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'HFRKHUHQFH�PHFKDQLVPV�LQ�PHVRVFRSLF�FRQGXFWRUV

In mesoscopic electronic systems, quantum coherence is not characterized by a unique

parameter such as a length scale, but depends on the physical property that is concerned, on

the energy range which is probed, and often on other circuit dependent parameters. For

instance, the conductance of a nanostructure in which electrons behave as independent carriers

is affected by quantum interference effects up to a length scale that depends on temperature

and on the applied voltage. In some systems, this length scale can even overcome the circuit

size, as demonstrated by recent interference experiments in a multi-path circuit carved in a 2D

electron gas [1]. Understanding the limitations to quantum coherence in the independent

electron transport regime is presently a fundamental issue, which also has practical

implications since the loss of quantum coherence hinders the development of quantum devices

fully exploiting quantum interference effects. The issue of quantum coherence becomes more

complex in presence of interactions between electrons, because the Fermi liquid can adopt a

many-body quantum state. Other phenomena than those limiting the intrinsic electronic

quantum coherence come then into play. The goal of this thesis work is to probe quantum

coherence in diffusive metallic conductors both in the independent electron regime and in

presence of pairing interactions, which induce superconducting order. The experiments are

based on tunnel spectroscopy, a technique described in the inset.
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Tunnel Spectroscopy of Mesoscopic Systems

Tunneling of electrons between metallic electrodes gives spectroscopic information on

the density and filling of the states in the electrodes [2]. In this thesis, the focus is on metallic

wires, and the generic sample geometry that we have used is shown below:

The metallic wire under investigation is connected to large pads, and it can be current biased

or driven out-of-equilibrium by a voltage. A probe electrode forms a tunnel junction with the

wire. Assuming that the density of states and the filling factors of the probe electrode are

known, the density or filling of the states in the wire at the position of the junction can be

inferred from the differential conductance ( )/G, G9 9  of the tunnel junction.

 The physical quantity that is probed is given below as a function of the nature of the probe

electrode and of the wire (superconducting (S), normal (N), or any (X)).
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 In the following, a short overview of the main results of this thesis is given.

���� (OHFWURQ�HOHFWURQ�LQWHUDFWLRQ�DQG�.RQGR�HIIHFW
In metals, electron energy levels in the conduction band are associated with extended

wave functions. In the normal state, electrons fill these states according to the Pauli exclusion

principle, up to the Fermi energy. Coulomb interaction modifies this simple independent

electron picture of a Fermi liquid, but the electronic excitations are still almost independent

fermionic particles as proven by Landau [3] and are thus called “quasiparticles”. The issue of

quantum coherence of these quasiparticles has been a main concern during the last twenty

years. In the case of thin films, electronic waves are scattered by structural defects and by film

boundaries, and Landau quasiparticles undergo a diffusion-like motion. In this diffusive

regime, a quasiparticle is predicted to remain coherent over a length scale that depends on its

energy and on the energy distribution functions of all the quasiparticles. For a quasiparticle at

the Fermi level, in absence of other limiting mechanisms than Coulomb interaction, this

length scale is predicted to grow indefinitely as temperature tends to zero. Yet a controversy

stands about the explanation of the commonly observed saturation of the coherence length at

low temperature [4]. It was even claimed that this saturation is a universal feature due to “zero

point fluctuations” [5]. This assessment was later ruled out by counterexamples: the saturation

of φτ  is not systematic in samples with similar electrical and geometrical parameters [6]. The

saturation was also attributed to the presence in the samples of magnetic impurities with small

Kondo temperature. Indeed, the scattering rate from magnetic impurities increases when

temperature is lowered, till the Kondo temperature is reached. In contrast, the scattering rate

due to Coulomb interactions decreases. These two scattering mechanisms can thus result in a

plateau in the temperature dependence of the phase coherence time above the Kondo

temperature. If the Kondo temperature is at the edge of the explored temperature range, this

plateau looks like a saturation.

Prior to this thesis work, energy exchange in mesoscopic wires had been measured in the

Quantronics group in order to precisely understand the inelastic scattering mechanisms
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limiting phase coherence. In these experiments, the rates of energy exchange were found

higher than predicted by the theory of Coulomb electron-electron interactions, with

furthermore an unexpected energy dependence, and sample to sample variations [6]. In the

meanwhile, Kaminski and Glazmann [7] proposed that magnetic impurities could also be

responsible for this abnormal energy exchange. Indeed, even if their spin states are degenerate,

scattering from magnetic impurities can mediate energy exchange between electrons at second

and higher orders in the coupling between electrons and magnetic impurities (see Figure 1).

Due to Kondo effect, the coupling constant between electrons and magnetic impurities is

renormalized and reaches a maximum at the Kondo temperature. Kondo-Impurity Mediated

(KIM in the following) interaction between electrons can then dominate Coulomb interaction.

It was calculated that the crossover to a KIM interaction dominated regime takes place at a

very small amount of magnetic impurities, of the order of a part per million (ppm).

 To test if magnetic impurities are responsible for the saturation of the phase coherence length

at low temperature and play a role in energy exchange, we performed two complementary sets

of experiments. First, we measured the phase coherence time in samples in which a known

concentration of magnetic impurities was implanted [8]. Second, in samples displaying

Figure 1: Two-step inelastic scattering process involving two electrons (black disks) and a single magnetic

impurity (double arrow). In each panel, the left ladder represents the electrons energy spectrum. The gray disks

and lines represent the non-involved electrons and states. The isolated state on the right side represents the

energy level of the degenerate spin states of the magnetic impurity. In a first step, an electron of energy ’(
interacts with the magnetic impurity, gaining an energy ε  and making the impurity spin flip. In a second step, an

electron of energy (  interacts with the magnetic impurity, loosing the energy ε  and making the impurity spin

flip back to its initial state. In this second order process, two electrons have exchanged the energy  ε  via a

magnetic impurity.
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anomalous energy exchange, we measured energy exchange between electrons in presence of

a magnetic field [9], which is expected to modify the KIM interaction rate.

������ /LPLWDWLRQ�RI�SKDVH�FRKHUHQFH�E\�VSLQ�IOLS�VFDWWHULQJ�IURP�PDJQHWLF
LPSXULWLHV

In this first experiment, we measured the temperature dependence of φτ  in wires made

of silver, in which manganese impurities at controlled concentrations were implanted. The

Kondo temperature of manganese in silver is 40 mK;�7  [10].

The phase coherence time was deduced from the weak localization corrections to the

magnetoresistance of long wires. The temperature dependence of the electronic phase

coherence time for four different samples is shown in Figure 2. The first one, called Ag6N,

was made from a 99.9999 % purity source. The second one, called Ag5N, was made from a

99.999 % purity source. The third and the fourth ones, called Ag5NcMn0.3 and Ag5NcMn1, were

co-evaporated with Ag5N, then implanted with 0.3 ppm and 1 ppm of Mn. The measurements

down to 40 mK  were performed at Michigan State University by F. Pierre and N. O. Birge. It

was found that the purer the sample, the higher the phase coherence time at low temperature.

The temperature dependence of φτ  is fit with a function taking into account Coulomb

electron-electron interaction, electron-phonon interaction and spin-flip scattering. The

concentration of magnetic impurities was a fit parameter and was found in close agreement

with the nominal purity of sources and the concentrations of implanted Mn atoms.

������ (QHUJ\�H[FKDQJH�PHGLDWHG�E\�PDJQHWLF�LPSXULWLHV

In order to investigate KIM interaction, we measured energy exchange between

electrons in a metallic wire in presence of a magnetic field %  that splits the Zeeman energy

levels of magnetic impurities. If the magnetic field is large enough, the magnetic impurities

are frozen in their ground state and a drastic reduction of the rate of KIM energy exchange is

expected. To access the energy exchange between electrons, we prepare an out-of-equilibrium

situation by placing the wire between two metal contacts biased at different potentials. Since
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energy exchange between electrons tends to establish a local equilibrium, the electron energy

distribution function along the wire is therefore sensitive to interactions if the time an electron

spends in the wire is of the same order as the typical interaction time. To obtain the energy

distribution function at zero magnetic field, we use the non-linearity of the differential

conductance of a superconducting-normal tunnel junction, as in previous experiments in the

group. To access the energy distribution function in presence of a magnetic field, we take

advantage of the Coulomb blockade of tunneling through a tunnel junction in series with a

resistance (the superconducting probe was designed long and narrow so that it presents a

resistance of the order of 1 kΩ  in its normal state) [11]. The differential conductance of such

a junction presents a broad single dip when electron interactions are strong and lead to

electronic thermalization, and a double dip when only little interaction occurs while electrons

travel through the wire (see Figure 3).

0.1 1

1
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cMn0.3
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Figure 2:�Phase coherence time as function of temperature in several silver wires. Sample Ag6N is made of the

purest (6N) source. Samples Ag5N, Ag5NcMn0.3, and Ag5NcMn1 were co-evaporated using a 5N silver source.

Afterward, 0.3 ppm and 1 ppm of manganese was added by ion implantation in samples Ag5NcMn0.3 and

Ag5NcMn1, respectively. Continuous lines are fits of ( )φτ 7  taking into account the contributions of electron-

electron interaction and electron-phonon interaction (dashed line), and spin-flip collisions using the concentration
� � �F  of magnetic impurities as a fit parameter (dotted line is for 1 ppm=� � �F ). Best fits are obtained using

0.13,  0.39and 0.96 ppm=� � �F respectively for samples Ag5N, Ag5NcMn0.3, and Ag5NcMn1.
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We performed measurements on two samples made from the same source of 6N- and 5N-

silver as the samples used to determine the phase coherence time dependence on temperature.

The results are presented in Figure 4. In 6NAg I20 , made from the 6N-silver source, sharp

distributions are found at 0=% , and no magnetic field effect on the differential conductance

is found. In contrast, in 5NAg IV20 , made from the 5N-silver source, rounded distributions are

found at low magnetic field. As %  is increased, the single dip in the differential conductance

splits into two dips at a field value that scales with 8 . Hence extra interactions, present in this

sample at 0=% , are suppressed by the magnetic field, in agreement with the expected

behavior of KIM interaction. The effect of KIM interaction was calculated using a recent

theoretical work that takes into account Kondo effect [12], the concentration of magnetic

impurities � � �F  being a fit parameter. Data of 5NAg IV20  are fit with 17 ppm=� � �F , a value

two orders of magnitude larger than the one deduced from the phase coherence time

measurement on the sample obtained from the same silver source.

Figure 3: Left: Schematic of the circuit: A normal wire is connected to large reservoirs biased at different

potentials. A normal resistive probe electrode forms a tunnel junction with the wire in its middle. Right: At

equilibrium ( 0=8 ), the energy distribution function in the wire is a Fermi function and the differential

conductance ( )/G, G9 9 of the junction displays a dip at zero bias, due to Coulomb blockade of tunneling (left).

When the electrons of the wire are driven out-of-equilibrium by a finite voltage 8  (right), their energy

distribution function ( )I (  depends on the interaction rate between electrons. In the absence of interactions,

( )I (  is a two-step function and ( )/G, G9 9  presents two dips (solid lines). With strong interactions, ( )I (  is

rounded, and ( )/G, G9 9  presents a broad dip (dashed lines).
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Such a comparison between phase coherence time and energy exchange measurements [13]

was also performed on copper wires, in which the phase coherence time is always found to

saturate below 100 mK.  The concentration of magnetic impurities deduced from φτ

measurements was about 0.3 ppm.  Energy exchange measurements on a copper wire showed
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Figure 4:�a) and b) Symbols: Distribution functions ( )I (  at zero magnetic field and 0.15mV=8  in two silver

wires with same electronic diffusion time. The distribution functions were obtained by deconvolution of the

differential conductance ( )/G, G9 9  of a tunnel junction formed between the middle of the wires and probe

electrodes in the superconducting state [6]. c) and d): Top panels: Calculated Coulomb blockade signal

( )/G, G9 9  at the junction ends using the measured ( )I (  at 0=% . Other panels: Symbols: Measured

( )/G, G9 9  at 0.15 mV=8 , with 0.3 T=%  and 1.2 T, the probe electrode being in the resistive state. Solid

lines: Fits with theory based on Kondo effect.
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a magnetic field dependence, and the concentration of magnetic impurities deduced from the

fit was 4.8 ppm . Therefore a large discrepancy between both fit concentrations also appears

for copper, suggesting that the description of scattering from magnetic impurities is

inadequate or that pollution arises during the fabrication process of samples for energy

exchange measurements.

The implantation of magnetic impurities at a known concentration in a very pure sample like

6NAg I20  would be a quantitative test of this theory. Experimentally, the implantation cannot

be performed after fabrication because ion implantation destroys the tunnel junction. Another

fabrication process is being developed in order to circumvent this difficulty.

������ &RQFOXVLRQ

This set of experiments sheds light on low temperature decoherence by showing that a

minute concentration of magnetic impurities can result in an almost constant phase coherence

time on a broad temperature range, and in a sizeable increase of energy exchange. Since the

nominal purity of commercial sources is warranted to one ppm at best, a minute concentration

of magnetic impurities cannot be excluded. Moreover, pollution of the sample at this level can

never be absolutely excluded. Unfortunately, D�SRVWHULRUL analysis measurements on our thin

films are not sensitive enough to detect impurities at the ppm level. It could even be argued

that the phase coherence time measurements are probably the most accurate method to detect

so small concentrations of low- �7  magnetic impurities, particularly in thin metallic films.

���� 0HVRVFRSLF�VXSHUFRQGXFWLYLW\
In presence of attractive interactions between quasiparticles, another quantum

coherence phenomenon, namely superconductivity, sets in at low enough temperature: the

Fermi liquid adopts a many-body quantum state with pair correlations, and an order parameter

characterized by a phase. A fundamental characteristic of the superconducting state is that a
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supercurrent, L�H� a current at zero voltage, can flow. Although the superconducting state is

rather robust against decoherence in the underlying Fermi liquid of quasiparticles, specific

depairing mechanisms tend to weaken and eventually suppress the pairing order. This is the

case when a magnetic field is applied or a current flows through the superconductor, as shown

in the first experiment presented in this part. Conversely, in a proximity effect situation, in

which a superconductor and a normal electrode are placed in contact, the extension of the

induced pairing order in the normal part depends on the coherence length of individual

quasiparticles. In diffusive conductors at equilibrium, both the depairing in a superconductor

and the propagation of pair correlations in a normal metal can be described with the Usadel

equations, derived from the formalism of non-equilibrium superconductivity [14]. This

formalism can also describe out-of-equilibrium proximity effect situations as long as the

superconductors are all at the same potential. In the second experiment presented in this part,

we address a situation beyond this limit: a normal wire connected to two superconductors

biased at different potentials.

������ 'HQVLW\�RI�VWDWHV�LQ�D�VXSHUFRQGXFWRU�FDUU\LQJ�D�VXSHUFXUUHQW

We have carried out an experiment to test the predicted equivalence of the depairing

induced by a magnetic field or by a supercurrent in a superconducting wire [15]. Indeed both

effects enter as a single “depairing energy” in the Usadel equations. To deal with a simple

case, the superconductor was chosen wire-shaped with thickness and width smaller than the

London length, so that the current flow was homogeneous and the magnetic field penetrated

completely. Moreover, the width and thickness were of the same order as the coherence length

/∆ = ∆h/ '  so that pair correlations did not vary in the transverse directions. We measured

the single particle density of states, which is a good marker of pair-correlations, in presence of

a supercurrent, or of a magnetic field. The density of states was inferred from the differential

conductance ( )/G, G9 9  of a tunnel junction formed between the superconducting wire and a

probe electrode made of normal metal. In absence of magnetic field and supercurrent, the

conductance displays a gap 0∆  and a sharp peak in agreement with the predictions of the BCS
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theory. In Figure 5, measured differential conductance curves are presented for different

values of supercurrent and magnetic field. In both cases, good agreement is found with theory

using the concept of depairing energy.

������ 2XW�RI�HTXLOLEULXP�SUR[LPLW\�HIIHFW

We investigated proximity effect in a normal (N) diffusive silver wire connected to

two aluminum superconducting (S) contacts biased at different potentials [16]. The aim of this

experiment was to probe proximity effect in a simple out-of-equilibrium situation.

The equilibrium transport properties in such a set-up have been previously investigated by

Dubos HW� DO�� [17]. The observed supercurrent was quantitatively explained by Usadel

equations. When superconductors are biased at different potentials, their phase difference

depends on time, and this theory cannot be directly used. Yet, in our experiment, it appears

that some out-of-equilibrium properties can be accounted for by a simplified picture of

Figure 5: Open Symbols: Normalized differential conductance of a tunnel junction of resistance �5  between a

normal probe and a superconducting wire when the wire sustains a supercurrent �,  (left panel) or is exposed to a

magnetic field %  (right panel). To a good approximation, the differential conductance is proportional to the

density of states in the superconducting wire. In absence of supercurrent and magnetic field, the density of states

is zero below the gap energy 0∆ . Solid lines: Fits using non-equilibrium superconductivity theory using only the

depairing energy as a fit parameter.



20

proximity effect, which neglects the modifications of the density of states but takes into

account the Andreev reflections at the NS contacts, which are responsible for the conversion

of the quasiparticle current in the normal conductor into a supercurrent. In the normal wire,

the current is exclusively carried by electrons and holes. In the superconductor, the current is

carried by the pairs in the superconducting condensate, and single particle excitations are not

possible below the gap energy ∆ . At an NS interface, an electron in the normal metal with

energy smaller than ∆  is reflected into a hole while a Cooper pair enters the superconductor.

In an SNS configuration, these Andreev reflections manifest themselves directly in the shape

of the energy distribution of electrons in the normal wire. Indeed, as shown in Figure 6, low

energy electrons and holes bounce back and forth between the superconductors, gaining

energy at each traversal until they can enter a superconductor. As a consequence, the energy

distribution function in the wire presents multiple steps.

In the experiments, the out-of-equilibrium distribution functions were obtained by numerical

deconvolution of the differential conductance of a tunnel junction formed between the normal

wire and a superconducting probe [2]. The position of the steps in the measured distribution

functions is well accounted for by the picture of Andreev reflections occurring at the NS

interfaces (see Figure 6). Yet, these steps are rounded, revealing a redistribution of energy

among the electrons. To account for this rounding, electron-electron interaction and electron-

phonon interaction need to be included in the calculation, within the framework of the

stationary Boltzmann equation [6], Andreev reflections at the NS interface entering as

boundary conditions. As shown in Figure 7, this approach leads to a precise description of the

measured distribution functions in wires that are long enough.

Even if this simple approach accounts successfully for the energy distribution functions in the

normal wire, it fails in explaining the current-voltage characteristic of the SNS system, which

presents a structure that was also observed by Hoss HW� DO� [18]. In contrast, the Boltzmann

equation approach predicts a linear current-voltage characteristic. It appears hence that the

modification of the density of states near the NS interfaces due to proximity effect, which

leads to a renormalization of the diffusion coefficient, cannot be neglected to understand the

current-voltage characteristic. It is only because the length scale on which the density of states
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is modified is small compared to the wire length that this effect could be neglected in the

calculation of the distribution functions.

Hence, we find that even if some manifestations of out-of-equilibrium proximity effect can be

understood by DG�KRF adaptations of existing theories, a theory that includes interactions

between electrons and that treats non-stationary cases is missing.

Figure 6: Left: Layout of the experiment: A voltage 8 is applied between two superconductors (S) connected

through a normal wire (N) of length /. A superconducting probe, represented by an arrow, forms a tunnel

junction with the central part of the wire. Right: Top: Representation in the energy (horizontal axis) and position

(vertical axis) space of the quasiparticle paths responsible for the current transport. The excitation spectra of the

top and bottom superconductors have a gap 2∆  centered on their electrochemical potentials µ �  and µ �
( µ µ− =��� H8 ), with electron states occupied at negative energies (dark areas) and empty at positive energies

(light gray areas). Quasiparticle paths consist of electrons (dark disk) and holes (light gray disk) trajectories at

symmetric energies about µ �  and µ � , connected by Andreev reflection. The area of the disk is proportional to

the occupation factor of the quasiparticle state, which varies linearly along the path from 1  to 0 . The bottom plot

shows the energy distribution measured at the center of a 5-µm long silver wire connected to two aluminum

superconducting pads (symbols), and the prediction (solid line) of the theory without interactions between

quasiparticles.
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Figure 7: Symbols: Distribution functions measured at two positions in a 5 µm-long silver wire, connected at

both ends ( 0=[ and 1=[ ) to superconducting electrodes biased at the potential 0 and 700 µV. Solid lines:

Solution of the Boltzmann equation accounting for the Andreev reflections at the reservoirs and electron-electron

interactions within the wire.
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&KDSWHU��� 7XQQHO� VSHFWURVFRS\� RI� PHVRVFRSLF
V\VWHPV

Tunneling of electrons between metallic electrodes provides spectroscopic information

on the densities and filling of the states of the electrodes [1]. Tunnel spectroscopy is thus a

powerful technique to probe mesoscopic effects, and has been used extensively in this thesis.

