Diagrams that should contribute to the modulus squared of the disorder-averaged matrix element. The
cross term b), which contributes for short range interaction is neglected in the following.

Therefore,

K(g)= %T(VFQ)E’J'drdr'dr"dr”'Ug,h (r=r) U, (r"-r")

><<<qu (F) W2 ()W, (P)WE(r) W, (P W2 () W, (r1rr) WS (’)>>m '

(13)

E-Ep=¢

In the diffusive regime, far from the metal-insulator transition, the disorder-averaged of

(W, (r) WS (r) W, (r")W; (")), _, . doesnot depend on the states i and j but on their energy

J 7

difference and is equal to (see appendix 1):

" " _ dk % Dk’® —
<<LIJi (F)W;D'(l”)q"j (” )quD(l” )>Ej—Ei:£>[ﬁmrder __[(27_[)3 ZhN(l; )27_[ D2k4+($/h)2 e )
F

with N(E,)=v,Q, and D the eectronic diffusion coefficient. It follows from (13):

! This term gives rise to an enhancement of the average of the squared matrix element with a prefactor dependent
on the screening of the interaction. This prefactor, which depends on the nature of the material, has not been
calculated for the one-dimension case.
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, U Dqg? |j
K ()= 4:%3 [da|V... () o +‘Z£ i ﬁ (14)

The screened Coulomb interaction U, ,,(¢q) is expressed in terms of the bare Coulomb

interaction U, (g) and of the polarizability M(q,&) of the electronic fluid:

A C)
Vanl0)= 11 (q,g/‘fa)yo (4)’ 19

with

Dq?
Mig,elh)=v,—————.
(a.6/7) " Dq* —iclh

In a meta, the density of states v, is of the order of 107 J*'m® and
N(q,e/7)U,(q) ~V,S.e’ /g, ~10°>1 (S, is the wire cross-section) so that the screened

Coulomb potential simplifiesto:

U..(4) :m.

It follows;

1 dq
K(e)= :
(8) 472.4VFh3 J-D2q4 + (flh)z

(16)

In ametallic wire of width w and thickness ¢ for energies £ smaller than D/ max(w?,t?),

only the uniform modes in the transverse dimensions contribute to K (5) leading to:
-1
K(e)=(vaD mi** v, s,) £, (17)

where S, = wr isthe wire cross-section.

For areason that we could not trace out, this derivation gives a prefactor for K (&) smaller by
afactor 2 than the result of Kamenev and Andreev [14]. In the following, we will refer to their

result:

K(e)=(VDI2 mi** v, s,) e, (18)
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7.1.3.2 Electron-phonon interaction

The theoretical assumptions [1] made to calculate the electron-phonon interaction are

the following:

() the phonon temperature 7, is small compared to the Debye temperature &,. Then only
the acoustic branch of the phonons has to be taken into account and the dispersion
relation between the energy and the wave vector g of aphononis €, =#sq, wheres is

the sound vel ocity;

(i)  the electronic wave functions are plane wave ones and not the diffusive wave
functions used in the calculation of electron-electron interaction. This approximation
is justified by the fact that phonons only play a role for large energies, which
correspond, through the dispersion relation, to lengths of the same order or smaller

than the electronic mean free path in the considered wire.

(iii)  finite size effects for phonons are neglected because the phonons of the wire are

coupled to phonons of the substrate, leading to a continuous energy spectrum.

(iv)  coupling between electrons and phonons is described by a scaar deformation
potential. Thus, only the longitudinal phonon mode is coupled to electrons and the
square of the matrix element for the electron-phonon interaction is
M (q)| =|M,| ¢/Q, where |M,| does not depend on the geometry [15]. This
approximation is valid when the Fermi surface is spherical, which is a good

approximation in copper, silver and gold.

According to the Fermi Golden Rule, the transition rate I',,. between two electronic states of

wavevector kand k' is;

2 1
e L (STRE TRV I

#0(B By (11 (B =) (7 (50 +1)} !

M
(19)

where 7, (5) is the Bose energy distribution function of the phonons.

To obtain the rate I, (5) at which an electron with a wave vector £ emits (& >0) or absorbs
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(&< 0) aphonon of energy &, the previous equation has to be summed over the states £’ with

¢ fixed. Thisleadsto:

2

(&)= ey Ml (L7 (=€) (0, 1l) + (). (20)

where 6(¢) isthe Heaviside function.

The electron-phonon interaction rate is then written:
W (x,6,E)=W (€)=K, & (n,(e])+6(¢)). (21)

where «,, =|M,["/(2mh°s%, ) is a constant that can be estimated from the temperature
dependence of the phase coherence time. In our experimental conditions, the effect of
electron-phonon coupling is a small correction to the distribution function calculated with

direct interaction between el ectrons.

7.1.3.3 KIM interaction

In order to properly describe the collision term due to coupling of electrons with
magnetic impurities, it is necessary to go beyond the perturbation theory given in the
introduction. The complication arises from the fact that the renormalization of the coupling
between electrons and magnetic impurities depends on the non-equilibrium e ectronic energy
distribution function. The calculation developed in [16], presented below, is valid either at
equilibrium well above Kondo temperature, or out-of-equilibrium for sufficiently smeared

distribution functions, in presence or not of a magnetic field.

We now present briefly this calculation, which gives the collision integral for spin S=7:

impurities. Magnetic impurities are assumed to have a density c,,,

small enough so that they
do not interact one with another, and so that an electron is only coupled to one impurity at a

time.

The explicit form of W (x,&, E) isthefollowing:

2
W(x,é‘,E):;fm;l évFJ(xZ’g'E)EC(x,E,E) , (22)
F

where J(x,€,E) is the renormalized coupling constant between electrons and a magnetic
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impurity, v,. is the metal density of state, and C(x,&,E) is the Fourier transform of a spin-

spin correlation function, which can be split as

C(xi)= C, (x,1)+C_(x,1)

+C, (x,t), (23)

where

The averages are performed on the electron spin-states and energies weighted with the non-

equilibrium distribution function determined self-consistently.

If the coupling between electrons and magnetic impurity is weak, these correlators only result

from the spin relaxation and are equal to:

C.(e)=2mPo(eFE,)

+

C, (e)=m(e)/2,

z

where P, isthe occupation probability for impurity spin-up or spin-down states, and £, isthe

Zeeman splitting between these two states. These probabilities are determined by a master

equation:
dr, _ —[.P.+T_P.
dt ST (24)
P +P =]

wherel, are the inverse life times of the spin-up and spin-down states.

If the coupling between electrons and magnetic impurity is strong, the time evolution of C(1)
is governed by the Hamiltonian of the electrons-magnetic impurity system, which reads
H=H,+H, where H, = Zskgc,;c,m - E_S* describes free electrons and an independent
magnetic impurity. Here, o:)erators ¢, and ¢, respectively creates and annihilates an
electron in a given state £, with spin . The energy of this state is &,,. The second term
—-FE,_S* describes a spin Y2 impurity with Zeeman splitting E, = gu,B, where g is the
gyromagnetic factor of the magnetic impurity and 1, = eh/(2me) =0.058 meV T is the Bohr
magneton  (m is the electron weight). The interaction  Hamiltonian

e
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H, = Z((J+c’”c" —Jic ¢, )S +J ¢ ¢, S +J ¢/ ¢, S”) couples electrons to the impurity
wsterﬁ with renormalized coupling constants J?, J?, J* or J~ that are different for al spin-

components. The renormalization takes into account the distribution functions in the wire:

: J
Ji(xlg)_ = P
\/‘1 W, J,) S (S+1)14-v,Jg(x,eFE, ) +(m,.J,) S(S+1)
J*(x,6) = Jo : (25)
\/‘1 (7, 0,)* S (S +0) 14-v,J, (g (x,8) + g (x, e £ E,))1 2 +(mw,,)° (S +1)

, f(x,)-05

Withg(x,E):I_Dds ppTIY

where D is here the bandwidth of the conduction electrons.

The spin-spin correlators must be calculated using the renormalized constant and the

projectors:
S I ALY
207 +v, (x,w)
(26)
2Py, (x,w)
C, (x,a)) = — > =
(x,wFE,) +v,(x,0)
where v, arethe Korringawidths, i. e. theinverselifetimes of the spin states, equal to
v, (x,w)=m,*{Pg,(x,w-E,)+P¢ (x,w+E,)}
T (27)
v, (x’w):ZVF {¢.(xwFE,)+¢, (v, w)/ P},
with
Ide( (x,6'+w)+J: (e )Jf(e’+a)))><f(x,$’)(1—f(x,£’+a)))( )
28
¢ (xw —]’dsJ* x,s)J (x,£’+w)Xf(x,s’)(l—f(x,£'+a))),
and

[de f(x.&)(1-f(x.€ -E,))
Idff (v.£) (17 (x.& - E, )% [de f(x,€) (1= f (v, + E, ) (29)
P =1-P,

the probabilities for spin-up or spin-down states cal cul ated neglecting the Korringa width.
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7.2 Experimental realization

7.2.1 Accessing the energy distribution functions with a tunnel probe
electrode

As explained in Chapter 2, tunnel spectroscopy allows to obtain the electron energy
distribution function. We have designed a long and narrow superconducting probe that forms
atunnel junction with the wire (see Figure 6). At zero magnetic field, we use the non-linearity
of the differential conductance of the normal-superconducting tunnel junction to obtain
f (E) . In amagnetic field larger than 0.1T , the probe electrode is no more superconducting
but presents a resistance of about 1kQ, and we then take advantage of the Coulomb blockade

of tunneling through the junction in series with this resistance.

Figure 6: Left: Schematic of the circuit. A diffusive wire of length L is connected to two reservoirs biased at
different potentials 0 and U . A long and narrow superconducting probe electrode forms a tunnel junction with
the wire in its middle. Right: Micrograph of a sample seen at an angle with arrows related to the corresponding
elements on the schematic.

In both cases, the differential conductance dI / dV(V) of the tunnel junction can be written:

dl
RTW(V) =1+q0f(eV), (30)

with R, , the resistance of the tunnel junction and q(E) a function dependent on the junction
and environment characteristics (see Chapter 2 for details on the determination of ¢ (E) ).

When the probe el ectrode is superconducting, ¢ (E) =0n,_/0E with n, the reduced density of

states in the superconducting probe, and the energy distribution function £ (E) is obtained by
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numerical deconvolution of dI /dV(V) using Eqg. (30). When the probe electrode is normal,
q(E):J'_:QdE P(g,T)(a(fR(E+g)—fR(E—£))/6E) with P (&) a function that depends
only on the tunnel junction environment and £, (E) the Fermi distribution at the refrigerator
temperature. In this case, the deconvolution procedure could not be applied. The reason is that
the Coulomb singularity is not as sharp as the BCS singularity so that the signal to noise ratio
in dl/dv (V) istoo small to avoid additional numerical noise during deconvolution. We have
then chosen to fit directly the measured differential conductance with Eq. (30) using the
function ¢(E) as determined in a calibration step and functions / (£) calculated from a
model. The differential conductance of such a junction shows a broad single dip when
electron interactions are strong and lead to electronic thermalization, and a double dip when

only little interaction occurs while electrons travel through the wire (see Figure 7).

U=0.2 mV
TD<<Tim TD>>Tint
1‘ T T
y
0
10
>
B
=
-
o
0.8
-0.5 0.0 05 -05 0.0 0.5
V(mV) V(mV)

Figure 7: Top: Calculated distribution functions in the middle of an out-of-equilibrium wire in two extreme
caes. T, T, (left) and 7,>T,, (right). Bottom: Corresponding calculated differential conductance
dl |l dv of atunnel junction formed between the wire and a resistive probe. The curve di/dV shows a double
dip when only little interaction occurs while electrons travel through the wire, and a broad single dip when
electrons thermalize.
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7.2.2 Geometrical and electrical characteristics of the measured samples

The fabrication process of the samplesis detailed in Chapter 3. Measurements of energy
exchange in a magnetic field have been performed on different metallic wires made of
aluminum, silver, copper or gold. The electrical and geometrical characteristics of the main
samples measured during this thesis are summarized in Table 1. Additional results on other

silver samples are presented in Appendix 3.

Sample | Source | L(ym) | w (nm) | ¢ (nm) | R (Q) | D (em’s?) | 4 (nm) | 7, (ns)
Al5 AI5N 5.05 110 45 28.6 64.8 9.5 3.9
Ag, 120 | Ag6N 21.7 100 45 849 215 46.5 219
Ag,, V20 | AgSN 20.0 108 45 79.6 196 42.5 204
Au5 Au4dN 5.1 85 45 42 109 23.5 24
Cus Cu5N 5.0 105 45 29.5 91 17 2.8

Table 1: Geometrical and electrical characteristics of the measured samples. The length is written L, the
width w , the thickness ¢, the wire resistance R , the diffusion coefficient D , the electronic elastic mean free
path /, and thediffusiontime r, =1/ D .
The diffusion coefficient is obtained from Einstein’s relation o =v,e*’D where o =L/(Rwt)
is the wire conductivity. The electronic elastic mean free path, given as an indication, is

obtained from D =1/3v,/, with v, the Fermi velocity. The value of v, and v, used for

aluminum, silver, copper, and gold are summarized in Table 2 [17].

Ve (J'1 m'3) Ve (m s‘l)

silver 1.03% 10" 1.39%10°
copper 1.56% 10" 1.57x10°
gold 1.14% 10" 1.39%10°
auminum 2.15%10" 2.03x10°

Table 2: Density of states at the Fermi level v, and Fermi velocity v, in silver, copper, gold, and auminum

[17].
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7.3 Measurements of energy exchange and comparison with
theoretical predictions

7.3.1 Energy exchange in silver, copper and gold wires

Measurements of energy exchange were performed in silver, copper, and gold wires,
which are known to behave differently [1]. Part of the results obtained for the silver wires
were published in Phys. Rev. Lett. 90, 076806 (2003). This article is reproduced in Appendix
2. The sample named Sample 1 in the article corresponds to Ag,,IV20 and Sample 2 to
Ag,,120. Theresults obtained for the copper wire were partly published in [18].

7.3.1.1 Energy exchange at zero magnetic field

7.3.1.1.1 Silver samples

The energy distribution functions measured at the middle of the two 20-pum silver
wires are shown in Figure 8 for U =0.1, 0.2 and 0.3mV . The two samples were obtained
from silver sources with different purity (Ag,120: 99.9999%-pure; Ag,,IV20: 99.999%-
pure). Though the diffusion times are very similar in both samples, the energy distribution
functions differ strongly: in Ag,,120, the energy distribution functions display double steps,
indicating that little interaction occurs; on the contrary in Ag,, V20, the energy distribution
functions are rounded, indicating that interactions are strong. The data are fit with Eq. (7),
taking into account for the collision term electron-electron interaction with the kernel
K (&) =k,,/€”* (see Eq. (18)), and electron-phonon interaction with the kernel described by
Eq. (21). For the whole dataset of each sample, the single fit parameter is «,, , «,, =8 ns*
being obtained from the phase coherence time measurements [1]. The parameters «,, are
found to be 0.1ns® meV* for Ag,120 and 2.0 ns* meV** for Ag,,IV20. The calculated
theoretical values using the geometrical and electrical characteristics of the samples (Table 1)
are respectively 0.08 ns* meV™? and 0.075ns* meV™*?. Whereas the intensity of the

interaction in Ag,, 120 is in close agreement with the predictions for Coulomb interaction, it is

in Ag,, V20 much larger, indicating that extra interactions occur in this sample. The fact that
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¥2 is not

these extra interactions can be accounted for by a Kernel proportional to 1/¢
significant because the data are so close to Fermi functions that equally good fits could be

performed with other energy dependences.

Ag,, V20

E(meV) E(meV)

Figure 8: Symbols. Distribution functions measured in the middle of silver wires made from a 99.9999%-pure
source (left panel) and from a 99.999%-pure source (right panel) for the applied voltages U =0.1, 0.2 and

-3/2

0.3mV. Solid lines: Calculated distribution functions with an interaction kernel K (&) =k,,,£™? with
K,, =0.1ns*meV*? for Ag,120 and «,, =2 ns*meV™** for Ag,,IV20.

The results obtained on other wires from the three different silver sources we have used are

presented in Appendix 3.

7.3.1.1.2 Gold and copper samples

The energy distribution functions in the middle of the 5-um-long copper and gold
wires are shown in Figure 9. These distribution functions are very similar. Like for the silver
wires, we tried fits with Eq. (7) and with K (&) =«,,,/£%*. The fit parameter «,, is chosen to
account for the measurements at U =0.1mV . We obtain «,, =2.7 ns* meV™** for Cu5 and
K,,=3.5ns" meV*¥ for Au5. When comparing with the experimental data the energy
distribution functions calculated at U =0.2and 0.3 mV using these values of «,,,, it is found
that the discrepancy increases with the applied voltage. Moreover, the calculated theoretical
values using the geometrical and electrical characteristics of the samples are respectively

0.115 ns® meV™? and 0.075 ns* meV 2.
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From these data, it is therefore possible to conclude not only that the intensity of energy
exchange is larger than predicted for Coulomb interaction, but aso that the energy

dependence of the interaction kernel is not the one of Coulomb electron-electron interaction.

f(E)

E(meV) E(meV)

Figure 9: Symbols: Distribution functions measured in the middle of a copper wire (left panel) and of a gold wire
(right panel) for the applied voltages U =0.1, 0.2 and 0.3mV . Solid lines. Calculated distribution functions
with an interaction kernel K (&) = «,,,&™'* where the parameter «,,, is chosen to account for the measurements
at U =0.1mV . The discrepancy between the measured and calculated distribution functions increases with the
applied voltage.

7.3.1.1.3 Conclusion on the zero-magnetic-field measurements

Likein [1], we find that the intensity and energy dependence of interactions vary from
sample to sample. The presence of magnetic impurities is the best candidate to explain extra
interactions. Indeed, the zero-magnetic field data can be fit using the collision term calcul ated
in section 7.1.3.3. Yet, the set of fit parameters is not single. It is thus not a proof that
magnetic impurities are really responsible for the extra interactions. In order to perform a
more stringent test, we have measured energy exchange in all these samples as a function of

magnetic field.
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7.3.1.2 Energy exchange in presence of magnetic field

7.3.1.2.1 Quadlitative behavior

As explained before, energy exchange in a magnetic field affects the differential
conductance dI /dV(V) of the tunnél junction formed between the wire and the resistive
probe electrode. The measured @/ /dV (V) in Ag,,l20 and Ag,, V20 for different magnetic
field B, and for the applied voltage U =0.1 mV are shown in Figure 10. The behavior of
both samples is once again different: In Ag,,120, d//dV does not depend on the applied
magnetic field, proving that the shape of f (E) is not dependent on KIM interaction. In
Ag,, V20, the broad peak at low magnetic field in dl/dV is progressively split in two peaks

as the magnetic field increases, as expected from KIM interaction.
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Figure 10: Measured differential conductance di/dV for different applied magnetic field B in samples
Ag, 120 and Ag,,IV20 for U =0.1mV . In Ag, 120, dI/dV does not depend on the magnetic field, proving
the absence of KIM interaction. In Ag,,1V20, the broad peak at low magnetic field in dI/dV is split in two
peaks, proving that KIM interaction is reduced. The curves are offset vertically for clarity.

The same measurements were performed on Cu5 and Au5. The measured dI /dV(V) in
Cu5 and Au5 as afunction of the magnetic field B for U =0.2 mV are shown in Figure 11.
Because of the shorter diffusion time 7,, in these samples, adouble dip is always found at |ow
field (& B=0, f(E) aso presents sharp steps). In Cu5, this double dip is first slightly

smeared out, then gets more pronounced as the magnetic field increases. This variation is
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predicted for KIM interaction: the rate of KIM energy exchange first increases when first
order processes become inelastic before being reduced when they vanish together with higher
order processes. In Au5, the double dip in dI / dV becomes slightly more pronounced as the

magnetic field increases, indicating that KIM interaction is also of importance.

R, di/dV

V(mV)

Figure 11: Measured differential conductance di/dV for different applied magnetic field B in samples Cu5
and Au5 for U =0.2mV. In Cu5, the double dip in dI/dV is first dightly smeared out, then gets more
pronounced as the magnetic field increases, reflecting the non-monotonous evolution of KIM interaction. In
Au5, the double dip in dI / dV becomes dightly more pronounced as the magnetic field increases, proving that
KIM interaction plays arole. The curves are offset vertically for clarity.

The extra-interactions observed at zero magnetic field in Ag,, V20, Cu5 and Au5 can
therefore be attributed to Kondo impurities. The most probable low-Kondo-temperature
magnetic impurity miscible in silver is manganese (7, =40mK). In copper, magnetic
impurities are not well identified but there is experimental evidence that copper oxide, which
develops at the surface, contributes [19]. In gold, magnetic impurities could be iron

(T, =300 mK), chromium (7, =10 mK'), or manganese (7, <10 mK).

7.3.1.2.2 Quantitative comparison

In Ag,, 120, the differential conductance d/ / dV does not depend on magnetic field. It
can be compared with the differential conductance calculated by convolution of the energy
distribution function measured in absence of magnetic field with the ¢g-function deduced from

the dI / dV at equilibrium (see Eq. (30) and Chapter 2). This comparison is shown in Figure
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12. There appears a discrepancy between the measured curve and the calculated one at the
position of the dips, which increases with the voltage. Since this discrepancy does not depend
on magnetic field, we attribute it to a heating of the electrons of the probe electrode (see
discussion in Section 7.4.3.3). This heating associated with the current flowing through the
probe el ectrode depends on the ratio between the probe electrode resistance R, and the tunnel
resistance R,. When the probe electrode is superconducting, this effect is not significant
because its superconducting properties are not affected by temperature as long as it remains

much smaller than the critical temperature (7. =1K).

Measurements of the differential conductance at finite magnetic field suggest that KIM
interaction occurs in Ag,, V20, Cu5 and Au5. We can now compare the data with the
theoretical predictions of Section 7.1.2, by including for the calculation of f (E) using Eq.
(7) the collision term due to Coulomb electron-electron interaction, electron-phonon

interaction and el ectron-magnetic impurity interaction.

The intensity of the Coulomb interaction «,,, is obtained from the best fit of the large field
B, low U data, where the B-dependent interaction has essentialy vanished. For silver
samples, which are the longest, a term of lesser importance is added to account for electron-
phonon interaction. The intensity «,, of this interaction is fixed to 8 ns* meV~, a value
deduced from the phase coherence time measurements. The remaining part of energy
exchange was fit with the KIM interaction. In the theory of KIM interaction, several
parameters enter: the Kondo temperature 7, , the bare coupling constant between electrons
and magnetic impurities J,, the gyromagnetic factor of magnetic impurities g and the

concentration of impurities ¢, . Yet, some of these parameters are known. The Kondo

mp -
temperatures were fixed at the values deduced from the fit of phase coherence time
measurements (see Chapter 6). These values are 7, =40 mK for Ag,, V20 (corresponding to
manganese) and 7, =300 mK for Au5 (corresponding to iron). For copper, equally good fits
can be found for phase coherence time measurements for 7, between 0.1 [1] and 0.3 K with

¢,, from 0.1 to 0.2 ppm. We have found that the best fits of the energy exchange

imp

measurements were obtained for 7,, =300 mK . The problem of a fine determination of the

Kondo temperature of impurities in copper arises because the nature of magnetic impuritiesis
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di/dv (uS)

Figure 12: Symbols: Measured differential conductance in Ag,, 120 at B=0.6 T for applied voltages U =0.1,
0.2 and 0.3mV. Solid line: Calculated differential conductance by convolving the measured distribution
function a¢ B=0 with the function ¢ deduced from the Coulomb blockade signal at equilibrium. The
discrepancy between the measured curve and the calculated one at the position of the dips increases with the
voltage and is attributed to a heating of the probe electrode (see discussion in Section 7.4.3.3).

unknown. The coupling constant between electrons and magnetic impurities is related to the
Kondo temperature by k,7, =De™"™ where D ~1eV is the characteristic bandwidth of the
conduction electrons and is fixed. Therefore only two fit parameters ¢ and c,,, remain for
KIM interaction.