In the following, the principles of tunnel spectroscopy are described.

���� 7XQQHO�MXQFWLRQV

������ 'HVFULSWLRQ

A tunnel junction consists of two conductors separated by a thin insulating layer (see

Figure 1).

Capacitor Tunneling Tunnel junction

=+

metal metal

Insulating
layer

2 nm

Figure 1: Top: Tunnel junction between metallic electrodes. The thin insulating layer is a barrier that conducting

electrons cannot cross according to classical physics. However, if the insulating layer is thin enough, quantum

tunneling of electrons through the barrier leads to a measurable conductance. Bottom: Model of a tunnel junction:

The junction is decomposed into a tunnel element of resistance �5  in parallel with a capacitance & .
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Although electrons cannot propagate in the insulator, the barrier is thin enough to allow

electron transfer by quantum tunneling, which leads to a measurable conductance. A tunnel

junction is decomposed into the parallel combination of a tunnel element of resistance �5  and

a capacitance ,&  which accounts for the possible charging of the metallic electrodes on both

sides of the insulating layer.

������ &XUUHQW�WKURXJK�DQ�1�;�WXQQHO�MXQFWLRQ

The expression of the current through a tunnel junction with at least one electrode in

the normal state (N), embedded in an electromagnetic environment, involves the distribution

functions (  and ���I I ) and the density of states (DOS) of both electrodes (  and n���Q  in units of

the density of states at the Fermi level ν �  of the considered metal), and the probability

( ),ε3 7  that a part ε  of the available energy is released to the electromagnetic environment

of the junction when a tunnel event occurs [2]:

( ) ( ) ( ) ( ) ( ) ( )( )(
( )( ) ( ) ( ))

1
  ,  1

                                                                   1 ,

� �
	 	

�

��	 	

, 9 G( Q ( G 3 7 I ( Q ( H9 I ( H9H5
I ( Q ( H9 I ( H9

ε ε ε ε

ε ε

+∞ +∞

−∞ −∞
= − − − − −

− − − + − +

∫ ∫
(1)

where H  is the absolute value of the electronic charge (see Figure 2).

µR
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Right
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��� ( )����

Figure 2: Tunneling process through a junction when the junction is voltage biased: µ µ= −���H9 .  The current

through the junction depends on the density of states in the electrodes  and n���Q , the filling of these states

 and  ���I I , and the probability ( ),ε3 7  that the energy ε  is released to the electromagnetic environment.
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When the tunnel junction is formed between a superconducting electrode S and a normal

metal N with negligible resistance, Eq. (1) simplifies considerably:

( ) ( ) ( ) ( )( ) 

 

1 +∞

−∞
= − − Θ −∫ � ��

, 9 G( Q ( H9 I ( ( H9H5 , (2)

with the function ( ) 1Θ =(  if 0<(  and ( ) 0Θ =(  if 0≥( .

���� 3ULQFLSOH�RI�WXQQHO�VSHFWURVFRS\
To perform tunnel spectroscopy, we take advantage of simple configurations with

normal and superconducting electrodes, embedded or not in a resistive environment, for

which the current-voltage characteristic is non-linear. Then, if only one quantity in Eq. (1) is

unknown, spectroscopic information on the density or filling of the states is obtained from the

measurement of the differential conductance /G, G9  of the junction. The different

configurations used in this thesis are presented in Figure 3.

- An NS tunnel junction allows to perform the tunnel spectroscopy of the density of states in

the superconducting part (case 1), or of the energy distribution function in the normal part

(case 2).

- When an NN junction is embedded in a resistive environment, the quasiparticle energy

distribution in one of the normal electrodes can be inferred from the differential

conductance of the tunnel junction. This set-up allows to measure the quasiparticle energy

distribution in presence of a magnetic field.

In set-ups aiming at the measurement of the energy distribution of quasiparticles ( )I ( , the

differential conductance is not directly proportional to ( )I (  but to a convolution of ( )I (
with a known function that depends on the physical process involved. The procedure to infer

( )I (  from the differential conductance is detailed in the following.
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Figure 3: 1), 2) and 3): Top: A tunnel junction is formed between a probe electrode (left) in which the density of

states and the filling factor are well known and an electrode (right) in which either the density of states ( )Q ( , or

the filling factor ( )I (  are to be probed. Bottom: Representation of the electronic states and their filling for both

electrodes. In each case, the unknown quantity in the right electrode, and its relation with the differential

conductance of the junction are given.
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���� 7XQQHO�VSHFWURVFRS\�RI�WKH�TXDVLSDUWLFOH�HQHUJ\�GLVWULEXWLRQ
IXQFWLRQ�LQ�D�QRUPDO�PHWDO

������ 5HODWLRQ� EHWZHHQ� WKH� WXQQHO� MXQFWLRQ� GLIIHUHQWLDO� FRQGXFWDQFH� DQG
WKH�GLVWULEXWLRQ�IXQFWLRQ

When performing the tunnel spectroscopy of the distribution function, the differential

conductance can be written in the generic form:

( ) ( )1�
G,5 9 T I H9G9 = + ∗ , (3)

where ( )T (  is a function dependent on the junction and on the environment characteristics.

�������� &DVH�RI�D�VXSHUFRQGXFWLQJ�QRUPDO�MXQFWLRQ

When the probe electrode is superconducting, ( )T (  is the derivative of the density of

states �Q  in the superconducting electrode. In our experiments, this density of states �Q  is

well described by the BCS function:

( )
2 2

�
(Q (

(
=

− ∆
. (4)

�������� &DVH�RI�D�QRUPDO�QRUPDO�MXQFWLRQ��G\QDPLFDO�&RXORPE�EORFNDGH�RI�WXQQHOLQJ

When both electrodes are normal, L�H� ( ) ( ) 1= =� �Q ( Q ( , but in presence of a

resistive environment for the junction, a convolution product is also found as a result of

Coulomb blockade. The current through the junction can be written from Eq. (1):

( ) ( ) ( ) ( )( )(
( )( ) ( ))

1
  ,  1

                                                                   1 .

ε ε ε

ε

+∞ +∞

−∞ −∞
= − + −

− − + +

∫ ∫ � ��

� �

, 9 G( G 3 7 I ( I ( H9H5
I ( I ( H9

(5)

The differential conductance can be written as (using the normalization ( )
 -

, 1ε ε
+∞

∞
=∫ G 3 7 ):

( ) ( ) ( ) ( ) ( )( )  

 -  -

1
1  ,  

ε ε
ε ε

+∞ +∞

∞ ∞

 ∂ + + − + −
= +  ∂ 

∫ ∫
� �

	



I ( H9 I ( H9G, 9 G 3 7 G( I (G9 5 ( , (6)
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which can be recast in the form (3) with:

( ) ( ) ( ) ( )( ) 

 -
 ,

ε ε
ε ε

+∞

∞

∂ + − −
=

∂∫
� �I ( I (T ( G 3 7 ( .

The determination of ( ),ε3 7  is based on the Coulomb blockade theory (see Appendix). The

function ( )T (  depends then on the impedance of the environment, the capacitance of the

junction and the electronic temperature in the probe electrode. Practically, the quasiparticle

energy distribution function in the normal probe electrode �I  is assumed to be a Fermi

function at a temperature close to the fridge temperature.

������ ([SHULPHQWDO�SURFHGXUH

To characterize the function ( )T (  entering in the expression of the differential

conductance (Eq. (3)), the differential conductance ( )/G, G9 9  is first measured with both

electrodes at equilibrium. The distribution functions are in this situation Fermi functions at a

temperature close to the refrigerator temperature. The characteristics of the probe electrode are

then determined from a fit of ( )/G, G9 9  with Eq. (3). When the probe electrode is

superconducting, the parameters to be determined are the tunnel resistance of the junction �5
and the gap ∆  of the BCS density of states (Eq. (4)). When the probe electrode is normal, the

parameters to be determined are the tunnel resistance of the junction �5 , the resistance �5
and the temperature 7  of the probe electrode, and the capacitance of the junction & .

Examples of fits are shown in the top of Figure 4 for both cases.

After this calibration step, the differential conductance obtained with a modified ( )I (  in the

wire is measured (see Figure 4). When the probe electrode is superconducting, the data are

deconvolved using Eq. (3) to obtain the corresponding ( )I (  [3] (see Chapter 7). The

deconvolution procedure uses a steepest descent method [4]. When the probe electrode is

normal, the deconvolution procedure could not be applied in our experiments. The reason is

that the Coulomb singularity is not as sharp as the BCS singularity so that the signal to noise

ratio is too small to avoid additional numerical noise during the deconvolution procedure. We

have then chosen to fit the measured differential conductance with Eq. (3) using the function



33

( )T (  as determined in the calibration step and a function ( )I (  calculated with a model in

which few fit parameters enter (see Chapter 7).
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Figure 4: Top: a) Symbols: Measured differential conductance of an NS junction. Line: Fit using Eqs. (3) with

48 k= Ω�5 , 0.240 meV∆ = , and a distribution function ( )I (  equal to a Fermi function at 45 mK .

b) Symbols: Differential conductance of a normal-normal tunnel junction, embedded in a resistive environment.

Solid line: Fit using Eq. (6) with the parameters: 185 k= Ω�5 , 0.9fF=& , 2 k= Ω�5  and 40 mK.=7  Bottom:

a) and b) Open symbols: Same curves as in top panel. Full symbols: Example of measured differential

conductance when the quasiparticle energy distribution function is modified in the normal electrode to be probed.
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$SSHQGL[��'\QDPLFDO�&RXORPE�EORFNDGH
A review on dynamical Coulomb blockade can be found in [2]. In this appendix, we

just present the equations used to calculate the function ( )T (  to be convolved with the energy

distribution function in the case of a normal resistive probe electrode (see Section 2.3.1.2).

When a tunnel junction is embedded in an electromagnetic environment, the probability

( ),ε3 7  that a part ε  of the available energy in a tunnel event is released to the environment

is determined by the environment impedance ( )= ω  [2]:

( ) ( )( )

( ) ( )

 

, exp , /
2

1
, 2Re ,

1
�

���

����

GW3 7 - W 7 L W
=G H- W 7 5 H

ω

ω

ε ε
π

ωω
ω

+∞

−∞

−+∞

−∞ −

= +

  −=  
  −

∫

∫ �

h
h

(7)

with 2/ 25.813 k= Ω;	5 K H  the resistance quantum.

In the case of a resistive environment, the circuit can be modeled as shown in Figure 5.

The environmental impedance ( )ω=  consists of the parallel combination of the junction

capacitance &  with the probe resistance 
5 :

( ) ( )/ 1ω ω= +� �= 5 L5 & .

 For this impedance, ( )- W  has an analytical expression from which ( ),ε3 7  can be calculated

[5]:

Figure 5: Electrical circuit representing a tunnel junction in a resistive environment: the junction between the

wire and the probe is decomposed into a tunnel element of resistance �5  in parallel with a capacitance & ,

whereas the probe electrode is represented as a resistance 
5 . The environment impedance ( )= ω  is the parallel

combination of 
5  and & .
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( ) ( ) ( )
( )
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��� �
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H5 W- W H L5 N 7 N 7 Q , (8)

where 2 /ω π= h	 
Q N 7  are the Matsubara frequencies and ( )1/ω =� �5 &  is the cutoff

frequency of ( )ω= . The probability ( ),ε3 7  is represented in Figure 6 in a case similar to the

experiments ( 0.9 fF=& , 2.0 k= Ω
5  and 40 mK=7 ).
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Figure 6: Left: Probability ( )ε3  that a part ε of the energy is released to the electromagnetic environment when

a tunnel event occurs, calculated at 40 mK=7  for a junction with capacitance 0.9fF , embedded in a resistive

environment of 2.0 k= Ω�5 . Right: Log-log plot of ( )3 ε  in the same conditions for 0ε >  (solid line) and of

the asymptotic limit at 07 =  (dashed lines). For low energies, ( ) ( ) 1

0 0/ /3 αε α ε ε ε −≈  and for large energies,

( ) 2 3
0 /3 ε α ε ε=  with 2 /α = ���5 5  and ( )0 /ε = h �5 & . The effect of temperature is to increase ( )3 ε  and to

allow the environment to emit energy, resulting in the non-zero value of ( )3 ε  at negative energies.
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&KDSWHU��� 6DPSOH�SURFHVVLQJ

���� 6DPSOH�IDEULFDWLRQ
In the following, we describe the different steps of sample fabrication. The samples are

made using electron-beam lithography and standard deposition techniques. Most of them are

fabricated in a single pump-down, using deposition at several angles through a suspended

shadow mask.

A typical fabrication scheme is outlined in Figure 1.

Figure 1: Typical fabrication scheme: a) Substrate coated with a bilayer of resists; b) and c) e-beam exposure; d)

suspended mask after development; e) metal deposition through the suspended mask. f) structure after the final

lift-off step.
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������ :DIHU�SUHSDUDWLRQ

�������� 0RQROD\HU�FRDWLQJ

This process is used for the lithography of large numbers of samples at once. An

oxidized silicon wafer is coated with UVIIITM [1], a highly electrosensitive polymer (12

µC/cm2). After having spun a primer at 2000 rpm/min for 1 min, UVIIITM is spun at 2000

rpm/min for 2 min and prebaked at 135 °C on a hot plate for about 1 min; the obtained

thickness is 500 nm.

�������� %LOD\HU�FRDWLQJ

This process is used when a suspended mask over a ballast layer is required. The

process begins with the coating of an oxidized silicon wafer with two layers of

electrosensitive polymers. The ballast layer sustains the second layer, which constitutes the

mask. The bottom layer is a copolymer whose chains are more easily broken by exposure to

the electron beam than those of the top polymer, so that an undercut is obtained. We have

used the following coating procedure:

Bottom layer: Copolymer polymethyl-meta-acrylate/meta-acrylate acid (PMMA/MAA)

diluted in mass at 10�% in ethyl-lactate. The molecular mass of the MAA is 8.5 K. Spun at

4000 rpm/min for about 60 s and baked on a hot plate at 180 °C for 10 min, the thickness is

about 500 nm.

Top layer: PMMA of molecular mass 950 K diluted at 3 % in anisole. Spun at 8000 rpm/min

for about 60 s and baked on a hot plate at 180 °C for 30 min, the obtained thickness is about

100 nm.

The coated wafer is then cut into 26 6 mm×  chips, which are processed individually.



39

������ 6DPSOH�SURFHVVLQJ

�������� :DIHU�SURFHVVLQJ

3.1.2.1.1 Electron beam exposure

The patterning is done by steering the beam of a Philips XL30 SFEG scanning electron

microscope. The exposure pattern, dose and blanking of the beam are controlled by the Elphy-

quantum software from Raith. We currently use a beam acceleration voltage of 25 kV. The

sample holder is shifted between each pattern.

3.1.2.1.2 Development

Monolayers of UVIIITM resist are post-baked on a hot plate at 140°C for 1 min,

developed in MEGAPOSIT® MF CD-26 for 60 s and rinsed in pure water.

�������� 6LQJOH�FKLS�SURFHVVLQJ

3.1.2.2.1 Exposure to electron beam

The patterning of each chip is done with the beam of a JEOL 840A scanning electron

microscope. The exposure pattern, dose and blanking of the beam are controlled by the Proxy-

writer software from Raith. We use a beam acceleration voltage of 35 kV, for which the

standard exposure dose for PMMA is about 200 µC/cm2.

3.1.2.2.2 Development

Bilayers are developed in a solution of MIBK diluted in isopropanol (MIBK: 1 IPA: 3)

while being sonicated for 45 s, then rinsed in IPA. A suspended mask is then obtained.

������ 0HWDO�GHSRVLWLRQ�DQG�R[LGDWLRQ

Metal deposition and tunnel junction fabrication proceed in an electron gun

evaporator. The sample is positioned on a tiltable sample holder. Junctions between different

materials are obtained by deposition through several slits in the suspended mask, as shown in
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Figure 2. The first image of one slit overlaps with a part of the image of another slit. Tunnel

barriers are formed by oxidizing aluminum with an oxygen-argon mixture (20-80 %). After

deposition, the mask and resist are lifted off in acetone at 65 °C. The fine details on UVIIITM

wafers are lifted off in ethanol at room temperature, with a few seconds sonication at the end.

���� ([DPSOH��6DPSOH�XVHG�IRU�HQHUJ\�H[FKDQJH�PHDVXUHPHQWV�LQ
SUHVHQFH�RI�DQ�DSSOLHG�PDJQHWLF�ILHOG

As explained in Chapter 2, information on energy relaxation in a magnetic field was

inferred from the differential conductance of a tunnel junction formed between a wire and a

resistive probe. The wire itself was connected to two much thicker pads, which played the role

of reservoirs. Two different fabrication processes have been developed. In the first one, we

processed chip by chip: the whole design was defined in a single lithography step, followed by

a three-angle evaporation. In the second one, two lithography steps were used: the first one to

form the wire and its reservoirs, the second one to form the probe electrode. This more

complex process allows the implantation of magnetic impurities before junction fabrications,

which avoids the destruction of the barrier by the ion beam.

������ 2QH�VWHS�SURFHVVLQJ

A typical mask used is shown in Figure 3. The zones defining the wire, the reservoirs

and the shifted long probe finger are exposed with the nominal dose. The area around the long

Figure 2: Fabrication of a superconducting/normal tunnel junction in a two-angle deposition process. In our

experiments, the superconductor is aluminum, the insulating layer is aluminum oxide, and the normal metal is

silver, copper or gold.
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probe finger is exposed with a low dose so that an undercut is created below the PMMA

mask. Therefore, the image of the probe at an angle falls on the substrate and below the wire.

The additional low dose exposure in other regions just helps the formation of this undercut.

The probe finger is obtained by depositing 17 nm of aluminum at +55 ° angle, oxidized

afterwards; the wire is obtained by depositing 45 nm of metal (silver, copper, gold or

aluminum) at 0° angle, and the reservoirs are obtained by depositing 430 nm of gold (or

aluminum) at –50 °. Since there is no undercut around the wire, its Al image lies on the side

of the ballast and is removed by the lift-off. The unwanted aluminum projection of the wire,

which would have been connected in parallel with the tested wire, is thus avoided. The gold

images of the fine wires in the third step are avoided because the slits defining the wires clog

before the end of evaporation.

Figure 3: One-step fabrication of a sample for the energy exchange measurement in a magnetic field. Top:

exposure pattern of the center of the chip, with dose encoded in levels of gray. The arrows indicate schematically

the order and angle of deposition of the different metals. Bottom: Actual sample, seen at an angle.
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������ 7ZR�VWHS�SURFHVVLQJ

This process is used to perform experiments with controlled impurity concentrations,

obtained by ion implantation. The previous process cannot be used because the tunnel

junctions are too fragile: in a few hours they evolve from a few kiloohms resistance to an open

circuit. Moreover, the tunnel barriers turn to short-circuit during ion implantation. These

difficulties are circumvented with the two-step process. In a first step, a complete wafer,

coated with UVIIITM, is e-beam exposed, defining 64 patterns (see Figure 4). These patterns

consist of 120 nm-wide wires of different length (5, 10, 20, and 40) connected to two large

pads, together with a third pad used in the second step (see Figure 5) and 895-µm long wires

to allow weak localization measurements. Then, 45 nm and 100 nm of silver are deposited at

angles 0° and 50°, respectively. After lift-off, the wafer is split in two parts so that part of the

wires can be implanted with manganese ions. Afterwards, the wafer is coated with MAA-

PMMA1 to realize the second lithography step. The coated wafer is then cut into small chips,

which are processed individually. In the second step, we pattern the measure probe, realigned

on the first pattern of silver. To obtain good quality junctions, the silver is cleaned by ion

milling before deposition (in 10-4 mb of Ar, 500 V=9 , 5 mA=,  for 5 s). Afterwards 3 nm

of aluminum is deposited at 30° angle and oxidized at 1 torr for 10 min to form the tunnel

junction. Finally, 12 nm of aluminum is deposited at 30° to form the resistive probe in a

magnetic field.

                                                          
1 The bilayer of MAA-PMMA is only baked at 140°C instead of 180°C. We prefer to heat our samples as little as
possible because the silver films deposited in a first step degrade with temperature.

1 cm

Figure 4: Part of the wafer processed to be ion-implanted. In the middle, eight samples are dedicated to weak

localization measurements. The other ones are processed individually in a second lithography step.
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���� ,PSODQWDWLRQ�RI�PDJQHWLF�LPSXULWLHV�LQ�WKLQ�ILOPV
The implantation of manganese in silver wires, for the experiments on electron-

electron interaction, was realized at the CSNSM at Orsay University by O. Kaitasov, S.

Gautrot, and J. Chaumont in the medium energy implantor IRMA [2]. A MnCl2 source is  first

Figure 5��Two-step fabrication of a sample for the energy exchange measurement in a magnetic field. Exposure

pattern of the center of the chip for both steps. The arrows indicate schematically the order and angle of

deposition of the different metals. Right: Optical image of the center of the final chip.
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vaporized in vacuum ( 61.810  mb− ). A plasma is formed by electronic arc discharge to obtain

charged manganese ions 55 +Mn . These ions are first accelerated at 40 keV and separated

electromagnetically from other isotopes and elements obtained from the impurities (mainly

FeCl) in the source. They are once again accelerated at 30 keV, a value calculated to obtain a

Gaussian impurity concentration in the thickness of the silver film. The ion beam is focused

thanks to an electrostatic quadripolar triplet lensing system. The ion beam, of section 21 cm , is

swept on the sample holder so that the dose is homogeneous. During the implantation process,

the current flowing from the sample holder to ground is monitored to control the total amount

of ions received. Secondary electrons are repelled towards the sample by a negative polarized

grid. Typically, the measured current was of 10 nA  on a surface of 256.5 cm . In 195 s, a

1 ppm  concentration of Mn impurities is implanted in 0.045 µm  thick silver films. This

corresponds to 5300 ions in the volume of a 30.045 0.1 20 µm× ×  wire.

5HIHUHQFHV�RI�FKDSWHU��
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&KDSWHU��� 0HDVXUHPHQWV�DW�ORZ�WHPSHUDWXUH

Once processed, the chip is glued with silver paint on a sample holder fitted with

connectors. The circuit pads are bonded to the pins of the connector with 25 µm-diameter

aluminum wires. The sample holder is thermally anchored to the mixing chamber of a dilution

refrigerator through a copper braid (see Figure 1).

Electrical connections to the sample are made through filtered coaxial lines (see Figure 2).

Microfabricated distributed RC filters shaped as meander lines [1] are used as well as lossy

coaxial cables. The voltage drop across the sample is measured in series with the last filter

stage, using a twisted-pair connection and a low-noise, battery-powered room-temperature

pre-amplifier (NF LI-75A). The current in the sample is produced by applying a voltage to a

bias line consisting of a voltage divider in series with a resistance. The current is calculated

from the input voltage, the measured voltage across the sample and the resistance values of

filters and lines. To measure differential conductance curves, a small AC modulation is added

to the DC voltage and a lock-in detection is performed. The bias and output voltages are

recorded on a computer through IEEE connections.

It is possible to measure in a single cool-down several circuits with a single bias line and a

single twisted pair thanks to a 12-position rotary switch connected to the bias and measuring

lines at the output of the last filter. Six resistors of known values, connected in-between, mark

the positions. Positions are switched by a motor thermally anchored to the still of the dilution

refrigerator.
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Figure 1: : Photographs of the insert in the dilution refrigerator and details of the sample holder.
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Figure 2: Schematic of the electrical wiring in the dilution refrigerator for the experiment measuring the

distribution function in a normal wire connected to superconducting pads. Current is injected to the sample by the

source �9  through the biasing line. Voltage across the sample in series with a filter F is measured with an

amplifier at room temperature connected by a shielded twisted pair.
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MAGNETIC IMPURITIES IN METALS
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&KDSWHU��� ,QWURGXFWLRQ�WR�.RQGR�HIIHFW

Kondo effect arises from the interaction between single magnetic atoms and the

electrons of a metal. It results in the renormalization of the coupling between electrons and

magnetic atoms and an enhanced scattering of electrons from magnetic atoms, observed in the

temperature dependence of the resistivity.

It was proposed that Kondo effect explains previous energy exchange and phase coherence

time measurements in metals that were not accounted for by the theory of electron-electron

interaction. In this chapter, we describe the consequences of Kondo effect, in the limit of non-

interacting magnetic impurities, on resistance, phase coherence and energy exchange.

���� .RQGR�HIIHFW�DQG�ORZ�WHPSHUDWXUH�UHVLVWDQFH
The theory of Kondo effect was first developed to account for the temperature

dependence of the resistivity of metals containing magnetic impurities. In such materials, it

was found that the resistivity presents a minimum at finite temperature, with a logarithmic

increase when the temperature is lowered further, instead of decreasing as predicted from

theories of electron-electron and electron-phonon interactions.

The electrical resistance is determined by the amount of back-scattering of electrons from

phonons, defects, or impurities that hinders the electronic motion through the crystal. The

coupling between a magnetic impurity of spin 6  and electrons was described by Kondo with

the Hamiltonian:

( )( )0 ’ ’ ’ ’
, ’

H + + + + + −
↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓= − + +∑ �

� ������� ��� ���

� �

- F F F F 6 F F 6 F F 6 , (1)

where ↑
�F  and +

↑
�F   are respectively the annihilation and creation operators of an electron of
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momentum N  and spin up, ,   and + −�6 6 6  are the magnetic impurity spin operators, and 0-  is

the coupling constant between electrons and magnetic impurities. In 1964, Kondo found out

that when calculating the scattering of electrons by magnetic impurities using perturbation

theory, the second order term is of the same order as the first order term [1]. Afterwards, it

was calculated that the series of perturbations with this Hamiltonian diverges for energies

equal to the Kondo temperature, defined as ( )01/De ν−=
� ����N 7 , with �N  the Boltzmann

constant, D  the energy bandwidth of conduction electrons in the host metal, and ν �  their

density of states at the Fermi level (see appendix). The divergence arises from the non-

commutation of spin operators. For scalar interactions like Coulomb interaction, the

perturbation theory is still valid. For temperature larger than �7 , the resistance is found

proportional to ( )ln / D− 	 
 �
�F N 7 , where � � �F  is the impurity concentration.

In 1974, Wilson solved the Kondo problem within the renormalization theory and ruled out

the zero-temperature divergence of the resistance [2]. Physically, at temperatures much

smaller than the Kondo temperature, the spin of the magnetic impurity is totally screened by

the conduction electrons. For conducting electrons, the screened impurity appears then as a

potential scattering center.

���� .RQGR�HIIHFW�DQG�SKDVH�FRKHUHQFH�WLPH
Scattering from magnetic impurities results in spin-flip for electrons. Within the Suhl-

Nagaoka approximation for the Kondo effect, the temperature-dependent spin-flip scattering

rate is approximated by [3]:

( )
2

2 2

1 ( 1)
,

( 1) ln /

π
τ π ν π

+=
+ +h

� � �
� � � �

F 6 6
6 6 7 7 (2)

with 6  the spin, and 7  the Kondo temperature of the magnetic impurities. This formula was

first derived to determine the spin-flip scattering rate in superconductors [4]. The phase

decoherence rate due to spin-flip scattering can be identified to the spin-flip scattering rate in

a superconductor only for ? �7 7 . Yet, in previous experiments of phase coherence time

measurements using electronic weak localization, it was found that this formula describes
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correctly experimental results down to �7  [4,5].

The relation between the spin-flip scattering rate 1/τ
� �

 and the decoherence rate 1/ φτ
� �

depends on the comparison between the spin-flip scattering time of conduction electrons τ
� �

and the spin relaxation time τ  (Korringa time) of the magnetic impurity [6]. Due to

dynamical effect, the decoherence rate can be enhanced. The decoherence rate due to magnetic

impurity is written:

1 1
=  if 

1 2
=  if .

� � �
� �	� �

� � �
� �	� �

φ

φ

τ τ
τ τ

τ τ
τ τ

>

<
(3)

In practice, τ τ>
� � �

 as long as

ν
≤

 � �

��
F7 N .

In gold, silver, or copper, this criterion reads 40mK [ppm]� � �7 F< × , in which � � �F  is now

given in parts per million atoms (ppm).

���� .RQGR�HIIHFW�DQG�HQHUJ\�H[FKDQJH�EHWZHHQ�HOHFWURQV
In the past, theories of Kondo effect focused on the renormalization of the scattering

rate of electrons from magnetic impurities and, as far as mesoscopic physics is concerned, on

the corresponding spin-flip rate. When considering the scattering of a single electron from a

magnetic impurity (processes presented in the appendix), the electron energy is conserved as

long as the spin states of the impurities are degenerate, L�H� at zero magnetic field. In contrast,

processes involving two electrons only conserve the sum of the energies and energy exchange

is possible even at zero magnetic field  (see Figure 1). This mechanism of energy exchange

between electrons mediated by magnetic impurities has been proposed only recently by

Kaminsky and Glazman [7]. We call this type of interaction Kondo-Impurity-Mediated

interaction (KIM interaction).
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At second order in perturbation, the scattering of two electrons from a given magnetic

impurity is equivalent to an effective electron-electron interaction with a matrix element

( )ε0  proportional to the inverse of the exchanged energy ε . According to the Fermi Golden

Rule, the exchange of energy ε  by the KIM interactions leads to the rate ( ),γ ε(  of change

of the population of an electronic state at energy (  and of occupation number ( )I ( :

( ) ( ) ( )( ), ( ) ( ) 1 ( ) ( ) 1 ( ) ’ ( ’) (1 ( ’ ))γ ε ε ε ε ε= Κ + − − − − − +∫( I ( I ( I ( I ( G( I ( I ( , (4)

with

( ) ( )4
2 2 2

2
( ) ( 1) /

ν
ε ε π κ ε

ν ε −Κ ∝ = + =
� � � �

� � ���

�

F -0 6 6K ,

where -  is the renormalized coupling constant between electrons and magnetic impurities by

Kondo effect. This result obtained by Kaminski and Glazman is in agreement with the

phenomenological result 21/ εΚ ∝  inferred from previous experiments [8,5], which was not

accounted for by theory of electron-electron interaction. The renormalization of the coupling

constant must be performed using processes involving two electrons and a single magnetic

impurity which were neglected in the calculation of the resistance because they enter at second

order. Examples of diagrams to be included in the calculation are shown on Figure 2.

However as pointed out by Kaminski and Glazman, Kondo effect is expected to modify the

coupling constant in a way depending on ε , �7  and ( )I ( . A complication arises in the

Figure 1: Scattering process involving two electrons and a single magnetic impurity, at lowest order. In each

panel, the left ladder represents the energy spectrum of the electrons and the line on the right side represent the

energy level of the degenerate spin-up and spin-down of the magnetic impurity.
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renormalization calculation when the electronic energy distribution function is out-of-

equilibrium and when the spin-states of magnetic impurities are no more degenerated. Yet the

complete calculation has been performed using poor-man scaling, by Göppert HW�DO� in [9] and

will be presented in the Chapter 7 of this thesis.

Figure 2 : “First” and “second” order inelastic processes involving two electrons and one magnetic impurity and

equivalent diagram with a bubble to summarize the different coupling.
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$SSHQGL[��3HUWXUEDWLYH�DSSURDFK�RI�WKH�.RQGR�HIIHFW
The Kondo Hamiltonian H �  describing the coupling between a magnetic impurity of

spin 6  and electrons is written in the second quantification formalism:

( )( )0 ’ ’ ’ ’
, ’

H + + + + + −
↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓= − + +∑ �

� ������� ��� ���

� �

- F F F F 6 F F 6 F F 6 , (5)

where ↑
�F  ( +

↑
�F ) annihilates (creates) an electron of momentum N  and spin up and

,   and + −�6 6 6  are the magnetic impurity spin operators. In the Kondo model, magnetic

impurities are assumed to be so diluted that they are independent; the RKKY model does not

apply here [10].

The calculation presented here aims at showing how the minimum in the resistance was first

explained by Kondo (for more details, see [11]). For simplicity, we have chosen 1/ 2=6 . As

a convention in the following, only the electronic states of interest that are occupied are

specified in the notation of the initial and final states. When considering the elastic processes

that let the spins of electrons down and the magnetic impurity spin-up (see Figure 3), the

electron energy ( ) ( )2  2/ 2 ’ / 2	 N P N Pε = =h h  being conserved, one finds for the first order

process:

0
1 , ’ ,

2
= ↓ ⇑ ↓ ⇑ =


-W N + N . (6)

As shown on Figure 3, four terms, numbered from 1) to 4) are included in the calculation of

the second order term in perturbation.
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(7)
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This leads to:
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ε
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ε

ε ε

ε ε

ε ε

ε ε
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+ +
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−
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−

∑

∑

∑

∑

(8)

Using the anticommutation rules for the fermion operators and knowing that 0− +⇑ ⇑ =6 6 ,

Eq. (8) becomes:

( )

( )

2 2
2

2 2
2

2 2
2

2
0
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2

2
20
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2
20
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ε ε
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↓ ↓ ↑ ↑

+ +
↓ ↓ ↑ ↑

= ↓ − − ↓ ⇑ ⇑
−

+

+ ↓ − − ↓ ⇑ ⇑
−

+ ↓ − ↓ ⇑ ⇑
−

∑

∑

∑

(9)

To take into account the many-body case, one can simply state that ( )
2 2 2ε+ =	 	F F I , with

( )2εI  the occupation factor of the state 2N . Equation (9) is written:

( )( )
2

2

2
0

2 2’
2

2
20

’
2

’ 1

     ’ .

    

���

�

����

�

-W N F F I N 6 6

-N F F N 6

ε

ε

ε
ε ε

ε ε

+ + −
↓ ↓

+
↓ ↓

= ↓ − − ↓ ⇑ ⇑
−

+ ↓ − ↓ ⇑ ⇑
−

∑

∑ (10)

Besides, since 2 1/ 4⇑ ⇑ =
6 , Eq. (9) can be written:

( )
2 2

2
220

2 0

2 2

5 1

4

�

�

� �

I-W -
ε ε

εν ν
ε ε ε ε

= − +
− −∑ ∑ . (11)

The first term in 2W  leads to small correction to the scattering rate, whereas the second one due

to the introduction of a cut-off in energy by ( )2εI  leads to the logarithmic contribution:
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D
2 2
0 2 00

k 2

1 D
 lnν ε ν
ε ε ε

=
−∫� �- G - .

where D  is the bandwidth of the conduction electrons and �ν  their density of states at the

Fermi level per unit of volume. For energies such as ( )1/D νε −<
� �H , this second order term is

larger than the first order one. Note that if we chose the magnetic impurity spin-down, the

second term in Eq. (8) would have lead to the logarithmic correction whereas the first one

would have been zero. The logarithmic correction arises from the non-commutativity of the

spin-operators +6  and −6 .

Starting from other spin configurations leads to the same result. When adding all the

processes, one finds an effective coupling constant for electrons of energy ε :

( ) 2
0 0

0

0

D
ln ...

     ,
D

1 ln

ε ν
ε

ν
ε

+ +

−

;

;

� � � �

�

- - -
-

-
(12)

the last equality following from a summation using the renormalization group technique [12].

One finds

( ) ( )
1

ln /
ε

ν ε
=� � �
	 


- 7 .

For the characteristic energy, ( )01/D e νε −= =
��


��N 7 , corresponding to the Kondo temperature,

� � �- diverges. All the electronic transport properties are determined by this energy scale.

Starting from an independent electron model, the conductivity is determined by an average of

the scattering times ( )τ ε , which are inferred from the values of 2W , near Fermi energy:

( ) ( )( )
2

2

03
v 1 2 ln D / constant

(12 )
σ ν ε τ ε ν

π ε
−∂= + +
∂∫ ;��� � �

H IG - N 7 . (13)

The resistivity varies logarithmically with temperature above �7 .
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Figure 3: First and second order elastic processes involving one electron and one magnetic impurity in a case

where initial and final electron spin states are identical.
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&KDSWHU��� 3KDVH� FRKHUHQFH� WLPH� DQG� .RQGR
HIIHFW

In this chapter, the focus is on phase coherence at low temperature in metallic wires.

There is currently an experimental and theoretical controversy concerning the very low

temperature behavior of the phase coherence time. The standard theory of electron-electron

scattering predicts that the phase coherence time increases as a power law as the temperature

goes to zero. Yet, many experiments show a saturation of the phase coherence time at sub-

kelvin temperatures. Do those experimental observations reveal a fundamental, intrinsic

decoherence mechanism, or an extrinsic, sample-dependent source of decoherence?

The aim of the experiments presented in this chapter was to test if a very dilute amount of

magnetic impurities with a rather small Kondo temperature could cause an apparent saturation

of the electronic phase coherence time.

���� 0DJQHWRUHVLVWDQFH�DQG�SKDVH�FRKHUHQFH�WLPH
The phase coherence time φτ  is one of the few parameters that determine the weak

localization correction to the magnetoresistance of a wire, and it is the only one that depends

on temperature. This is why measurements of the magnetoresistance versus temperature allow

determination of φτ  over a large range of magnitude.

������ 4XDQWXP�FRKHUHQFH�DQG�WUDQVSRUW�SURSHUWLHV

In diffusive thin films, electrons undergo a large amount of scattering events from

sample boundaries, phonons, lattice defects, impurities and other electrons. Although the
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mean free path between collisions is 10 nm�O ≈ , quantum coherence effects persist on a much

larger scale than �O  (typically of the order of a micrometer) because scattering is mainly

elastic. Elastic scattering can be pictured as resulting from static potential, on which the

diffusive-like electronic quantum states are built, and determines the low-temperature

resistivity. The phase coherence of the states leads to a small correction to the resistivity,

which depends on the magnetic field. This so-called weak localization correction results from

quantum interferences between electronic paths. The probability 3  to go from an initial point

�3  to a final point �3 , is the modulus squared of the sum of the probability amplitudes α$  for

all the paths connecting these two points:

2

2 *

,

   .

α
α

α α β
α α β

=

= +

∑

∑ ∑

3 $

$ $ $
(1)

The first term in Eq. (1) is the sum of classical probabilities along the different paths, whereas

the second term accounts for quantum interferences.

For arbitrary paths α  and β , the interference term has a random phase, and the average

contribution of such paths to 3  is zero. Yet, if α encloses a loop and β  differs from α  only

by the direction in which the electrons travel on the loop (see Figure 1), α  and β  interfere

constructively (destructively if spin-orbit coupling is strong):

+-

P
f

P
i

Figure 1: The weak localization corrections to the conductance of a diffusive metal result from the constructive

(destructive if the spin-orbit coupling is strong) interference between the paths (+) and (-) following the same

loop in opposite directions.
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2 2
4 .+ − ++ =$ $ $ (2)

This results in 3  in an increased (decreased) weight of the paths enclosing loops. Electron

propagation along such paths is in average slower than on other paths. As a consequence, the

electron mobility, thus the metal conductivity, decrease (increase) due to quantum coherence.

The amplitude of this effect, called weak (anti-)localization, depends on the electronic phase

coherence time φτ  because only loops of size smaller than the phase coherence length

φ φτ=/ '  contribute to the weak localization correction to the conductance. Indeed, the

addition of the amplitudes of paths α  and β  only makes sense if electron coherence is

maintained while traveling around the loop.

������ 0DJQHWLF�ILHOG�HIIHFW

When a magnetic field is applied, time-reversal symmetry is broken. The two paths (+)

and (-) of  Figure 1 are then dephased by:

0

2
φδ
φ

=
�

. (3)

where φ�  is the magnetic flux enclosed in the loop, and 0 /φ = h H  the flux quantum.

As a consequence, the magnetic field suppresses significantly the weak localization correction

in a metallic wire of width Z  when 2/ �' Z /φδ τ≈  with 0 /φ=�/ %  the magnetic length

(Z  is assumed to be smaller than φ/ )1. The weak localization correction to the resistance 5

of a metallic wire of length /  reads [1,2]:

( )
1/ 2 1/ 22 2

2 2 2
0 0

2 3 1 4 1 1 1 1

2 3 3 2 3φ φφ φ

− −       ∆     = + + − +               
� � �

5 5 Z% Z%%
5 5 / / / /

, (4)

where 2/=�5 K H  is the resistance quantum and � 	/  is the spin-orbit diffusion length related to

the intensity of the spin-orbit coupling, characteristic of a given metal. Expression (4) holds

for metallic wires in the diffusive regime, far from the metal-insulator transition, and in the

quasi one-dimensional regime: ,  and ,φ= =
 � �O Z W / / /  with W  the sample thickness. Typical

                                                          
1 This expression of δ  holds when the magnetic field %  is applied perpendicularly to the wire.
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calculated magnetoresistances using Eq. (4) are shown on Figure 2 for a given spin-orbit

length � 	/ , and two φ/  values 6φ = � �/ /  (solid line) or φ = � �/ /  (dashed line).