The results of this procedure for Ag,,IV20 and Cu5 are presented on Figure 13 and Figure
14. For both samples, the whole voltage and magnetic field dependence can be described with
three significant fits parameters (summarized in Table 3). The corresponding energy
distribution functions are also shown.

For Au5 the agreement on the whole voltage and magnetic field dependence is not so good
(see Figure 15 ). This might be due to the fact that magnetic impurities are correlated due to

the tendency of clustering of ironin gold [20].
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Figure 13: Top: Symbols: Measured differential conductance in Ag,, V20 for different applied magnetic field
for the applied voltage U =0.1, 0.2, 0.3 mV . The curves have been vertically offset by steps of 0.033, for
clarity. Solid lines: Fits with theory including el ectron-electron interaction, electron-phonon interaction and KIM
interaction. The fit parameters are «,, =0.5ns'mevV*, ¢, =17 ppm and g =2.9. Other parameters were
fixed: 7, =40mK, v,J,=0.08, «, =8ns’ meV® and 7, =40mK . Bottom: Symbols: Measured energy
distribution functions at B =0. Solid lines: Calculated energy distribution functions with the parameters listed
above. The curves have been vertically offset by steps of 0.2, for clarity.
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Figure 14: Top: Symbols: Measured differential conductance in Cu5 for different applied magnetic field for the
applied voltage U =0.1, 0.2, 0.3 mV . The curves have been vertically offset by steps of 0.033, for clarity. The
curves are not symmetric because the probe electrode position is dightly different from x=1/2: x=0.485.
Solid lines: Fits with theory including electron-electron interaction, electron-phonon interaction and KIM
interaction. The fit parameters are «,, =0.4 ns'meV™?, ¢, =4.8ppm and g =23. Other parameters were
fixed: 7, =300 mK and v,.J, =0.1. Bottom: Symbols: Measured energy distribution functionsat B=0. Solid
lines: Calculated energy distribution functions with the parameters listed above. The curves have been vertically
offset by steps of 0.2, for clarity.
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Figure 15: Top: Symbols. Measured differential conductance in Au5 for different applied magnetic field for the
applied voltage U =0.1, 0.2 mV . The curves have been vertically offset by steps of 0.033, for clarity. Solid
lines: Fits with theory including electron-electron interaction, electron-phonon interaction and KIM interaction.
The fit parameters are «,, =0.4ns'meV*?, ¢, =8ppm and g=3.4. Other parameters were fixed:
T =300mK and v,J,=0.1. Bottom: Symbols: Measured energy distribution functionsat B =0. Solid lines:
Calculated energy distribution functions with the parameters listed above. The curves have been vertically offset

by stepsof 0.2, for clarity
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7.3.1.2.3 Discussion

The fit parameters used to account for the data are summarized in Table 3 as well as

the predicted intensity of Coulomb interaction «2,, .

e-einteraction eph KIM interactions
Ky, (ns'mev?) interaction
Sample | p (em?s?) | s, (x10%m?) | K3, Ky K (ns?) (mK) | viJ | ¢, (ppm) | &
Al5 64.8 4.95 0.06 0.06+0.02 4 - - - -
Ag,, 120 215 45 0.08 0.1+£0.02 8 - - - -
Ag,, V20 196 4.86 0.075 0.5+0.1 8 40 0.08 17 2.9
Au5 109 3.825 0.12 0.4+0.2 - 300 0.1 8 34
Cub 91 4.725 0.075 0.4+0.2 - 300 0.1 4.8 2.3

Table 3: Parameters and fit parameters (bold characters) used to account for the measured energy distribution functions and
differential conductance when electron-electron, electron—phonon and KIM interactions are included.

Coulomb electron-electron interaction

th

In Ag, 120, «,, iscloseto k;,. In contrast in the three other samples, «,,, is larger than
predicted, even if the uncertainty on «,, in these samples displaying KIM interaction is larger
because fits are made only on low-voltage high magnetic field curves. The accessible
magnetic field was not high enough to reach the Coulomb-interaction-dominated regime at

large voltage.

KIM interaction

Increased interactions at intermediate fields

InAg,, V20, the measurement is not sensitive to the expected increase of the KIM interaction

rate for intermediate fields because f(E) Is aready close to a Fermi functionat B =0.
Renormalization effect

In order to evaluate the renormalization effect on J,, we have calculated the collision term in

Eq. (1) (K (&) =k, /&%) with the parameters

imp

and J, found to fit the data of Ag,, V20,
assuming S =1/2: k, =0.004 ns*. The result for /() is shown for U =0.1mV together
with the calculated distribution function using renormalization and the same parameters on

Figure 16. One clearly sees that the bare interaction leads to much less rounding than the
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renormalized one.

Ag, IV 20

f(E)

Figure 16: Solid line: Calculated energy distribution function taking only into account the second order in
coupling between electrons and magnetic impurities with the parameters of Table 3 using Eq. (1). Dashed line:
Calculated distribution function in Ag,, V20 for U =0.2mV taking into account the renormalization of the
coupling between electrons and magnetic impurities. It is seen that the renormalization of the coupling constant
by Kondo effect considerably enhances the interactions.

Concentrations of magnetic impurities

Source | ¢, (ppm) | ¢, (ppm)

Ag6N <01 0.0024
Ag5N 17 0.13
Cu5N 4.8 0.15

Table 4: Fit concentrations deduced from energy exchange measurements c,,, and from phase coherence time
measurements ¢, on samples made of the same source. For sources of Ag5N and CuSN , the concentration
¢, IS found larger than [ suggesting that either pollution arises in the fabrication process of energy
exchange samples, or the theory for KIM interaction is not sufficient.

The fit concentrations c,,, must be compared with ¢, , the concentrations obtained from the
fits of the measurements of the phase coherence time in long wires fabricated with the same
source materials. The values are summarized in Table 4. The concentration ¢,,, is found

systematically larger than ¢, by at least one order of magnitude, suggesting that either
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pollution arises in the fabrication process of energy exchange samples, or the effect of
magnetic impurities is not well described by theory. In order to solve this problem,

experimentsin which ¢, can be controlled are essential.

imp

Effect of the spin value of the magnetic impurities

The concentration c,,, is not correctly evaluated in the fits because the magnetic impurity spin
is assumed to be %2, which might be incorrect. According to Ref. [2,16] the product S(s +1)c,,
enters as a prefactor for the rate. However, this result does not take into account the spin
dependence of the renormalized constant. The complete calculation was performed recently in
[21] and the authors conclude that increasing the value of the spin S in the calculation does

not lead to an increased rate.
Sensitivity to the Kondo temperature

The sensitivity of the calculated dI/dV curves on the Kondo temperature is exemplified on
Figure 17 for parameters fitting Cu5: ¢,,,/(v,4)=5, g=23 and D=1eV and for two
Kondo temperatures: 7, =100 mK and 7, =300 mK . The U =0.1mV curves are nearly
insensitive to 7, . At higher voltages, slight differences can be seen, but the result is clearly

not very sensitive to 7, .

R_dl/dv

T

V(mV) V(mV) V(mV)

Figure 17: Caculated differential conductance di/dV for different applied magnetic field with the fixed
parameters for KIM interaction: ¢,, /(v,h)=5, g=23 and D=1€V and the different couple of parameters

(T, ,v,J,) = (100 mK,0.08) for the solid lines and (7,,v,J,) =(300 mK,0.1) for the dashed lines. The curves
have been vertically offset for clarity.
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Gyromagnetic factor of magnetic impurities
The value of the gyromagnetic factor of magnetic impurities depends on many parameters: the
spin-orbit coupling, the crystalline field [22] ... For diluted manganese impurities in different
matrices, it is however predicted that g ~ 2. Yet, the magnetic field at the position of the
samples is not measured but calculated from the characteristics of the superconducting coil. A
10 % error on the value of B due to the evaluation of the exact position of the sample cannot
be excluded, and corresponds to a 10% error on the g-factor. This does not account for the

whole discrepancy.

In parallel with this work, F. Pierre and N.O. Birge have measured the Aharonov-Bohm
oscillations in copper rings as a function of the magnetic field [23]. Aharonov-Bohm
oscillations are recovered at large magnetic field demonstrating that magnetic impurities are
also present, and that electronic coherence increases when magnetic impurities are polarized.
To account for their data they need to introduce the gyromagnetic factor of the impurity: it is
found equal to 0.9. The impurities are also believed to be associated with copper oxide, but
the discrepancy in the g-factor between this experiment and energy exchange measurements is

not understood.

7.3.2 Energy exchange in an aluminum wire

Measurements of energy exchange in an aluminum wire in its normal state should
provide information on the electron-phonon coupling, which we naively expected to be large
since it is responsible for the phase transition to a superconductive state. Such energy
exchange measurements had never been performed before because they were previously based
on superconductivity in aluminum. In our new set-up using Coulomb blockade where both the
probe electrode and the wire are in the normal states, measurements on aluminum can be
performed. Information on electron-phonon interaction was already inferred in aluminum
from analysis of the resistivity and electron dephasing rate in the temperature range 1-300 K
[24]. The theoretical predictions for electron-phonon interaction in aluminum are performed

like for other metals [25] (see section 7.1.3.2).
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The sample AI5 consists of a 5-um long aluminum wire (see parameters in Tables 1 to 6).
Measurements of the conductance of the probe junction as a function of bias voltage and
magnetic field are shown in Figure 18. The differential conductance does not depend on the
magnetic field, proving that KIM interaction is not relevant in this sample. This is indeed
expected because the Kondo temperatures 7, of magnetic impurities in aluminum are higher
than in silver, copper or gold: 7, varies exponentially with v, which is roughly twice as large
in aluminum as in other metals. For the energies probed in this experiment, nothing is

therefore magnetic.

4 B=2T

B=1T

B=0.6T

R, di/dV

Figure 18: Symbols: Differential conductance dI/dV of atunnel junction between a resistive probe electrode
and an aluminum wire as afunction of the bias voltage U across the wire and the applied magnetic field B . The
curves have been vertically offset for clarity. At al the voltages, dI/dV does not depend on the magnetic field,
proving the absence of KIM interaction. Solid lines: Fit with the parameters of Table 3, which are the same for
all values of the magnetic field.

To test electron-phonon interaction, the bias voltage U of the wire was increased to large
values for which the electron-phonon interaction contributes significantly to energy exchange

(see Figure 19). The results are shown on Figure 20.
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Figure 19: Influence of the electron-phonon interaction on the differential conductance df/dV of the tunnel
junction of the sample AI5 for different wire bias voltage U . Solid lines: «, =0. Dashed lines:
K,, =0.4ns* meV?®. Dotted lines: «,, =0.8ns* meV* (see other parameters in Table 3). Electron-phonon
interaction has a non-negligible effect only for the larger wire bias voltage.

The data are perfectly fit using for the electron-phonon interaction an inelastic collision term
of the form of section 7.1.3.2. The amplitude of this term is found to be «,, =4 ns* meV=.
The value in auminum can be compared with the one deduced from phase coherence time
measurements. The dephasing rate due to electron-phonon interaction is written BT° where
B =6&(3)k,,k; with &(3)=1.2, the Rieman zeta function (see Chapter 6). In [26], it was
found B, =0.9ns" K, leading to «, =2ns’ meV~, which is of the same order of
of this term,

magnitude as our experimental value. Surprisingly, the amplitude

K, =4ns’' meV?, isin fact smaller than the one found in silver wire («x,, =8 ns* meV?).

~ B, . Thisnon-intuitive result

silver

According to [24] thevalueof B insilverissuchas B, .

provides from the difference between the sound velocity, the density of states and solid

density of both metals.
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di/dV (uS)

Figure 20: Symbols: Measured bias voltage U dependence of the differential conductance of a tunnel junction
between a normal resistive tunnel junction and an aluminum wire in an applied magnetic field B=2 T . The data
have been vertically offset and ¥ normalized to U for clarity. Lines: Fits with the parameters summarized in
Table 3.

7.4 Experimental control

7.4.1 Reservoir heating

When a voltage U is applied between the reservoirs, the power P=U?/2R is
dissipated in each reservoir. Although these reservoirs are thick to minimize heating, heating
effects are observed when the wire resistance is small [27]. The heating effects were evaluated

by F. Pierrein [1]. The reservoir temperature can be written:

T, =\1; +(BU),

with 7, the base temperature and S a coefficient dependent on the wire resistance, on the
geometry of the reservoirs and on the nature of the metal. Typically for our experiments, it is
found that B°R ~10 Q K?> mV?. The coefficients S were fit parameters for experimental

data but their influence is mostly visible in short wires on the sharpest part of the large voltage
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curves. The values of [ used for the different samples are summarized in Table 5. The

geometry of the two reservoirs being slightly different, two different values are used: 3, for

the ground reservoir and S, for the other one.

Sample | B, (KmVY) | B (KmV?)
Al5 0.13 0.16
Ag,l20 |0 0

Ag, V20 |0 0

Aus 0.5 0.5

Cu5 0.5 0.5

Table 5: Heating coefficient due to the injected power in the ground reservoir S, and the biased reservoir
B, for al the measured samples. The less resistive the wire, the larger the injected power and the higher S.
For some samples, 3, < 3, because of the small difference in the reservoirs geometry.

The effect of reservoirs heating is exemplified on Figure 21 for the sample Cu5. Heating

effects are visible at the dips of the differential conductance curves, which correspond to the

step positions of the distribution functions.

V(mV)

R, difdv

E(meV) E(meV) E(meV)

Figure 21: Calculated differential conductance d//dV and energy distribution functions f(E) with the
parameters found to account for the data of Cu5 (see Table 3) taking into account heating of the reservoirs

(dashed line) or neglecting it (solid lines).
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7.4.2 Measurements with a superconducting probe

Measurements with superconducting probes have been performed for a few years in
the Quantronics group. The deconvolution procedure of dI /dV and experimental controls are
described in [11] and [1].

Here, a complication arises from the fact that the probe electrode was designed long and
narrow and presents a non-negligible impedance, even in its superconducting state, compared
to the resistance quantum R,. This results in corrections to d//dV due to dynamical
Coulomb blockade of tunneling. At frequencies smaler than 2A/4, an aluminum wire
behaves like a pure inductor. Its kinetic inductance is equal to 7R, /(m) , Where R, isthewire
resistance per unit length in the normal state. At frequencies above 2A /4, Cooper pairs can
be broken into two quasiparticles and the aluminum probe el ectrode becomes dissipative. The
admittance Y (a)) per unit length of a diffusive superconducting wire has been calculated
within the framework of the BCS theory [28]. At zero temperature, the real and imaginary

parts of ¥ (w) are given by:

K(w):i%u%m (k(w)) - }:SJE( (a)))éforha)zm, (31)

TR BH e ﬁl thK 32

where k (w) =|(28 ~hw)/ (20 +haw)|, k’(w):(l—k(w)z)llz, E and K are complete elliptic
integrals, and R, is the superconducting wire resistance in its normal state. In the

superconducting state, the environment impedance of the junction of capacitance C isthen:

s _ 1
Zon (@) = Y, (w) +iY, (w) +iCw’ (33)

At zero temperature, the differential conductance di,,, / dV(V) of the tunnel junction in
presence of an electromagnetic environment is just the convolution of the differential
conductance dI / dV(V) of the tunnel junction without any environment with the probability

( ) that a part of the energy is released to the environment of impedance Z° [29,30] (see

env

also appendix of Chapter 2).
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The function P (E) presents two parts: adeltafunction at zero energy corresponding to elastic
tunneling, and an inelastic part for energies larger than 2A . The weight of the zero energy

peak, which is 100 % in absence of Coulomb blockade, isin this case:

+00 Re ZS |:|
Re(Z,, () da)ﬁ (34
w

The inélastic contribution to the differential conductance is non zero only for voltages larger

=exp E—ZJ'

K

than 3A/e sincetheinelastic part of P(E/e) is non-zero only for voltages larger than 2A/ e,
and since dI /dV(V) of the normal-superconducting tunnel junction is non-zero only for

voltages larger than A/e . Therefore, for ¥V <3A/e, dl,, /dV (V) issimply renormalized:

dl,, 1dv(v)=w,dllav(V), (35)

an effect that can be interpreted as a renormalization of the tunnel conductance. As an
example, di,, | dV(V) of the sample Cu5 is presented in Figure 22. A rounded step appears
in the curve a ¥ =3A/e. Without any environment, dI/dV (V) is predicted to be
proportional to the convolution of the BCS density of states in the superconducting electrode
with the derivative of the Fermi function at the fridge temperature (see Chapter 2). The
proportionality factor is the tunnel conductance of the junction. The curve below voltage
3A/e is perfectly fit using a BCS function with A =240uV and a tunnel conductance of
20.8uS. At voltage larger than 3A/e, the tunnel conductance is found to be 23.3uS. The
ratio of conductances corresponds to a factor 7, =0.89. Conversely, the resistance R, of the
probe electrode and the junction capacitance C can be inferred from the Coulomb blockade
signal in amagnetic field, when the probe electrode is in its normal state (see Chapter 2). The
weight of the elastic peak W, can then be calculated with Egs. (34) using for Z° Egs (31),

(32), and (33) and is found to be W, =0.89, in agreement with the weight deduced from

experimentsat B=0.

A practical drawback of Coulomb blockade effect is that we cannot access the energy
distribution functions for [U|>2A . The reason is that the structure in the dl/dV resulting
from the convolution of f(E) with a double step, of width eU , with the BCS density of

states, of width 2A , extends down to voltages smaller than —3A/e. The effect of Coulomb
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blockade for these voltages is no more trivial. In practice, we have deconvolved dI/dv (V)

within the voltage range || <3A.

100 : .

_ 1AV (V)

dl

Figure 22: Symbols: Differential conductance dI,,/dV (V) of a normal-superconducting tunnel junction
embedded in a superconducting environment. Due to Coulomb blockade of tunneling of quasiparticles, a
rounded step appears at the voltages +3A/e . Between these voltages, the curve is fit using a BCS density of
states in the superconducting probe (dashed line) with a renormalized tunnel conductance (solid line).

7.4.3 Measurement with a normal resistive probe

7.4.3.1 Determination of the g-function

For each sample, we have checked that the differential conductance of the tunnel
junction when the wire is at equilibrium (U =0) does not depend on magnetic field (see
Figure 23). The environmental characteristics were deduced from the fit of this signa to
Coulomb blockade (see Chapter 2). The parameters for the effective environment impedances

are summarized in Table 6.
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Sample | R (kQ) | T (mK) | C (fF) | R, (kQ) | A (neV) w,
Al5 2.06 40 0.92 185 - -
Ag,, 120 1.65 35 0.9 102 237 0.89
Ag,IV20 | 134 31 0.8 167 240 0.88
Au5 1.68 48 0.95 704 245 0.88
Cu5 1.08 68 0.8 43 240 0.89

Table 6: Environmental characteristics of the tunnel junction in the measured samples. The resistance of the
probe electrode is written R, , its electronic temperature 7', the capacitance of the tunnel junction C, its
tunnel resistance R,, and the gap and the resulting reduction factor when the probe electrode is in its
superconducting state A and ' .

6 T T o
Ag V20 %

di/dV (uS)
S

o
A
o
v

Figure 23: Symbols: Measured Coulomb blockade signal, for the sample Ag,, V20 when the wire is at
equilibrium for different applied magnetic fields. Solid line: Fit of the data using Coulomb blockade theory and
the parameters summarized in Table 6. The magnetic field has no visible effect.

7.4.3.2 Modelisation of the environment

The critical point in the calibration process of the junction and the environment
characteristic is the choice of amodel for the environment. As explained in Chapter 2, we just

model the environment as the parallel combination of the probe electrode resistance and the
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junction capacitance. To check the validity of this model, we have measured the Coulomb
blockade singularity when the wire is at equilibrium as a function of the refrigerator
temperature 7. The results are shown on Figure 24 for a tunnel junction of resistance
R, =167 kQ between a 5-um long silver wire and a resistive probe electrode R, =0.67 kQ
(sample Ag,,I115 in appendix 3). The data are perfectly fit just by changing the temperature of
the probe electrode 7, . The fit temperature 7, differs from the fridge temperature 7, only

at the lowest temperature. This is attributed to spurious electromagnetic noise.

1.0F ' '
Ifridge Ifit (mK)
o 20 53
o 110 110
A 370 370
>
2 o009t .
© Ag_ IlI5
- Oo gSN
o °  R,=167 k
Lo R =0.67 kQ
C=1.4fF
0.8f .
1E-3 0.01 0.1 1
V (mV)

Figure 24: Symbols: Normalized differential conductance of a tunnel junction between a normal wire at
equilibrium and a normal resistive probe electrode as a function of the fridge temperature. Solid lines: Fit using
the Coulomb blockade theory. The environment of the junction is modeled by the paralel combination of its
capacitance C and of the resistance of the probe electrode R,. When the refrigerator temperature 7,
increases the electronic temperaturesin the wire and in the probe electrode 7', follow. At the lowest temperature,
the discrepancy between 7, and T, isattributed to spurious electromagnetic noise.

7.4.3.3 Heating of the probe electrode

The electronic temperature in the probe electrode enters in the calculation of the
Coulomb blockade signal, and of the function ¢ (see Chapter 2). When electrons of the probe
electrode in its resistive state are heated up, coupling to the phonons is not efficient to
thermalize them at the refrigerator temperature because this process is scarce and the probe

electrode volume small. Assuming that the electrons in the reservoir at the end of the probe
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electrode are at the fridge temperature 7, (see Figure 25), one obtains the electronic

temperature at the position of the tunnel junction by solving a heat equation with a source

[, R
T(V)=,|TZ+-2V2IL, (36)
RT

where L is the Lorenz number, R, the probe electrode resistance and R, the tunnel

term:

resistance.

For example, for Ag, 120, where R, =1.65kQ and R, =102 kQ, the temperature T at the

junction position dependence on the applied voltage V' is shown on Figure 25.

0.0 Oj1 0.2
V (mv)

Figure 25: Left: Schematic of the circuit measurement. Electrons of the probe electrode are heated up by the
measurement current only by their diffusive flow to the contact at 7;. Right: Electronic temperature 7' in the
probe electrode at the junction position dependence on the voltage V' for the Sample Ag, |20 where
R, =1.65kQ and R, =103kQ.

When the wire is biased out-of-equilibrium by an applied voltage U , the energy distribution
function presents a double step and the differential conductance dI/dV of the tunnel junction
twodipsat V' =-U/2 and V =U /2 (see Figure 2 and Figure 7). At these voltages, dI/dV is
very sharp and is therefore very sensitive to the temperature. For U =0.1, 0.2 and 0.3 mV , the
respective electronic temperatures in the probe electrode at the position of the tunnel junction
are T =75,100 and 135 mK . We have then calculated the function ¢ using these different

temperatures and convolved them with the measured distribution functions at B=0. The
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results are shown on Figure 26 together with the measured differential conductance at
B=0.6T. The discrepancies observed on Figure 12 are suppressed, proving that electronic
heating of the probe electrode was responsible for the differences.

For the other samples, in which dI/dV isnot as sharp, the heating of the probe e ectrode has

anegligible effect.

di/dV (uS)

Figure 26: Symbols: Measured differential conductance in Ag,, 120 at B=0.6 T for applied voltages U =0.1,
0.2 and 0.3mV. Solid line: Calculated differential conductance by convolving the measured distribution
function a¢ B=0 with a function ¢ calculated with an electronic temperature 7' dependent on U and the
parameters R,, C deduced from the fit of the Coulomb blockade signal at equilibrium. The electronic
temperatures were respectively 7 =75,100 and 135 mK for U =0.1, 0.2and 0.3 mV . In contrast to Figure 12,
the experimental and calculated curves coincide for all applied voltages.
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Appendix 1: Derivation of the kernel K(€) of Coulomb electron-
electron interaction from fluctuation-dissipation theorem

In the following, another derivation of the Kernel of interactions between electrons is
devel oped using the fluctuation-dissipation theorem. A mesoscopic wire is treated as a system
of fermions weakly coupled to a reservoir of bosons (the electrodynamics modes

corresponding to currents and voltages propagating along the wire).