������ )LQLWH�OHQJWK�HIIHFW

The magnetoresistance was measured on wires long compared to /φ , connected to

large reservoirs at their ends. We evaluate here the effect of finite length. At zero magnetic

field, in the strong spin-orbit coupling limit relevant to our experiments, the amplitude of the

weak localization correction is proportional to the number of loops smaller than /φ . The ratio

/∆5 5  is therefore proportional to /φ :

( ) 2
0 φ∆ = −

�

/5 5
5 5 /

. (5)

Due to finite length of the wires, the loops starting from a point near the reservoir are cut

because as soon as an electron enters in a reservoir, its probability to return in the wire is very

small. As a consequence, the number of loops participating to the weak localization signal is

0

0

∝

∝

∝

∝

1/L
so

2

1/L
Φ

2 L
Φ
-L

so

L
so

 

 
∆R

/R

B

Figure 2: Generic magnetoresistance curves calculated with Eq. (4). The amplitudes and characteristic fields are

given by the spin-orbit length � �/  and the phase coherence length φ/ . Solid line: 6 � �/ /φ = , dashed line: Same
� �/  and 	 
/ /φ = .
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reduced. To evaluate this correction, we first write the classical probability ( ),3 [ W  for an

electron to be at position [  at time W  in a wire of length / , knowing that it was at position 0[

at 0=W :

( )
2

0, sin sin  

����
�

�

Q Q3 [ W [ [ H
/ /

ππ π  −      =       
∑ , (6)

where '  is the diffusion coefficient. Here, the absorption in the reservoirs is taken into

account in the boundary conditions: ( ) ( )0, , 0= =3 W 3 / W . The return probability at position

0[   in a time shorter than φτ  is then:

( )
2

0 0 0 sin sin  

� �
� �
�

�

Q Q3 [ [ GW H [ [ H
/ /

φ

π
τ π π  − −      → ∝       
∑∫ . (7)

For the whole wire, the amount 1  of loops of size smaller than φ φτ=/ '  is for φ =/ /

proportional to:

( ) ( )
0 0 1

4
φ φ

φ φ
φ

τ
−  

= → ∝ ∝ − 
 ∫

/ / /G[1 3 [ [ /
/ / /

. (8)

Therefore, Eq. (5) must be replaced by

( ) 2
0 1φ φ ∆ = − − 

 	

/ /5 5
5 5 / /

. (9)

Fits with Eq. (9) instead of Eq. (5) result in significant increase of the larger values of φ/  at

the lowest temperature in samples in which φ/  becomes comparable to / . This finite size

effect is illustrated on Figure 3, in the most spectacular case for our experiments. The

measurements are on 200 µm-long  silver sample Ag(6N)c where the finite size effect is

rather large because φ/  reaches 20 µm  at the lowest temperature.
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���� 'HSKDVLQJ�RI�HOHFWURQV�LQ�PHVRVFRSLF�PHWDO�ZLUHV
We reproduce here our article published in Phys. Rev. B ��, 085413 (2003). The silver

samples were obtained with the same 6N- and 5N- sources as the one used to make the

samples for energy exchange measurements (see Chapter 7 and Chapter 8).

0.1 1

1

10

Ag(6N)c

 

 

τ φ (
ns

)

T (K)

 τ
φ

 τ
φ
 obtained without 

          finite size effect corrections

Figure 3: Phase coherence time φτ  versus temperature in the sample Ag(6N)c (see paper below). Open symbols:

Phase coherence time obtained by fitting the magnetoresistance data with Eq. (5). Full symbols: Phase coherence

time obtained when taking into account effect of the finite length of the wire using  Eq.(9).
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I. MOTIVATIONS

The timetf during which the quantum coherence of an
electron is maintained is of fundamental importance in me-
soscopic physics. The observability of many phenomena spe-
cific to this field relies on a long enough phase coherence
time.1 Amongst these are the weak localization correction to
the conductance~WL!, the universal conductance fluctua-
tions~UCF!, the Aharonov-Bohm~AB! effect, persistent cur-
rents in rings, the proximity effect near the interface between
a superconductor and a normal metal, and others. Hence it is
crucial to find out what mechanisms limit the quantum co-
herence of electrons.

In metallic thin films, at low temperature, electrons expe-
rience mostly elastic collisions from sample boundaries, de-
fects of the ion lattice and static impurities in the metal.
These collisions do not destroy the quantum coherence of
electrons. Instead they can be pictured as resulting from a
static potential on which the diffusivelike electronic quantum
states are built.

What limits the quantum coherence of electrons are in-
elastic collisions. These are collisions with other electrons
through the screened Coulomb interaction, with phonons,
and also with extrinsic sources such as magnetic impurities
or two level systems in the metal. Whereas above about 1 K
electron–phonon interactions are known to be the dominant
source of decoherence,2 electron–electron interactions are
expected to be the leading inelastic process at lower tempera-
tures in samples without extrinsic sources of decoherence.3

The theory of electron–electron interactions in the diffu-
sive regime was worked out in the early 1980s~for a review,
see Ref. 4!. It predicts a power law divergence oftf when
the temperatureT goes to zero. Effects of quantum interfer-
ence are therefore expected to grow significantly upon cool-
ing down the electrons. In mesoscopic wires, the predicted

power law tf}T22/3 was first observed in 1986 by Wind
et al.5 between 2 K and 5 K inaluminum and silver wires
and then by Echternachet al.6 down to 100 mK in a gold
wire. However, in 1997, Mohanty, Jariwala, and Webb7 pub-
lished a series of measurements oftf on gold wires with a
broad range of diffusion coefficients. They observed that the
phase coherence time tends to saturate at low temperature,
typically below 0.5 K, in apparent contradiction with theo-
retical predictions. That same year, measurements of the en-
ergy exchange rate between electrons in copper wires8 were
found to be at odds, both qualitatively and quantitatively,
with the prediction for electron–electron interactions. Both
experiments suggested that electrons in mesoscopic metallic
wires interact with each other differently and more strongly
than predicted by theory.

To shed some light on this issue we present here several
sets of experiments probing the phase coherence time at low
temperature in mesoscopic metal wires.9 We summarize our
most important conclusions here. First, we measuredtf(T)
down to 40 mK in several wires made of copper, silver, and
gold and fabricated from source materials of various purities.
We found in the four very pure silver wires and in the very
pure gold wire thattf(T) does not saturate in the investi-
gated temperature range, but continues to increase as the
temperature is lowered in agreement with the theoretical pre-
diction. Since these samples have comparable resistances
and geometries as some measured in Ref. 7, this observation
casts doubt on the assertion7 that saturation oftf is a uni-
versal feature of weakly-disordered metals. Second, we
tested the impact of very dilute magnetic impurities with a
small Kondo temperature on the temperature dependence of
tf . We found that even at concentrations lower than one part
per million ~1 ppm!, such impurities can causetf(T) to
display a plateau over a large temperature range. This could
explain why saturation oftf at low temperature is frequently
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observed. Finally, we probed the magnetic field dependence
of the phase coherence time by measuring the magnetoresis-
tance of copper Aharonov-Bohm rings showing a
temperature-independenttf at low temperature. The ampli-
tude of the Aharonov-Bohm conductance oscillations in-
creased strongly on a field scale proportional to the tempera-
ture, indicating that the phase coherence time at zero field
was limited by spin-flip scattering from magnetic impurities.

II. EXPERIMENTAL TECHNIQUES

A. Sample fabrication

Figure 1 displays the photograph of a typical sample to-
gether with a schematic of the measurement setup.

All samples were fabricated using standard e-beam lithog-
raphy techniques. A bilayer resist, consisting of a copolymer
P~MMA/MAA ! bottom layer and a PMMA top layer, was
first spun onto an oxidized Si substrate wafer. This bilayer
was then patterned by e-beam lithography to tailor a mask.
The metal—gold, copper, or silver—was deposited directly
through this mask in evaporators used only for nonmagnetic
metals.10

Samples made at Saclay used a Si substrate thermally
oxidized over 500 nm, and metal evaporation was performed
in an electron gun evaporator. The silver source material was

placed inside a carbon liner, whereas copper and gold were
put directly in the buckets of the e-gun system. Metal evapo-
ration took place at a base pressure of about 1026 mbar with
an evaporation rate of 0.2, 0.5, and 1 nm/s for silver, gold,
and copper, respectively~see Ref. 11!.

Samples made at Michigan State University~MSU! were
evaporated on a Si substrate with only the native oxide in a
thermal evaporator used only for silver, aluminum, gold,
copper and titanium. The source material and boat were re-
placed before each evaporation and manipulated using plas-
tic tweezers. The pressure during evaporation was about
1026 mbar and the evaporation rate ranged between 0.2 and
0.5 nm/s.12

We measured the low field magnetoresistance of copper,
gold, and silver wires fabricated using source materials of
purity 99.999%~5N! and 99.9999%~6N!. Electrical and geo-
metrical characteristics of the samples are summarized in
Table I.

B. Experimental setup

The samples were immersed in the mixing chamber of a
top loading dilution refrigerator. Electrical lines to the
sample were filtered by commercial ‘‘pi’’ filters at the top of
the cryostat and by discrete RC filters in the mixing chamber.
Resistance measurements were performed using a standard
ac four-terminal technique with a room temperature preamp-
lifier of input voltage noise 1.5 nV/AHz and a lock-in am-

FIG. 1. Photograph of a silver sample taken with a scanning
electron microscope, and schematic of measurement circuit. The
wire resistance is obtained by a four-lead measurement in a bridge
configuration: the current is injected by two arms through the bias
resistor and the voltage is measured across two other arms in order
to probe only the wire resistance; a ratio transformer is used to
enhance sensitivity to small variations of the sample resistance.

TABLE I. Geometrical and electrical characteristics of the mea-
sured samples~Ref. 14!. The diffusion coefficientD is obtained
using Einstein’s relation 1/r5nFe2D with the density of states in
copper, silver and gold respectivelynF51.5631047, 1.0331047,
and 1.1431047 J21 m23, and the resistivityr extracted from the
resistanceR, thicknesst, length L, and widthw of the long wire.
Length and width were measured with a scanning electron micro-
scope~SEM!. The thickness of most samples was measured with an
atomic force microscope~AFM!; for others the value given by a
calibrated thickness monitor in the evaporator was used. A rectan-
gular cross section is assumed.

Sample Made L t w R D
at (mm) ~nm! ~nm! (kV) (cm2/s)

Ag~6N!a Saclay 135 45 65 1.44 115
Ag~6N!b Saclay 270 45 100 3.30 70
Ag~6N!c Saclay 400 55 105 1.44 185
Ag~6N!d MSU 285 35 90 1.99 165
Ag~5N!a Saclay 135 65 108 0.68 105
Ag~5N!b Saclay 270 65 90 1.31 135
Ag(5N)cMn0.3 Saclay 135 65 110 0.47 150
Ag(5N)dMn1 Saclay 270 65 95 1.22 135
Au~6N! MSU 175 45 90 1.08 135
Cu~6N!a MSU 285 45 155 0.70 145
Cu~6N!b MSU 285 20 70 7.98 60
Cu~6N!c MSU 285 35 75 4.37 65
Cu~6N!d MSU 285 20 80 8.50 50
Cu~5N!a Saclay 270 45 110 1.68 70
Cu~5N!b Saclay 270 45 100 0.95 160
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plifier operated at frequencies between 100 and 300 Hz~see
Fig. 1!. To avoid significant heating of electrons we used ac
voltagesVac across the samples such thateVac&kBT. This is
particularly important at temperatures below 100 mK for
which the length scale for electron–phonon interactions, re-
sponsible for cooling down the electronic fluid, can be as
large as several millimeters~see Appendix A!. A bridge cir-
cuit with a ratio transformer on one arm was used to enhance
the measurement sensitivity to small changes in sample re-
sistance. A magnetic field was applied perpendicular to the
plane of the sample using a superconducting coil.

III. LOW FIELD MAGNETORESISTANCE
MEASUREMENTS

The most accurate way to extracttf at low magnetic field
in metallic thin films is to measure the magnetoresistance
and to fit it using weak localization theory.13 Both the ampli-
tude and width of the weak localization peak~dip when
spin–orbit coupling is strong! in the resistance are sensitive
to the phase coherence length.

Figure 2 displays the low field magnetoresistance of
samples Ag~6N!c, Ag~5N!b, Au~6N!, and Cu~6N!d at several
temperatures. The positive magnetoresistance indicates that
spin–orbit scattering is stronger than inelastic scattering
(tso,tf). Raw magnetoresistance measurements already re-
veal a qualitative difference between these samples: the dip

in the magnetoresistance of samples Ag~6N!c and Au~6N!
becomes deeper and narrower upon cooling down to base
temperature whereas it stops changing at low temperature in
samples Ag~5N!b and Cu~6N!d.

The magnetoresistanceDR[R(B)2R(`) is fit with the
quasi-1D expression for the weak localization correction,

DR
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1
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1
1

3 S w

LH
2 D 2G21/2J , ~1!

whereR is the resistance of a wire of lengthL and widthw,
RK5h/e2 is the resistance quantum,Lf5ADtf is the phase
coherence length,D is the diffusion coefficient of electrons,
LH5A\/eB is the magnetic length,B is the magnetic field
applied perpendicularly to the sample plane, andLso

5ADtso is the spin–orbit length that characterizes the inten-
sity of spin–orbit coupling. Expression~1! holds for metallic
wires in the diffusive regime, far from the metal–insulator
transition, and in the quasi-1D regime,l e!w,t
!LH ,Lf ,Lso!L, with t the sample thickness andl e the
elastic mean free path of electrons~see Refs. 15,16 and Ap-
pendix B!.

FIG. 2. Magnetoresistance data~symbols! and
fits to Eq. ~1! ~solid lines!. Top panels are mea-
surements of two silver samples made of source
materials of nominal purity 6N~99.9999%, top
left panel! and 5N ~99.999%, top right panel!.
Bottom panels display data measured on gold
~bottom left panel! and copper~bottom right
panel! samples made of 6N nominal purity source
materials. The curves are offset vertically for
clarity.

DEPHASING OF ELECTRONS IN MESOSCOPIC METAL WIRES PHYSICAL REVIEW B68, 085413 ~2003!

085413-3



In the fit procedure, we use the measured sample resis-
tance and length given in Table I. Our experimental setup
being designed to measure resistance changes with an higher
accuracy than absolute values,DR is known only up to a
small additive constant that we adjusted to fit each magne-
toresistance curve. The width was fixed at a valuewWL giv-
ing the best overall fits for the complete set of data at various
temperatures. The difference between the widthw measured
from scanning electron microscope images and the best fit
value wWL ~see Table II! was found to be always less than
15%.17 The spin–orbit lengthLso was obtained from fits of
the magnetoresistance measured at the highest temperature.
These parameters being determined,Lf remains as the only
fit parameter for each magnetoresistance curve. Examples of
fits are displayed as solid lines in Fig. 2.

In order to gettf from Lf , the diffusion coefficientD
was determined using the measured geometrical and electri-
cal sample characteristics given in Table I. Figure 3 shows
tf as a function of temperature for samples Ag~6N!c,
Ag~5N!b, Au~6N!, and Cu~6N!b. This confirms quantita-
tively the differences between samples already mentioned
from the raw magnetoresistance data. On the one hand, the
samples Ag~6N!c and Au~6N!, fabricated using our purest
~6N! silver and gold sources, present a large phase coherence
time that keeps increasing at low temperature. On the other
hand, the copper sample Cu~6N!b and the sample Ag~5N!b,
fabricated using a silver source of smaller nominal purity
~5N!, present a much smaller phase coherence time and ex-
hibit a plateau intf(T), in contradiction with the theoretical
prediction for electron–electron interactions. This trend, il-
lustrated in Fig. 3, has been confirmed by the measurements
of several samples, as summarized in Table II.

IV. COMPARISON WITH THEORETICAL PREDICTIONS
AND DISCUSSION

A. Purest silver and gold samples

Theory predicts that, in samples without extrinsic sources
of decoherence,tf(T) is limited by the contributions of
electron–electrontee and electron–phonontph interactions.
In principle, decoherence by electron–electron scattering is
not purely an exponential process, hence the decoherence
rates from electron–electron and electron–phonon scattering
do not simply add. In practice~see Appendix B!, the exact
formula for the magnetoresistance is indistinguishable from
Eq. ~1! with a total decoherence rate,

1

tf~T!
5

1

tee~T!
1

1

tph~T!
. ~2!

For our wires, whose width and thickness are smaller than
Lf , the quasi-1D prediction for electron–electron interac-
tions applies15

tee5\F ~4/p!~RK /R!nFSL

~kBT!2 G 1/3

[
1

AthyT
2/3

, ~3!

TABLE II. Fit parameters of the magnetoresistance data to weak
localization theory: maximum phase coherence timetf

max, obtained
at the lowest temperature of;40 mK; spin–orbit lengthLso and
effective width wWL . We also recall the widthw obtained from
SEM pictures. The upwards arrow↗ indicates thattf keeps in-
creasing down to 40 mK. In the other samples,tf is nearly constant
at low temperature.

Sample tf
max Lso wWL ~w!

~ns! (mm) ~nm!

Ag~6N!a 9↗ 0.65 57~65!

Ag~6N!b 12↗ 0.35 85~100!
Ag~6N!c 22↗ 1.0 90~105!
Ag~6N!d 12↗ 0.82 75~90!

Ag~5N!a 2.9 0.65 108~108!
Ag~5N!b 3.5 0.75 82~90!

Au~6N! 11↗ 0.085 85~90!

Cu~6N!a 0.45 0.67 155~155!
Cu~6N!b 0.95 0.4 70~70!

Cu~6N!c 0.2 0.35 75~75!

Cu~6N!d 0.35 0.33 80~80!

Cu~5N!a 1.8 0.52 110~110!
Cu~5N!b 0.9 0.67 100~100!

FIG. 3. Phase coherence timetf versus temperature in wires
made of copper Cu~6N!b (j), gold Au~6N! ~* !, and silver Ag~6N!c
(d) and Ag~5N!b (s). The phase coherence time increases con-
tinuously with decreasing temperature in wires fabricated using our
purest~6N! silver and gold sources as illustrated respectively with
samples Ag~6N!c and Au~6N!. Continuous lines are fits of the mea-
sured phase coherence time including inelastic collisions with elec-
trons and phonons@Eq. ~4!#. The dashed line is the prediction of
electron–electron interactions only@Eq. ~3!# for sample Ag~6N!c. In
contrast, the phase coherence time increases much more slowly in
samples made of copper~independently of the source material pu-
rity! and in samples made of silver using our source of lower~5N!
nominal purity.
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wherenF is the density of states per unit volume at the Fermi
energy, andS is the cross section of the wire.

In order to test the theoretical predictions, the measured
tf(T) curves were fit with the functional form,

tf
215AT2/31BT3, ~4!

where the second term describes electron–phonon scattering,
dominant at higher temperatures.2 Fits are shown as continu-
ous lines in Fig. 4~the fit parameters minimize the distance
between the data points and the fit curve in a log–log plot!.
Equation ~4! describes accurately the temperature depen-
dence of tf(T) for samples Ag~6N!a, b, c and, with a
slightly reduced fidelity, for samples Ag~6N!d and sample
Au~6N!. In all these samples, fabricated using 6N source
materials of silver and gold,tf(T) follows very closely, be-
low about 1 K, the 1/T2/3 dependence expected when the
electron–electron interaction is the dominant inelastic pro-

cess. Nevertheless, if the exponent ofT is left as a fit param-
eter, better fits are obtained with smaller exponents ranging
from 0.59 for samples Ag~6N!d and Au~6N! up to 0.64 for
sample Ag~6N!c. This issue will be discussed in Sec. V B.
The dashed line in Fig. 3 and Fig. 4 is the quantitative pre-
diction of Eq. ~3! for electron–electron interactions in
sample Ag~6N!c. The dephasing times are close, though al-
ways slightly smaller, to the theoretical prediction of Eq.~3!.
Table III lists the best fit parametersA, B, together with the
predictionAthy of Eq. ~3!.

This data set casts doubt on the claim by Mohanty, Jari-
wala, and Webb7 ~MJW! that saturation oftf is a universal
phenomenon in mesoscopic wires. One can always argue that
the saturation temperature for our silver samples is below 40
mK, hence unobservable in our experiments. However, the
resistivity and dimensions of sample Ag~6N!a are similar to
those of sample Au-3 in the MJW paper,7 which exhibits
saturation oftf starting at about 100 mK, and has a maxi-
mum value oftf

max52 ns. In contrast,tf reaches 9 ns in
Ag~6N!a.

B. Silver 5N and copper samples

In silver samples made from a 5N purity source, the phase
coherence time is systematically shorter than predicted by
Eq. ~3! and displays an unexpectedly flat temperature depen-
dence below 400 mK. The same is true for all the copper
samples we measured, independently of source purity.18

These trends are illustrated for samples Ag~5N!b and
Cu~6N!b in Fig. 3.

What can be responsible for this anomalous behavior?
There have been several theoretical suggestions regarding
sources of extra dephasing. Some of these, such as the pres-
ence of a parasitic high frequency electromagnetic
radiation,19 can be ruled out purely on experimental grounds.
Indeed some samples do show a saturation oftf , while
others of similar resistance and geometry, measured in the
same cryostat, do not. This indicates that, in our experiments
at least, the observed excess dephasing is not an artifact of
the measurement. The main suggestions to explain the
anomalous behavior oftf are dephasing by very dilute mag-
netic impurities,11,20 dephasing by two-level systems associ-
ated with lattice defects,21,22 and dephasing by electron–
electron interactions through high energy electromagnetic
modes.23

The correlation between source material purity and excess
dephasing amongst silver samples fabricated using the exact
same process but with either our 5N or 6N source material
suggests that impurities are responsible for the anomalous
temperature dependence oftf . The fact that, among all the
6N silver samples,tf(T) deviates the most from the predic-
tion of electron–electron interactions in Ag~6N!d, fabricated
in MSU ~see Fig. 4! would mean that the 6N silver source
material used at MSU contains more ‘‘dangerous’’ impurities
than the one at Saclay.