A fermionic system S and a bosonic reservoir R weakly coupled by alocal interaction in space
are considered. The Hamiltonian of this system in second quantification is then:
H=H +H,+H,
Hs = Z gl a;al
H,= z ha, b.b, (37)
H, = ef p(x)v(x)dk,
= J'LW(x)LP(x)V(x)dx

where W(x) = Z W, (x) a, and V' (x) = Z V (x) b, +V (x)b,.

The fermionic operators «, and g, respectively creates and annihilates an electron in a given
state /. The energy of this state is &. The bosonic operators b, and b, respectively creates and
annihilates a photon in a given state m. The energy of this stateis zw, . Thefield V(x) isthe
local voltage in the fermionic system with agauge such that 4 =0.

By application of the Fermi Golden Rule, the rate at which fermionic states / and p,
respectively occupied and empty decays into / and p being empty and occupied while the
bosonic environment decays from state R to Q is:

_ar

PR-1.0 _782 Z ZPR

= < [ (V (e (,0))e P9, ()W, (W, 0, (),

r

[v.v, (x)<R|V(x)|Q>dx‘25($,p +E,~E,)
(38)

where p, is the probability for the environment to be in the state R , / denotes an occupied

state, / the same state but empty, and £, =& ~E,.
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Since the fermionic states taken into account are near the Fermi surface,
W, (x)W, (x)¥;(»)W,(») only depends on &, and x,y and is caled M(x,y,g,). The
average quantity (V(x,7)V’(»,0)) only depends on x~-y and ¢ and is called S, (x~y,f).
Then,

2
_e

ry BR-PO h2 IZ S(k )M(k ) (39)

The rate per unit of volume at which electrons lose the energy nw, taking into account the

spin conservation between respectively states pand p,and [ and [ , is

N(E )e?

p(w) = [k S, (=k,c) M(k,h) [dE £ (E) U= f(E ~ha), (40)

where N (E,) isthe number of states per unit of energy at the Fermi level.

When a stationary voltage wave V' (x,t) =V, cos(ayt) cos(k,x) is applied, its spectral density
is V)17 [3(k - k) + O(k + k,)][0(w- @) + O(w+ )] . The electromagnetic field associated to
this voltage is £ (x,1) = k,V, cos(wy)sin(k,x) and the current density in a complex notation:
j(x.t)=0E(x,t)/(1+ik.D/ @) where o is the dc-conductivity. The total absorbed power

by electronsin the wire of section S, per unit length is then:

1 oS,af kWY
P= <2Re(] E)> DR 4 (41)

where ( ) denotesthe averageon x.

By identification with P =[-p(w,) + p(-w))] w,S , knowing that:

[dE f(E) A= f(E~ha)) = m wh

onefinds:

V, Dk?

Mk, w) = )
(k@) 2AN(E. )’ D’k*+of

(42)

where v, = N(E,)/Q isthe density of states per unit of energy and of volume at the Fermi
level. This result for M (k,w) is also available for M (k,w) and was used in this chapter for

the precedent derivation of the Kernel of electron-electron interaction.

If only Johnson-Nyquist noise is assumed to take place in the wire, by the fluctuation-
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dissipation theorem, one finds that:

20 hw _ 2p

S, (k,w) = =
A Sk 1-e™* Sk°

J'dE "f(E) Q- f(E+hw)). (43)

Then, by substitution in (40) and by identification with:
p(@) =hv, K(Q[dE" f(E) A~ f(E+hw)[dE f(E) A~ f(E-hd)), (44)

one obtains
K(e)= (2D mh*? v, S,)* £, (45)

This calculation gives the same results as our first derivation. When comparing to the
experiment, we nevertheless use a factor twice as large that corresponds to the result of

Kamenev and Andreev [14].

130



Appendix 2: Article reporting measurements on the silver wires

We reproduce here the paper published in Phys. Rev. Lett. 90, 076806 (2003).
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Magnetic-Field-Dependent Quasiparticle Energy Relaxation in Mesoscopic Wires

A. Anthore, FE Pierre, H. Pothier, and D. Esteve

Service de Physique de I’Etat Condensé, Direction des Sciences de la Matiere, CEA-Saclay, 91191 Gif-sur-Yvette, France
(Received 5 August 2002; published 20 February 2003)

In order to find out if magnetic impurities can mediate interactions between quasiparticles in metals,
we have measured the effect of a magnetic field B on the energy distribution function f(E) of
quasiparticles in two silver wires driven out of equilibrium by a bias voltage U. In a sample showing
sharp distributions at B = 0, no magnetic field effect is found, whereas, in the other sample, rounded
distributions at low magnetic field get sharper as B is increased, with a characteristic field proportional
to U. Comparison is made with recent calculations of the effect of magnetic-impurities-mediated

interactions taking into account Kondo physics.

DOI: 10.1103/PhysRevLett.90.076806

The understanding of the phenomena which, at low
temperature, limit the extent of quantum coherence in
electronic transport and allow the quasiparticles to ex-
change energy is presently an important issue in meso-
scopic physics. There is indeed a discrepancy between the
theory [1], which predicts that Coulomb interactions pro-
vide the dominant mechanism for decoherence and for
energy exchange, and measurements of the coherence
time [2,3] or of energy exchange rates [4—7] in numerous
metallic samples. This discrepancy has been attributed
either to a flaw in the theory [2], or to the presence in
these samples of other mechanisms involving the scatter-
ing of electrons by undetected two-level systems or mag-
netic impurities. It has been indeed recently predicted
that even a minute concentration of such scatterers would
result in sizable energy exchange if the Kondo effect
occurs [8-10]. Whereas the limitation of quantum
coherence by the Kondo effect is widely known [11], its
efficiency for mediating energy exchange between quasi-
particles had not been anticipated. In the case of magnetic
impurities, a significant weakening of this effective
electron-electron interaction is furthermore predicted
when a large magnetic field is applied [12]. In order to
test these new predictions and more generally to under-
stand inelastic processes in mesoscopic conductors, we
have investigated the magnetic field dependence of the
energy exchange rate in mesoscopic wires.

The samples are wires connected to reservoirs biased at
potentials 0 and U (see Fig. 1). The energy distribution
function in the middle of the wire, f(E), depends on the
ratio of the typical interaction time 7;, and the diffusion
time of quasiparticles 7, = L?/D. If 7, > 7, interac-
tions can be neglected and f(E) is the average of the
Fermi functions in both reservoirs, which have electro-
chemical potentials shifted by eU. In the experimental
situation where kzT < eU, f(E) is then a two-step func-
tion. In the opposite limit 7;,, < 7p, local equilibrium is
achieved at each coordinate along the wire, and f(E) is a
Fermi function at a temperature given by the balance
between Joule heating and electronic heat conductivity

076806-1 0031-9007/03/90(7)/076806(4)$20.00

PACS numbers: 73.23.—b, 71.10.Ay, 72.10.—d, 72.15.Qm

to the reservoirs: This is the “‘hot-electron” regime [13].
The intermediate regime is of interest for experiments
because the precise shape of f(E) and its dependence on U
are characteristic of the interaction rate and of its energy
dependence [4].

W]
—
Py
<

04 00 04
V(mV)

04 00 04
V(mV)

FIG. 1. Top: Layout of the experiment: Awire is connected to
two large electrodes biased at potentials 0 and U. A resistive
probe electrode (in grey) forms a tunnel junction with the wire.
At equilibrium (U = 0), the differential conductance dI/dV (V)
of this junction displays a dip at zero bias, due to Coulomb
blockade of tunneling (left). When the quasiparticles of the
wire are driven out of equilibrium by a finite voltage U (right),
their energy distribution function f(E) depends on the inter-
action rate between quasiparticles. In the absence of interac-
tions, f(E) is a two-step function and dI/dV(V) presents two
dips (solid lines). With strong interactions, f(E) is rounded, and
dl/dV(V) presents a broad dip (dashed lines).

© 2003 The American Physical Society 076806-1
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At zero magnetic field, the distribution function f(F)
can be inferred from the differential conductance
dl/dV(V) of a tunnel junction between the central part
of the wire and a superconducting (aluminum) probe
electrode biased at potential V [4]. In magnetic fields
larger than the critical field B. ~ 0.1 T of the supercon-
ducting electrode, another method is required. Here, we
have taken advantage of the nonlinearity of the current-
voltage characteristic of a tunnel junction placed in series
with a resistance R. When both electrodes of the junction
are in the normal state and at thermal equilibrium, the
differential conductance dI/dV(V) displays a dip at
V =0 (see Fig. 1), due to the Coulomb blockade of
tunneling [14]. Assuming that the two electrodes have
different distribution functions f and f,., the differential
conductance reads

dl 1
W(V) = R—deEf(E)fdsP(S)

X %[fref(E +eV + 8) - fref(E + eV — 8)],
(1

where Ry is the tunnel resistance of the junction, and
P(e) = [ ¢/W+iet/h the probability for an electron to
tunnel through the barrier while releasing to the environ-
ment an energy &, J(1) = [42({2Re[Z(w)]}/Ri)[(e” /" —
1)/(1 — e~ m@/kT)] with Z(w) = 1/(1/R + jCw), C the
junction capacitance, Rx = h/e* = 25.8 k() the resis-
tance quantum, and 7 the environment temperature. In
the case where the distribution function f(E) presents two
steps, as in Fig. 1, and f is a Fermi function at tem-
perature 7, one obtains, by linearity, two dips in
dI/dV(V)atV =0 and V = —U. In contrast, in the hot
electron regime, dI/dV(V) displays a broad dip centered
at V= —U/2 (see Fig. 1). In the experiments, a large
series impedance at the relevant frequencies (up to about
50 GHz) was obtained by designing the probe electrode
as a long, narrow, and thin aluminum electrode
(25 pm X 150 nm X 12 nm), which presents a resistance
R ~ 1.5 kQ in the normal state.

We present here the results obtained on two silver
samples in which the distribution functions found at
B = 0 were extremely different. The samples were ob-
tained from nominally five-nines purity (99.999%,
sample No. 1) and six-nines purity (99.9999%, sample
No. 2) source material. For both wires, the length and
cross-section area are L = 20 pm, S = 100 nm X 48 nm.
The diffusion constants D = 196 and 215 cm?/s, respec-
tively, were deduced from the low temperature resistance.
The tunnel resistances Ry (167 and 102 k()) and the
capacitances C (0.8 and 0.9 fF) of the junctions, as well
as the environment resistances R (1.34 and 1.65 k()), were
obtained from fits with Eq. (1) of dI/dV(V) measured at
B = 0.3 Tand U = 0. We have checked that these curves
do not change with B when B > B,.
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At low magnetic field and low temperature, the probe
electrode is superconducting. Its impedance is purely
imaginary at frequencies lower than 2A /h [15]. It results
that for eV € [-3A + U, 3A] Coulomb blockade leads
only to a reduction of the differential conductance, which
is multiplied by a factor exp(— [{ %‘"{2 Re[Z(w)]/
Rg}) ~ 0.9. Numerical deconvolution of dI/dV(V) is
therefore possible, and the distribution functions ob-
tained at U = 0.15 mV are presented in the top of Fig. 2
for both samples. Whereas f(E) is close to a double-step
function in sample No. 2, it is much more rounded in
sample No. 1, indicating that the energy exchange rate is
much larger in the latter, since the diffusion times are
very similar (7, = L?>/D =~20ns). In the bottom of
Fig. 2, we plot the calculated RydI/dV (V) using formula
(1) with f(E) the distribution function measured at B = 0
(dashed curves), and present the measured curves for B =
0.3 T and B = 1.2 T (symbols) [16]. In sample No. 2, the
magnetic field has no visible effect. Note, however, that
the distribution functions are so close to a double step that
the experiment is not sensitive enough to detect a possible
slight reduction of the energy exchange rate with B. In
contrast, in sample No. 1, the rounded dip at zero field is
replaced at 1.2 T by a double dip, showing that the energy
exchange rate has been reduced. Figure 3 shows the
evolution of dI/dV(V) with magnetic field, from 0.3 to
1.5 T by steps of 0.3 T, for U = 0.1, 0.2, and 0.3 mV. A
similar behavior is observed at all values of U: The low-
field broad conductance dip at B = 0.3 T tends to be

Sample #1 Sample #2
a) - - - -
w
—0.I15 0.60 ) —0.I15 0.60
E (meV) E (meV)
b) AN ’ \ ’
0.90f N SRR B2 N ENEET R LR
Tme--T cale.)r ‘.7 ~/ {085
> 0.85} . 4 ) X L
2 &
= I & | . 10.90
T 090 03T
o 0.85} I 10-8%
0.90+ 112T I 10.90
0.85¢ . [ % #1088
-0.15 0.00 -0.15 0.00
V (mV) V (mV)
FIG. 2. (a) Symbols: Distribution functions f(E) at U =

0.15 mV and zero magnetic field in samples No. 1 and No. 2,
obtained by deconvolution of dI/dV(V) with the probe elec-
trode in the superconducting state. Solid lines: Fits with theory
including the effect of Kondo impurities (see text). (b) Dashed
line: Calculated Coulomb blockade signal dI/dV (V) using the
measured f(E) at B = 0. Symbols: Measured dI/dV(V) at U =
0.15 mV, with B = 0.3 and 1.2 T, the probe electrode being in
the resistive state. Solid line: Fits with theory.
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U=0.1 mV
15T

/

U=0.2 mV U=0.3 mV

/

03T .

-0.1 0.0 -0.2 0.0 -0.3 0.0
V (mV) V (mV) V (mV)

FIG. 3. Magnetic field effect in sample No. 1: differential
conductance dI/dV(V) at U = 0.1, 0.2 and 0.3 mV, for B
ranging (from bottom to top) from 0.3 to 1.5 T by steps of
0.3 T. Successive curves have been vertically offset by steps of
0.033, for clarity.

replaced at large fields by a double-dip structure. In
particular, the crossover field at which dI/dV (V) is nearly
constant over a broad voltage range is 0.6 T at U =
0.1 mV,09 Tat U = 0.15 mV (not shown), 1.2 Tat U =
0.2mV, and 1.5 T at U = 0.25 mV (not shown), hence,
presenting a linear increase with U. The comparison of
the raw data on sample No. 1 and sample No. 2 in Fig. 2
already allows one to conclude that sample No. 1 presents
an extra interaction which can be strongly reduced by
applying a magnetic field.

We now compare the experimental data with theoreti-
cal predictions. The distribution function is calculated by
solving the stationary Boltzmann equation in the diffu-
sive regime [18,19]:

1 &fE) _
Tp 8x2

- Ii;noll (X, E’ {f}) + Igg[t] (xr E! {.f})’ (2)

where I and IO are the rates at which quasiparticles
are scattered in and out of a state at energy E by inelastic
processes. Assuming that the dominant inelastic process
is a two-quasiparticle interaction which is local on the
scale of variations of the distribution function,

Iy = [ dedE' K31~ FFR0 ~ F5) @)

where the shorthand f% stands for f(x, E). The out-
collision term J2y, has a similar form. The kernel func-
tion K(g) is proportional to the averaged squared
interaction between two quasiparticles exchanging an
energy €. Coulomb interactions lead, in diffusive wires,
to K(g) = k/&%? [1], where « = (m/D/21*?vpS)™!
with v the density of states at the Fermi level [20].
The B = 0 data for sample No. 2 can be well fit using
this term with k = 0.12 ns~! meV~!/2, of the same order
of magnitude as the theoretical value 0.07 ns~! meV~!/2
[21], and a term of lesser importance describing phonon
emission [22]. The B = 0 data for sample No. 1 can be fit
similarly, with k = 2.4 ns~' meV~!/2; however, the re-
duction of the energy exchange rate with B indicates that
an extra process is present at B = (0. We have in the
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following fixed « to the best fit value obtained for the
large field, low U data, where the B dependent interaction
has essentially vanished: k = 0.5 ns~' meV~'/2 [21]. The
remaining part of the energy exchange rate was fit with
the theory of Goppert et al. [12,23], which accounts for
the effective interaction in the presence of a concentration
c of spin—% impurities, with Kondo temperature T, gyro-
magnetic factor g, and coupling constant J between qua-
siparticles and magnetic impurities. The Kondo effect is
included in this calculation, under the assumption that the
distribution functions are not too sharp, leading to a
renormalization of J depending on the distribution func-
tion itself. The corresponding inelastic integral can also
be written in the form of Eq. (3), but with a K(&) function
depending on the energies E and E' and on f. At zero
magnetic field, the effect of this term on f(E) is similar to
that of a phenomenological kernel K(g) = 1/&? as found
in [4]. For compatibility with phase-coherence time mea-
surements (see below), the Kondo temperature was fixed
at Tx = 40 mK, which is the Kondo temperature of Mn in
Ag. As shown by solid lines in Figs. 2 and 3, the data can
be accurately reproduced using ¢ = 17 ppm, g = 2.9, and
vJ = 0.08 [24]. Note, however, that according to material
analysis of the silver batch used to fabricate sample No. 1,
no magnetic impurity was present in the source at the
level of 1 ppm. Since in some samples made out of the
same batch the intensity of the energy exchange rate
measured at B = 0 was found to be up to 4 times smaller,
pollution of the sample during fabrication might, at least
partly, explain this large impurity concentration.

The impurity concentration deduced from the fits of
f(E) must be further compared with the one obtained
from the analysis of measurements of the phase-
coherence time in long wires fabricated previously with
the same source materials. We have extracted the phase-
coherence time 7, from the magnetoresistance of wires
much longer than the phase-coherence length, using the
weak localization theory. In samples made of 6N purity
Ag, 7,(T) = A~'T723 from 1 K down to 40 mK, with
A =0.36ns"' K23, in reasonable agreement with the
theory of Coulomb interactions in disordered wires
(Atpeory = 0.31 ns "' K™23). At T =40 mK, 7, = 21 ns.
In samples made of 5N silver, T¢(T) does not vary be-
tween T = 200 mK and 40 mK, where we find 7, =
3.5 ns. This behavior can be attributed to the presence
of magnetic impurities, with concentration c, spin s, and
Kondo temperature Tk, which lead to a spin-flip rate
described by [11,25] 1y, ((T) = (c/whv)m*s(s + 1)/
[7%s(s + 1) 4+ In?>(T/Tk)]. The resulting phase-coherence
time 7,(T) = 1/[AT*? + v,7(T)] shows very little varia-
tion between 40 and 200 mK and describes precisely
the experimental data for ¢ = 0.13 ppm, T = 40 mK,
s =1/2 and A = Apeory = 0.4 ns™! K3, This value of
¢, compatible with the nominal source purity, is smaller
by 2 orders of magnitude than the value obtained from the
fits of energy exchange data on sample No. 1. A similar
set of results was also obtained with Cu samples, a
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material in which the oxide at the surface of the films was
found to cause dephasing at low temperature [26]. Data on
energy exchange [17] could also be fit with the theory of
Goppert et al [12], using Tx = 300 mK, ¢ = 4.8 ppm,
g =23, vJ=0.1, on top of a Coulombic term with
intensity « = 0.5 ns~! meV~!/2 [23]. This result gives
evidence that the anomalous interactions observed in
many Cu wires at B = 0 [4,7] are also due to magnetic
impurities. Here also, measurements of the phase-
coherence time [7] are explained by significantly smaller
impurity concentrations ( ~ 0.3 ppm). This repeated dis-
crepancy on the concentrations deduced from the two
types of measurements remains an open problem. From
an experimental point of view, a more quantitative test of
theory could be obtained in samples with added, identi-
fied magnetic impurities at a known concentration [27].

In conclusion, we have found that anomalous energy
exchange rates between quasiparticles were strongly re-
duced by the application of a magnetic field. Moreover,
the energy and magnetic field dependence of the exchange
rate can be accurately accounted for by the presence of a
small concentration of Kondo magnetic impurities [12]. It
is worthwhile to compare this result with recent mea-
surements on Aharonov-Bohm rings, which show that the
small phase-coherence times found at B = 0 were in-
creased in a finite magnetic field [28]. All these measure-
ments indicate that the presence of very dilute magnetic
impurities is a very plausible candidate to explain both
extra dephasing and extra energy exchange observed in
many mesoscopic samples.

We acknowledge the technical help of P. Orfila, fruit-
ful discussions and correspondence with G. Goppert,
H. Grabert, and N. Birge, and permanent input from
M. Devoret, P. Joyez, C. Urbina, and D. Vion.
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Appendix 3: Measurements on other silver wires

During this thesis, we have measured other silver samples made of 3 different sources
(5N, 6N and 6N’). The two samples presented in the main body of this chapter were obtained

from the source 5N and 6N.

The electrical and geometrical characteristics of the other samples are summarized in Table 7.

Sample | Source | L(um) | w(nm) | 7 (nm) | R (Q) | D (ecm*s’) | 7, (ns)

Ag, 15 Ag5N 5.45 117 45 17 230 13
Ag, I15 AQg5N 5.15 101 45 24 178 15
Ag,, 115 Ag5N 5.27 120 45 20 184 15
Ag, 110 | Ag6N’ 9.55 124 45 30.7 210 4.3
Ag,, 11140 | Ag6N’ 38.4 185 45 - ~ 200 ~80

Table 7: Geometrical and electrical characteristics of the measured samples. The length is L, the width w,
the thickness ¢, the wire resistance R, the diffusion coefficient D, and the diffusion time from one end to
the other 7, .

To label the samples, we used the notation described in Figure 27. The samples Ag,,!110 and

Ag,,[1140 were the only ones made using the two-step process (see Chapter 3).

@m I 5\> Wire length (um)

/s

Material Source purity Sample label
Figure 27: System used to label the samples.

The measured distribution functions and fits to the theory taking into account electron-phonon
interaction and electron-electron interaction are presented in Figure 28. The electron-phonon

interaction is included with «,, =8ns® meV~ and 7, =40 mK . The single fit parameter is

ph

the intensity of electron-electron interaction «,,. We have measured the interaction in a

magnetic field to know whether KIM interaction occurs in these samples.

136



Ag,,|110 Ag,, 11140

f(E)

1,=4.3ns
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E(meV) E(meV)
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Ag,, !5 Ag,, 15 Ag, 115

f(E)

1, =15ns \ 1, =15ns

03 0.0 03 0.0 03 0.0
E(meV) E(meV) E(meV)

Figure 28: Symbols: Energy distribution functions for U =0.1, 0.2and 0.3 mV in five silver wires of different
diffusion time 7,,. Top: The samples made using a 6N-pure silver source can be fit using the Kernel of Coulomb
interaction only (Solid lines: Fits with «,, =0.09ns* meV™* for Ag,I110 and «,, =0.17 ns* meV™* for
Ag,,11140). Bottom: Samples made using a 5N-pure source; The curves are fit using Coulomb interaction kernel
(Solid lines: Predictions with «,, =0.6ns meV™”, k,,=03ns'mev** and k,,=0.6ns" mev™
for Ag,, 15, Ag,lI5 and Ag,, 1115 respectively).

The results for Ag,, 110 and Ag, |5 are presented on Figure 29. For all the samples, the
differential conductance of the tunnel junction does not depend on the magnetic field, and is
close to the one inferred from the B =0 measurements (heating effects as described in
Section 7.4.3.3 are included). The small effect of B observed at the lowest bias voltage for

Ag., |5 isnot significant compared to the measurement precision.

The results for the samples made of the 5N-source are in sharp contrast with the results found
for Ag,,IV20: in this sample, energy exchange was dominated by KIM interaction up to large
magnetic field, and the fit impurity concentration was 17 ppm. We have checked that in the
samples presented in this appendix, we would have been able to detect impurity concentration
larger than 2 ppm. These results suggest that the impurities in Ag,, V20 come from a

pollution during the fabrication process.
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Figure 29: Symbols: Measured Coulomb blockade signa in Ag,I110 and Ag5BI for U =0.1,
0.2, and 0.3 mV and three different applied magnetic field (B =0.45, 0.7,and0.9 T for Ag,l110 and
B=0.15 06and1.2T for Ag5BIl). The curves do not depend on the magnetic field. KIM interaction are
negligible in these samples compared to electron-electron interaction. Solid lines: Calculated Coulomb blockade
signal using the samples characteristics and the measured energy distribution functionat B =0.
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Chapter 8 Summary: Inelastic scattering
mechanisms in diffusive metallic
wires

The results of the phase coherence time and energy exchange measurements presented
in Chapter 6 and 7 bring evidence that at low temperature, two mechanisms dominate inelastic
scattering: Coulomb electron-electron interaction and electron-magnetic impurities (KIM)
interaction.

In energy exchange measurements, the presence of magnetic impurities is suggested by an
anomalous energy dependence of the interaction at zero-magnetic field, and revealed by the
magnetic field dependence of the electron energy distribution functions. In phase coherence
time (7,) measurements, the signature of magnetic impurities is the “saturation” of r,. In the
following, we compare quantitatively the theoretical predictions and experimental

observations for both inelastic scattering mechanisms in the two types of experiments.

8.1 Coulomb electron-electron interaction

8.1.1 Coulomb electron-electron interaction and energy exchange

The predicted kernel for Coulomb electron-electron interactions is written in diffusive
wires [1]:

K (£) =222, 1)

- -1 - -
with «. —(\/D/2 mh*? v, Se) [2]. The parameter «,, was the main fit parameter for the

3/2
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samples in which energy exchange does not change with magnetic field. For the samples

displaying a magnetic field dependence, «,,, was determined by fitting the low-voltage high-

magnetic field curves for which the Coulomb interaction dominates, but this determination is

less accurate. The experimental values of «,,, are summarized in Table 1 (samples measured

during this thesis) and Table 2 (samples measured by F. Pierre [3]%).

Sample L w D 7, K, K, B Comp
(m) | (nm) (cm’s) | (ns) | (ns’ mev™®) | (ns® mev™?) -dependent (Ppm)
Ag,, 120 21.7 100 215 21.9 0.1:0.02 0.08 No <01
Ag,, 110 9.55 124 210 43 0.09:.01 0.06 No <05
Ag,, 11140 | 384 185 200 80 0.17:0.02 0.05 ? ?
Ag, 15 5.45 117 230 1.3 0.6:0.1 0.06 No <2
Ag,,l15 5.15 101 178 15 0.3:0.05 0.085 No <2
Ag,, I115 5.27 120 184 15 0.6:0.1 0.07 No <2
Ag,, V20 | 20.0 108 196 204 0.5:0.1 0.075 Yes 17
Al5 5.05 110 64.8 3.9 0.06:0.02 0.06 No <01
Au5 51 85 109 2.5 0.4:0.2 0.12 Yes 8
Cu5 5.0 105 91 2.8 0.4:0.2 0.075 Yes 4.8

Table 1: Summary of sample characteristics and Coulomb interaction intensity «,,, deduced from energy
exchange measurements in this thesis. The expected theoretical value k2, isalso indicated.

Sample L w D T Kas Ky
(m) | (nm) (cm’s*) | (ns) | (ns* mev™) | (ns® mev™?)

Agl5 5.0 90 115 2.2 1.2:0.2 0.13
Agll5 52 65 150 1.8 0.45:0.2 0.15
Agll10 10.3 65 165 6.4 0.55:0.15 0.15
Aglll20 19.6 160 230 16.7 0.5:0.05 0.05
AglV20a 19.7 95 205 19.0 0.4:0.05 0.09
AglV20p3 19.9 100 185 21.0 0.4:0.1 0.09

Table 2: Summary of sample characteristics and Coulomb interaction intensity deduced from energy
exchange measurements in the silver samples, made from the 6N source (same as Ag,,120), measured by F.
Pierre [3] previousto thiswork. No test of KIM interaction was performed, but fits with Coulomb interaction

only were excellent.

The experimental value «,,, is aways found larger (from 1 to 10 times) than the theoretical

! The process to measure energy exchange in presence of a magnetic field has only been developed during this
thesis work, thisiswhy the B-dependence of energy exchange in samples of Table 2 was not tested.
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one K, . Variations from sample to sample are not correlated with the sample characteristics:

width, length, thickness, or diffusion coefficient. The dispersion of the experimental values of

th

K., isillustrated in Figure 1 on which «,, is plotted as afunction of «;,,.

T % T 1
1r b
o | A u
‘_|' ~~~ o o
£ ; X
o IUJ
2 £
~— 0.1 C ]
i <
8 f
X
PR | n n n n P | 0.1 n n n n n n n n
0.1 1 0.1 1
k" (ns™ mev™? A" (ns™t K??

3/2

Figure 1. Left Panel: Symbols: Experimental value of the intensity of Coulomb interaction «,,, deduced from fits
of energy exchange measurements as a function of the value «,, calculated from samples characteristics. Right
panel: Symbols: Experimental value of the intensity of Coulomb interaction 4 deduced from fits of phase
coherence time measurements as a function of the value 4, calculated from samples characteristics. In both
panels, the disagreement with theory is the distance to the solid line of slope 1.

8.1.2 Electron-electron interaction and electronic phase coherence

From phase coherence time measurements, the intensity and energy dependence of
Coulomb interactions can also be inferred. It is predicted that the electronic decoherence rate
dependence on temperature due to Coulomb interaction is written [4,5]:

Z.(;l - ATZ/S, (2)

with 4 =(2@ n kg v, Se)_m. The dependence in 7%°is consistent with the kernel (1)
dependence in £*%. The parameters 4 and «,,, depend on the same combination of the
sample characteristics and one can identify: A4 = (4/ mnl (kBks,z))_Z/s.

Measurements of phase coherence time dependence on temperature were performed on

samples made from the same sources (Ag6N, Ag6N’, Ag5N, and Cu5SN) as the samples used
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to measure energy exchange. In the samples displaying no saturation, the experimenta value

of 4 wasthe only fit parameter at low temperature. In the samples displaying saturation, the

Coulomb interaction was never dominant on KIM interaction on the explored temperature

range and the determination of 4 was less accurate, or even not possible. The experimental

values are summarized in Table 3 (samples measured a Michigan State University by F.

Pierre and N.O. Birge) and Table 4 (samples that we have measured).

The experimental values of 4 are of the same order of magnitude as the predicted value 4, .

In silver the difference between the two values is a worse 25 %. The dispersion of 4

illustrated in Figure 1 is smaller than the dispersion of «,, .

Sample L ! w D A A, saturation c,
(m) | (nm) (nm) (cm®s*) | (ns*K™) | (ns® K*) (ppm)
Ag(6N)a 135 45 65 115 0.68 0.55 No 0.009
Ag6N)b | 270 | 45 100 70 0.54 0.51 No | 0011
Ag(6N)c 400 55 105 185 0.35 0.31 No 0.0024
Ag5N)a | 135 | 65 108 105 0.41 0.33 Yes | 017
Ag(5N)b 270 65 90 135 0.35 0.31 Yes 0.13
Cu(5N)a 270 45 110 70 0.55 0.35 Yes 0.15
Cu(5N)b 270 45 100 160 - 0.29 Yes 0.75

Table 3: Summary of sample characteristics and Coulomb interaction intensity deduced from phase coherence
time measurements in samples made from our 6N-, and 5N-sources. These measurements were performed by
F. Pierre and N.O. Birge at Michigan State University.

Sample L ! w D A A, saturation c,
um) | (m) | (M) | (e st) | (08 K®) | (ns* K®) (Ppm)

Ag(6N’) | 1790 45 150 139 0.38 0.30 No 0.05

Ag(5N)c | 895 45 150 280 0.51 0.24 Yes 0.12

Table 4: Summary of sample characteristics and Coulomb interaction intensity deduced from phase coherence
time measurements in silver samples, made from the 6Nb source (same as Ag,120) and 5N-source (the
sample Ag(5N)c was made after the sample of energy exchange measurement Ag,,[V20). The measurements
were performed at Saclay.

8.1.3 Conclusion on electron-electron interaction

Although theoretical predictions for energy exchange and decoherence rate due to

electron-electron Coulomb interactions are performed using the same formalism, experimental

144



consistency with theoretical predictions differs strongly between the two types of

measurements.
Ag(6N)c Ag,,I20 Ag IS
T 1 ' e T [T — o
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Figure 2; Scale of energies probed in phase coherence time measurements (exemplified for (Ag6N)c) and energy
exchange measurements (exemplified for Ag,, 120 and Ag,lI15). Top: Measured curves and fits to Coulomb
interaction theory. The probed energy limit £ is indicated . Bottom: Log-log representation of the Coulomb
interaction Kernel using &, (solid lines), and «,,, (dashed lines) The bold lines indicate the range of probed
energies.

The major difference between the two manifestations of Coulomb interaction is the probed
energy range. Quasi-elastic scattering dominates decoherence, whereas processes at energies
between 0 and roughly eU /4 determine the shape of the energy distribution function f (E)
(see Figure 2). In term of interaction time, this means that phase coherence time is sensitive to
long-time interaction, whereas energy exchange is sensitive to short-time interaction. In our
experiments, the diffusion coefficient is inferred from resistance measurement which is aso
sensitive to long-time dynamics. If in the experiments, the electron dynamics was not
diffusive at al scales with the same diffusion coefficient, for example because of the granular
structure or surface-dominated scattering (see Figure 3), the evauation of D from the

resistance would only be valid for phase coherence time measurements and not for energy
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exchange measurements. This would explain the large discrepancy between the experimental
values of «,,, compared to the theoretical values and also the samples to samples variations,

since the grain structure is different for each sample.

By
BT

Figure 3: Top: Model of awire and diffusive electron trgjectory: the dispersion of times between two collisionsis
small. Bottom: Model of a wire and pseudo-diffusive trgjectory: two typical times between collisions exist. The

shorter one is probed in energy exchange measurements and the longer one in resistivity and phase coherence
time measurements.

8.2 KIM interaction

We have demonstrated with our energy exchange measurements that in severa
samples KIM interaction dominates Coulomb interaction on a large range of temperature, as
recently predicted [6]. KIM interaction manifests itself on phase coherence time
measurements for al the samples made of 5N-copper and 5N-silver, and on energy exchange
measurements for one of the samples made of 5N-silver and for the sample made of 5N-

copper. Yet, a large discrepancy remains between the fit concentrations for both

measurements (see Table 5).

Source Cimp (ppm) c’w (ppm)
Ag6N <01 0.0024, 0.009, 0.011
AgbN <217 0.13,0.17
Ag6N’ <05 0.05

CubN 4.8 0.15, 0.75

Table 5: Fit concentrations of energy exchange measurements c,,, and phase coherence time measurements
¢,, on samples made of the same source. For sources of Ag5N and CuSN , the concentration ¢, is found

larger than C, s suggesting that either pollution arises in the fabrication process of energy exchange samples,
or that the theory for KIM interaction is not sufficient.

Measurements on 5N-silver indicate that the discrepancy can be partly attributed to pollution
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during fabrication: Ag,, V20 is the single 5N-silver sample to present more than 2 ppm of
impurities whereas the sample Ag(5N)c made later from the same source only displays 0.1
ppm of impurities, according to weak localization measurements. Y et, fit concentrations on
copper wires display also a discrepancy between phase coherence time and energy exchange
measurements. A quantitative test of the theory of KIM interactions must be done by
measuring energy exchange in samples made with very pure metal, in which controlled
concentrations of magnetic impurities are implanted. A quantitative test was made on silver
samples for phase coherence time measurements and proved that the fit concentrations are
well estimated in this type of measurements [7]. To definitely settle out the concentration
problem, a new fabrication process is presently being developed to allow measurements of

phase coherence time and energy exchange on co-evaporated and co-implanted samples.
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PART 3

MESOSCOPIC SUPERCONDUCTIVITY






Chapter 9 Theoretical description of
non-equilibrium superconductivity
and proximity effect

The BCS theory of superconductivity [1] deals with equilibrium thermodynamical
properties of superconductors. To predict out-of-equilibrium properties, this theory has been
reformulated using Green functions in the Keldish formalism [2], leading to the general theory
of non-equilibrium superconductivity. This formalism applies to sSituations in which
superconducting properties are not homogeneous, it is therefore very powerful to deal with
proximity effect, a phenomenon which occurs when normal (non-superconducting) and
superconducting metals are in contact. In this chapter, the general starting points of non-
equilibrium superconductivity and the derivation of Usadel equations are presented. Usadel
equations are at the basis of the description of diffusive systems like ours. Starting from the
Dyson equation, two usual approximations are made: quasiclassical approximation and
diffusive limit [3]. For practical purposes, the Green functions are parameterized with two

complex numbers, corresponding to a pairing angle and a superconducting phase.

9.1 Derivation of the Usadel equations

9.1.1 Out-of-equilibrium Green functions: Keldish formalism

9.1.1.1 Generality

Thanks to Green functions, the description of a complex electronic system can be

achieved starting from the description of a simpler one, for example free and independent
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electrons, on which an Hamiltonian describing impurity scattering or electron-electron
interaction, or coupling with phonons, is adiabatically branched between the times ¢ = — and
t=0.

The exact Green function of the system can be expressed with the Dyson equation from the

free Green function G,:

G=——, )

where Z isthe self-energy. The self-energy is a summation of an infinite number of distinct
diagrams describing interactions [4]. Green functions are only useful if one can perform a
perturbative development and approximates the self-energy by the lowest order terms in the
series.

Starting from a fundamental state describing the system at ¢ = —co, each perturbation term
consists of the mean value of operators that act one after another in time. The state of the
system at ¢ = +oo has then to be known. At equilibrium, the final state is identical, modulus a
phase, to the fundamental one. Out-of-equilibrium, the final state is unknown. Keldish’s trick
IS to make time return to the past at ¢ = —, by ordering time in the complex plan (see Figure

1),

Figure 1 : Keldish contour in the complex plan. The arrows indicate the ordering of time.

The out-of-equilibrium formalism uses therefore the Green functions at equilibrium. Time has
a positive or negative imaginary part and Green functions are 2x 2 matrices expressed in term

of G*, G" and G*, the retarded, advanced and Keldish Green’s functions as:

il o
D Gt F
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where

G*==if (=) {{w (r.) (.0)})
6" =i0(=0){fp (- (1) ©
6" ==i(@ (i) ()R,

with ¢* (r,1) the creation operator of a particle at the position r at time 7. Here { } stands
for anticommutators, [ ]stands for commutators and ( > stands for an average on the
dynamic state of the system. The functions G* and G* describe the equilibrium states of the

system and G* describes the occupation of these states.

9.1.1.2 Application to superconductivity

The Green functions formalism, adapted to superconductivity, describes a system of

interacting electronsin terms of correlation functions G~ and G~ defined as the matrices:

A Y= Oc, (x,t)c! (x,t") ¢ (xt)e (x,t) O
@ (enen) <Ercj (et)e’ (v.t) —c' (xt)e, (1) ﬁ>
el (v, t)e, (x,t) c (x.t)c, (xt) O
@c: (x', t')c:r (x,t) —c, (x', t')c:r (x,t)ﬁ 1

(4)
G° (x,t,x’,t’):i<

where the fermionic operators ¢! andc  respectively create and annihilate an electron of

spin up or down and < > stands for an average on the dynamic state of the system for each
matrix element. This theory, which contains the “anomalous” components ¢, (x,t)c (x'.t) and
cf(x, t)cj (x',t), corresponding to the annihilation and creation of an electronic pair, treats the
normal-like and superconducting-like correlations all at once. The retarded, advanced and
Keldish Green’s functions are 2x 2 matrix, noted G*, G* and G¥, with

G* = 9(1—t’)(é< —C:”)

G'=-0(-1)(G*-G") (5)

G*=G"+G.
The correlation functions obey the Dyson equation:

[ dear (G (e )2 )G o) =10 -G -1),  (©
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where

and

the generalized self-energy, dependent on the Hamiltonian of the system, including the pairing
hamiltonian of the BCS theory [1], electron-phonon scattering and elastic scattering on

impurities. The function G, isthe free-electron Green's function, which reads:

G (x.t,x,1) Hhra NEN, x)+ )T, EP[ t’)
m

where the covariant spatial derivative and the Pauli matrices are defined as:

0,=70, -, ieAh( ),

ey 00, _d o0

T ofg B o1

;D 1E4f=50 —igf:mt 05
""Hood” h od -1

with ®(x), A(x) and i respectively the scalar, vector and chemical potential, with the gauge
convention 0 _A(x)=0.

When substracting the Dyson equation to its conjugate, Eq. (6) leads to:
I dx"dt ’H?gl(x”,t”,x’,t’) =X (xmnx00) ,G(x,t,x”,t”)E: 0.

This equation is the Gorkov equation [5]. The expression of the self-energy will be given
below.

9.1.2 Quasiclassical approximation

The quasiclassical approximation consists of a perturbative development of the Dyson

equation using a small parameter. In the case of superconductivity, this parameter is the ratio
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NEr, with A the superconducting gap and Er the energy at the Fermi level. In typica
superconductor A/ E, =10"°. The perturbative development aims at integrating out all
physical quantities on scales smaller than &, the characteristic size of Cooper pairs.
Physically, Cooper pairs are large enough compared to the Fermi length to be considered as
having a quasiclassical motion. Since Cooper pairs are correlations of two electrons, knowing
the phase of the two-electron wave function is sufficient in most cases. This wave function
only depends on the center of mass coordinate and it is possible to integrate out the

dependence on the relative coordinate in the Gorkov equation.

A Fourier transform to the momentum energy space leads then to the quasiclassical Green

function
- R 8% (x,t,p.€) 25 (x.1,p,€
g(x,0,p,e) =1 ( ) . ( ) J'dZ G(x.t,p.€),
M 0 g (x t, p, 5) D Vi1

where p isavector on the unit sphereand ¢, =p*l2m—- L.

The quasiclassical Green function obeys the equation
B (x.0,p.g)—0(x.1,p.€),g(x.1,p.6)F=0, (7
with
g (x.1.p.e)=hr0,—€l, +hv,p.0_,

where ve isthe Fermi velocity and with

"g>

(i pe) = EBR(x,z,i;,g) g" ((

€)
o O £

"u)
Cir

the full quasiclassica self-energy. This equation, called the Eilenberger equation for

superconductivity [6], isthe central equation of the quasiclassical theory.

g aso obeys anormalization condition: g*(x,z, p.&) =17,.
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9.1.3 Diffusive limit: Usadel equations

9.1.3.1 Diffusive limit

In superconductivity, the diffusive limit applies when the mean free path is shorter
than the superconductivity coherence length &, =#v, /A with v, the velocity at the Fermi
level and A the superconducting gap. In this limit, scattering on non-magnetic impurities,
lattice defects or sample boundaries occur frequently on atrajectory of length &, and the full
quasiclassical self-energy, associated to elastic scattering, can be written in the Born
approximation:

o m

2 (x0pg)= E(é(x,t,i),f» :

where <> is the average value on the angles, justified because of the fast direction memory
loss of electrons, and 1/ 2r = 2rmy, <|U |2> The concentration of impuritiesis n,, v, is the
density of states at the Fermi level and U isthe Fourier transform of the impurities scattering
potential. When the number of scatterers is large enough, this self-energy term dominates and

the Green function is aimost isotropic. Then, an expansion in spherical harmonics keeping

only the s- and p- wave partsis performed:

§(e0.h)= & (x0.c) + g, (.2)
O(x.t,p.€)=0;(x,1,6)+ p.0, (x.1,€),

where p.g, < g; andp.o, < 0.

Splitting Eq. (7) into an even and odd part with respect to p yieldsto:
gp = _legS %jx’gS E (8)
Ai00, 80, - g0 ~io5. 8 F= 0,

where D=1/3 v,/ is the diffusion constant, o, the quasiclassical self-energy in which the
elastic collisionterm o, has been removed, and g =hT,0, —i€T, .
Eq. (8) are called Usadel equations [7]. They are the genera starting point to calculate non-

equilibrium effects in diffusive superconductors.

156



9.1.3.2 Usadel equations

In BCS theory, superconductivity is due to electron-phonon interaction. A pairing

potential isthen included in the self energy:

A~

where A is the superconducting order parameter:

V A A A
VFS;” Ih:b de Tr((rx —iry)gf), 9)

A=

with V. the pairing interaction strength and ), the Debye pulsation as defined in the BCS

theory of superconductivity [1].

The spin-flip scattering rate 1/ 7, contribution o, to the self energy is:

Using o’y =o*.” +0,, yieldsin Eq. (7) to equation:

pair

o - - _ n o O
Ij;ZD|:|)::gS|:|x +iHO__ngSTz’gS DZO’ (10)
= 2, B

N

- Og, o0 . [ iAC
with HO:@J R EHOZD' . C.
H, oA —&C

Equation (10) is equivalent for the advanced, retarded and Keldish Green function to:

O . . . 0
hDO_g*01_+ifl, ~—' £ 3% 3¥ 0= 0
B 21, B
O . . . 0
DO_g/01 +if, -1 ' 3/ 0= 0
B 21, B (11)
hD(%]xéggmx’éf%k@xé?Dx’é;S
+i o,gﬁﬁ-?(fzgﬁfzgé‘—gﬁngfn +1,857.84 - 851.,841,) =0.
of

Equations (11) are the detailed Usadel equations. The projection on the s- wave of g obeys

the same normalization conditionas g: g:(x,¢&) =17,,
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which is equivalent to

ARAR _ A Afgnag _ o~
8585 _Tm 8585 _To
ARAK

2585 +858; =0.

Eqg. (8) is equivaent to the conservation of the current. The spectral density of current is

defined as:

J(g,x) =0 (x)g,0,&;,
where o(x) isthe normal-state conductivity. This leadsto the current density:
J(x) = -2 [deTr (F.(&0,85 + &£ 0,2)F
The density of quasiparticle statesis given by :

N(x, €)= % Re(Tr(gR (x,a)fz)) :

9.2 Parameterization of the Usadel equations

9.2.1 Definition of the pairing angle and of the complex phase

The normalized condition g{gf =7,, and the fact that 7r(2s)=0, alows to
parameterize g; with two complex parameters 8(x,e) and @ (x,):
gs =cosf T, +sin@ cosg f, —sinf sing T,
[tosé sing €’ E (12)
=0, -
snde?’ -cosf [

The advanced and retarded component of g are related by the equation:

é; :_fz§§+fz'
Hence,
., H-cosg sng e’ C
g& =4 ) : (13)
ng e cosé
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The last renormalization condition allowsto write g& as

gs = 8&sh—hg;. (14)
The distribution matrix / (also called filling matrix) can be chosen as diagonal and is related
to the distribution functions for electrons £, and holes £, :

. @-2f 0 T
H T g @

where the energy is measured from the chemical potentia of the superconductor.

For convenience, h is also written
h=f 0+ f.1, (16)

with f,, and f, respectively odd and even functions of energy, related to the physical

distribution functions of e ectrons through the expression:
fxe)=(1= £y (x6) = £, (x.6)) ] 2. (17)

For example, in areservoir at potential V and at thermal equilibrium T,

E+el C
A %anh T 0 C
h, = » C, (18)
e+eV L
%3 tanh C
U 2k,T [
and
| —-ey
fMZEEF hS eV+tanh£ eV
20 2k, T 2k,T
10 U (19)
fw:—['panh“eV—t hE eV
20 k, T 2k,T

The odd and even functions are represented in Figure 2.
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-eV 0 eV

Figure 2 Odd and even part of the energy distribution function used in the theory of non-equilibrium
superconductivity, in the case where the system is areservoir at a potential V.

9.2.2 Equations for the pairing angle 0 and the phase ¢

The parameterization in 8 and ¢ of the Usadel equations leads to the following

equations.

9.2.2.1 Order parameter equation
In the general case, with the previous definition, the order parameter reads:
_ VFVeﬁ‘ hep : W _ il i\ _ : 0 L il it
A(x)—TI_h%dafod(smﬁe sn@ e ) fev(smee +sing e ) (20)

At equilibrium, for a bulk superconductor, ¢ isreal, f,, =0 and f,, =tanh(e/2x1), leading

to

Ax) = |/FI/eﬁrL:mb de tanthLTIm(sine) e’ .

9.2.2.2 Equilibrium Usadel equations

The part of equation concerning the advanced and retarded Green functions defines
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equilibrium equations:

—D29+ﬁ E{—+—ﬁ]¢——A§ groseﬁyne+

DA(x)e’¢+AD( )e' E:ose 0 (21

2e ., 0 isiné@ 6 A1)
Dﬁ]qﬁ—?A?n =" (A(x)e™ ~A%(x)e¥).