The phase coherence time in the copper samples is always
almost independent of temperature below about 200 mK
down to our base temperature of 40 mK~see Refs. 11,24,25!.
However, as opposed to silver samples, this unexpected be-

FIG. 4. Phase coherence time vs temperature in samples
Ag~6N!a (j), Ag~6N!b (.), Ag~6N!c (d), Ag~6N!d (m), and
Au~6N! ~* !, all made of 6N sources. Continuous lines are fits of the
data to Eq.~4!. For clarity, the graph has been split in two part,
shifted vertically one with respect to the other. The quantitative
prediction of Eq.~3! for electron–electron interactions in sample
Ag~6N!c is shown as a dashed line.

TABLE III. Theoretical predictions of Eq.~3! and fit parameters
for tf(T) in the purest silver and gold samples using the functional
form given by Eq.~4!.

Sample Athy A B
(ns21 K22/3) (ns21 K22/3) (ns21 K23)

Ag~6N!a 0.55 0.73 0.045
Ag~6N!b 0.51 0.59 0.05
Ag~6N!c 0.31 0.37 0.047
Ag~6N!d 0.47 0.56 0.044
Au~6N! 0.40 0.67 0.069
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havior is not correlated with the source material purity~5N
or 6N!. A likely explanation is provided by early measure-
ments showing that the surface oxide of copper can cause
dephasing.26

V. INFLUENCE ON tf OF VERY DILUTE MAGNETIC
IMPURITIES

Dephasing of conduction electrons by paramagnetic im-
purities has been known since 1980,20 hence it may come as
a surprise that this issue is still under debate today. In their
Letter on the ‘‘saturation’’ oftf at low temperature,7 Mo-

hanty, Jariwala, and Webb studied the effect of intentionally
doping their gold wires with iron impurities. They found that
tf in those samples did not truly saturate, but rather reached
a plateau around 1 K and increased again below about 0.3 K.
In addition, the presence of the iron impurities could be de-
tected by a logarithmic contribution to the temperature de-
pendence of the resistanceR(T), known as the Kondo effect.
They concluded from those data that magnetic impurities
were not the cause of the saturation oftf they observed in
their nominally pure gold samples. However, it is well
known that the spin-flip scattering rate peaks near the Kondo
temperatureTK , then decreases at lower temperature. While
MJW showed convincingly that ‘‘saturation’’ oftf in gold
could not be caused by iron impurities withTK'0.3 K, their
data do not exclude an effect of impurities with a lower
Kondo temperature, such as manganese or chromium~see
Table IV!.

A. Can dilute magnetic impurities account for a plateau
in tf„T…?

To answer this question experimentally, we fabricated si-
multaneously three silver samples Ag~5N!b, Ag(5N)cMn0.3,
and Ag(5N)dMn1, and very dilute manganese atoms were
introduced by ion implantation28 in two of them. Manganese
atoms form Kondo impurities in silver with a Kondo tem-
peratureTK.40 mK.

The phase coherence times extracted from WL corrections
are shown as symbols in Fig. 5. Samples Ag~6N!c, evapo-
rated separately, is shown as a reference. At the time of this
experiment only the 5N purity silver source was available.
Sample Ag~5N!b, in which no manganese atoms were im-
planted, already shows very little temperature dependence of
tf;3.5 ns below 0.3 K. Nevertheless, introducing more
manganese reduces further the phase coherence time as illus-
trated with samples Ag(5N)cMn0.3 and Ag(5N)dMn1 in
which, respectively, 0.3 and 1 ppm of manganese were im-
planted. For instance, by adding 1 ppm of manganese,tf
was reduced by a factor of 6 while leavingtf still nearly
independent of temperature.

The effect of manganese ontf is now compared with the
existing theory of spin–flip scattering in the Kondo regime.

B. Comparison with the theory of spin–flip scattering

In the presence of spin–flip scattering the phase coher-
ence time reads

1

tf
5

1

tee
1

1

tph
1

1

tsf
, ~5!

where 1/tsf is the spin–flip rate of electrons. This expression
is valid when the spin–flip scattering time of the conduction
electrons is longer than the spin relaxation time (tK for Ko-
rringa time! of the magnetic impurities themselves, i.e.,tsf
.tK .29 This holds if

T*
cmag

nFkB
, ~6!

TABLE IV. Kondo temperatureTK ~K! of common, lowTK ,
magnetic impurities in Ag, Au, and Cu~taken from Ref. 27!.

Impurity
Host\ Cr Fe Mn

Ag ;0.02 ;3 0.04
Au ;0.01 0.3 ,0.01
Cu 1.0 25 0.01

FIG. 5. Phase coherence time as function of temperature in sev-
eral silver wires. Sample Ag~6N!c (d) is made of the purest silver
source. Samples Ag~5N!b (s), Ag(5N)cMn0.3 (h), and
Ag(5N)dMn1 (L) were evaporated simultaneously using our 5N
silver source. Afterward, 0.3 ppm and 1 ppm of manganese was
added by ion implantation respectively in samples Ag(5N)cMn0.3

and Ag(5N)dMn1. The presence of very dilute manganese atoms, a
magnetic impurity of Kondo temperatureTK540 mK, reducestf

leading to an apparent ‘‘saturation’’ at low temperature. Continuous
lines are fits oftf(T) taking into account the contributions of
electron–electron and electron–phonon interactions~dashed line!
and spin–flip collisions using the concentrationcmag of magnetic
impurity as a fit parameter~dotted line istsf for cmag51 ppm). Best
fits are obtained usingcmag50.13, 0.39, and 0.96 ppm, respectively,
for samples Ag~5N!b, Ag(5N)cMn0.3, and Ag(5N)dMn1, in close
agreement with the concentrations implanted and consistent with
the source material purity used.
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wherecmag is the concentration per unit volume of magnetic
impurities. In silver, gold, and copper this criterion reads

T*40 mK3cmag~ppm!, ~7!

in which cmag(ppm) is now written in parts per million atoms
~ppm!. In the opposite limit (tsf,tK), the impact of spin flip
scattering ontf depends on the physical effect probed. For
weak localization corrections with strong spin–orbit cou-
pling, spin–flip scattering enters then as 2/tsf in Eq. ~5!.20,29

As long asT*TK , tsf is well described by the Nagaoka-
Suhl formula30,31

1

tsf
5

cmag

p\nF

p2S~S11!

p2S~S11!1 ln2~T/TK!
, ~8!

with SandTK , respectively, the spin and Kondo temperature
of the magnetic impurities.

Upon cooling down,tsf decreases whenT approachesTK
~dotted line in Fig. 5!, whereas the electron–electron scatter-
ing time tee increases. The combination of both contribu-
tions can result in a nearly constant phase coherence time
aboveTK , as shown by the solid lines in Fig. 5.

A quick way to estimate the concentration of magnetic
impurities corresponding to a plateau in the phase coherence
time is to comparetf

plateauat the plateau to the prediction of
Nagaoka-Suhl atT5TK . In samples made of copper, gold
and silver this gives

tf
plateau.0.6 ns/cmag~ppm!. ~9!

Continuous lines in Fig. 5 are fits of the measuredtf(T)
to Eq. ~5! using Eq.~8!, with magnetic impurities of Kondo
temperatureTK540 mK as expected for manganese atoms.
The parametersA and B in Eq. ~4! could not be extracted
independently for samples Ag~5N!b, cMn0.3, and dMn1. To
avoid increasing unnecessarily the number of fit parameters,
the values ofA and B deduced from the fit of sample
Ag~6N!c ~dashed line! were used. Sample Ag~6N!c was cho-
sen as a reference because its predicted electron–electron
scattering rate is close to that of samples Ag~5N!b,
Ag(5N)cMn0.3, and Ag(5N)dMn1. Following this procedure,
the measurements could be reproduced accurately with32 S
51/2 andcmag50.13, 0.39, and 0.96 ppm, respectively, for
samples Ag~5N!b, cMn0.3, and dMn1, in close agreement with
implanted concentrations of manganese and compatible with
the nominal purity of the Saclay 5N silver source. This con-
firms that the effect ontf of the implantation of magnetic
impurities with a low Kondo temperature is well understood,
both qualitatively and quantitatively.

Looking back at thetf data for samples Ag~6N!a, b, c, d
and Au~6N! shown in Fig. 4, we note that the fits to those
data would also improve with the addition of a very small
quantity of magnetic impurities. We performed new fits to
those data using Eqs.~5! and ~8!, with cmag as an additional
adjustable parameter. For the silver samples we keptTK

540 mK as for manganese impurity atoms, whereas for the
gold sample Au~6N! we choseTK510 mK as for chromium
impurity atoms. The values ofcmag from the fits are 0.009,
0.011, 0.0024, 0.012, and 0.02 ppm, respectively, for samples
Ag~6N!a, b, c, d, and Au~6N!. The new fits are shown as
continuous lines in Fig. 6 and the fit parameters are given in
Table V. Note that these concentrations are about 100 times
smaller than the nominal total impurity concentrations of the
sources. As a striking example to show how small these
numbers are, 0.01 ppm of impurities in sample Ag~6N!d cor-
responds to about 3 impurity atoms every micrometer in the
wire. Such small concentrations of Kondo impurities are es-
sentially undetectable by any means other than measuring
the phase coherence time, especially in thin films. Moreover,
no commercial provider can guarantee such a high purity for
the source material.

FIG. 6. Phase coherence time vs temperature measured on
samples Ag~6N!a (j), Ag~6N!b (.), Ag~6N!c (d), Ag~6N!d
(m), and Au~6N! ~* !. For clarity the graph has been split in two
parts shifted vertically, as was done in Fig. 4. In contrast to Fig. 4,
continuous lines are fits of the data to Eqs.~5! and ~8!, with the
concentration of magnetic impurities as an additional fit parameter
~see Table V!. The quantitative prediction of Eq.~3! for electron–
electron interactions in samples Ag~6N!b ~top part! and Ag~6N!d
~bottom part! are shown as dashed lines.

TABLE V. Fit parameters fortf(T) in silver and gold samples
made of our 6N sources, taking into account, on top of the contri-
butions of electron–electron and electron–phonon interactions, the
additional contribution of dilute Kondo impurities of spin-1/2 as
described by Eqs.~5! and~8!. The corresponding fits are displayed
as continuous lines in Fig. 6.

Sample A (Athy) B cmag TK

(ns21 K22/3) (ns21 K23) ~ppm! ~K!

Ag~6N!a 0.68~0.55! 0.051 0.009 0.04
Ag~6N!b 0.54~0.51! 0.05 0.011 0.04
Ag~6N!c 0.35~0.31! 0.051 0.0024 0.04
Ag~6N!d 0.50~0.47! 0.054 0.012 0.04
Au~6N! 0.59 ~0.40! 0.08 0.02 0.01
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C. Extremely dilute magnetic impurities and temperature
dependence of the resistance

The temperature dependence of the resistance,R(T), is
often used as a probe of magnetic impurities, because of the
well-known Kondo effect. Nevertheless, in thin wires, where
the resistance also varies due to electron–electron interac-
tions, it must be pointed out thatR(T) is not sensitive
enough to detect small amounts of magnetic impurities. The
contribution of electron–electron interactions,15

DR~T!

R
.3.126

R

RK

LT

L
[

Cthy

AT
, ~10!

with LT5A\D/kBT the thermal length, is much stronger and
varies much more rapidly with temperature than the Kondo
term, determined byDrKondo.2BK ln(T),33 where BK
'0.2 nV cm/ppm.34 In our wires where the resistivity is
aboutr;3 mV cm, the corresponding relative variation of
the resistance is about 1025 per decade of temperature for 1
ppm of Kondo impurities. This is more than an order of
magnitude smaller than the typical contribution of electron–
electron interactions between 100 mK and 1 K.

This is illustrated in the left panel of Fig. 7 with sample
Ag(5N)dMn1 in which we implanted 1 ppm of manganese.
The resistances are measured in a magnetic fieldB
;20–50 mT, large enough to suppress the WL corrections
but small enough to avoid freezing out the spin–flip scatter-
ing of conduction electrons by magnetic impurities. We
checked on several samples showing anomalous dephasing
that R(T) is independent of the applied magnetic field.

A striking conclusion is that the phase coherence time is a
much more sensitive probe of very dilute magnetic impuri-
ties than the temperature dependence of the resistance, which
is dominated by electron–electron interactions at low tem-
perature.

VI. OTHER EXPLANATIONS OF ANOMALOUS
DEPHASING

The evidence presented in the previous section shows that
very dilute magnetic impurities could explain the anomalous
dephasing frequently observed at low temperature. But are
there other viable explanations?

A. Dephasing by high energy electromagnetic modes

Golubev and Zaikin~GZ! proposed23,35that zero tempera-
ture dephasing by high energy electromagnetic modes is re-
sponsible for the frequently observed saturation oftf in me-
tallic thin films. This theory, which is controversial,36

predicts that the phase coherence time saturates at low tem-
perature att0

GZ given by35

1

t0
GZ

5
A2r

3RKpAD
S b

te
D 3/2

, ~11!

where b is a constant numerical factor expected to be of
order 1. It is interesting to point out that for a given material
t0

GZ is proportional toD3 and is insensitive to the actual
geometry of the sample.

Using this prediction, GZ were able to account for a sub-
set of the experimental results published in Refs. 24,37 using
the overall prefactor of the dephasing rate as an adjustable
parameter.35 Note that, as explained by GZ in their latest
article,35 the comparison with MJW data performed in Ref.
38 should be ignored because it was done using an expres-

FIG. 7. Resistance of sample Ag(5N)dMn1 (L) and Cu~6N!d
(s) plotted as function of 1/AT. Continuous lines are fits using the
functional formDR(T)/R5C/AT, with C52.431024 ~left panel!
and 7.631024 K1/2 ~right panel!, close to the predictions of Eq.~10!
Cthy51.831024 and 7.231024 K1/2, respectively. The logarithmic
contribution toR(T) from the Kondo effect is invisible in both
samples, as it is masked by the much larger contribution from
electron–electron interactions in the wires. From the comparison of
Figs. 5 and 7, it appears clearly that the phase coherence time is a
much more sensitive probe of very dilute magnetic impurities than
the temperature dependence of the resistance.

FIG. 8. Comparison between the predictive powers of the con-
ventional theory of electron–electron interactions~Ref. 3!, and of
the theory of Golubev and Zaikin~Refs. 23,35!. The X coordinate
gives the ratio of the phase coherence time measured at the lowest
temperature,tf

max, to t0
GZ , calculated from Eq.~11! with b51. The

Y coordinate is the ratio oftf
max to tee(Tmin), the value calculated

using the conventional theory@Eq. ~3!# at the lowest temperature
Tmin . Open symbols are data points for which the phase coherence
time continues to increase at the lowest measurement temperature.
Full symbols and3 are data points for which the phase coherence
time is nearly constant at low temperature. The conventional theory
predicts that all data points lie on the horizontal dotted line if no
extrinsic degrees of freedom, such as magnetic impurities, limit the
phase coherence time. The GZ theory predicts that all data points lie
on a vertical line if the phase coherence time already saturates, and
to the left of that line iftf still increases at low temperature.~The
dashed line corresponds to the caseb51 in the GZ theory.!
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sion for t0
GZ that does not apply to the experiment, but is

valid only when the elastic mean free path exceeds the trans-
verse dimensions of the wires.

Since the exact prefactor is unknown, it is not possible to
rule out this theory by comparison with a single experiment.
Instead, we propose here to compare the predictive power of
the GZ theory with the conventional theory of electron–
electron interactions for many samples. This is done in Fig.
8. This figure includes all gold, silver and gold–palladium
samples for which it has not been shown that magnetic im-
purities are the main source of decoherence at low tempera-
ture, plus sample Cu~5N!a which was used by GZ for com-
parison of their theory with experiments.35 ~We do not show
other copper samples or samples made from our 5N silver
source, because they clearly contain magnetic impurities. See
Sec. VII and Ref. 39.! The X coordinate in Fig. 8 gives the
ratio of the phase coherence time measured at the lowest
temperature,tf

max, to t0
GZ , calculated from Eq.~11! with b

51. TheY coordinate is the ratio oftf
max to tee(Tmin), the

value calculated using the conventional theory@Eq. ~3!# at
the lowest temperatureTmin . Open symbols are samples for
which tf continues to increase at the lowest measurement
temperature; upon cooling they move to the right. Full sym-
bols are samples for whichtf is nearly constant at low tem-
perature; they move downward when the temperature is re-
duced. As for theory, GZ predict that all full symbols should
be aligned on a vertical linetf

max/t0
GZ5b3/2, whereas open

symbols would be located attf
max/t0

GZ,b3/2. In contrast, the
conventional theory predicts that all data points should be
aligned on the horizontal linetf

max/tee(Tmin)51. On this
plot the data scatter in both directions. The most salient fea-
ture of the plot, however, is that the scatter in the horizontal
direction extends over more than five orders of magnitude,
whereas the scatter in the vertical direction extends over
slightly more than one decade. The horizontal scatter indi-
cates that GZ theory does not reproduce the dependence of
tf on sample parameters. In particular, the GZ prediction
depends much too strongly on the diffusion coefficient,
which varies considerably in MJW’s six gold samples.

While no theory explains all of the experimental data
without any additional parameters, it appears that the con-
ventional theory does a better job than the GZ theory to
predict the low temperature value oftf .

B. Dephasing by two level systems

Two approaches to electron dephasing by two-level tun-
neling systems~TLS! have been proposed. The first, by Imry,
Fukuyama, and Schwab,21 requires a nonstandard distribu-
tion of TLS parameters. It was shown later that such a dis-
tribution would lead to large anomalies in the low-
temperature specific heat, and in acoustic attenuation at very
low temperature.40 The second approach describes the cou-
pling between the conduction electrons and the TLS via the
two-channel Kondo effect.22 In this model, the effect of TLS
is very similar to that of magnetic impurities in the Kondo
regime, at least atT*TK . The main criticism raised against
this explanation is that, starting from any realistic model of a
TLS, it may be impossible to reach the strong coupling re-

gime where the Kondo temperature is larger than the tunnel-
ing level splitting.41,42 From the experimental point of view,
measurements oftf from the weak localization contribution
to the magnetoresistance cannot discriminate between mag-
netic impurities and TLS.

VII. TEST OF THE MAGNETIC IMPURITY HYPOTHESIS:
PROBING tf„B…

A definitive test of the role of spin-flip scattering for the
saturation oftf at low temperature is to probe how the
dephasing time depends on magnetic field. It is expected that
spin–flip scattering is suppressed when the dynamics of
magnetic impurities is frozen by application of a sufficiently
large magnetic fieldB. Indeed, if the Zeeman splitting is
much larger thankBT, magnetic impurities stay in their
ground state. As a result spin–flip collisions vanish andtf
should climb up to the value expected from electron–
electron interactions~independent ofB as long as the cyclo-
tron radius is much larger than the elastic mean free path!. In
the presence of spin-1/2 impurities, and neglecting Kondo
effect, the spin–flip scattering rate of electrons vanishes at
large field as~see Appendix C and Ref. 43!

tsf~B50!

tsf~B!
5

gmB/kBT

sinh~gmB/kBT!
, ~12!

whereg is the renormalized gyromagnetic factor of the mag-
netic impurities.

One possible method to detect a variation intf with mag-
netic field is to measure the average amplitudeDGUCF of
universal conductance fluctuations in a metallic wire as a
function of magnetic field. This method has two drawbacks.
First DGUCF}tf

1/4 depends only weakly on the phase coher-
ence time. Second the large correlation fieldDBUCF
.h/(ewLf) of conductance fluctuations in mesoscopic
wires makes it difficult to obtain accurate estimates of the
averagedDGUCF(B) at low temperature in the field range
below the relevant magnetic field scalegmB;kBT. For ex-
ample, in Cu~6N!b, DBUCF.25 mT at 40 mK, whereas the
characteristic field needed to freeze the magnetic impurities
is as low askBT/2m.55 mT.

We have chosen instead to probe the magnetic field de-
pendence oftf by measuring the Aharonov-Bohm~AB! os-
cillations in the magnetoresistance of ring-shaped samples.
For this purpose, we have fabricated two copper rings of
radiusr 50.5 and 0.75mm, respectively, on the same chip as
samples Cu~6N!c and Cu~6N!d. The ring perimeters are cho-
sen to be larger than or similar to the phase coherence length
at B'0 in order to increase the sensitivity to variations of
tf . The averagedh/e AB oscillations amplitudeDGAB is
related to the phase coherence time through44

DGAB5C
e2

h

LT

pr
ALf

pr
expF2

pr

Lf
G , ~13!

whereC is a geometrical factor of order 1. The short period
of AB oscillations with B ~5.5 and 2.5 mT forr 50.5 and
0.75mm, respectively! allows to estimate accurately the
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magnetic field dependence ofDGAB on the much larger field
scale needed to freeze the magnetic impurities.