For a bulk superconductor, where ¢ isreal, Egs. (21) have smpler expressions:

O 0O hD

%DDZHJr ﬁg %%Jr?ﬁ% ‘%A(x) E gl:ose%nem(x)e‘” cosf=0
0 ﬁ]¢—%A(x)5lsin29§:0.

In a normal metal, the order parameter is zero and the equations describing a normal metal

(22)

with only spin-flip scattering are found taking A =0 in Eq. (21).
9.2.2.3 Density of states

The density of quasiparticle states is related to the pairing angle by:

N(&,x) =V, Re(cosb) . (23)

In bulk superconductors obeying BCS theory, the order parameter A=A, " is constant and

Eq. (21) simply reduces to

tan@ = i Boes (24)
£
or
Ores (€) :gﬂ' arctanh—% if |e] < Ages
BCS (25)
= i arctanh 2ees if |e] > Dy
£

The energy dependence of the pairing angle in bulk superconductor is represented in Figure 3.

From the definition (23), the density of statesisfound as
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- VF 2 2 I |E| BCS
A
in agreement with the BCS result.
E=A

' UEEREN

MmO g [/ \
y 4
Y 4

E=w0 E=0_

0 T2 Re O

BCS

Figure 3: Energy dependence of the pairing angle in a homogeneous superconductor in the complex plane.

9.2.2.4 Out-of equilibrium Usadel equations

The equation on the Keldish Green function alows to calculate the filling factors. In

thelimit when 7, - o and 4 =0, the following two equations are obtained:

0{ (1+]cos6l” - sin6f cosn(2,)) 01, = sinéf*sinh(24,) 7, +2Im(sin* 6 0g) 7.} =0
hD D{(1+|cosl9|2 +[sin6f* cosh (29,)) 07, +[sinéf° sinh(29,) 07, + 2Im(sin’ D¢)fod} (26)

=21, Re(sin@ (A(x)e"'¢ -N (x)e’”j)) -2f, Re(SinH (A(x)e"”j +A (x)e'”’)),

where ¢; and ¢, denote the real, and imaginary parts of the complex phase ¢, respectively.

For a bulk superconductor, where ¢ isreal, Egs. (26) read:

0{cos’ 611, +Im(sin’ 6 0g) £,} =0

(27)
O{cosh? 6,001, +Im(sin* 6 0¢) £,,} =251, Re(sin6),

where 6, and 6, denote the real and imaginary parts of the pairing angle 6, respectively and
o= Re(A(x)e"¢). Equations (27) generalize Boltzmann equations to situations where
superconducting correlations are present. The “source” term in the second equation, related to

the order parameter, is in a bulk superconductor proportional to
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Re(SNBys) =225 if [¢]<A

2 2
BCS 3

=0 if |e]>A

BCS

BCS *

This term represents the Andreev reflections of electrons into holes below the gap. It is of

importance for the following to note that inelastic processes are not included in Egs. (26).

9.2.2.5 Current density

The current density is related to the pairing angle and the complex phase by:

J(x)= ——I def,, Im?n 2] ﬁ]q’) ——A

*® 2 . 2 . 2 .
_Z_eIO de(wa (1+|cos€| +|sing|” cosh (2¢2)) +0f,, |siné| smh(2¢2)) (28)
=J; (x) +J, (x)

The first term corresponds to a supercurrent, proportional to the phase gradient. At
equilibrium, when f, =0,

_—I detanh—lmasm 6 ﬁ]¢——A (29)

The second term corresponds to a current of quasiparticles due to a gradient of occupation

factors. When the phaseisreal, J, isequal to

Jy(x)= % f: de cosh? 6,0f,, . (30)

9.3 Proximity effect and boundary conditions

At an interface between a superconductor and a norma metal, the superconducting
correlations are delocalized. The decay of the correlations can be handled with Usadel
equations, the normal metal being described with A =0. The boundary conditions determine
the properties inside the electrodes. In the next section, the general boundary conditions at

interfaces for Green functions are presented as well as their equivalences in term of pairing
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angle and complex phase.

9.3.1 Continuity of Green functions and reservoirs

At a transparent interface, the advanced, retarded and Keldish Green functions are
continuous. With the parameterization chosen in the previous section, thisis equivalent to the
continuity of 6, ¢, f, and f,,. These values are well defined in reservoirs of bulk

superconductor and normal metal and are listed below.

In a bulk superconductor, the phase ¢ isreal, and the order parameter isequal to A=A, ",

leading to

GBCS(a)zl—ZTHarctanh d if |&] <Dy
BCS (31)
=i arctanh% if |&] > Ayes.

Inabulk normal metal, Eq. (21) leadsto &, =0 and the phase ¢ is not defined.

In anormal reservoir at potential V, the distribution functions are given by:

0 N an
de:E anh£+eV+tanh£ eVD
20 2k,T 2k,T [
(32)
| N an
fev:lljanhé‘+eV_tanh£ eV
20 2k, T 2k,T

9.3.2 Spectral current conservation

In the quasiclassical approximation, the information on length scales of the order of
Fermi wavelength has been integrated out. Consequently, effects of potentia barriers or
interfaces can not be accounted for on this level. It turns out from a full study of theory that
these effects are equivaent to effective boundary conditions for the quasiclassical Green
functions. These boundary conditions couple the classically transmitted and reflected

trajectories and are equivalent to the conservation of the spectral current:
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U -
ogl,g =0gl,.g = 2‘

[2.2,]. (33)

where g,,g, and g, are respectively the Green functions of left and right parts and the

conductance of the interface, g, and g, arethe conductivity of left and right parts.
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Chapter 10  Density of states in a superconductor
carrying a supercurrent and exposed
to a magnetic field

The superconducting order is based on pairing e ectronic states that transform into one
another by time reversal. Superconducting order is modified by physica phenomena that
break time reversal symmetry, such as a magnetic field, or that hinder the pairing of time-
reversed electronic states, such as a supercurrent. In the early stages of the theory of
superconductivity, it was predicted that in diffusive superconductors, in which the electron
mean free path is short compared to the BCS coherence length &,, and in homogeneous
situations, the effect of all depairing mechanisms can be described by a single parameter, the
depairing energy [1]. Later on, the theory of out-of-equilibrium superconductivity (see
Chapter 9) extended this equivaence in the diffusive limit to inhomogeneous situations where

the order parameter may vary in space.

Experimentally, measurements of the density of states (DOS) in a thin superconductor placed
in an in-plane magnetic field were well accounted for by the concept of depairing energy [2].
On the other hand, the effect of a supercurrent was probed in a single experiment, focused on

the reduction of the superconducting gap close to the critical temperature [3].

In order to test the predicted fundamental equivalence between the effect of a magnetic field
and a supercurrent in a diffusive superconductor, we have measured the DOS in a
superconducting wire carrying a supercurrent or exposed to a magnetic field (see Figure 1).
The width and thickness of the wire were chosen smaller than the London length so that the
current flow is homogeneous and the magnetic field penetrates uniformly. This situation is the

simplest that allows to test quantitatively the theoretical predictions.
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In this chapter, the theoretical predictions for the dependence of the DOS and of the
superconducting order parameter on the depairing energy are first detailed. Then, the

experimental realization is described. At the end, the obtained results are compared with

theory.

Figure 1: Layout of the experiment: A wire of width and thickness smaller than the London length
A, =175 nm can be current biased and exposed to a magnetic field.

10.1 Theoretical predictions for the density of states and order
parameter in the wire

10.1.1 Usadel equations and superfluid velocity

We calculate the DOS in a superconducting wire in presence of a supercurrent or a
magnetic field using the equilibrium Usadel equations. The superconducting order is

parameterized with the complex pairing angle 6(x,&)and phase ¢ (x,€) (see Chapter 9):
—D29+ +—V osH n@+A(x)e™ cosd =0, (D
o 03
O(¥; (x)sin*8) =0; ©

the order parameter equation (see Chapter 9):

A(x) = VFV;ﬂI:% de tanhﬁ Im(sing)e” )
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and the current phase relation (see Chapter 9):
Jjs (x) === detanh—"—Im(sin" 8 ¥; (x)), 4)
$ eDJo 2k, T s

where V; isthe superfluid velocity:
2
Vo (x)= D19 (x) -2 A () ®

The supercurrent and the magnetic field induce respectively a phase gradient (¢ and a
vector potential A (x) that appear in the combination ¥ (x)/ D =0¢(x)-(2e/h)A(x) in
the Usadel equations.

In the following, the set of self-consistent equations ((1)-(5)) are first solved for the simple
situations where there are no magnetic field or supercurrent, and when the superfluid velocity
is uniform in space. Then, the effects of the magnetic field and of the supercurrent in the

experimental situation are described.
10.1.2 Density of states in absence of magnetic field and supercurrent

We focus first on the simple case without magnetic field or supercurrent. In the
absence of magnetic field and supercurrent, 7, =0 and the superconducting wire remains
invariant by translation. No spatial dependence remainsin Eqg. (1), Eq. (2) and Eq. (3), which

simplify to the two following equations:

s+iycosH:iA—C_Ose, (6)
sin@
d £ .
A:VFV;ﬂ"Iowa‘g tanh—ZkTIm(sme), (7

with y=n/t,, the spin-flip rate.
In aluminum, the spin-flip rate is negligible and Eq. (6) leads to:

iA

tanf(e) = -

which isthe BCS result, while Eq. (7) gives the BCS gap equation in the bulk:
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A, =V, TV

hap £
effJ’O de tanh R

1
uT  Je2-1

In the following the spin-flip rate will be neglected.
10.1.3 Density of states in the case of an uniform superfluid velocity

When V; is uniform in space, Eq. (1) and Eq. (2) also simplify to Eqg. (6) with
y=hl(2D) V{.

Equation (6) has a non-trivial analytical solution for y #0:

_ie \p*tq, 1 | g 33 )
)G S G )

with — p=2y2-e-20%, g=(a*+r*)Ir, r :(a3—2[32+2ﬁ\/T+ﬁ2)“°, and
a=N -y -, f=33 e yA.
Eq. (8) is solved self-consistently with Eq. (7) to calculate the DOS in the wire and the order

parameter when y#0.

The natural energy scale is the gap energy, which is the modulus of the order parameter A,
when y=0. In Figure 2, the DOS #, (&) = Re(cos(@(s))) is plotted versus £/A, for several
values of y/A,. When y increases, the smearing of the peak gets more pronounced and the
gap in the DOS is reduced. Increasing the superfluid velocity weakens the superconductivity
by inducing more depairing in the wire. The previous resolution proves that depairing is
accounted for in Usadel equations by a single quantity, denoted y here, corresponding to an

energy. The energy y iscalled the depairing energy in the following.

In Figure 3, the reduction of the order parameter and the reduction of the spectral gap Q, ( y) ,
i.e. the gap observed in the DOS, are plotted versus the depairing energy. These two quantities
arerelated by:

/2

g (9)
ik

g oy &
Qg(y)—A(y)El XL

From Eq. (9), a superconductor is gapless, which means that the spectral gap is zero, when
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y/A(y)=1. This corresponds to values of depairing energy such as 0.45A, < . Above a
depairing energy of 0.5A,, superconductivity is suppressed: A(y)=0.

60

40

20r y I8 ,=0.0125

y /8,=0.0002

0.99 1.00 1.01 0

F_/A0 a/A0

Figure 2: Theoretical predictions for the DOS in a superconductor versus reduced energy for several values of the
depairing energy y . Left panel: y=0 and 0.0002. Right panel: from right to left: = 0.0125, and 0.05 to 0.5 by
steps of 0.05 in units of A, the order parameter when y=0.

The function A( y) should depend on the superconductor nature since the pairing
potential V. and the Debye pulsation «), are material dependent. However, it was found

numerically that this reduction is similar within 5 parts in thousand for niobium, aluminum,

and lead using the parameters given in Table 1 [4].

Superconductor A, (meV) haw, (meV)
Aluminum 0.18 36.2
Lead 11 8.3
Niobium 14 238

Table 1: Bulk order parameter and Debye energies for different superconductors.

In the following, we focus on the case of the experiment, where a transverse magnetic field is
applied and the wire is current biased. The corresponding vector potential and phase gradient

have then to be determined to cal cul ate the superfluid velocity, which is a priori dependent on
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the position in the wire, the corresponding depairing energy and DOS.

'gapless superconductivity:

—— order parameter A(y)

- - - spectral gap Qg (;/)

Al A

Figure 3: Order parameter A(y) and spectral gap Q, (y) in units of the order parameter A, a B=0 and
I, =0 versus depairing energy. When 0.45A, <y <0.54,, gapless superconductivity occurs. When

y=0.5A,, superconductivity is suppressed.

10.1.4 Depairing induced by a magnetic field

The width and thickness of the wire are smaller than the London length

A, = Jhl (o0, ) =175nm, where o is the conductivity of the wire in its normal state,
U, =4m107 H.m and A, is the gap of the bulk superconductor; it is then predicted that the

magnetic field applied perpendicularly to the wire penetrates uniformly [5] (see Figure 4).

B
N 5 .
A(y)=Byu, Az

SV’<<Z_ |
I .

Figure 4: Sketch of a superconducting wire in amagnetic field B.

A

icl
x

The vector potentia in the wire corresponding to the applied magnetic field in the London
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gauge can be written:
A(y) = Byu, (20)

where u_ isthe unitary vector in the direction of the wire. The induced current density by the
magnetic field is:

W ()=-% " detanh—— Im(sin?
Js(v)= - A, (y)J’0 detanh 2kBTIm(sm 8). (11)

These currents tend to screen the magnetic field. According to the laws of electromagnetism,
these currents give rise to amagnetic field B with: curl (E) = 4, jii, . The maximum value of
J’: de tanh(e/2k,T)Im(sin* @) is A,/ 2, avalue reached when the density of states in the
wire is a pure BCS one Induced currents result then in a negligible correction
factor=1-1/60(w/A,) = 0.99 for the magnetic field in the middle of the wire, justifying the

assumption of uniform penetration of B in the wire.

The variations of the pairing angle along the transverse direction to the wire were numerically
calculated using equilibrium Usadel equations and the boundary conditions 08=0. The
densities of states in the middle and on the side of the wire for a magnetic field of 30 mT are
plotted in Figure 5 for two sSituations: w=¢, (experimental situation) and w=2¢&,. It is
found that, despite the transverse variation of 4, @ ishomogeneous for w= &, : the “rigidity
length” of the order parameter, given by ¢, = \/M is such that only an average effect of
A is seen. In contrast, for w=2 ¢, variations of & occur in the transverse y-direction,
following the variation of A . For the experimental situation, we can thus use one-dimensional
Usadel equations. The effect of the magnetic field is included in Eq. (6) by averaging 4> over

the width of the wire: <A2>y = B*w? /12. The resulting depairing energy is then:

y(B) = 6—€leszw2 . (12)

The superfluid velocity V; is constant, and the equations to calculate the DOS in presence of a

magnetic field are the Egs. (6) and (7) like in Section 10.1.3.

173



1.5

B=30 mT

15}

B=30 mT

1or in the middle

----- on the side )

in the middle |

05 AT on the side

0.5

0.0
0.0

0.0
0.5

0.5 1.0 1.5

eln

1.0 1.5

elA

Figure 5: Density of states at two transverse positions in a wire of width w. The length &, =./aD/A, is the
coherence length in the superconducting wire. The dotted line represents the DOS in the middle of the wire, the
dashed line the DOS on the side of the wire. The experimental situation corresponds to w =¢,, where the
differences between the two DOS are small.

10.1.5 Depairing induced by a supercurrent

The large reservoirs at the end of the wire are bulk superconductors with a real phase
independent of energy. The difference in their phases is determined by the bias current. As a
consequence, the phase gradient in the wire is also energy independent, so that the current

density can be written as:

——D detanh——| e 13
¢J’ gtan kTm(sm ) (13)
leading to:
eR 1
Op=——3
ek
with:

U, :J’:detanthLTIm(sinZH).

B

Since U¢ is constant, the superfluid velocity V; is uniform in space. The calculation of the

DOS in presence of the supercurrent is then carried out using Egs. (6) and (7) like in Section
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10.1.3.

The depairing energy due to the supercurrent is equal to:

aprerdD 1, O
y(l)=— 2 : (14)

()= JrHE.(E
A complication in the determination of the depairing energy arises from its self-consistent
definition through Eq. (6), (7) and (13): the supercurrent density depends, on one hand on the
depairing energy, and on the other hand on the density of states in the wire, which itself
depends on the depairing energy. An approximate expression for the resulting U (y)/4,,

validat k,7 <<A, for y/A, < 0.3 was found numerically (see Figure 6):

U, (y)1D, =1 2-18yIA,-1.0(y/4,)". (15)

Figure 6: Symbols: Numerical calculation of the pair eneray U. inunitsof A, versusthe depairing energy. Solid
lines: Approximate expression Uy (y)/4, = 1/ 2-1.8 y/ A, -1.0(y/4,)" .

A by-product of the Usadel equationsis a calculation of the critical current. According to Egs.
(11) and (13), the supercurrent density in the wire can be written as a product of a density of
charge in the superconducting state p, = eV, U, and of the superfluid velocity V; . The density
of charge in the superconducting state decreases with the depairing energy whereas the

superfluid velocity increases. In zero magnetic field, the supercurrent versus the depairing
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energy reaches a maximum corresponding to the critical current at y/A, =0.238, leading to
1.=0.75A,/(eR(&,)) (see Figure 7.) Note that when the critical current is reached in such a

wire, the density of states still presents agap since y/A, <0.45.

F O

pf(ev A)

V. /[DE,

0

1.0t

| eRE)/A

00 0.2 0.4
v/ AO

Figure 7: The normalized supercurrent (bottom panel) through awire is proportional to a density of charge in the
superconducting state p, (upper panel) times the superfluid velocity 7, (middle panel). The supercurrent versus
the depairing energy reaches a maximum corresponding to the critical current at y/A, =0.238, leading to
1. =0.754,/(eR(&,)) -

This result has been obtained for a one-dimensiona wire where U, and therefore the current
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density is homogeneous over the width of the wire. Such a ssimplification results from the
negligible effect of the magnetic field created by the supercurrent in the experimental situation
w<A, . This can be checked by calculating the vector potential created by the homogeneous

current /, . Assuming acylindrical wire, the potential vector in thewiredueto /; is:

4.(r)= ﬁlfvii r, (16)

r being the distance from the center of the wire. The depairing energy due to this field is then

on average:

, _ DI
" A0

17

whereas the direct depairing energy due to the supercurrent is equal to:

_mper0 I,

0
ydir_7BmeE' (18)

The ratio of the depairing energy due to the induced field and due to the supercurrent is
=(5/4,)°/90=3.10° (we have used the fact that U; =A,). The effect of the induced
magnetic field is thus negligible compared to the effect of the supercurrent for a wire of

smaller width than A, .

For wider wires, the density of current is non-homogeneous and the superconducting velocity
can be locally larger than the critical velocity [6]. The problem becomes non-local and non-
linear. In this case, the critical current is equal to the current that results in the critical field on

the side of the wire.
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10.2 Experimental realization

10.2.1 Characteristics of the sample

Figure 8: SEM micrograph of the sample viewed at an angle of 40°. The 120 nm-wide, 10 pm-long
superconducting wire is connected to large superconducting thick pads. Two normal probes form tunnel
junctions with the wire in order to measure the density of states in the superconducting wire.

A SEM micrograph of the measured sample is shown in Figure 8. The density of states in the
wire was probed by two tunnel junctions. In chapter 2, we have shown that the differential
conductance d/ /dV(V) of a Normal-Superconducting tunnel junction is a 7 =0 directly
proportional to the DOS in the superconducting wire neglecting charging effects. In the

following, the contribution of charging and finite temperature effects are eval uated.

10.2.2 Contribution of the Coulomb blockade

In our experiment, it was found out that charging effects had a measurable effect. This
is seen in Figure 9, which shows the differential conductance of the tunnel junction when
superconductivity is suppressed by an applied magnetic field B =0.1 mT . The conductance at
zero voltageisreduced by =8%.
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Since this correction is small, a perturbative calculation in the impedance of the environment
of the tunnel junction is sufficient (see Appendix of Chapter 2 and [7]). This impedance is
modeled by the parallel combination of a resistance R, with a capacitance C,,. In the
perturbative theory, the probability to transfer a part £ of the available energy in the tunnel
event to the environment P (&,7) does not depend on the temperature: P(&,7) = P(&,0), and

isequal at low energy to:

1

4
E for O<e<<g,, (29

e

P(s)zgm

0

T

0

where @ =2R,, /R, and &, =¢°/(mC,, ). The parameters @ and &, are deduced from the
differential conductance when a magnetic field larger than the critical field of the
superconductor is applied. The DOS in the wire is then constant and the differentia

conductance is given by:

a

dd for el <<g,. (20)

&

dl(V)_ 1

avy R,

In Figure 9, a fit of the differential conductance of the tunnel junction by the perturbative
theory of Coulomb blockade is presented. The fit parameters for the environment are

R,=250Q and C,, =8fF.

1.00

0.95

GIG,

0.90

1E-3 0.01 0.1

Figure 9: Differential conductance of the tunnel junction between the side probe electrode and the wire in its
normal state, normalized to the conductance G, at large voltage. Due to Coulomb blockade, the conductance
presents a dip at low voltage. The line is a fit using Coulomb blockade theory (Egs. (19) and (20)) with an
electromagnetic environment that consists of the parallel combination of R, =250 Q and C,, = 8fF.
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Using this expression of P(&,T), the differential conductance reads (see Chapter 2):

dl

av

_ 1+ oo _ EBfN _ % C
()=, g, de n(Ee)pler) El (e —£)+ Lefer +E) )

where n, isthe density of states in the superconducting wire and f,, the quasiparticles energy
distribution according to a Fermi function.

In Figure 10, the corrections due to Coulomb blockade are exemplified by a fit of data with
and without taking into account Coulomb blockade. The peak valuein di/dV isjust reduced

by afew percent when Coulomb blockade isincluded.

Figure 10: Symbol: Measured differential conductance of the tunnel junction between the normal dightly
resistive probe electrode and the superconducting wire exposed to a magnetic field of 23 mT . Dashed line: fit of
the data without taking into account charging effect of the junctions. Solid line: Fit of the data taking into
account Coulomb blockade of tunneling with an electromagnetic environment that consists of the parallel
combination of R, =250 Q and C,, =8fF.

The finite temperature of the normal probe is now to be taken into account in £, .

10.2.3 Finite temperature effects

In the experiment, the temperature of the probe electrodes is slightly dependent on 7

due to their geometry. Indeed, Joule heating is a concern at low temperature. Any current
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results in production of heat (thermic energy), which can be transferred directly to the
phonons in the wire or to electrons in the large pads. At sub-Kelvin temperatures, the first
process is very inefficient because the phonon emission rate goes like 5k, (k,7,)  with
K,, =10 ns'meV*[8]. Moreover, in our experiment, the normal probe electrode is thermally
isolated from the larger contact pad by superconducting connections due to the fabrication
process, limiting the efficiency of the second process. Therefore, heat transport only takes
place through e ectron-phonon coupling in the probe electrode and electron tunneling through
the junction. Since the volume, in which the coupling to phonons can take place is small, this
thermalization mechanism is all the more inefficient: an input power in the fW range can
significantly rise the temperature. At bias voltages larger than the superconducting gap,
heating of the normal part by the tunnel current has a sizeable effect on electron temperature.
In contrast, at bias voltages slightly smaller than the gap voltage, only quasiparticles with a
large energy can tunnel from the normal part (see Figure 11), resulting in an effective cooling
of the normal part. The electronic temperature 7' is found by solving the heat equation [9]
(see Equation (22)) taking into account the heat transfer to the phonon bath at temperature 7'

ph

and the heat transfer through the junction:

5Q(7°-75) + [dE——n, (E+eV)(1- £, (E,T))-P, =0, (22)
w)t 7R

with % the electron-phonon coupling constant, Q the volume of the isolated normal probe

7, occupied states

Figure 11: Principle of electron cooling effect in anormal superconducting tunnel junction. When the junction is
biased just below the gap of the superconducting part, only hot quasiparticles from the normal part can tunnel,
resulting in an effective cooling of the normal part.
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and where P, accounts for additional uncontrolled heat flow, which can be attributed to
spurious electromagnetic noise. The electron-phonon coupling constant depends on the metal
and isrelated to «,, by £ =24 (5)v,k,k; with { (5)=1.04. In copper, £=2 nW pm*K".