This experiment was performed on copper samples be-
cause it is the material in which the presence of magnetic
impurity was most questionable: no correlations were found
betweentf and the copper source material purity; moreover,
whereas in some samplestf saturates at values as small as
0.2 ns@3 times smaller than in Ag(5N)dMn1] we observed
neither a nonmonotonic temperature dependence oftf(T),
as in Ag(5N)dMn1 ~see Fig. 5!, nor a Kondo contribution to
R(T).

Our experimental procedure and data analysis are detailed
in Ref. 25. Figure 9 shows the amplitude of AB oscillations
measured across the ring in sample Cu~6N!d at T540 and
100 mK ~symbols! as a function of reduced magnetic field
2mB/kBT. The data in Fig. 9 show that the amplitude of AB
oscillations increases with magnetic field by a factor 8 at 100
mK and a factor 7 at 40 mK,45 on a characteristic field scale
proportional toT.

The solid lines in Fig. 9 are fits to the simple model rep-
resented by Eqs.~12! and~13!, explained in Appendix C. We
assumed thattf at large B is limited only by electron–
electron interactions and used the values given by theoretical
prediction@Eq. ~3!#: tf55.4 and 9.9 ns at 100 and 40 mK,
respectively. The two remaining parameters, namely the gy-
romagnetic factorg and the geometrical constant46 C, were
adjusted to reproduce accurately our data. The best fit is
obtained withg51.08 andC50.17. Note that a more rigor-
ous approach to the magnetic-field dependence of AB oscil-
lation amplitude has been published recently by Vavilov and
Glazman.47 Using their prediction@Eqs.~62! and~63! in Ref.
47# with a magnetic impurity spin48 S51/2 andg50.90, we
obtain a fit indistinguishable from the solid lines calculated
with the simple model.

The impurityg-factors obtained from these fits, 1.08 and
0.90, are small, like the valueg51.36 found for electrons by
neutron scattering in bulk CuO.49

This set of experiments confirms that spin–flip collisions
are responsible for the apparent low temperature saturation
of tf we observe in copper samples.

VIII. COMPARISON WITH ENERGY EXCHANGE
MEASUREMENTS

Parallel to this work, a systematic correlation was found
between dephasing and energy exchange between electrons:
all samples made of the same source material, using the same
deposition system, either followed the theory of electron–
electron interactions for both energy exchange and phase co-
herence, or displayed anomalous behaviors for both
phenomena.11,24,50,51This correlation suggests that magnetic
impurities could also be responsible for anomalous energy
exchange. Such a possibility had not been considered until
recently because, all spin states being degenerate at zero
magnetic field, magnetic impurities do not contribute to en-
ergy exchange in first order. However, Kaminsky and
Glazman have pointed out that energy exchange in the pres-
ence of magnetic impurities may take place with an appre-
ciable efficiency by a second-order process.52 The experi-
mental proof that excess energy exchange observed in
samples made of the 5N silver and copper sources results
from dilute paramagnetic spins was obtained recently by
measuring the dependence of energy exchange upon mag-
netic field.39 Similarly to what was observed on the dephas-
ing rate, the application of a large magnetic field on these
samples reduces the rate of energy exchange. Note however
that the amount of magnetic impurities needed to account for
the measured energy exchange rates seems to be significantly
larger than the estimations fromtf(T); in the case of cop-
per, the obtainedg-factor g52.3 is also different. More ex-
periments are needed to clarify these issues.

IX. CONCLUSION

By measuring the phase coherence time as a function of
temperature on wires made of silver, gold, and copper, from
source materials of different purities, we have found that
anomalous dephasing is correlated to source material purity
in silver and gold samples, and systematic in copper samples.
We showed experimentally that the presence of very dilute
magnetic impurities with a low Kondo temperature in the
host material can result in a broad plateau intf(T) while
being undetected in the temperature dependence of the resis-
tance. Measurement of the magnetic field dependence of
Aharonov-Bohm oscillations on relatively large copper rings
revealed that the phase coherence time increases withB on a
field scale proportional to the temperature. This confirms that
an apparent ‘‘saturation’’ oftf can be attributed to very di-
lute magnetic impurities.53

In the silver and gold samples discussed in this paper, we
impute the presence of magnetic impurities to the purity of
the material sources. We found that large coherence times at
40 mK could be obtained in samples fabricated with the

FIG. 9. Symbols: mean amplitude of the ABh/e oscillations
(DGh/e) across the ring in sample Cu~6N!d at T540 (n) and 100
mK (j), plotted in units ofe2/h as a function of the reduced
magnetic field 2mBB/kBT. Solid lines: fits to the two data sets
using Eqs.~5!, ~12!, and~13! with C andg as fit parameters. At 40
mK, the AB oscillations are unmeasurably small at B50; the fit to
those data includes the noise floor of the experiment.
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silver sources of the highest purity commercially available
~6N!. However, it is very difficult to rule out a small con-
tamination during the evaporation process and eventually
sample preparation. In the case of copper, the Kondo impu-
rities probably originate from the copper oxide at the
surface.26
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APPENDIX A: ELECTRON COOLING IN TRANSPORT
MEASUREMENTS AT LOW TEMPERATURES

Joule heating is a concern when transport measurements
are performed at low temperatures. Any current results in the
production of heat, which can be either transferred directly to
the phonons in the wire, or to the electrons in the contact
pads, assumed to be much larger than the wire. At sub-
Kelvin temperatures, the first process becomes very ineffi-
cient. The reason is that the phonon emission rate for an
electron with an excess energykBT goes like11 g
.5kph(kBT)3, with kph.10 ns21 meV23. The distance it
will travel before losing its extra energy is thenAD/g
.18 mm3(T/1 K)23/2 for a typical diffusion coefficient
D5100 cm2/s. At T540 mK, AD/g.2.2 mm, a very mac-
roscopic distance! Therefore one must take care that the elec-
tron’s energy never gets so large at low temperature. Taken
alone, the cooling by the contact pads through electronic heat
transport results in a temperature profile in the wire

Te~x!5AT21
3

p2
x~12x!S eV

kB
D 2

, ~A1!

with Te the electron temperature in the contacts placed at the
ends of the wire, assumed to be equal to the temperature of
the phonons,x the relative position along the wire, andV the
voltage across the wire. ForT50, the maximum temperature
is (A3/2p)(eV/kB)'3.2 K3V/(1 mV). By limiting the
voltage across the sample toeV5kBT, the maximal electron
temperature isTA11(3/4p2).1.04T. With such a low ap-
plied voltage, the phase coherence time, supposed to increase
as Te

22/3 at low temperature, varies through the sample by
1 –1.0422/3.2%, which is sufficiently small for most pur-
poses. However, at very low temperature, a measurement of
a voltage of orderkBT/e might become very time consuming
if one considers that the input voltage noise for the best
room-temperature commercial amplifiers is about 1 nV/AHz
and that the weak localization correction to the conductance
is about 1023 of the total signal. For example at 10 mK,
1023kBT/e.1 nV, and an integration time of 100 s for each

conductance measurement is needed to get a signal to noise
ratio of 10. In fact, this estimation is often too pessimistic
because cooling by phonons does play a role for long
wires.54 In order to evaluate this effect precisely, one has to
solve the complete heat equation, which can be written in
reduced units (te(x)5Te(x)/T, v5eV/kBT),

v21
p2

6

d2

dx2
te
2~x!2S T

Tco
D 3

~ te
5~x!21!50, ~A2!

in which the first term describes Joule heating, the second the
thermal conductivity of electrons, assuming Wiedemann-
Franz law, and the last one the coupling to phonons.11,55 We
have defined a crossover temperature

Tco5~SrL2~e/kB!2!21/3, ~A3!

with L the length of the wire,r its resistivity, S the
electron–phonon coupling constant56 ~typically S
;1 –10 nW/mm3/K5 in metallic thin films on Si substrate!.
The resulting temperature profile is shown in Fig. 10 for
typical values: we consider a silver wire (S
.3 nW/mm3/K5 from Table III! with D5100 cm2/s, L
50.2 mm, atT5100 and 200 mK, foreV/kBT53. The dot-
ted line indicates the solution without phonons, the dashed
line the solution without electronic heat transport. For this
set of parameters, the crossover temperature isTco
.120 mK. Hence, at 200 mK phonons reduce significantly
the maximum electron temperature, which does not exceed
the bath temperature by more than 16%. At 100 mK, cooling
by phonon emission is inefficient, and the maximum electron
temperature is 27% aboveT.

The analysis of the exact solutions of this equation allows
to distinguish two opposite regimes: forT!Tco, electrons
are decoupled from phonons~cooling by phonons will be-
come active only if the applied voltage is so high that the
maximal temperature is aboveTco), and temperature is given

FIG. 10. Electrons heating in a typical silver wire~see text! of
length L50.2 mm, biased with a dc voltageV such thateV/kBT
53 and for phonon temperaturesT5100 and 200 mK, respectively,
in the left and right panel. Continuous lines: ratio of electron tem-
peratureTe with phonon temperature as function of the reduced
position X/L in the wire, taking into account electron–phonon in-
teractions@see Eq.~A2!#. Dotted lines: electron temperature as
function of position neglecting phonons@see Eq.~A1!#. Dashed line
in the right panel: electron temperature neglecting electronic heat
transport~in the left panel this line would stand atTe /T51.87).
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by the electronic conductivity alone, see Eq.~A1!. This is the
difficult regime, where the maximal voltage is of the order of
kBT/e. In the opposite situationT@Tco, heat transfer to the
contacts can be neglected, and cooling by phonons rules the
game. The temperature of the electrons is then nearly homo-
geneous, with Te /T'(11(Tco/T)3v2)1/5 and for
(Tco/T)3v2!1 the temperature does not exceedT exces-
sively: Te'T1 1

5 @Tco
3 (eV/kB)2/T4#. One should thus fabri-

cate wires as long as possible, in order to have a small cross-
over temperatureTco which allows to work at larger
voltages.

In order to test the validity of this calculation, we per-
formed a control experiment in which electrons were inten-
tionally heated by applying ac currents. The sample, similar
to the others presented in this review, consists of a 1.79-mm-
long, 150-nm-wide, and 45-nm-thick wire made out of a 6N
purity silver source. The diffusion coefficientD
5139 cm2/s results in a crossover temperatureTco
530 mK. We extracted the phase coherence lengthLf from
the magnetoresistance. For each magnetoresistance trace we
show in Fig. 11 two symbols, one open and one full, at a
Y-coordinate given by the corresponding value ofLf . Open
symbols are at theX-coordinate given by the cryostat tem-
perature T at which the measurement was performed,
whereas full symbols are at theX-coordinate given by the
calculated electron temperatureTcalc. Since the magnetore-
sistance is given byLf}T21/3, Tcalc was calculated from the
time- and position-average ofTe

21/3, using temperature pro-
files obtained with Eq.~A2!. For example, the pair of data
points at Lf.10.4mm corresponds toT540 mK, Vac
50.86 mV rms, leading toTcalc5245 mK. The data points
with large heating (Tcalc@T) as well as those with little heat-
ing (Tcalc.T) fall close to a single lineLf}T21/3, indicating
that the electron temperature is correctly modeled.

APPENDIX B: DEPHASING BY ELECTRON –ELECTRON
INTERACTIONS

Assuming that we can restrict ourself to two body inter-
actions, the dephasing rate, or inverse lifetime, 1/t in(E,T) of
an electron at energyE coupled only to the electronic fluid at
temperatureT results from all collision processes allowed by
the Pauli exclusion principle,

t in
21~E,T!.E

u«u*\/tf

d« K~«!~12 f T~E2«!!h~«,T!,

~B1!

wheref T(E) is the Fermi function at temperatureT, K(«) is
the interaction ‘‘Kernel’’ of the screened Coulomb interac-
tion, proportional to the modulus square of the interaction
matrix element for an exchanged energy«, and

h~«,T!5E
2`

`

dE8 f T~E8!~12 f T~E81«!!

5
«

12exp~2«/kBT!
. ~B2!

The low energy cut-offu«u*\/tf in Eq. ~B1! is intro-
duced because fluctuations on time scales longer than the
electron’s lifetime can be considered as static.4

The interaction kernelK(«) depends only on« since the
energies of interacting electrons are close to the Fermi en-
ergy EF and «&kBT!EF . Our samples are quasi-1D be-
cause the width and thickness of the wires are smaller than
the lengthL«5A\D/« for the probed energy exchanged. For
quasi-1D samples the interaction kernel reads57

K~«!5ku«u23/2, ~B3!

with

k215\ApnFSL

4

RK

R
. ~B4!

The dephasing rate 1/tee(T) is the inverse lifetime aver-
aged over thermal excitations

1/tee~T!5E dE
f T~E!~12 f T~E!!

kBT
t in

21~E,T!. ~B5!

Injecting Eqs.~B1! and ~B3! into Eq. ~B5! we obtain58

1/tee~T!.E
\/tee

`

d«
kA«

kBT

exp~«/kBT!

~12exp~«/kBT!!2
. ~B6!

This expression shows that the effect of electron–electron
interactions on quantum coherence in mesoscopic wires is
dominated by processes with a small exchanged energy«
'\/tf . It is interesting to point out that this implies that a
sample is quasi-1D with respect to decoherence as long as
the phase coherence lengthLf5ADtf is large compared to
its transverse dimensions and small compared to its length.

FIG. 11. Full symbols: phase coherence length measured on a
6N silver sample as a function of the electronic temperatureTcalc

calculated using Eq.~A2! for a cryostat temperatureT represented
by the attached open symbol. The continuous line represents the
theoretical predictionLf}T21/3 of electron–electron interactions
~data taken at Saclay!.
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This is not true for energy exchange, for which the dimen-
sionality is determined by the length associated with the larg-
est exchanged energy.

In order to obtain an analytical expression fortee(T) we
make the following approximation:

exp~«/kBT!

~12exp~«/kBT!!2
.

1

~«/kBT!2
. ~B7!

This approximation is justified since the integral is domi-
nated by small energy exchanges. This leads to

tee.\F ~p/16!~RK /R!nFSL

~kBT!2 G 1/3

, ~B8!

where we used Eq.~B4! for the interaction kernel.
The calculation oftf described above makes use of a low

energy cut-off, therefore the prefactor in Eq.~B8! is not re-
liable. To solve this technical difficulty, Altshuler, Aronov,
and Khmelnitsky3 calculated the effect of electron–electron
interactions through the interaction of one electron with the
fluctuating electromagnetic field resulting from other elec-
trons at thermal equilibrium. Within this approach it is pos-
sible to calculate directly the conductivity taking into ac-
count electron–electron interactions. The dephasing rate is
then obtained without reference to the energy decay rate.
Neglecting spin–orbit coupling, this calculation yields15

DR

R
~B,T!52

2R

RK

ADtN

L

Ai ~tN /tH!

Ai 8 ~tN /tH!
, ~B9!

with

tN5\F ~RK /R!nFSL

2p~kBT!2 G 1/3

,

tH5
3ne2RS

L S f0

2pwBD 2

,

where f05h/e.4.1310215 T m2 is the flux quantum,
Ai( x) is the Airy function and Ai8(x) its derivative. The time
tN is often called Nyquist time in reference to the
fluctuation-dissipation theorem used to evaluate the electro-
magnetic fluctuations for the calculation of weak localization
corrections.

Since expression~B9! includes electron–electron interac-
tions, it should be possible to deduce the contributiontee of
the screened Coulomb interaction on the phase coherence
time. This can be done by pointing out that

Ai ~x!

Ai 8 ~x!
5

21

A1/21x
~11e~x!!, ~B10!

where ue(x)u,0.04 for x.0. In practice, the experimental
resolution is not sufficient to distinguish a relative discrep-
ancy smaller than 4% of the amplitude of weak localization
corrections, which are themselves smaller than 1% of the
measured signal. Hence we can write

DR

R
~B,T!5

2R

RKL
A D

1/2tN11/tH
. ~B11!

A comparison with Eq.~1! ~neglecting spin–orbit coupling!
allows us to extract the phase coherence time when it is
limited by electron–electron interactions,

tee5\F ~4/p!~RK /R!nFSL

~kBT!2 G 1/3

52tN . ~B12!

This expression of the phase coherence timetee is larger by
a factor 4/p2/3.1.9 than the cut-off-dependent estimation in
Eq. ~B8!.

APPENDIX C: MAGNETIC FIELD DEPENDENCE
OF SPIN–FLIP SCATTERING

This appendix present a simple calculation of electron
spin-flip scattering from magnetic impurities as a function of
applied magnetic fieldB. The calculation is carried out at
first order in spin–flip scattering, neglecting the Kondo ef-
fect. Moreover we consider here, for simplicity, magnetic
impurities of spin-1/2.

The spin–flip ratetsf
21(E,B) of an electron at energyE is

obtained from the Fermi Golden Rule,

tsf
21~E,B!5cmagl$P2~12 f T~E2gmB!!

1P1~12 f T~E1gmB!!%, ~C1!

wherecmag is the concentration of magnetic impurities,l is
proportional to the modulus square of the interaction poten-
tial electron-magnetic impurity, andP6 is the probability to
have the magnetic impurity in the up (1) or down (2) state
relative to the magnetic field directionB. In absence of
Kondo effectl is approximated as independent of energy
and magnetic field.

Since at thermal equilibriumP65 f T(6gmB), we obtain

tsf
21~E,B!5

cmagl~11exp~E/kBT!!/2

cosh~E/kBT!1cosh~gmB/kBT!
. ~C2!

The spin–flip ratetsf
21(B) is averaged over electronic ex-

citations

tsf
21~B!5E

2`

1`

dE
f T~E!~12 f T~E!!

kBT
tsf

21~E,B!,

which gives

tsf~B50!

tsf~B!
5

gmB/kBT

sinh~gmB/kBT!
. ~C3!

This result, also given in Ref. 43, is a finite-temperature
generalization of the expression used by Benoitet al.59 A
rigorous theoretical calculation of the Aharonov-Bohm oscil-
lation amplitudeDGh/e in presence of magnetic impurities
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under a large externally applied magnetic field was first pre-
sented by Fal’ko.60 A complete derivation of the magnetic
field dependence ofDGh/e from first principles was finally

published recently by Vavilov and Glazman.47 As discussed
in Sec. VII, the Vavilov-Glazman crossover function forS
51/2 is nearly indistinguishable from ours.
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���� &RPSOHPHQW��:K\�DUH�LQWHUDFWLRQV�EHWZHHQ�PDJQHWLF
LPSXULWLHV�QHJOLJLEOH�"

Vavilov, Glazman and Larkin [3] have calculated the effect on the electronic

properties of the RKKY interactions between magnetic impurities [4]. RKKY interactions

lead to a transition of the spin system to a spin glass state at a temperature � �7  dependent on

the impurity concentration and on Kondo temperature. As far as electrons are concerned, the

prediction is that the interplay between the Kondo effect and the RKKY interaction may result

in a non trivial temperature dependence of the resistivity and the phase coherence time. These

effects have been investigated in [5] for gold samples in which the magnetic impurities, iron,

were estimated to be present at concentrations larger than 15 ppm . In our silver samples with

an impurity concentration smaller than 1 ppm , the spin-glass transition temperature is

predicted to be below 1mK . We are thus in the limit of small concentrations =� ���7 7 . In the

temperature range ≥ �7 7 , the RKKY interactions between magnetic impurities have no effect

on the resistivity and phase coherence time in our samples.

���� &RQFOXVLRQ
For the samples presented in this chapter, electronic decoherence at low temperature is

essentially due to electron-electron and electron-magnetic impurity scattering. In the “pure”

samples, the concentration of magnetic impurities found from fits is compatible with the

nominal purity of the source. In the implanted samples, this concentration is in close

agreement with the amount of magnetic impurities implanted. Since such a small amount of

magnetic impurities is almost impossible to rule out in any sample, scattering from

undetermined magnetic impurities likely explains the saturation observed in many

experiments.
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&KDSWHU��� (QHUJ\�H[FKDQJH�DQG�.RQGR�HIIHFW�
.RQGR�,PSXULW\�0HGLDWHG
LQWHUDFWLRQ

Before the beginning of this thesis, energy exchange between quasiparticles was

investigated in the Quantronics group in order to precisely understand the scattering

mechanisms that limit the phase coherence. Energy exchange rates were found higher than

predicted by the theory of Coulomb electron-electron interaction, with furthermore an

unexpected energy dependence, and sample to sample variations [1]. The aim of the

experiments presented in this chapter was to determine if the mechanism proposed by

Kaminski and Glazman [2] to explain these results, based on magnetic impurities, was

relevant. By convenience, this interaction mechanism, in which Kondo effect plays a major

role, will be nicknamed “KIM interaction” for Kondo-Impurity-Mediated-Interaction.

Even if at zero-magnetic field the spin states of magnetic impurities are degenerated, magnetic

impurities can mediate energy exchange by a process at second order in the coupling between

electrons and magnetic impurities (see Figure 1, top). According to Kaminski and Glazman

[2], the rate ( )(γ  at which an electronic state of energy (  and filling factor ( )I (  is

populated due to the coupling of electrons with magnetic impurity at second order can be

written as:

( ) ( ) ( )( ) ( ) ( )( )( ) ( )  1 1  ,γ ε ε ε ε= + − − − −∫( G I ( I ( I ( I ( : (

with

( ) ( ) ( ) ( ) ( )( ),  ’ ’  1 ’ε ε ε ε= = Κ − +∫: ( : G( I ( I ( ,

and
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( ) ( ) ( )4

2 2
2 2

  S S+1  
ν κε π

ν ε ε
Κ = ≡

� � � �

�

F -
K , (1)

where � � �F  is the concentration of magnetic impurities, S their spin. In this calculation, the

coupling constant between electrons of spins V̂  and a magnetic impurity of spin 
)6  is

described by a hamiltonian ˆˆH . =� - V 6 . The kernel function ( )εΚ  contains all the

information on the energy exchange mechanism (intensity and energy dependence). The

energy dependence ( ) 2ε ε −Κ ∝  is different from the one calculated for pure Coulomb

interaction in diffusive wires: ( ) 3/ 2ε ε −Κ ∝ . Such a 2ε − -dependence of energy exchange was

first inferred by Pothier HW�DO� [3] from measurements in copper wires and later on in wires

made of gold [1]. KIM interaction is therefore a candidate to explain this large set of

experimental results.

To find out if KIM interaction is relevant in mesoscopic wires, we have measured energy

exchange in presence of an applied magnetic field %  because it is expected that the rate of the

KIM interaction depends on % . Indeed, in a magnetic field, scattering of an electron on a

magnetic impurity can be already inelastic at first order, with an energy transfer µ± �J %  (see

Figure 1, bottom), where J  is the gyromagnetic factor of the impurity and µ 	  the Bohr

magneton. Magnetic impurities then behave as two-level systems, and the rate of KIM

interaction is expected to be higher than at zero magnetic field as long as µ 
J %  is not too

large. When µ 
J %  becomes larger than the width of the electronic energy distribution

function, given by H8  in our experiment, magnetic impurities cannot be excited by the

electronic bath. Then the rate of first order processes vanishes. The rate of the second order

process (see Figure 1, top) proportional to ( ) 2
�J %ε µ −−  becomes also so small when %

increases, that the KIM interaction rate decreases. Since the Pauli constraint imposes that the

energies ε  that can be exchanged by this process are such as ,ε ≤ H8  the magnetic field at

which KIM interaction is suppressed is predicted to scale with .8
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In the above presentation, Kondo physics is embedded in the coupling constant .-  As

explained in Chapter 5, Kondo effect leads to a renormalization of the bare coupling constant

0-  between electrons and magnetic impurities due to the collective effect of all the conduction

electrons. In an out-of-equilibrium situation, the renormalization depends on the local electron

energy distribution function. The complete calculation was developed by Göppert HW� DO� [4]

and is presented in Section 7.1.3.3.

���� (QHUJ\�H[FKDQJH�DQG�TXDVLSDUWLFOH�HQHUJ\�GLVWULEXWLRQ
IXQFWLRQ

We first present how the energy exchange rate can be inferred from the quasiparticle

energy distribution function.

Figure 1: Description of the processes of energy redistribution between quasiparticles mediated by magnetic

impurities. In each panel, the left ladder represents the energy spectrum of the electrons, and the two states on the

right side represents the energy levels of the spin states of a magnetic impurity. Top: The second order process

implies two electrons and a magnetic impurity. Bottom: The first order process directly exchanges µ �J %
between an electron and a magnetic impurity.
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������ (QHUJ\� GLVWULEXWLRQ� IXQFWLRQ� RI� TXDVLSDUWLFOHV� LQ� D� YROWDJH�ELDVHG
ZLUH

To access the energy exchange mechanisms between electrons, we prepare an out-of-

equilibrium stationary situation by placing a diffusive metallic wire between two metal

contacts biased at different potentials (see Figure 2). Energy exchange, which tends to

establish a local equilibrium between electrons, and diffusion, which limits the dwell time of

electrons in the wire, control the energy distribution of electrons.

�������� ,QGHSHQGHQW�HOHFWURQV�UHJLPH�� intτ τ=�

If the typical time τ �  an electron spends in the diffusive wire is much smaller than the

typical time of interactions between electrons intτ , no inelastic scattering occurs while

electrons travel through the wire, and the total energy of each electron is conserved during its

motion. The energy distribution function ( ),I [ ( , which reflects the probability to find an

electron of energy (  at position /[=[ / , obeys the stationary quasiclassical Boltzmann

equation [5]:

Figure 2: Schematic of the experiment: A wire of length /  and electron diffusion coefficient '  is connected to

two reservoirs. A potential difference 8  is applied between the two reservoirs. The distribution functions of

electrons in the reservoirs are Fermi functions shifted in energy by the electrochemical potential difference

? �H8 N 7 . Distribution functions ( ),I [ (  are plotted for different positions along the wire in the limit of

independent electrons (middle: intτ τ<<� ), and in the limit of strong electron-electron interaction (right:

intτ τ>>� ).
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( )2

2

,
0

∂
=

∂
I [ (
[ . (2)

The distribution function thus interpolates linearly between the boundary distribution

functions and reads:

( ) ( ) ( ) ( ), 1  = − + +� �I [ ( [ I ( [ I ( H8 , (3)

where ( ) ( ) 1/1
−

= + ������
�I ( H  is the Fermi function at the temperature of the reservoir .7  If

=�N 7 H8 , the distribution function has a step at ( ), =I [ ( [  for 0− < <H8 ( , as shown in

Figure 2.

�������� 7KHUPDOL]HG�HOHFWURQV�UHJLPH�� intτ τ?�

If the typical time τ 	  an electron spends in the diffusive wire is much larger than the

typical time of interactions between electrons intτ , numerous inelastic scattering events occur,

and electrons thermalize locally (see Figure 2, right panel). At each position in the wire, the

energy distribution function is a Fermi function, with a temperature ( )
7 [  and an

electrochemical potential H8[  that depends on the position:

( ) ( ) ( ), = −�
��
I [ ( I ( H8[ . (4)

The temperature ( )
7 [  obeys the heat equation [6,7,8]

( ) ( )
222

2

2
0,

6

π ∂
+ =

∂
���N 7 H8[ (5)

with the boundary conditions at the reservoirs ( ) ( )0 1= =� �7 7 7 . The temperature along the

wire is:

( ) ( )2 21 /�7 [ 7 [ [ 8= + − ° , (6)

where ( ) ( )22 2 -2/ 3 / 2.4 V  K�N Hπ= ;°  is the Lorenz number.

�������� ,QWHUPHGLDWH�UHJLPH�� intτ τ;�

In the intermediate regime, where intτ τ;� , the energy distribution functions in the

wire are rounded due to energy exchange between electrons. Yet, electrons are not

thermalized,  ( ),I [ (  is not a Fermi function, and the rate of energy exchange can be inferred
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from the shape of ( ),I [ (  and its dependence on the voltage .8  In our experiments, this

intermediate regime is found for wire lengths of the order of 10 µm.

������ &DOFXODWLRQ�RI�WKH�HOHFWURQ�HQHUJ\�GLVWULEXWLRQ�IXQFWLRQ�LQ�SUHVHQFH
RI�HQHUJ\�H[FKDQJH

�������� ��%ROW]PDQQ�HTXDWLRQ�LQ�WKH�GLIIXVLYH�UHJLPH

Following Nagaev [9] and Kozub and Rudin [10], we use the Boltzmann equation to

determine the electron energy distribution ( , )I [ (  in the wire. This equation reads in a

stationary regime:

( ) { }( )
2

2

,1
, , 0

τ
∂

+ =
∂

� � � �
�

I [ ( , [ ( I[ , (7)

where τ �  is the diffusion time of an electron in the wire and [  the position in reduced units

/[ /= [ , with / the wire length. The first term describes elastic collisions and { }( ), ,� � � �, [ ( I
accounts for the inelastic collisions.

The boundary conditions are imposed by the reservoirs:

( ) ( )
( ) ( )
0,  

1, ,

�

�

I ( I (
I ( I ( H8

=

= +

where ( )�I (  is the Fermi function at the temperature 7�of the electrodes.

�������� �,QHODVWLF�FROOLVLRQV�UHVSRQVLEOH�IRU�HQHUJ\�H[FKDQJH

The collision term can be written as the difference of two terms: an in-collision term,

the rate at which particles are scattered in the state of energy( , and an out-collision term:

{ }( ) { }( ) { }( ), , , , , ,= −
	 
 � � 


� � � � � � � � � � � �, [ ( I , [ ( I , [ ( I (8)

with

{ }( ) ( ) ( )( ) ( ), ,  ,  1 ,  , ,ε ε ε= + −∫
� �

� � � �, [ ( I G I [ ( I [ ( : [ ( ,

and
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{ }( ) ( ) ( )( ) ( ), ,  ,  1 ,  , ,ε ε ε ε= − − −∫
� � �

� � � �, [ ( I G I [ ( I [ ( : [ ( .

The function ( ), ,ε: [ (  describes the transition between two electron states with energies

ε+(  and (  at the position [ . This transition is due to the Coulomb interaction with other

electrons, coupling to phonons, or coupling to magnetic impurities [2].

�������� 1XPHULFDO�VROXWLRQ

To calculate the electronic energy distribution function ( ),I [ ( , Frederic Pierre has

developed a C++ code based on a relaxation method. Starting from an initial distribution

( ), , 0=I [ ( W , it is let to evolve according to the non-stationary diffusive Boltzmann

equation:

( ) ( ) ( ) { }( )
2

2

, ,1
, , , , , , ,δ

τ
 ∂ 

+ = + Λ + ∂ 
� � � �

�

I [ ( WI [ ( W W I [ ( W , [ ( I W[ , (9)

where Λ  is a parameter optimized at each iteration to accelerate convergence. When the

energy distribution function does not evolve any more, the obtained function is the solution of

the stationary Boltzmann equation (7). In the collision term, inelastic processes, such as

electron-electron interaction, electron-phonon interaction, electron-magnetic impurities

interaction are included.
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������ ,QHODVWLF�VFDWWHULQJ�PHFKDQLVPV

In this part, we describe the theoretical predictions for the inelastic collision term of

the Boltzmann equation associated with Coulomb electron-electron interaction, electron-

phonon interaction and electron-magnetic impurity (KIM) interaction. The first two rates have

been described in the thesis of S. Guéron [11] and F. Pierre [1]. For completion, we derive

them again here, together with the KIM interaction rate.

Figure 3: Graphic interface of the C++ code that calculates the distribution function of electrons ( )I (  in a

metallic wire connected at both ends to electrodes made of normal or superconducting metal. The calculation

takes into account electron-electron interaction, electron-phonon interaction and coupling with magnetic

impurities. We have added a routine to convolve ( )I (  with any function to be able to compare calculation with

measurements of the differential conductance of a tunnel junction formed between the out-of-equilibrium wire

and a probe electrode.
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�������� �&RXORPE�LQWHUDFWLRQ�EHWZHHQ�HOHFWURQV

Altshuler HW�DO� have calculated the energy exchange rate between electrons associated

with Coulomb interaction [12]. They consider quasiparticles with a diffusive motion, which

interact by Coulomb interaction screened by an effective medium constituted by all the

electrons of the metal.

This leads to

( ) ( ) ( ) ( ) ( )( ), ,  ’ , ’  1 , ’ε ε ε ε= = Κ − +∫: [ ( : G( I [ ( I [ ( , (10)

where the kernel of the electron-electron interaction ( )εΚ  is, according to the Fermi Golden

Rule:

( )
3

22  
  ( )

2

�
� � � � � � � �0π νε ε Κ = Ω  h

, (11)

where 〈〉 � � 	 
 � � � �  is the average on the scatterers positions, Ω the sample volume, ν
  the density

of states at the Fermi level and 
2

( )ε0  the average square of the matrix element for the

interaction between electrons with energy transfer ε (see Figure 4).

The matrix element writes:

22
( )

ε
ε

ε
− =−
− =

= ���
���
� � � �����
���

0 0 ,

with

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

/

/          

ε

ε

∗ ∗

∗ ∗

= Ψ Ψ − Ψ Ψ

± Ψ Ψ − Ψ Ψ

∫
∫

�

�

� � � � ��� � �

��� � �

0 G G 8
G G 8
U U
 U U U U
 U
 U

U U
 U U
 U U
 U
 U

(12)

where the Ψ(U) are the electronic wave functions in real space. Sign (+) corresponds to the

antisymmetric spin state of the initial two-electron system, sign (-) to the symmetric spin state

(The spin state of the final two-electron system remains the same as the initial one). The

Figure 4: Diagram representing the exchange of an energy ε  between two quasiparticles.
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potential ( )/ε −�8 U U
  is the temporal Fourier transform of the microscopic interaction

potential between electrons.

The squared of the matrix element ( ) 2
ε0  has two types of contributions (see Figure 5). The

first type (left of Figure 5), for which ’ ,L M=  ’ ,M L=  ’ ,N O=  and ’O N= �always contributes. The

second type (right of Figure 5), for which ’ ,L M=  ’ ,M N=  ’ ,N O=  and ’O L=  and for which a

phase associated with the scatterers position remains, contributes only for short range

interaction and is neglected in the following1 [13].

Therefore,

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

3

/ /

i k l

disorder

2
 

         .  ������

�

���	
	 � � 
 ���

G G G G 8 8ε ε

ε
ε

πε ν −

∗ ∗ ∗ ∗
− =−
− =

Κ = Ω − −

× Ψ Ψ Ψ Ψ Ψ Ψ Ψ Ψ

∫ � �
h

U U
 U

 U


 U U
 U

 U




U U U

 U

 U
 U
 U


 U



(13)

In the diffusive regime, far from the metal-insulator transition, the disorder-averaged of

( ) ( ) ( ) ( )i j ε

∗ ∗

− =
Ψ Ψ Ψ Ψ ���� �����U U U

 U

  does not depend on the states L and M but on their energy

difference and is equal to (see appendix 1):

( ) ( ) ( ) ( )
( ) ( ) ( )

( )
2

.

i j 3 2 22 4
 

2 2 /ε

ν
π π ε

−∗ ∗

− =
Ψ Ψ Ψ Ψ =

+∫
h h

���
��� ������� � � �  � !  �

G ' H1 ( '
"$#%# & &N NU U U

 U



N
,

with ( ) ν= Ω'('1 ( , and '  the electronic diffusion coefficient. It follows from (13):

                                                          
1 This term gives rise to an enhancement of the average of the squared matrix element with a prefactor dependent
on the screening of the interaction. This prefactor, which depends on the nature of the material, has not been
calculated for the one-dimension case.

Figure 5: Diagrams that should contribute to the modulus squared of the disorder-averaged matrix element. The

cross term b), which contributes for short range interaction is neglected in the following.
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( ) ( )
( )

2
2

2

/ 24 3 2 4
d U  .

4 /
ε

νε
π ε

 
Κ =   + 

∫ �
h h

� '
'

TT T T (14)

The screened Coulomb interaction / ( )8ε � T  is expressed in terms of the bare Coulomb

interaction 0 ( )8 T and of the polarizability ( , )εΠ T  of the electronic fluid:

( ) ( )
( ) ( )

0
/

01 , /ε ε
=

+ Π
�

h

88 8
T

T
T T

, (15)

with

( )
2

2
, / .

/
ε ν

ε
Π =

−
h

h
�

'
' L

TT
T

In a metal, the density of states ν �  is of the order of 47 -1 -310  J  m  and

( ) ( ) 2 6
0 0, / / 10 1ε ν εΠ h : : ?���8 6 HT T  ( 	6  is the wire cross-section) so that the screened

Coulomb potential simplifies to:

( ) ( )/

1
.

, /ε ε
=

Π



h
8 T

T

It follows:

( )
( )24 3 2 4

1

4 /
ε

π ν ε
Κ =

+∫
h h�

G
'

T
T

. (16)

In a metallic wire of width Z  and thickness W �for energies ε  smaller than 2 2/ max( , )h' Z W ,

only the uniform modes in the transverse dimensions contribute to ( )εΚ , �leading to:

( )-1
3/ 2 3/ 2( ) 2      ε π ν ε −Κ = h ��
' 6 , (17)

where =�6 ZW  is the wire cross-section.

For a reason that we could not trace out, this derivation gives a prefactor for ( )εΚ  smaller by

a factor 2 than the result of Kamenev and Andreev [14]. In the following, we will refer to their

result:

( )-1
3/ 2 3/ 2( ) / 2      ε π ν ε −Κ = h ���' 6 . (18)
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�������� �(OHFWURQ�SKRQRQ�LQWHUDFWLRQ

The theoretical assumptions [1] made to calculate the electron-phonon interaction are

the following:

(i) the phonon temperature �7  is small compared to the Debye temperature θ � . Then only

the acoustic branch of the phonons has to be taken into account and the dispersion

relation between the energy and the wave vector T of a phonon is ε = h� VT ,  where V is
the sound velocity;

(ii) the electronic wave functions are plane wave ones and not the diffusive wave

functions used in the calculation of electron-electron interaction. This approximation

is justified by the fact that phonons only play a role for large energies, which

correspond, through the dispersion relation, to lengths of the same order or smaller

than the electronic mean free path in the considered wire.

(iii) finite size effects for phonons are neglected because the phonons of the wire are

coupled to phonons of the substrate, leading to a continuous energy spectrum.

(iv) coupling between electrons and phonons is described by a scalar deformation

potential. Thus, only the longitudinal phonon mode is coupled to electrons and the

square of the matrix element for the electron-phonon interaction is
2 2

0( ) /= Ω0 T 0 T , where 
2

00  does not depend on the geometry [15]. This

approximation is valid when the Fermi surface is spherical, which is a good

approximation in copper, silver and gold.

According to the Fermi Golden Rule, the transition rate ’Γ � �  between two electronic states of

wave vector N and N¶ is:

( ) ( )( ) ( ){
( ) ( )( ) ( )( )}

2

0
’ ’ ’’ ’ ’

’ ’’ ’ ’

k k ’2
1

         1 1 ,

� � ��� � � ���� ��� �	�

��� � � ���� �	� ���

0 ( ( I (

( ( I (

π δ ε ε η ε

δ ε ε η ε

− − −

− − −

−
Γ = − + − +

Ω

+ − − − − +

h (19)

where ( )η ε
 �  is the Bose energy distribution function of the phonons.

To obtain the rate ( )εΓ �  at which an electron with a wave vector N emits (ε >0) or absorbs
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(ε < 0) a phonon of energy ε , the previous equation has to be summed over the states N¶ with

ε  fixed. This leads to:

( ) ( )( ) ( ) ( )( )
2

2

05 3
1 ,

2
� � � �

�
0 I (V Y

εε ε η ε θ ε
π

Γ = − − +
h

(20)

where ( )θ ε  is the Heaviside function.

 The electron-phonon interaction rate is then written:

( ) ( ) ( ) ( )( )2, ,   � ��� �: [ ( :ε ε κ ε η ε θ ε= = + , (21)

where ( )2 5 3
0 / 2� � 	0 V Yκ π= h  is a constant that can be estimated from the temperature

dependence of the phase coherence time. In our experimental conditions, the effect of

electron-phonon coupling is a small correction to the distribution function calculated with

direct interaction between electrons.

�������� �.,0�LQWHUDFWLRQ

In order to properly describe the collision term due to coupling of electrons with

magnetic impurities, it is necessary to go beyond the perturbation theory given in the

introduction. The complication arises from the fact that the renormalization of the coupling

between electrons and magnetic impurities depends on the non-equilibrium electronic energy

distribution function. The calculation developed in [16], presented below, is valid either at

equilibrium well above Kondo temperature, or out-of-equilibrium for sufficiently smeared

distribution functions, in presence or not of a magnetic field.

We now present briefly this calculation, which gives the collision integral for spin 6 ò
impurities. Magnetic impurities are assumed to have a density 
 � �F  small enough so that they

do not interact one with another, and so that an electron is only coupled to one impurity at a

time.

The explicit form of ( ), ,: [ (ε  is the following:

( ) ( ) ( )
2

, ,
, ,  , ,  

2

ν ε
ε ε

ν
 

=  
 h


 � ���

�

F - [ (: [ ( & [ ( , (22)

where ( ), ,ε- [ (  is the renormalized coupling constant between electrons and a magnetic
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impurity, ν �  is the metal density of state, and ( ), ,& [ (ε  is the Fourier transform of a spin-

spin correlation function, which can be split as

( ) ( ) ( ) ( ), ,
, ,

2
+ −+

= + �
& [ W & [ W& [ W & [ W , (23)

where

( ) ( ) ( )
( ) ( ) ( )

, 0

, 0 .