In the experiment, the differential conductance of the probe tunnél junction at B=0 and
I, =0 wasfitusing Q and P as fit parameters in Eq. (22) and including Eq. (21) with a
BCS DOS for n,, a Fermi function at an effective temperature dependent on V for f . The
volume of the normal part is also a fit parameter because of the poorly defined geometry of
the electrode. Coulomb blockade of tunneling was taken into account with the parameters
determined above. The phonons were assumed to be thermalized at the refrigerator
temperature 7, =25 mK . In Figure 12, the differential conductance calculated using the fit

parameters Q =0.08 um® and P, =185aW is compared to the data. The corresponding

Normal probe

g FermiatT . (V)
—————— Fermi at T=30 mK

0.18 0.20 0.22 0.24
V(mV)

Figure 12: Bottom panel: Symbols: Measured differential conductance of the tunnel junction between the normal,
thermally isolated, probe and the superconducting wire. Solid line is a fit using a BCS density in the
superconducting part and assuming an energy distribution according to a Fermi function at 7, (V) plotted in the
top panel. Dashed line isthe calculated di/dV using a BCS density in the superconducting part and assuming
an energy distribution according to a Fermi function at 7 =30 mK (corresponding to the dashed line in the top
panel).
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electronic temperature dependence on the bias voltage V' is adso plotted. The order of
magnitude of Q isin agreement with the geometry. The value of P, leads, for bias voltages

smaller than the gap, to an effective temperature of 65 mK.

10.3 Measurement of the density of states in a superconductor
carrying a supercurrent or exposed to a magnetic field

10.3.1 DOS in the superconducting wire: experiment versus theory

The results of our paper published in Phys. Rev. Lett. 90, 127001 (2003) are
reproduced here. In Figure 13, the solid lines are fits taking into account Coulomb blockade of

tunneling and temperature corrections.

R dl/dV

eV/A0

Figure 13: Normalized differential conductance of the probe tunnel junction: Left: at B =0, asafunction of the
supercurrent /. Right: at 7, =0, asafunction of the magnetic field B . The solid lines are the best fits of the
data.

As predicted by theory, the gapless regime obtained for 0.45A,<y<0.54, cannot be
reached with a supercurrent, because the wire switches to the resistive branch for a depairing

energy equal to 0.24 A,. The critical current was estimated to be /. =106 uA . The values of
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the fit parameters ) are given in Figure 14. By fitting y(/;,B)/A, with the equation,
deduced from Usadel equations:

y _ 0 A, I ﬁ g ﬁ

8, B, 001, E B B @
and Eq. (15) , we find 7, =240pA and B, =105 mT . The theoretica values assuming that
the “electrical dimensions” of the wire are the geometrical ones are
1= V20 & (LI R)=310pA and B, = /6(&ew)” =105 mT . The depairing induced by
the current is then larger than the predicted one. Knowing that 7, [ & and B, O (wfo)_l, the
experimental values of /, and B, can be used to extract effective values &, =162 nm
(instead of 125 nm) and w, =93 nm (instead of 120 nm). This corresponds in turn to an
increased value of the diffusive coefficient D =81 cm?s* and, through the expression of the
resistance, to an effective thickness 7, =31nm(instead of 40 nm). Reduced effective
dimensions could be partly attributed to the surface oxidation of aluminum, which was
exposed to air before measurement, and to surface roughness. Yet, the typical thickness of the
oxide layer is about 2 nm and surface roughness is usually estimated at about 3 nm. It can be
argued that it is not enough to account for the reduced dimensions. Another explanation might
be that the diffusion coefficient D is misestimated from the DC conductivity through the

Einstein relation o =v,e’D .

0.4

v/ 4,

0.2

-y
0.00 b—==" : : 0.0
0

40 80 0 3‘0 66
I, (HA) B (mT)

Figure 14: Depairing energy y (inunitsof thegap A, at B=0 and I, =0) for different currents and magnetic
fields, deduced from the fits of the di/dV . Solid lines are fits with theory leading to depairing current and
magnetic field /, =240pA and B, =105mT . Dashed lines: Theoretical predictions with the depairing current
and magnetic field 7, =310pA and B, =105mT calculated from the electrical and geometrical characteristics
of the wire.
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10.3.2 DOS at two different positions in the wire

In the paper, only the results obtained for the side junction are presented. The
reduction of the gap and the smearing of the peaks when the magnetic field or the supercurrent
increase are also observed at the position of the middle junction. Y et, the DOS in the wire at
the two positions for a fixed supercurrent or a fixed magnetic field were different (see Figure
15). When comparing the DOS at the side position to the middle position, a given magnetic
field induces more depairing, whereas a given supercurrent induces less depairing. This
difference is attributed to a difference in the wire width w at the two junction positions. The
depairing energy scales as w” in the case of a magnetic field and as 1/w? in the case of a
supercurrent. The difference estimated from the depairing energy gives w, /w, =1.2, where
w, and w, are the width of the wire at the side and middle positions, respectively. This ratio

isin good agreement with the estimated one from SEM observation.

8r 1.=86 LA
10+
24t 2 £
3 5 5 8:
S o o
" § o mitdejuncion g1 | sdejunction
OM ] o om © mlddle]uncnon_
0.0 0j2 0.0 0j2
V(mV) V(mV)

Figure 15: Comparison of differential conductances of the two probe tunnel junctionsat B =69mT and /, =0
(left panel) and B=0 and 7, =86pA (right panel). At the position of the side junction, the magnetic field
induces more depairing whereas supercurrent induces less depairing than at the middle junction. This difference
is explained by the different widths of the wire at the two junctions. At the position of the side junction, the wire
iswider.
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10.4 Conclusion

The effect on the superconducting order of a supercurrent /; and of a magnetic field
B has been probed by tunneling spectroscopy. As predicted by the theory of mesoscopic
superconductivity in diffusive conductors, the overall effect solely depends on a single
parameter, the depairing energy. For our narrow wire, the Usadel equations lead to a simple
expression for this depairing energy as a function of /, and B, which compares with the
experimental determination of the depairing energy. Yet, the experimental values of the
characteristics depairing current /, and magnetic field B, correspond to effective dimensions
of the wire smaller than the geometrica dimensions measured on a SEM micrograph. This
discrepancy, also observed on another sample, is partly attributed to surface roughness and

surface oxidation but is not totally understood.
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Appendix: Article reproducing results on the depairing in a
superconductor

We reproduce here the article published in Phys. Rev. Lett. 90, 127001 (2003).
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Density of States in a Superconductor Carrying a Supercurrent

A. Anthore, H. Pothier, and D. Esteve
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We have measured the tunneling density of states (DOS) in a superconductor carrying a supercurrent
or exposed to an external magnetic field. The pair correlations are weakened by the supercurrent,
leading to a modification of the DOS and to a reduction of the gap. As predicted by the theory of
superconductivity in diffusive metals, we find that this effect is similar to that of an external magnetic

field.

DOI: 10.1103/PhysRevLett.90.127001

How is the superconducting order modified by a super-
current? The superconducting order is based on pairing
electronic states which transform into one another by
time reversal. The ground-state wave function corre-
sponds to a coherent superposition of doubly empty and
doubly occupied time-reversed states, in an energy range
around the Fermi level given by the BCS gap energy.
When an external magnetic field B = curlA is applied,
time-reversed states are dephased differently, resulting in
a weakening of superconductivity. In the presence of a
supercurrent, the superconducting order no longer corre-
sponds to the pairing of time-reversed states, which re-
sults in a kinetic energy cost, and again in a weakening of
superconductivity. In the early stages of the theory of
superconductivity, it was found that, in diffusive super-
conductors (in which the electron mean-free-path is short
compared to the BCS coherence length) and in homoge-
neous situations, the modification of the superconducting
order by a magnetic field, by a current, and by paramag-
netic impurities can be described by a single parameter,
the depairing energy I' [1]. Later on, the reformulation of
the theory by Usadel [2,3] in the diffusive limit extended
this equivalence to inhomogeneous situations, where the
modulus of the order parameter may vary in space. In
the Usadel equations, all physical quantities involve only
the intrinsic combination V¢ — (2¢/h)A, where the gra-
dient V¢ in the phase of the superconducting order
parameter is associated with the supercurrent, revealing
the equivalence of a supercurrent and of an applied mag-
netic field. The Usadel equations are now at the basis of
the understanding of mesoscopic superconductivity in
diffusive conductors [4,5]. Experimentally, measure-
ments of the density of states (DOS) in a thin super-
conductor placed in an in-plane magnetic field were
well accounted for by the concept of depairing energy
[6]. In contrast, the effect of a supercurrent has been
partly addressed in a single experiment, focused on the
reduction of the superconducting gap close to the critical
temperature [7]. A complication of the experiments with a
supercurrent is that, if the sample width exceeds the
London penetration length A;, the current distribution
given by the nonlocal equations of electrodynamics [8] is

127001-1 0031-9007/03/90(12)/127001(4)$20.00

PACS numbers: 74.78.Na, 74.20.Fg, 74.25.Sv

not homogeneous. In the experiment reported here, the
superconductor is wire shaped, with thickness and width
smaller than A;, so that the current flow is homogeneous
and the magnetic field penetrates completely. Moreover,
the effect of the magnetic field induced by the super-
current is then negligible. This simple geometry allows
one to test the fundamental equivalence between the
effect of a magnetic field and of a supercurrent in a
diffusive superconductor and to compare precisely with
the predictions of the Usadel equations.

Our experiment was performed on a current-biased
superconducting wire made of aluminum, placed in a
perpendicular magnetic field B (see Fig. 1). The density
of states in the wire was inferred from the differential
conductance dI/dV(V) of a tunnel junction formed

di/dV (uS)

FIG. 1. Inset: layout of the experiment: a 10-um-long, 120-
nm-wide, and 40-nm-thick superconducting (aluminum) wire
can be current biased at I or exposed to a magnetic field B. A
normal probe electrode forms a tunnel junction (dashed area)
with the wire. Main panel: measured dI/dV(V) for different
combinations of the bias current and magnetic field: dashed
line: Ig = 0 and B = 0; solid lines: Iy = 70 wA and B = 0, and
I = 0 and B = 23 mT. To a good approximation (see text), the
differential conductance of the junction dI/dV(V) is propor-
tional to the DOS in the superconductor.

© 2003 The American Physical Society 127001-1
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between a small section of the wire and a normal probe
electrode made of copper. Disregarding Coulomb block-
ade and temperature effects (see below), dI/dV(V) is
proportional to the DOS n(eV). The sample was fabri-
cated in an electron-beam evaporator in a single pump-
down, using the three-angle shadow-mask technique
through a PMMA suspended mask patterned using
e-beam lithography [9]. The substrate was thermally
oxidized silicon. The 10-pm-long aluminum wire, with
width w = 120 nm and thickness t = 40 nm was super-
ficially oxidized in order to form a tunnel barrier with the
copper probe electrode overlapping it on an area 150 X
60 nm?. The sample was mounted in a copper box ther-
mally anchored to the mixing chamber of a dilution
refrigerator. Measurements were performed at 25 mK.
From the low-temperature, high-magnetic-field wire re-
sistance in the normal state, R = 77 (), the conductivity
o =27 Q' um™!is inferred assuming that the electri-
cal cross section of the wire is § = wt. The diffusion
coefficient D =49 cm?s™! is then deduced using
Einstein’s relation o = N(0)e?D, where N(0) =
2.15 X 10*7 J-'m™3 is the density of states at the Fermi
level of aluminum and e is the electronic charge. The
superconducting gap A, = 205 peV was deduced from
the differential conductance-voltage characteristic
dl/dV(V) measured at B =0, I =0 (dashed line in
Fig. 1). Using these parameters, we obtain the supercon-
ducting coherence length &, = \/AiD/A, =~ 125 nm and
the London length A; = \/i/(uomoAy) = 175 nm.
Since A; > w/2, the current density is homogeneous
when the wire is current biased, and a magnetic field
penetrates uniformly in the wire. The measured critical
current of the wire at B = 0 was I, = 106 pA.

In Fig. 1, two dI/dV (V) curves are shown, respectively,
measured at I, = 70 pwA, zero field, and at zero current,
B = 23 mT. The reduction of the gap and the smearing of
the peak near the gap energy are similar in the two
situations, bringing already evidence of the equivalent
effect of Iy and B. Note that the magnetic field created
by the supercurrent has a negligible effect: for I, =
70 WA in the wire (see Fig. 1), uol,/Q27@w) ~ 0.15 mT
whereas the resulting DOS is recovered at Iy = 0 with
B = 23 mT. A complete set of data is presented in Fig. 2,
with dI/dV(V) measured for I = 17, 51, and 85 pA at
B =0, and for B = 11.5 to 69 mT by steps of 11.5 mT, at
I = 0. Note that when the wire is current biased, the
superconducting state is metastable. In practice, for bias
currents larger than 85 pwA, the system switches to
the resistive state during the recording of the dI/dV(V)
curve. The measured curve is then similar to that
obtained in the normal state. In order to account quanti-
tatively for the data, we use the Usadel theory [2,3].
In this theory, correlations between electrons of oppo-
site spins and momenta are described by a complex
function 6(7, E), the pairing angle, which depends on
both space and energy, and a local complex phase

127001-2

eV/A0

FIG. 2. Normalized differential conductance dI/dV (V) of the
probe tunnel junction: Top: at B =0, as a function of the
supercurrent /g (from right to left: I¢ = 17, 51, and 85 pA).
Bottom: at Iy = 0, as a function of the magnetic field B (from
11.5 to 69 mT by steps of 11.5 mT). Solid lines are best fits with
dl/dV(V) calculated with an electronic temperature dependent
on V (see text); dashed lines are the best fits with dI/dV(V)
calculated with a constant electronic temperature. Insets: de-
pairing energy I' (in units of the gap Ay at B =0 and Ig = 0)
for different currents and magnetic fields, deduced from the fits
of dI/dV (V). In the top inset, square symbols correspond to the
data in the main panel (B = 0), whereas triangles and disks
were obtained from data taken at B = 10.2 mT and B =
27 mT, respectively. Solid lines: fits with theory, leading to
depairing current and magnetic field It = 240 nA and By =
105 mT.

o(7, E). The local density of states is given by n(7, E) =
N(0)Ref{cos[6(F, E)]}. The pairing angle and the complex
phase obey the Usadel equations:

hD h
— V20 + [iE - —V2 cosH}sinH + Acosd =0, (1)
2 2D
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V(¥,sin26) = 0, )

where we have introduced the superfluid velocity v,
D[Vgo (2e/H)A]. A term describing spin-flip scattermg,
which is found negligible in our experiment, has been
omitted here. The pairing potential A(7) is determined
self-consistently by

A7) = NO)V.; L e dEtanh(%)Im(sin@), 3)

where V. is the pairing interaction strength, wp, is the

Debye pulsation, 8 = (kgT)~!, kg is the Boltzmann con-

stant, and T is the temperature of the superconductor.
The supercurrent density j is given by

j(7) = ifoo dE tanh(% )Im(sinzﬁ)?rs. 4)
eD 0 2

In a situation such as ours where the system consists
entirely of a single superconductor, V ¢ does not depend
on energy, and j can be written as a product of the den-
sity of charge in the superconductm% state pg(F) =
eN(0)Us(F), with Ug(F) = [§ dEtanh('B )Im(sinZ0).

We have first checked numerically that the dependence
of 6 on the directions transverse to the wire could be
neglected because the width and thickness are smaller
than the superconducting coherence length &, which is
the characteristic length scale for the variations of 6. As a
consequence, all the quantities can be replaced by their
values averaged on the transverse directions. In the
London gauge, the effect of the magnetic field is de-
scribed by a vector potential parallel to the wire axis x,
with an amplitude A, = By, sothat (A,) = 0 and \/{A2) =
Bw/(2+/3) [10]. The constant phase gradient d¢/dx is
given by the supercurrent Iy = jS = UgL/(eR)(d¢/dx).
Since 8%¢/dx*> = 0, Eq. (2) reduces to d(sin’6)/dx = 0.
No spatial dependence remains in Eq. (1), and one recov-
ers the generic equation given in Ref. [1]:

cosf

E + iI'cosf = iA —, ®))
sind’

r=l = ?[(M>2+(2;)2<A%>} ©)

is the depairing energy, which contains the effect of both
a phase gradient and a magnetic field. Note that since
I'/Ag = 3(&0d¢@/0x)* + {[£owB/(li/e)]* the relevant pa-
rameters are the phase difference between two points of
the wire distant by &, and the number of flux quanta in an
area w&,. The depairing energy is related to the external
parameters /, and B by the equation

e
A Us(I') Iy Br)’

where we have introduced the characteristic depairing

where
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current and magnetic field It = +2Ao/[eR(&,)], with
R(&)) = R&,/L the resistance of the wire on a length
&0, and Bp = \/6(li/e)/(wé&,). Since the transverse di-
mensions of the wire are smaller than the London length
A, the depairing energy due to the induced field is
negligible (smaller by a factor ~107* [11]) compared
to the one due to the supercurrent. The DOS for a
given depairing energy I' is obtained from the self-
consistent solution of Egs. (3) and (5). For practical
purposes, we give the approximate expressions for the
resulting A(I')/Ay and U,(I")/ Ay, valid, at kzT << A, for
I'/A, = 0.3:

A _ r . (Ty
y =075 L 054<A0>
Ul _ r /Iy
Sy =Ty 10<A0> ®)

The differential conductance measured in the experi-
ments is not exactly proportional to the density of states
n(E) in the superconducting wire. Two effects must be
taken into account in order to calculate dI/dV (V) from
n(E): Coulomb blockade and the temperature of the probe
electrode. Coulomb blockade results from the finite im-
pedance of the electromagnetic environment of the tunnel
junction [4]. The characteristics of the environment are
found from the dI/dV (V) characteristic of the circuit in
the normal state, reached at B > 0.1 T, which presents a
10% logarithmic dip at zero voltage. The environment can
be modeled by a capacitance C = 8 fF in parallel with a
resistance R = 250 (). Coulomb blockade results in a
convolution of the density of states with a function
P(E), the probability for the electromagnetic environ-
ment of the tunnel junction to absorb an energy E [12]:

—(V)—— [ dEn(E)P(eV — E). ©)

Here, P(E) = a/Ey(E/Ey)* " for E smaller than E, =
e?/maC, with a = 2R/(h/e?). The tunnel resistance of
the junction was R, = 140 k(). As a result of this correc-
tion, the peak value of n(E) is reduced by a few percent in
dl/dV(V). Finite temperature in the normal probe results
in a further convolution with the derivative of a Fermi
function. In our experimental setup, this temperature is
slightly voltage dependent, because the probe electrode is
thermally isolated from the larger contact pads by super-
conducting connections. Heat transport occurs only by
electron-phonon coupling and by electron tunneling
through the junction. Since both mechanisms are very
inefficient, even an input power P;, in the fW range can
induce a significant temperature increase. At bias voltages
large compared to the superconducting gap, heating by
the tunneling current has a sizable effect. In contrast, at
bias voltages V slightly below A /e, only quasiparticles at
energies larger than A — eV can tunnel, resulting in
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evaporative cooling [13]. The effective electron tempera-
ture T is obtained by solving the heat equation

ST - T5) — P+

]dE L E+ e —fE)=0.  (10)
e“Rr

The first term describes heat transfer to the phonon bath,
with 2 =2 nWum 3K for Cu [9], Q =0.08 um? is
the volume of the normal region of the probe electrode,
and T}, = 25 mK is the phonon temperature. The second
term accounts for additional uncontrolled heat flow, which
we attribute to spurious electromagnetic noise. The third
term accounts for heat transfer through the junction, with
f(E) the Fermi function at temperature T. From the fit of
the data at B=0 and I, = 0, we find P;, = 185 aW,
corresponding to 7 = 65 mK at ¢V << Aj. The maxi-
mum cooling effect is reached at eV/A, = 0.99, where
T = 30 mK; heating dominates for eV /A, > 1.02, with
T =210 mK at eV/A, = 1.5.

In Fig. 2, we present the best fits of the data by solid
lines, taking into account both Coulomb blockade and
temperature corrections. The values of the fit parameter I'
for each curve are given in the insets. For a comparison,
fits with a constant electron temperature (7 = 60 mK)
are shown by dashed lines. The V-dependent temperature
correction matters only for the sharpest curves. In turn,
by fitting I'(1,, B)/ A, with Egs. (7) and (8), we find It =
240 wA and Br = 105 mT. The theoretical values, as-
suming that the electrical dimensions of the wire are
identical to the geometrical ones, are It = 310 wA and
Br = 105 mT. Conversely, the experimental values of
Ir o« &5V and Br = (w&;)~! can be used to extract effec-
tive values &g = 162 nm (instead of 125 nm) and
Wwerr = 93 nm (instead of 120 nm). This corresponds in
turn to an increased value of the diffusive coefficient:
D = 81 cm?s™! and, through the resistance, to an effec-
tive thickness 7, = 31 nm (instead of 40 nm). Reduced
effective dimensions for electrical transport could be
attributed partly to the surface oxidation of the alumi-
num, which was exposed to air at atmospheric pressure
before measurement, and to surface roughness.

A by-product of the Usadel equations is a straightfor-
ward calculation of the critical current. According to
Eq. 4), Iy < U,(INd¢/dx. Since Uy (") decreases with
I', I, presents a maximum as a function of d¢/dx, which
is the thermodynamic critical current. At B =0 and
kgT < Ay, the maximum occurs at £yd¢/dx = 0.69
and corresponds, in agreement with [14], to [, =
0.75SA)%/N(0)o/k = 0.53Iy = 125 WA (using the ex-
perimental determination of /). The difference with the
measured /. = 106 wA might be due to the uncontrolled
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environment of the wire and to inhomogeneities in the
wire cross section.

In conclusion, we have measured by tunneling spec-
troscopy on a superconducting wire the effect on the
superconducting order of a supercurrent /¢ and of an
external magnetic field B. As predicted by the theory of
superconductivity in diffusive conductors, the overall
effect solely depends on a single parameter, the depairing
energy I'. For our narrow wire, the Usadel equations lead
to a simple expression for this depairing energy as a
function of Iy and B, which compares well with the
experimental determination of I'.
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Chapter 11  Proximity effect in an SNS structure

The modification of the properties of anormal meta electrode close to a contact with a
superconducting one, a phenomenon called proximity effect, has been highlighted by
experiments on mesoscopic devices [1]. Properties of proximity effect structures can be well
understood using the concept of Andreev reflection: an Andreev reflection consists of the
reflection of a quasielectron into a quasihole (or vice versa) at the N side of an NS interface, a
process that transfers a Cooper pair into the superconductor. The pair made of the
quasielectron and reflected quasihole is called Andreev pair. In diffusive systems, the Usadel
equations allow the calculation of electronic properties such as the densities and filling of
states, directly taking into account Andreev reflections. For example, in metallic proximity
structures, equilibrium properties such as the density of states [2] or the conductivity [3] are
well explained. In a diffusive short normal wire connected to superconducting pads, a
supercurrent was measured [4]. A quantitative agreement was found with the predictions
using Usadel equations. In [4], the focus was on the low voltage regime el <¢&, where
& =hD/I? is the Thouless energy, L the length of the normal part and D the diffusion
coefficient. In this regime close to equilibrium, the Andreev pairs remain coherent along the
wire and carry the supercurrent. In the experiment presented in this chapter, the set-up,
described in the first part, is similar: a norma diffusive wire is connected to two
superconducting pads. A supercurrent and signatures of the minigap, which is predicted to
open in the wire density of states when a supercurrent flows, were observed. Comparison of
these observations and theoretical predictions are performed in the second part. We focus in
the third part of this chapter on the large voltage regime where, even if Andreev pairs of large
energy loose their coherence aong the wire, signatures of Andreev reflections are still visible

in the quasiparticles energy distribution function in the normal wire and in the current-voltage
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characteristic.

11.1 Superconducting-Normal-Superconducting structure

11.1.1 Experimental realization

Two samples were fabricated. The SEM Micrographs of these samples are presented in
Figure 1. In the first one, a 5-um-long, 45-nm-thick silver wire extends at both ends into large
contact pads, which are covered by a 300-nm-thick layer of aluminum. The reservoirs are thus
made of an Ag/Al bilayer and have a gap reduced by proximity effect. In order to obtain a
larger superconducting gap, a second sample in which the reservoirs have no underlying silver
layer on an area of 300x500 nm? just at the ends of the wire was made. The scale of
500 nmis typically the distance on which proximity effect extends in aluminum, so that at the
ends of the wire the superconducting layer is expected to have recovered its bulk property.
Transport was probed by measuring current-voltage characteristic. Moreover, in both samples,
two superconducting probe electrodes form tunnel junctions with the wire at x =0.5 (middle

junction) and at x =0.25 (side junction) where x is expressed in reduced units of the wire

(N Silver
Aluminum
Sample 1 Sample 2 BY Silver+Aluminum

Figure 1: SEM micrographs of the samples used to investigate proximity effect. A normal 5-pm-long silver wire
is connected to aluminum superconducting pads. Two superconducting probe electrodes form tunnel junctions
with the wire. The quasiparticle energy distribution function in the wire is inferred from the differential
conductance of the tunnel junctions. Left, the wire is connected to pads made of a bilayer silver-aluminum,
leading to weakened superconductivity. Middle, the region of the pads where the wire is connected is only made
of aluminum. Right: Schematic of the contact between the wire and the superconducting pads for sample 2.
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length L. As shown in Chapter 2, these electrodes allow the tunnel spectroscopy of the
quasiparticle energy distribution function in the wire if the modification of the density of
states in the normal wire can be neglected. The geometrical and electrical characteristics of the

samples are summarized in Table 1.

Sample | w(nm) | t(nm) | L(um) |[R(Q)| D(cm’s’) | & (eV) | A(ueV) | R (kQ) | R (kQ)

1 80 45 5.15 38 140 0.35 115 132 46
2 70 45 5.6 58 116 0.25 130 192 247

Table 1: Geometrical and electrical characteristics of the measured samples: width w, thickness ¢, length L,
resistance R, diffusion coefficient D, Thouless energy &, =#D/I?, gap energy in the superconducting reservoirs

A, tunnel resistance of the side junction R’ , and of the middle one R} .

11.1.2 Model

The model of the system is presented in Figure 2. The diffusive normal wire of length
L =5 pum is connected to two superconductors. The modulus of the parameter order in the
superconductors is noted A. In the calculation, the wire is considered as one-dimensional
since its width (80nm) and thickness (45nm) are smaller than the coherence length
¢ = JRD/ A =300nm . The contacts between the superconducting pads and the normal wire
are assumed to be perfectly transparent. The theoretical predictions are made for the

experimental conditions of sample 1 at temperature 7' =14mK :

A 330,
&r

kT 3.5.
&r

In the equilibrium regime, detailed calculations were performed by P. Charlat [5,6] and
Dubos [4,7] using the Usadel equations derived from the theory of non-equilibrium

superconductivity (see Chapter 9).
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Figure 2: Layout of the experiment. The normal wire is connected to two superconductors. When the normal wire
sustains a supercurrent, it is current biased. Otherwise the wire is voltage biased. The positions in the wire are
given in reduced units x = X / L, with L the wire length.

11.2 Equilibrium regime

11.2.1 Theoretical predictions

We consider first the situation where the system is current-biased, assuming a static
phase difference, i.e. with no voltage across the wire. The phase gradient between the

superconducting reservoirs O¢ and the supercurrent are related by:

Je (x):%J':dgtanhﬁlm(sinze 0¢). (1)

The determination of the phase gradient from the supercurrent depends on the pairing angle
6(x,€) inthewire. Thisleads, likein Chapter 10, to the self-consistent solution of the Usadel
equations.

In order to discuss the density of states in the normal wire, the phase difference y, between
the superconducting reservoirs is taken as a parameter. This phase difference resulting from

the supercurrent does not depend on energy. The equilibrium Usadel equations are then:

2g U U
hD69+ g—hDDwﬁcosH singd=0
2o B¢ 22 Hor B
CAR;

Ox [10x

(2
sn’o ﬁz 0,

with the boundary conditions for the superconducting reservoirs:
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The modification of the pairing angle in the superconducting reservoirs due to proximity

effect is neglected. We recall here the results obtained from these equationsin [8] and [4]:

- A minigap appears in the density of states of the normal wire. The value of this gap does not
depend on the position in the wire but just on the phase difference y, between the two
superconductors (see Figure 3). Its value E, is of the order of the Thouless energy and is

much smaller than the gap in the superconducting reservoirs.

Eg /&,

(W8]

[S]

0

0 2T

I
Xo

Figure 3: Energy gap E, in units of the Thouless energy versus the phase difference y, between the two
superconducting contacts (from [5]). The inset shows the linear dependence of £, near x, =77.

The densities of states at various positions along the wire are presented in Figure 4 for y, =0.
In Figure 5, the average DOS on the sample length for different values of x, is presented
(from [6]).
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0 100 200
Ele
o 1 ele,

Figure 4: Density of states along a normal wire connected to two superconducting pads at the same phase. A
minigap appearsin the DOS. Its value does not depend on position.

- The maximum supercurrent that the wire can sustain was evaluated by Dubos et a [4]. This

critical supercurrent /., is predicted to be:

£
I.=a —/, 3
c ok (3)

where R, isthe wire resistance in its normal state and a anumerical constant dependent on

Aleg, and k,T/ €, . Inthe experimental conditions of samplel, a =5.

0.4

0 '

0.99

Figure 5: From [6]. Square power of the average density of states on the wire length versus reduced energy ¢/ E,
near the gap edge. Curveslabeled 0, 1, 2, 3, 4, 5, 6, and 7 arefor x, =0, 77/ 2, 377/ 4, 777/8, 1577/ 16,

311/ 32, 6377/ 64, and 77. The insert shows the full density of states curves.
198



11.2.2 Supercurrent

The small-scale current-voltage characteristic of sample 1 is presented in Figure 6. A
supercurrent branch is observed. Switching to aresistive state is found at /=39 nA , a value
slightly smaller than the predicted critical current /. =45 nA from Eq. (3). This discrepancy
could be due to thermal fluctuations that induce switching before 7. is reached or to the
presence of vortices in the superconductors. This last hypothesis is reinforced by the
observation of a hysteretic magnetic field dependence of 7, with the maximum 7, =39nA at
B=50G (a B=0, I, =15nA).

I(nA)

—1I.0 OjO le
V(uv)

Figure 6: Current voltage characteristic of sample 1.

In sample 2, no supercurrent was found. The predicted critical current was 11nA.
Anticipating on distribution function measurements, the absence of supercurrent is attributed
to afinite contact resistance between the wire and the superconducting pads: as explained in

Figure 1, the two samples strongly differ in the geometry of this contact.
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11.2.3 Signatures of a minigap in the density of states in presence of a
supercurrent

When the wire sustains a supercurrent, a phase difference appears between the
superconductors, leading to a change in the DOS »n (E) of the normal wire and in a change of
the minigap energy £, . This effect would be best probed with a tunnel junction to a normal
electrode. In the experiment, the probe electrodes were superconducting because the main
goa of the experiment was to probe the quasiparticles energy distribution function in the
normal wire (see 11.3). Yet, signatures of the minigap in the density of states of the normal
wire could be observed in the differential conductance curves dl/dV (V) of the tunnel
junctions. In Figure 7, we present an example of d/dV (V') for the side junction of sample 1

when the wire sustains a supercurrent of 9 nA .

50 T T T

di/dV (uS)
N
(03]

-0.2 ' 0.0 ' 0.2
V (mV)

Figure 7: Differential conductance dI/dV of the side tunnel junction when the normal wire sustains a
supercurrent 7, =9nA . Additional structures appear near the gap of the probe electrode A, =200V .

Singularities are visible near 1 =+0.2mV . At zero temperature, it is known that the
differential conductance of a tunnel junction between two electrodes with gaps A and A
presents a gap at the value A+A" [9] (see Figure 8). Here a second peak appears at A—A
because A" corresponds to the Thouless energy E, , which is the typical energy scale of the
minigap in the wire density of states, and which is of the same order as the electronic

temperature in the normal wire [10]. This situation corresponds to the case 2) of Figure 8. The
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analysis of this singularity alows to gain information on the minigap.

11.2.3.1 What does the superconducting electrode probe in the wire?

In the conditions of these measurements, the quasiparticle energy distribution function
f (E) in the wireis a Fermi function at a temperature close to the fridge temperature and the
density of states n(E) in the wire is unknown. The differential conductance of the probe

junction between the superconducting probe and the normal wireis written:

an(E)

i n(E) £ (8) T g (B-er). @

dr ong (E—el)
dv

VY=1+( dE
()=1+].. OF

This expression is not a simple convolution and the DOS n(E) cannot be easily extracted
from dlI/dv (V). Therefore, we compare directly the predicted dl/dV (V) curves using a

calculated n(E) with the experimental measurements of dI/dv (V).

dI/dv

A+AT k

<Y

k,T <<A <A

2) di/dv

AFAT

<Y

A-A"

A <k, T <A

Figure 8: Differential conductance dI/dV of a tunnel junction between a superconductor of BCS density of
states with agap A and a modified superconductor with an unknown density of states with agap A" . The left
part represents the occupied states (Gray) and the emptied states in both electrodes of the tunnel junction. 1)
When the modified gap is much larger than temperature, A" >>k, T, dI/dV presentsagap at A+A". 2) When
the modified gap is smaller than temperature, A" <k, 7 <A, dI/dV presents a gap at about A+A" and a
characterigtic structure at A-A".
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11.2.3.2 Minigap revealed by the tunnel junctions differential conductance

The results discussed here were obtained on sample 1 (the single one that presents a

supercurrent).

11.2.3.2.1 Temperature dependence

We have investigated the temperature dependence of dl/dV (V') at a fixed value of
the supercurrent (9 nA ). If the modification of the superconducting properties of the bulk
pads with temperature can be neglected, only the filling factor of the states in the normal wire
is modified. Figure 9 presents a comparison between the theoretical and experimental
evolutions of dI/dV with temperature around V' =-0.2mV (data around V' =+0.2mV are
identical). If the overal shape of the curves is correctly described by theory, the peak at
-0.22 mV isfound sharper in the experiment whereas the one near —0.19 mV isfound more
rounded. This discrepancy arises possibly from the wrong evaluation of the density of statesin

the normal wire, which neglects the effect of electron-electron interaction.

Experiment Theory

di/dv (uSs)
di/dv (uSs)

Figure 9: Measured and calculated differential conductance of the side tunnel junction as a function of the
temperature when a supercurrent of 9 nA flows in the wire. Assuming that the superconducting pads are not
modified, only the filling of the states in the normal wire is modified. When the temperature increases, the same
evolution is found qualitatively.
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11.2.3.2.2 Supercurrent dependence

The minigap and the density of states depend theoreticaly on the phase difference
between the two superconductors (see Section 11.2.1), which is determined by the bias current
(Eq. (1)). Experimentally, we observe an evolution of the dI /dV(V) of the tunnel junction
with the supercurrent, as shown in Figure 10 (the data were taken at B =0, where
I, =15nA)). To predict the density of states in the normal wire versus the supercurrent, Eq.
(1) must be solved self-consistently with Eq. (2). Qualitatively, yx, is expected to evolvein a
nearly sinusoidal way [7] from O to 77/2 when I goesfrom O to /.. The minigap energy is
therefore expected to decrease to 0 for increasing values of /. The minigap can be directly
inferred from the d]/dV(V) curves: as exemplified on Figure 8, E_ /e is equd to half the
distance in voltage V, —V,, between the two peaks. At x, =0, (Vpl—sz)/2:2.4 Y4
instead of the theoretica value £, =3.1¢, =1.0 pV. Instead of decreasing with 7, V', =V,
increases (see Figure 10). We assume that this evolution is due to vortices in the pads that

move with the current, as for the critical current dependence on magnetic field.

n
300l L(nA) ] ar
0
~ 200 a
(g_ ~ n n
2 T 7
-~ o
5 2
100 9 -
1+
M
0]3 ! ol L L
-0.20 -0.15 0 5 10 15
V(mV) I (nA)

Figure 10: Left panel: Differential conductance of the side tunnel junction when the wire carries a supercurrent.
A minigap opens in the wire density of states, leading to the peak near the gap edge of the superconducting
electrode. Right panel: Difference between the positions ¥, -V, of the peaks in the differential conductance
versus the supercurrent.

11.2.3.2.3 Position dependence
All the data shown till here correspond to the side junction. For a given phase

difference, theory predicts that the density of statesin the wire varies with position (see Figure
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4) but that the minigap is constant. In the experiment (see Figure 11), the density of statesin
the middle of the wire appears to be much rounded than at x = 0.25, an effect not predicted by

theory. We attribute this discrepancy to the effect of electron-electron interaction in the

normal wire.
Experiment side junction Theor
P middle junction y
IS=0 nA 1;=0 nA

10+ g 10+ g
> >
S ]
- o
n:" 51 i n:" 5L i

ok m\\’__"\'\ (o}
-0.25 -0.20 -0.15 -0.25 . -0.20 . -0.15
V(mV) V(mV)

Figure 11: Left: Normalized differential conductance of the two tunnel junctions when the phase difference y,
between the two superconducting pads is zero. Right: Theoretical predictions using the DOS calculated in
Section 11.2.1.

11.2.3.3 Conclusions on the minigap observation

This set of measurements brings evidence for the existence of a minigap in the density
of states of a normal wire connected to two superconductors. The observed dependence of the
DOS on the supercurrent and on position does not correspond to theory. Part of the
discrepancy can be attributed to vortices in the superconductors. The fact that we neglect
electron-electron interaction in theory is aso probably another reason. More information
would be gained in a dedicated experiment in which the probe electrode would be normal

instead of superconducting.
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11.3 Out-of-equilibrium regime

11.3.1 Quasiparticle energy distribution function in the out-of-equilibrium
regime

In this section, our results published in Phys. Rev. Lett. 86, 1078 (2001) are described

and completed.

11.3.1.1 Theoretical predictions

The quasiparticle energy distribution function in the norma wire can be simply
accounted for by the picture of Andreev reflections. at an NS interface, a quasielectron of
energy £ smaller than the gap of the superconductor cannot enter the superconductor, and is
reflected into a quasihole with energy —¢, while a Cooper pair enters the superconductor (see

Figure 12). The energy reference is the chemical potentia of the superconductor.

0
N t% )E
S, by

2A

Figure 12: Left: A normal wire is connected to a superconductor. Middle: Representation in the energy
(horizontal axis) and position (vertical axis) space of an Andreev reflection responsible for the current transport
at an NS interface. The excitation spectrum of the superconductor has a gap 2A centered on its chemical
electropotential y, , with quasielectrons states occupied at negative energies (dark area) and empty at positive
energies (light gray ared). A quasielectron from the normal part (dark disk) of energy smaller than the
superconducting gap can not enter the superconductor and is reflected in a quasihole (light gray disk).

Due to proximity effect, the density of states in the norma metal is modified near the NS
interface. The distance over which the normal metal is affected depends on energy. In absence
of spin-flip scattering, this distance is predicted to be infinite at energy equal to the
electrochemical potential of the S electrode. In experiments, this distance is limited by all

decoherence phenomena in the normal wire, and is much smaller than the wire length. To a
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first approximation, this modification is neglected and the SNS system can be modeled like in
Figure 13. Electrons with a small energy bounce back and forth between the two
superconducting reservoirs before exiting the wire. Within the diffusive approximation, the
occupation factors of the quasiparticles states vary linearly between 0 and 1 along the paths
between the reservoirs. The path length depends on bias voltage (see Figure 13). This

representation alows to predict the energy distribution function of electrons anywhere in the

wire.
_St 2A - 2A -
0 L :
N
(LD <« 2
L O
s,

X
A
o L | 3/40 .
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0 ! : I
— Mo Ht E
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Figure 13: Left: Layout of the experiment: A voltage U is applied between two superconductors (S) connected
through a norma wire (N) of length L. A superconducting probe, represented by an arrow, forms a tunnel
junction with the central part of the wire. Top center and top right: Representation in the energy (horizontal axis)
and position (vertical axis) space of the quasiparticle paths responsible for the current transport. The excitation
spectrum of the top and bottom superconductors has a gap 2A centered on their electrochemical potentials £,
and y, (U —u, =eU), with quasielectron states occupied at negative energies (dark areas) and empty at
positive energies (light gray areas). Quasiparticle paths consist of quasielectrons (dark disk) and quasiholes (light
gray disk) trajectories at symmetric energies about , and L, , connected by Andreev reflection. The area of the
disk is proportional to the occupation factor of the quasiparticle state, which varies linearly along the path from 1
to 0. The bottom plots are the energy distribution predicted at the center of the wire, at eU > 2A (center) and
A<elU <2A (right).

11.3.1.2 Bias-voltage dependence

The energy distribution functions obtained by deconvolution of the differentia
conductance of the middle junction in sample 1 as a function of U are presented in Figure 6.

The predictions of the simplified model taking into account only Andreev reflections are also
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presented: the energy gap in the superconducting aluminum reservoirs is a fit parameter equal
to 115pueV, which is smaller than the gap of bulk aluminum (200 ueV ), as expected for an
NS bilayer. For the two larger bias voltages the position and the width of the steps are well
accounted for by this theory. Yet, the measured steps are rounded. For the lower voltage, the

predicted steps are washed out by the rounding.

1 mmi sample #1 -

Figure 14: Energy distribution functions in the middle of the wire of sample 1, when the reservoirs are in the
superconducting states and voltage biased at U . Symbols are experimental data; solid lines are the expectation
of asimplified theory taking only into account multiple Andreev reflections.

The rounding of the steps is due to energy exchange between quasiparticles in the normal
wire. The longer the quasiparticles stay in the wire, the more they interact, and the more
rounded is the distribution function [11]. This effect is visible on the curve taken at
U =595uV , where the plateau centered at 0.5 corresponding to quasi particles going through
the wire once has a smaller slope than the ones at 0.25 and 0.75, which correspond to
quasi particles going through the wire twice.

To evaluate the rate of energy exchange in the normal wire, we have applied a magnetic field
that turns the reservoirs normal, but keeps the probe electrode superconducting. Indeed, the
bilayered Al-Ag reservoirs are less robust to magnetic field. It was then possible to measure

the out-of-equilibrium energy distribution function of quasielectrons like in [11] and to
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deduce the rate and energy dependence of energy exchange (see Figure 15). Afterwards, the
deduced rate was included in a calculation of f(E), (see [11] and Chapter 7 for more

details):

2
LY,

ax 2 coll

(f)=0. (5)

Andreev reflections at the NS interfaces enter in the boundary conditions for |E| <A:

f(u+E)=1-f(u-E) (6)
of __ 9,
a(,HE)_ ax(u E). (7

The condition (6) accounts for the equality of the occupancy of quasielectrons and quasiholes
states at symmetric energies about the electrochemical potential u of the superconductor. The

condition (7) is the conservation of the quasiparticle current.

sample #1

f(E)

SKaacaal

Figure 15: Energy distribution function in the middle of the wire of sample 1, when the reservoirs are in the
normal state and voltage biased at U =597 pV .

The datain Figure 14 are well accounted for with a calculation including in 7_, ( f ) electron-
electron interaction and electron-phonon interaction (see Figure 16). The intensity of

interactions were found to be «,, =0.75ns* meV** and k,, =8ns* meV?. The predicted
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electron-electron interaction intensity is %, = 0.12 ns* meV ™ (see Chapter 7).

3/2

2 T T T T T T T T T

sample #1

Figure 16: Energy distribution function in the middle of the wire of sample 1, when the reservoirs are in the
superconducting state and voltage biased at U . Symbols are experimental data; solid lines are the solution of the
Boltzmann equation taking into account multiple Andreev reflections and energy exchange.

11.3.1.3 Position dependence

In sample 1, at the position of the side junction, whatever the bias voltage, the energy
distribution functions display strange features (see Figure 17 for U =0 and U =595uV ). The
reason is that at this position, the density of statesin the normal wire is modified by proximity
effect. The length over which this modification extends depends on the energy relatively to the
electrochemical potential u of the superconducting reservoir. At u, this modification
typically extends in the normal part over L, at the electronic temperature 7, . In our out-of-
equilibrium situation, 7, must be replaced with the width of the energy distribution function
U+2A: At U =595V, for example, 7, =9K and L, =1.5um for 6N-silver (see Chapter
6). As a consequence, like in Section 11.2.3.1, n(E) is modified at the position of the side
junction, which is 1.25 um away from the left superconductor and the deconvolution of the
differential conductance of the tunnel junction does not give f (E) The observation on
Figure 17 that some extra peaks on the deconvolved data are at an energy equal to the

chemical potential 1, of the nearest superconducting reservoir whereas nothing is observed at
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the other chemical potential y, buttresses the previous explanation.

sample #1

0 U=595pv

0.5+

“H(E)"

RIS
k°:
(e}
!

-0.5 0.0 0.5
M My

E(meV)

Figure 17: Symbols: Apparent energy distribution functions " 7 (E)" obtained by deconvolution of dI/dV
measured at x=1/4 for U =0 and U =595uV . Bottom: Solid line is the calculated energy distribution
function at x =1/4 with the fit parameters that account for energy distribution functions in the middle of the wire
(see Figure 16).

In sample 2, the measured distribution functions at two different positions along the wire are
well accounted for by the ssimplified theory (see Figure 18), if one assumes that the positions
of the junctions are x =0.58 (instead of 0.5) and x =0.35 (instead of 0.25). This shift is
attributed to a significant contact resistance at the reservoirs in this sample, equivalent to an
extra length of the wire. The effective positions of the probe junctions correspond to an
effective lengthening of the left side of the wire by about 850nm. The existence of such a
contact resistance was also inferred from the absence of supercurrent, and prevents from a
modification of the density of states by proximity effect at the position of the side junction
like in sample 1. This explains why the strange features of Figure 17 are absent on Figure 18.

The widths of the side steps give slightly different gaps at both ends: 120 pV and 140 pV .
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U=700pv

¥ My, middle junction

f(E)

0.8 0.4 0.0 0.4 0.8
E (meV)

Figure 18: Distribution functions in sample 2 as measured by the middle and side junctions for U =700 uV .
Symbols. Experiment. Solid line: Solution of the Boltzmann equation accounting for the Andreev reflections at
the reservoirs and electron-electron interaction within thewirefor x = X /1L =058 and x =X /L =0.35.

11.3.2 Current-voltage characteristic of the SNS structure

11.3.2.1 Experimental observation

For both samples, even if the current voltage characteristic looks linear at first glance,
asubgap structure is revealed by differential conductance measurements (see Figure 19). Such
a subgap structure, which was aready observed by Hoss et al. [12] is not expected in the
simplified picture of Andreev reflections. In order to describe the modification of the density
of states near the NS interface, we have performed a calculation using the theory of non-

equilibrium superconductivity.

211



1.2

sample 1

30+

11+

difdv (mS)
8
Rdl/dV

26

RN
S
.

7

1.0 M

-OI.4 OTO 0j4 -4 -2 0 2 4
V(mV) eVv /A

Figure 19: Left panel: Measured differential conductance dI/dV of the norma wire in sample 1. The
conductance of the wire shows a step-like behavior as a function of the voltage. Right panel: Differential
conductance, normalized to the conductance at large voltage 1/ R , versus voltage, normalized to the gap voltage
of the superconducting pads A, for sample 1 (black line) and 2 (gray line).

11.3.2.2 Theoretical predictions

To calculate the current voltage characteristic of the SNS structure, we use the
equilibrium and out-of-equilibrium Usadel equations. The current is derived from the

quasi particle energy distribution function in the wire.

11.3.2.2.1 Energy distribution function in the middle of the wire

In the finite voltage regime, proximity effect has two consequences: the modification of the
density of states in the normal wire near the NS interface and the modification of the filling
factors of the quasiparticles states in the normal wire as a whole. In presence of a finite
voltage, the phase difference between the two superconducting pads depends on time. The
theory of non-equilibrium superconductivity does not apply to such a non-stationary case. In
order to circumvent this difficulty, we assume that the wire is long enough so that, in the
middle, the wire is normal and the pairing angle equal to zero. The problem can then be
solved by separating the wire into two systems made of a normal wire connected at one end to
a single superconducting reservoir. A first one between x=0 and x=1/2, with a

superconducting reservoir at x =0, a second one between x=1/2 and x=1, with a
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superconducting reservoir at x =1. The equilibrium and out-of-equilibrium Usadel equations
can then be used (see Chapter 9). Afterwards, both solutions are matched together by
continuity. This model is solved in details in Appendix 1. An example of solutions is shown
in Figure 20. This approach fails to account for the smoothing of the energy distribution
function because el ectron-electron interaction is not included in the calculation. The positions
of the steps are the same as those found with the approach of Andreev reflections. The sharp
features, at energies equal to the electrochemical potentia of the superconducting reservoirs,
in the middle of the plateaus, are signatures of proximity effect. Note that at the position of the
side junction of sample 1, the apparent energy distribution functions on Figure 17 present
sharp feature at energy equal to the electrochemical potential of the nearest superconducting
reservoir but for a different reason, as seen from their shape: by tunneling one obtains a

contribution of the density of states as explained before.

1.0 ---- U=151 pV T
v fe o U=595 pv

Figure 20: Calculated quasielectron energy distribution functions in the middle of a normal wire connected to two
superconducting pads, of gap A=115uV, voltage biased at U =151V and 595uV . The caculations are
based on the Usadel equations. The modification of the pairing angle in the normal wire and in the
superconducting pads near the NS interface due to proximity effect is taken into account and is responsible for
the sharp feature on the steps at energies equal to the electrochemical potential of the superconducting reservoirs.
Therounding of f (E) is absent because electron-€electron interaction is not included in the calculation.
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11.3.2.2.2 Current-voltage characteristic
From the distribution function in the middle of the wire, the current-voltage

characteristic is obtained by integrating out the following equation (see Chapter 9):

Laf ®

X

——J’ dgEFOS 6, f"”’+cosh 20,

with o the conductivity in the normal metal. This formula gives the normal wire resistance
when € =0. Since the current is conserved along the wire, it can be calculated in the middle
where the wire is assumed to be normal, 6,(1/2,£)=6,(1/2,€) =0, so that Eq. (8) simplifies
to:

B B o

——J’ ds

The differential conductance obtained from this calculation is presented in Figure 21. Peaks

appear in the differential conductance at energies equal to submultiple of twicethegap 2A/n.

1.10 T T " T . . . .

1.05

Rdl/dV

0.0 0.5 1.0 1.5 2.0
eV/A

Figure 21: Predicted differential conductance of a normal wire connected to two superconducting reservoirs of
gap A. The length of the normal wire is 9L, =9JaD/A with D the diffusion constant of the normal wire.
Peaks appear in the differential conductance at energies equal to submultiple of twice the gap.

Even if the experimental results show some similarities with this curve, they are much more
rounded. Moreover, the order of magnitude of the predicted effect is smaller than the

experimental one, proving that this model fails to capture the essentia physics.
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11.4 Conclusion

Two theoretical descriptions of proximity effect have been used to compare with
experiments. The first one, based on Usadel equations, neglects the effect of Coulomb
electron-electron interaction, but describes the propagation of pair correlation. We have
adapted it to out-of-equilibrium situations in which two superconductors are biased at
different potentials. The second theoretical framework is based on the Boltzmann equation
and treats Coulomb interaction in details. Proximity effect is introduced as a boundary
condition, which is an oversimplification. All the properties specific to pair correlation cannot
be found from this second formalism: the supercurrent, the DOS, the voltage-dependent
resistance are only expected from Usadel equations. It is however found that the agreement
with this theory based on Usadel equationsis rather poor, suggesting that Coulomb interaction
does play an important role, too. A term that accounts for electron-electron interaction should
be added in the earlier steps of the mesoscopic superconductivity theory in the self-energy
expression (see Chapter 9 and [13]). For the energy distribution functions, the adapted Usadel
equations only predict slight modification of 1 (E) , Whereas the most salient modifications of

f (E) are due to Coulomb interaction. Boltzmann equation gives then the best description.

More experiments are needed in this field: for shorter wires, modifications of f(£) by pair
correlations should become measurable, and interactions should be less important. The
simplest geometry would be a wire with one contact superconducting, the other one normal
(SNN). Both norma and superconducting probe electrodes would allow for independent

measurements of the density of states and energy distribution functions.
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Appendix 1: Calculation with the Usadel equations of the energy
distribution function in the middle of an SNS structure

© A

S S > eun S

>
X

<Y

Figure 22: Left: Layout of the experiment. A normal wire is connected to two large superconducting voltage-
biased electrodes. Right: To perform the calculation of the energy distribution function in the middle of the wire
with Usadel equations, the density of states in the middle of the wire is assumed to be normal so that the wire can
be modeled by two SN systems with different reference energies.

To calculate the energy distribution function in the middle of the normal wire, the
system is modeled by two half systems made of a norma wire connected to only one
superconducting reservoir (see Figure 22). The energies are expressed in units of A, the gap
of the superconductor pads. The pairing angle € and the filling factors 7, and f, are

introduced.

Density of states in a normal wire connected at one end to a superconductor

The modifications of the density of states near the NS interface are taken into account
on both side of the contact. When neglecting the spin-flip scattering, since O¢ =0, the

equilibrium Usadel equations can be simplified to:

2
A
g €+2i$sin9+2%cos«9:0,
X

where A(x) =0 inthe normal part and A(x)=A far from the interface in the superconductor.

The out-of-equilibrium equations in the normal wire can be written:

O{cos’ 601,,} =0
O{cosh? 6,01,,} =0.
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The density of states at the end of the wire is assumed to be normal, so that:

6(12,6)=0.
By symmetry, one aso has:
06
—(1/2,6)=0.
*(u2)

When integrating twice the equilibrium Usadel equation, one obtainsfor x >0:

6(x,€) = darctan E’Fan M ol

L
L.
O C
Far inside the superconducting reservoir, bulk BCS properties are recovered. In practice,

superconductivity is modified on a distance from the contact ~ 42D /A < L, so that we take:
0(-1,€) =6, (€)
%(-1,5) =0.

Ox

When integrating once the equilibrium Usadel equation, one obtainsfor x <0:
Eg—eg —-4iccosf+4sing =4J1-£* .
X

The contact between the superconductor and the norma wire is assumed to be perfectly
transparent, so that by continuity: sin(6(0,&)) =ie +v1-£>.

For the out-of-equilibrium equations, the superconductor is assumed to be a reservoir at zero

temperature so that:
7.,(0,€)=0
£, (0,6)=-1 if £<0
f..(0€)=1 if £>0.
One obtains then:

)= (08 0(e) iy

£ (x.€) =b(5)I: Coshfelf()(,s)’

with a(g) =0 for £ <1.
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Energy distribution function in the middle of the wire

A voltage U is applied between the two superconducting reservoirs. The energy

reference is taken in the middle of the wire (see Figure 22).

Then the distribution function can be written for the left and right part:

L —_ ’ GLX
F(E)= 1, O EweU12) valEveU 1) [ oaprms
x dX

o cosh? 6, (X, ¢)

fx (x,E) =b(E+eU/2)J'

. B _ U, S
1 E) = fu (0. E el 12 ra(E-eU 1) aprmy
¥ aX

o cosh? 6, (X, &)

fr (x’,E):b(E—eU/Z)J'

Writing that the energy distribution function and the spectral current are continuous at

x =1/2, the following equation is obtai ned:

0= F(E)-f(E+eU) +f(E)—f(E—eU)

i,(E+eU12) i,(E-eUl2)

a0 it |[E+eU/2/<A
+Ef(E)+f(E+eU)—2$ign(E+eU/2)

= ' it |[E+eU/2|>A

0 i, (E+eUl2)

) if |[E-eU/2/<A

0 .
+Ef(E)+f(E‘—eU)—25|gn(E—eU/2) it [E—eU 12>,

5 i, (E-eUl2)

with

L2 ax
(Ey=( X
i(E) IO cos’ 6, (X, ¢€)
L2 ax
i (E)= _ .
i (E) Io cosh® 4, (X, )
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Appendix 2: Article reporting results on the energy distribution
functions in an SNS structure

We reproduce here the paper published in Phys. Rev. Lett. 86, 1078 (2001).
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Multiple Andreev Reflections Revealed by the Energy Distribution of Quasiparticles
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We have performed the tunnel spectroscopy of the energy distribution function of quasiparticles in
5-um-long silver wires connected to superconducting reservoirs biased at different potentials. The dis-
tribution function f(E) presents several steps, which are manifestations of multiple Andreev reflections
at the NS interfaces. The rounding of the steps is well explained by electron-electron interactions.

DOI: 10.1103/PhysRevLett.86.1078

The modification of the properties of a normal (i.e., non-
superconducting) metallic electrode when it is connected
to a superconducting one, a phenomenon called “proximity
effect,” has been highlighted by experiments on meso-
scopic devices [1]. In metallic nanostructures, equilibrium
properties, such as the density of states [2], the conduc-
tivity [3], or the supercurrent [4], are now well explained.
The propagation of the correlations between time-reversed
states from a superconductor (S) into a diffusive normal
metal (N) is described by the Usadel equations [5], which
apply to situations where all superconductors are at the
same potential. In this Letter, we address an out-of-
equilibrium situation, in which two superconductors con-
nected through a long (I = 5 um), diffusive normal wire
are biased at different potentials (see Fig. 1). We have
measured the energy distribution function of quasipar-
ticles in the middle of the wire, which is expected to be
strongly modified by the presence of superconductors at
the ends, since quasiparticles can escape the wire only
if their energy exceeds the energy gap A of the super-
conductor. Therefore, in the presence of a finite voltage
across the wire, the quasiparticles in the wire are expected
to be “heated” up to the gap energy [6]. A quantitative
description follows from the concept of multiple Andreev
reflections, which recently has been shown to describe
in great detail the current-voltage characteristics [7], the
noise [8], and the supercurrent [9] in atomic point contacts
between superconductors. An Andreev reflection consists
of the reflection of a quasielectron into a quasihole (or
vice versa) at the N side of an NS interface, a process
which transfers a Cooper pair into the superconductor.
The energies of the two quasiparticles involved are sym-
metrical with regard to the electrochemical potential of the
superconductor. When two superconductors are present,
successive Andreev reflections at both superconductors
lead to a progressive rise of the quasiparticle energies, till
the superconducting gap is exceeded. At zero voltage,
multiple Andreev reflections lead to the formation of
bound states which carry the supercurrent [10]; at finite
voltage, they result in nonlinearities in the current voltage
characteristics [6,7]. Here, we focus on the fingerprint of
multiple Andreev reflections in the shape of the energy
distribution function f(E) of the quasiparticles.

1078 0031-9007/01/86(6)/1078(4)$15.00

PACS numbers: 74.50.+r, 72.10.—d, 73.23.-b

For simplicity, we first make the following assumptions:
(i) electron-electron and electron-phonon interactions are
neglected; (ii) the renormalization of the diffusion con-
stant in the normal wire by proximity effect is neglected;
(iii) the probability of Andreev reflection is taken equal
to 1 for quasiparticle energies within the gap, and to 0
elsewhere. Under assumptions (i) and (ii), the distribution
function varies linearly with the position X along the wire
[11]. Because of Andreev reflection, the occupation factor
for quasielectrons and quasiholes at symmetrical energies
about the electrochemical potential p of the superconduc-
tor is equal at the NS interfaces, as well as their gradients.

St 2A 2A

«—>
eU

FIG. 1. Left: layout of the experiment: a voltage U is applied
between two superconductors (S) connected through a normal
wire (N) of length L. A superconducting probe electrode, rep-
resented by an arrow, forms a tunnel junction with the central
part of the wire. Top center and top right: representation in
the energy (horizontal axis) and position (vertical axis) space of
the quasiparticle paths responsible for the current through the
normal wire. The excitation spectrum of the top and bottom
superconductors has a gap 2A centered on their electrochemi-
cal potentials u, and w, (u;, — up = eU), with quasielectron
states occupied at negative energies (dark areas) and empty (light
gray areas) at positive energies. Quasiparticle paths consist of
quasielectron (dark disks) and quasihole (light gray disks) tra-
jectories at symmetric energies about @, or u;,, connected by
Andreev reflection. The area of the disks is proportional to the
occupation factor of the quasiparticle state, which varies linearly
along the path from 1 to 0. The bottom plots are the energy dis-
tribution functions at the center of the wire, at eU > 2A (center)
and A < eU < 2A (right).

© 2001 The American Physical Society
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One can therefore define quasiparticle paths in the
energy-position space between occupied and empty quasi-
particle states in the superconductors, along which both
the nature of the quasiparticle and its energy change at
each NS interface. The occupancy f of the quasiparticle
state on this diffusive path varies continuously from 1 to
0 along the trajectory, with a gradient given by the inverse
of the length of the trajectory. Hence, f is simply, at a
given point of a trajectory, the remaining fraction of the
path. The distribution function f(E), which is defined
for quasielectrons, is then equal to f at a point where the
quasiparticle on the considered trajectory is a quasielec-
tron, and to 1 — f where it is a quasihole. This allows one
to determine the distribution function as a function of en-
ergy and position in the wire. Two examples are illustrated
in Fig. 1. In the first one, the voltage U = (u, — up)/e
is larger than 2A /e (with u, and u, the electrochemical
potentials of the two superconductors). The leftmost
quasiparticle path in Fig. 1, labeled a, is emitted from
a filled quasielectron state in the top superconductor
at an energy E between u, — A and w, + A, This
quasielectron is then reflected as a quasihole at the bottom
NS interface, at an energy symmetrical about w;. It is
then absorbed in the top superconductor where quasihole
states are unoccupied at the corresponding energy (since
quasielectron states are filled), and the quasiparticle
path has a total length 2L. At the energy of the initial
quasielectron, the position X = L/2 is reached when 3/4
of the total path remains; therefore, f(E) = 3/4. The
second path in Fig. 1, labeled b, has length L: quasi-
electrons from the top superconductor with an energy
between u;, + A and w, — A are absorbed in the bottom
superconductor after one traversal of the wire. Therefore
f(E) =1/2 at X = L/2. The third path, labeled c,
resembles path a, with an inversion of quasiholes and
quasielectrons. One obtains thus f(E) =1 — 3/4 = 1/4
at the middle of the wire. Altogether, the energy dis-
tribution function at X = L/2 presents three steps, at
3/4 (width 2A), 1/2 (width eU — 2A), and 1/4 (width
2A). The right diagram of Fig. 1 deals with the case
A < eU < 2A. The steps of f(E) at 3/4 and 1/4 are
still present, since the paths of length 2L of the former
diagram (not reproduced here) are still relevant for the
energy intervals [u, + A — eU;up — A + eU] and
[w; + A — eU; u; — A + eU]. In addition, a new type
of path appears, labeled d, with length 3L. One obtains
then three extra steps in f(E), at 5/6, 1/2, and 1/6. More
generally, multiple Andreev reflections lead to the appear-
ance of steps in f(E) at energies between w, — A and
M: + A. The number of steps is 2 X int(%) + 3, and the
sum of the widths of two successive steps is eU. In the
limit U — 0, f(E) varies linearly from 1 at E = —A
to 0 at E = A. To conclude, this simple model predicts a
staircase pattern in the energy distribution function, which
directly reveals multiple Andreev reflections.

We report results obtained on two samples, fabricated
by shadow mask evaporation in order to obtain the com-

plete structure schematically described in Fig. 1. The nor-
mal metal 45-nm-thick wires are made of 99.9999% pu-
rity silver, as samples in which phase coherence lengths
beyond 10 um were found [12]. The wire length of
sample No. 1 (sample No. 2) is L = 5.15 um (5.6 pum),
the width w = 80 nm (70 nm), and the normal state resis-
tance, measured at large voltage, R = 38 () (58 )). The
length is chosen short enough for the energy redistribution
among quasiparticles to be small [13], but long enough for
the density of states at the middle of the wire to be almost
energy independent [2]. In sample No. 1, the wire extends
at both ends into large contact pads which are covered by a
300-nm-thick aluminum layer. The reservoirs are therefore
bilayers of Ag and Al and have thus a reduced supercon-
ducting gap. In sample No. 2, the contact pads have no
underlying silver layer on a rectangle of 300 X 500 nm?
just at the ends of the wire, in order to obtain a larger
superconducting gap. A tunnel junction is formed at the
middle of the wire (and, on sample No. 2, also at 1.25 um
from the top electrode), with a 100-nm-wide aluminum
probe electrode. The samples were mounted in a shield-
ing copper box on a sample holder thermally anchored to
the mixing chamber of a dilution refrigerator. All connect-
ing lines to the samples are filtered at 4.2 K and at the
sample temperature. The experiment consists of measur-
ing the differential conductance dI/dV (V) of the probe
junction when a voltage U is applied across the wire. Un-
der the assumptions that the density of states of the normal
wire is constant at the position of the probe junction and
that the temperature of the probe electrode remains negli-
gible compared to the critical temperature of aluminum,
the differential conductance of the junction is simply a con-
volution product of the derivative of the density of states
of the superconductor and of the distribution function in
the wire [11,14]. We deconvolve the data numerically,
after determining the junction resistance and gap energy
at equilibrium (U = 0) where f(E) is expected to be a
Fermi function. In Fig. 2, we present with open sym-
bols the distribution functions measured on sample No. 1
at U = 151 pV, 310 uV, and 595 pV, and in Fig. 3 on
sample No. 2 at U = 700 wV, for both positions. The en-
ergy reference was taken at the potential of the center of the
wire (u; = eU/2, up = —elU/2). As expected from the
simplified description of multiple Andreev reflections pre-
sented above, the distribution function for sample No. 1
presents, at large voltages (310 and 595 wV in Fig. 2),
three steps near %, 1, and J—L (dashed lines). The distance
between the center of the side steps is well given by eU.
Their width gives the value of the gap in the reservoirs:
A = 115 weV, which is as expected smaller than the gap
of aluminum (200 weV). In contrast with the simplified
model, the steps are not flat, and the slope of the side steps
near 3/4 and 1/4 is larger than the slope at 1/2. More-
over, the model predicts five steps in f(E) when U is be-
tween A/e and 2A /e (see Fig. 1), whereas the data taken
at U = 155 pV display only slight inflections of f(E)
around the predicted values. At voltages below 100 w'V,
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FIG. 2. Distribution functions at the middle of the wire of
sample No. 1, when the reservoirs are in the superconducting
state or in the normal state (inset), for different values of the
bias voltage U. Symbols are experimental data, dotted lines are
the expectations of the simplified theory with multiple Andreev
reflections alone as in Fig. 1, and solid lines correspond to the
solution of the Boltzmann equation with the Coulomb inter-
action term.

no structure can be seen in the distribution function, and ir-
regularities appear in the deconvolved data, resulting from
our neglection of the modification of the density of states
in the wire at the scale of the Thouless energy /iD/L?
[15] (data not shown). In sample No. 2, the evolution of
the distribution function with position agrees qualitatively
with the model. However, the exact position of the steps
is slightly shifted from the expected values. We attribute

1 & '
sample #
U=700uV
\ x=0.58
f(E)
0 C n 1 " 1 " 1 1 ) -
-0.8 -0.4 0.0 0.4 0.8
E (meV)
FIG. 3. Distribution functions on sample No. 2, at two

positions (x = X/L = 0.58 and x = 0.35), for U = 700 uV.
Symbols: experiment. Solid lines: solution of the Boltzmann
equation accounting for the Andreev reflections at the reservoirs
and electron-electron interactions within the wire.

1080

this shift to the small size of the top NS contact, which
introduces a significant contact resistance, accounted for
by an extra length of the wire. The relative position of
the probe junctions needed to explain the position of the
steps in f(E) turns out to be X/L = 0.58 (instead of 0.5)
and X/L = 0.35 (instead of 0.25), which corresponds to
an effective lengthening of the top end of the wire by about
850 nm. The widths of the side steps give slightly differ-
ent gaps at both ends: 120 and 140 weV.

In order to account for the rounding of the steps, we
now include in the analysis the effect of energy relaxation
of quasiparticles, due to Coulomb electron-electron [13]
and electron-phonon [16] interactions. These interactions
contribute to the stationary Boltzmann equation which de-
termines the variations of f(E):

*fE
0X?

e-ph

D + I5°(fE) + Iin

(fe)=0

through the interaction collision integrals [11,13]

1) = [ dedE'K(e)
XA fefe—efeferve — fEfE—efEfE+o)
Iien_ph(fE) = fdaKph(s)fEE,

where K,(g) = k. /%2, Kpn(e) = kpne? [17], f£ stands
for f(E), and fr stands for 1 — f(E). In order to
determine the Coulomb interaction parameter k., we have
taken advantage in sample No. 1 of the weaker supercon-
ductivity in the reservoirs than in the probe finger, which
allows one to turn just the reservoirs normal in a moderate
magnetic field (H = 16 mT, applied perpendicular to the
sample plane), while keeping the probe superconduct-
ing. The distribution function with normal reservoirs at
U = 595 wuV is displayed in the inset in Fig. 2, and has,
as expected [11], only one step near 1/2. From the fit
of a set of such curves at different values of U, we have
confirmed the & dependence of K(g) and obtained [13]
ke = 0.75 meV~"/2ns™!.  The coupling constant Kpp
between electrons and phonons was extracted from the
temperature dependence of the phase coherence time
on similarly fabricated silver samples [12]: kpy =
8 meV 3ns~!. When the reservoirs are superconduct-
ing, the same Boltzmann equation also allows one to
compute numerically f(E), with the following boundary
conditions for |[E| < A: (a) f(u + E) =1 — f(u — E)
accounts for the equality of the occupancy of quasielec-
tron and quasihole states at symmetric energies about the
electrochemical potential w of the superconductor and
(b) %(,u +E)= —g—i(u — E) is the conservation of
the quasiparticle current. The results for f(E), using the
value of «, and kp, given above, are plotted with solid
lines in Fig. 2. Note that the inclusion of the phonon term

Iien_ph( f) changes only slightly f(E). The side steps at %
and % are more rounded than the step at % as observed.
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Indeed, they correspond to quasiparticles staying in the
wire 4 times longer on average (path length 2L), which
are thus more likely to interact with other quasiparticles.
The distribution function at U = 151 wV is very rounded
by interactions, as expected for quasiparticle paths with
lengths 2L and 3L. The overall agreement with the mea-
surements indicates that this simple picture of multiple
Andreev reflections [i.e., with assumptions (ii) and (iii)]
together with Coulomb interactions captures the essential
phenomena. In sample No. 2, a good fit of the data is
found with k, = 0.35 meV~/2ns~! at both measuring
positions (see solid curves in Fig. 3).

We now discuss the influence of a more precise descrip-
tion of Andreev reflection, i.e., when relaxing assumptions
(i1) and (iii). This can be achieved using the Usadel equa-
tions [5], assuming that the wire is long enough so that
the superconducting correlations are completely lost in the
middle of the wire [18], and neglecting electron-electron
interactions. Qualitatively, in the example of trajectory a
in Fig. 1, the time spent near the bottom NS interface is
shortened by the renormalization of the diffusion constant
at energies close to the electrochemical potential of the
superconductors [3], which results in a shorter remaining
length when X = L/2 and thus to a value for f(E) smaller
than 3/4. However, in our experiment, where the length
of the wire is 1 order of magnitude larger than the super-
conducting coherence length /D /A, this effect on f(E)
turns out to be negligible.

To conclude, our measurements display clear signa-
tures of multiple Andreev reflections in SNS junctions and
demonstrate the importance for the proximity effect of
electron-electron interactions, a contribution which is not
taken into account in the standard Usadel formalism.
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