±
± =

=

�

���
�

& [ W 6 W 6
& [ W 6 W 6

The averages are performed on the electron spin-states and energies weighted with the non-

equilibrium distribution function determined self-consistently.

If the coupling between electrons and magnetic impurity is weak, these correlators only result

from the spin relaxation and are equal to:

( ) ( )
( ) ( )

2  

/ 2,

�

�

& 3 (
&

ε π δ ε
ε πδ ε

± ±=

=

m

where ±3  is the occupation probability for impurity spin-up or spin-down states, and �(  is the

Zeeman splitting between these two states. These probabilities are determined by a master

equation:

 

1,

G3 3 3GW
3 3

±
± ±

+ −

= −Γ + Γ

+ =

�	�
(24)

where Γ± are the inverse life times of the spin-up and spin-down states.

If the coupling between electrons and magnetic impurity is strong, the time evolution of &�W�
is governed by the Hamiltonian of the electrons-magnetic impurity system, which reads

0= + 
+ + +  where 0 σ σ σ
σ

ε += −∑ �
�
�
���
�

+ F F ( 6  describes free electrons and an independent

magnetic impurity. Here, operators  σ
+
�F  and  σ

�F  respectively creates and annihilates an

electron in a given state N , with spin σ . The energy of this state is σε � . The second term

−
�
�( 6  describes a spin ½ impurity with Zeeman splitting =���( J� % , where J  is the

gyromagnetic factor of the magnetic impurity and ( ) -1/ 2 0.058 meV Tµ = =h� �H P  is the Bohr

magneton ( �P  is the electron weight). The interaction Hamiltonian
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( )( )’ ’ ’ ’
, ’

H + + + + + − + −
+ −↑ ↑ ↓ ↓ ↓ ↑ ↑ ↓= − + +∑ � � �

� ��� ��� ��� ���
� �

- F F - F F 6 - F F 6 - F F 6  couples electrons to the impurity

system with renormalized coupling constants ,  ,  +
+ −

���- - -  or −-  that are different for all spin-

components. The renormalization takes into account the distribution functions in the wire:

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ) ( ) ( )

( ) ( )

0

22 2

0 0 0

0

22 2

0 0 0

 D

 -D

( , )
1 1 / 4 , 1

( , )
1 1 / 4 , , / 2 1

, 0.5
with , = d ’ ,

�

� � 	 �

� � 	 �

-- [
- 6 6 - J [ ( - 6 6

-- [
- 6 6 - J [ J [ ( - 6 6
I [J [ L

ε
πν ν ε πν

ε
πν ν ε ε πν

ε
ε ε

ε ε δ

±

±

=
− + − + +

=
− + − + ± + +

−
− +∫

m






(25)

where D is here the bandwidth of the conduction electrons.

The spin-spin correlators must be calculated using the renormalized constant and the

projectors:

( ) ( )
( )

( ) ( )
( ) ( )

22

2 2

,1
,

2 ,

2 ,
, ,

, ,










�

[& [ [
3 [& [ [ ( [

ν ω
ω

ω ν ω
ν ω

ω
ω ν ω

± ±
±

±

=
+

=
+m

(26)

where ,ν ±�  are the Korringa widths, L��H� the inverse lifetimes of the spin states, equal to

( ) ( ) ( ){ }
( ) ( ) ( ){ }

2

2

, , ,

, , , / ,
4


 � � �

��
 �

[ 3 [ ( 3 [ (
[ [ ( [ 3

ν ω πν ς ω ς ω
πν ω ν ς ω ς ω

+ + − −

± ±

= − + +

= + �m
(27)

with

( ) ( ) ( ) ( ) ( )( ) ( ) ( )( )
( ) ( ) ( ) ( ) ( )( )

, , , , ’ 1 ,

, , , , 1 , ,

� � ���

� [ G - [ - [ - - I [ I [
[ G - [ - [ I [ I [

ς ω ε ε ε ω ε ε ω ε ε ω

ς ω ε ε ε ω ε ε ω

+ + − −

±
±

= + + + × − +

= + × − +

∫
∫
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(28)

and

( ) ( )( )
( ) ( )( ) ( )( )

 , 1 ,

 , 1 ,  ( , ) 1 ,

1 ,

�

� �

G I [ I [ (3 G I [ I [ ( G I [ I [ (
3 3

ε ε ε

ε ε ε ε ε ε+

− +

− −
=

− − × − +

= −

∫
∫ ∫


 
 


 
 
 
 
 
 (29)

the probabilities for spin-up or spin-down states calculated neglecting the Korringa width.
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���� ([SHULPHQWDO�UHDOL]DWLRQ

������ $FFHVVLQJ�WKH�HQHUJ\�GLVWULEXWLRQ�IXQFWLRQV�ZLWK�D�WXQQHO�SUREH
HOHFWURGH

As explained in Chapter 2, tunnel spectroscopy allows to obtain the electron energy

distribution function. We have designed a long and narrow superconducting probe that forms

a tunnel junction with the wire (see Figure 6). At zero magnetic field, we use the non-linearity

of the differential conductance of the normal-superconducting tunnel junction to obtain

( )I ( . In a magnetic field larger than 0.1T , the probe electrode is no more superconducting

but presents a resistance of about 1 kΩ , and we then take advantage of the Coulomb blockade

of tunneling through the junction in series with this resistance.

In both cases, the differential conductance ( )/G, G9 9  of the tunnel junction can be written:

( ) ( )1= + ∗�
G,5 9 T I H9G9 , (30)

with �5 , the resistance of the tunnel junction and ( )T (  a function dependent on the junction

and environment characteristics (see Chapter 2 for details on the determination of  ( )T ( ).

When the probe electrode is superconducting, ( ) /= ∂ ∂�T ( Q (  with �Q  the reduced density of

states in the superconducting probe, and the energy distribution function ( )I (  is obtained by

Figure 6: Left: Schematic of the circuit. A diffusive wire of length /  is connected to two reservoirs biased at

different potentials 0  and 8 . A long and narrow superconducting probe electrode forms a tunnel junction with

the wire in its middle. Right: Micrograph of a sample seen at an angle with arrows related to the corresponding

elements on the schematic.
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numerical deconvolution of ( )/G, G9 9  using Eq. (30). When the probe electrode is normal,

( ) ( ) ( ) ( )( )( ) 

 -
 , /ε ε ε ε

+∞

∞
= ∂ + − − ∂∫ � �T ( G 3 7 I ( I ( (  with ( )ε3  a function that depends

only on the tunnel junction environment and ( )�I (  the Fermi distribution at the refrigerator

temperature. In this case, the deconvolution procedure could not be applied. The reason is that

the Coulomb singularity is not as sharp as the BCS singularity so that the signal to noise ratio

in ( )/G, G9 9  is too small to avoid additional numerical noise during deconvolution. We have

then chosen to fit directly the measured differential conductance with Eq. (30) using the

function ( )T (  as determined in a calibration step and functions ( )I (  calculated from a

model. The differential conductance of such a junction shows a broad single dip when

electron interactions are strong and lead to electronic thermalization, and a double dip when

only little interaction occurs while electrons travel through the wire (see Figure 7).
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Figure 7: Top: Calculated distribution functions in the middle of an out-of-equilibrium  wire in two extreme

cases: intτ τ=�  (left) and intτ τ?�  (right). Bottom: Corresponding calculated differential conductance

/G, G9  of a tunnel junction formed between the wire and a resistive probe. The curve /G, G9  shows a double

dip when only little interaction occurs while electrons travel through the wire, and a broad single dip when

electrons thermalize.
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������ *HRPHWULFDO�DQG�HOHFWULFDO�FKDUDFWHULVWLFV�RI�WKH�PHDVXUHG�VDPSOHV

The fabrication process of the samples is detailed in Chapter 3. Measurements of energy

exchange in a magnetic field have been performed on different metallic wires made of

aluminum, silver, copper or gold. The electrical and geometrical characteristics of the main

samples measured during this thesis are summarized in Table 1. Additional results on other

silver samples are presented in Appendix 3.

The diffusion coefficient is obtained from Einstein’s relation 2σ ν= � H '  where ( )/σ = / 5ZW
is the wire conductivity. The electronic elastic mean free path, given as an indication, is

obtained from 1/ 3 v= ���' O  with v �  the Fermi velocity. The value of ν �  and v �  used for

aluminum, silver, copper, and gold are summarized in Table 2 [17].

Sample Source ( )µm/ ( ) nmZ ( ) nmW ( ) Ω5 ( )2 -1 cm  s' ( ) nm�O ( ) nsτ �

Al5 Al5N 5.05 110 45 28.6 64.8 9.5 3.9

6NAg I20 Ag6N 21.7 100 45 84.9 215 46.5 21.9

5NAg IV20 Ag5N 20.0 108 45 79.6 196 42.5 20.4

Au5 Au4N 5.1 85 45 42 109 23.5 2.4
Cu5 Cu5N 5.0 105 45 29.5 91 17 2.8

Table 1: Geometrical and electrical characteristics of the measured samples. The length is written / , the

width Z , the thickness W , the wire resistance 5 , the diffusion coefficient ' , the electronic elastic mean free

path �O  and the diffusion time 2 /τ =	 / '  .

( )-1 -3J  mν 
 ( )-1v m s�

silver 1.03×1047 1.39×106

copper 1.56×1047 1.57×106

gold 1.14×1047 1.39×106

aluminum 2.15×1047 2.03×106

Table 2: Density of states at the Fermi level ν �  and Fermi velocity v �  in silver, copper, gold, and aluminum

[17].
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���� �0HDVXUHPHQWV�RI�HQHUJ\�H[FKDQJH�DQG�FRPSDULVRQ�ZLWK
WKHRUHWLFDO�SUHGLFWLRQV

������ �(QHUJ\�H[FKDQJH�LQ�VLOYHU��FRSSHU�DQG�JROG�ZLUHV

Measurements of energy exchange were performed in silver, copper, and gold wires,

which are known to behave differently [1]. Part of the results obtained for the silver wires

were published in Phys. Rev. Lett. ��, 076806 (2003). This article is reproduced in Appendix

2. The sample named Sample 1 in the article corresponds to 5NAg IV20  and Sample 2 to

6NAg I20 . The results obtained for the copper wire were partly published in [18].

�������� (QHUJ\�H[FKDQJH�DW�]HUR�PDJQHWLF�ILHOG

7.3.1.1.1 Silver samples

The energy distribution functions measured at the middle of the two 20-µm silver

wires are shown in Figure 8 for 0.1,  0.2 and 0.3 mV=8 . The two samples were obtained

from silver sources with different purity ( 6NAg I20 : 99.9999%-pure; 5NAg IV20 : 99.999%-

pure). Though the diffusion times are very similar in both samples, the energy distribution

functions differ strongly: in 6NAg I20 , the energy distribution functions display double steps,

indicating that little interaction occurs; on the contrary in 5NAg IV20 , the energy distribution

functions are rounded, indicating that interactions are strong. The data are fit with Eq. (7),

taking into account for the collision term electron-electron interaction with the kernel

( ) 3/ 2
3/ 2 /ε κ εΚ =  (see Eq. (18)), and electron-phonon interaction with the kernel described by

Eq. (21). For the whole dataset of each sample, the single fit parameter is 3/ 2κ  , -18 nsκ =� �

being obtained from the phase coherence time measurements [1]. The parameters 3/ 2κ  are

found to be -1 -1/20.1 ns  meV  for 6NAg I20  and -1 -1/22.0 ns  meV  for 5NAg IV20 . The calculated

theoretical values using the geometrical and electrical characteristics of the samples (Table 1)

are respectively -1 -1/20.08 ns  meV  and -1 -1/20.075 ns  meV . Whereas the intensity of the

interaction in 6NAg I20  is in close agreement with the predictions for Coulomb interaction, it is

in 5NAg IV20  much larger, indicating that extra interactions occur in this sample. The fact that
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these extra interactions can be accounted for by a Kernel proportional to 3/ 21/ ε  is not

significant because the data are so close to Fermi functions that equally good fits could be

performed with other energy dependences.

The results obtained on other wires from the three different silver sources we have used are

presented in Appendix 3.

7.3.1.1.2 Gold and copper samples

The energy distribution functions in the middle of the 5-µm-long copper and gold

wires are shown in Figure 9. These distribution functions are very similar. Like for the silver

wires, we tried fits with Eq. (7) and with ( ) 3/ 2
3/ 2 /ε κ εΚ = . The fit parameter 3/ 2κ  is chosen to

account for the measurements at 0.1 mV=8 . We obtain -1 -1/2
3/ 2 2.7 ns  meVκ =  for Cu5  and

-1 -1/2
3/ 2 3.5 ns  meVκ =  for Au5 . When comparing with the experimental data the energy

distribution functions calculated at 0.2 and 0.3 mV=8  using these values of 3/ 2κ , it is found

that the discrepancy increases with the applied voltage. Moreover, the calculated theoretical

values using the geometrical and electrical characteristics of the samples are respectively

-1 -1/20.115 ns  meV  and -1 -1/20.075 ns  meV .
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Figure 8: Symbols: Distribution functions measured in the middle of silver wires made from a 99.9999%-pure

source (left panel) and from a 99.999%-pure source (right panel) for the applied voltages 0.1, 0.2=8  and

0.3 mV . Solid lines: Calculated distribution functions with an interaction kernel ( ) 3 / 2
3 / 2ε κ ε −Κ =  with

-1 -1/2
3 / 2 0.1 ns meVκ =  for 6NAg I20  and -1 -1/2

3 / 2 2 ns meVκ =  for 5NAg IV20 .
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From these data, it is therefore possible to conclude not only that the intensity of energy

exchange is larger than predicted for Coulomb interaction, but also that the energy

dependence of the interaction kernel is not the one of Coulomb electron-electron interaction.

7.3.1.1.3  Conclusion on the zero-magnetic-field measurements

Like in [1], we find that the intensity and energy dependence of interactions vary from

sample to sample. The presence of magnetic impurities is the best candidate to explain extra

interactions. Indeed, the zero-magnetic field data can be fit using the collision term calculated

in section 7.1.3.3. Yet, the set of fit parameters is not single. It is thus not a proof that

magnetic impurities are really responsible for the extra interactions. In order to perform a

more stringent test, we have measured energy exchange in all these samples as a function of

magnetic field.
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Figure 9: Symbols: Distribution functions measured in the middle of a copper wire (left panel) and of a gold wire

(right panel) for the applied voltages 0.1, 0.2=8  and 0.3 mV . Solid lines: Calculated distribution functions

with an interaction kernel ( ) 3 / 2
3 / 2ε κ ε −Κ =  where the parameter 3 / 2κ  is chosen to account for the measurements

at 0.1 mV=8 . The discrepancy between the measured and calculated distribution functions increases with the

applied voltage.
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�������� (QHUJ\�H[FKDQJH�LQ�SUHVHQFH�RI�PDJQHWLF�ILHOG

7.3.1.2.1 Qualitative behavior

As explained before, energy exchange in a magnetic field affects the differential

conductance ( )/G, G9 9  of the tunnel junction formed between the wire and the resistive

probe electrode. The measured ( )/G, G9 9  in 6NAg I20  and 5NAg IV20  for different magnetic

field % , and for the applied voltage 0.1 mV=8  are shown in Figure 10. The behavior of

both samples is once again different: In 6NAg I20 , /G, G9  does not depend on the applied

magnetic field, proving that the shape of ( )I (  is not dependent on KIM interaction. In

5NAg IV20 , the broad peak at low magnetic field in /G, G9  is progressively split in two peaks

as the magnetic field increases, as expected from KIM interaction.

The same measurements were performed on Cu5  and Au5 . The measured ( )/G, G9 9  in

Cu5  and Au5  as a function of the magnetic field %  for 0.2 mV=8  are shown in Figure 11.

Because of the shorter diffusion time �τ  in these samples, a double dip is always found at low

field (at 0=% , ( )I (  also presents sharp steps). In Cu5 , this double dip is first slightly

smeared out, then gets more pronounced as the magnetic field increases. This variation is
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Figure 10: Measured differential conductance /G, G9  for different applied magnetic field %  in samples

6NAg I20  and 5NAg IV20  for 0.1 mV=8 . In 6NAg I20 , /G, G9  does not depend on the magnetic field, proving

the absence of KIM interaction. In 5NAg IV20 , the broad peak at low magnetic field in /G, G9  is split in two

peaks, proving that KIM interaction is reduced. The curves are offset vertically for clarity.
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predicted for KIM interaction: the rate of KIM energy exchange first increases when first

order processes become inelastic before being reduced when they vanish together with higher

order processes. In Au5 , the double dip in /G, G9  becomes slightly more pronounced as the

magnetic field increases, indicating that KIM interaction is also of importance.

The extra-interactions observed at zero magnetic field in 5NAg IV20 , Cu5  and Au5  can

therefore be attributed to Kondo impurities. The most probable low-Kondo-temperature

magnetic impurity miscible in silver is manganese ( 40 mK�7 = ). In copper, magnetic

impurities are not well identified but there is experimental evidence that copper oxide, which

develops at the surface, contributes [19]. In gold, magnetic impurities could be iron

( 300 mK=�7 ), chromium ( 10 mK=�7 ), or manganese ( 10 mK<�7 ).

7.3.1.2.2 Quantitative comparison

In 6NAg I20 , the differential conductance /G, G9  does not depend on magnetic field. It

can be compared with the differential conductance calculated by convolution of the energy

distribution function measured in absence of magnetic field with the T-function deduced from

the /G, G9  at equilibrium (see Eq. (30) and Chapter 2). This comparison is shown in Figure
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Figure 11: Measured differential conductance /G, G9  for different applied magnetic field %  in samples Cu5

and Au5  for 0.2 mV=8 . In Cu5 , the double dip in /G, G9  is first slightly smeared out, then gets more

pronounced as the magnetic field increases, reflecting the non-monotonous evolution of KIM interaction. In

Au5 , the double dip in /G, G9  becomes slightly more pronounced as the magnetic field increases, proving that

KIM interaction plays a role. The curves are offset vertically for clarity.
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12. There appears a discrepancy between the measured curve and the calculated one at the

position of the dips, which increases with the voltage. Since this discrepancy does not depend

on magnetic field, we attribute it to a heating of the electrons of the probe electrode (see

discussion in Section 7.4.3.3). This heating associated with the current flowing through the

probe electrode depends on the ratio between the probe electrode resistance �5  and the tunnel

resistance �5 . When the probe electrode is superconducting, this effect is not significant

because its superconducting properties are not affected by temperature as long as it remains

much smaller than the critical temperature ( 1 K≈�7 ).

Measurements of the differential conductance at finite magnetic field suggest that KIM

interaction occurs in 5NAg IV20 , Cu5  and Au5 . We can now compare the data with the

theoretical predictions of Section 7.1.2, by including for the calculation of ( )I (  using Eq.

(7) the collision term due to Coulomb electron-electron interaction, electron-phonon

interaction and electron-magnetic impurity interaction.

The intensity of the Coulomb interaction 3/ 2κ  is obtained from the best fit of the large field

% , low 8  data, where the % -dependent interaction has essentially vanished. For silver

samples, which are the longest, a term of lesser importance is added to account for electron-

phonon interaction. The intensity κ � �  of this interaction is fixed to -1 -38 ns  meV , a value

deduced from the phase coherence time measurements. The remaining part of energy

exchange was fit with the KIM interaction. In the theory of KIM interaction, several

parameters enter: the Kondo temperature �7 , the bare coupling constant between electrons

and magnetic impurities 0- , the gyromagnetic factor of magnetic impurities J  and the

concentration of impurities � � �F . Yet, some of these parameters are known. The Kondo

temperatures were fixed at the values deduced from the fit of phase coherence time

measurements (see Chapter 6). These values are 40 mK=�7  for 5NAg IV20  (corresponding to

manganese) and 300 mK=�7  for Au5  (corresponding to iron). For copper, equally good fits

can be found for phase coherence time measurements for �7  between 0.1 [1] and 0.3 K with

� � �F  from 0.1 to 0.2 ppm. We have found that the best fits of the energy exchange

measurements were obtained for 300 mK=�7 . The problem of a fine determination of the

Kondo temperature of impurities in copper arises because the nature of magnetic impurities is
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unknown. The coupling constant between electrons and magnetic impurities is related to the

Kondo temperature by 01/D
� �

���N 7 H ν−=  where D 1 eV:  is the characteristic bandwidth of the

conduction electrons and is fixed. Therefore only two fit parameters J  and � � �F  remain for

KIM interaction.

The results of this procedure for 5NAg IV20  and Cu5  are presented on Figure 13 and Figure

14. For both samples, the whole voltage and magnetic field dependence can be described with

three significant fits parameters (summarized in Table 3). The corresponding energy

distribution functions are also shown.

For Au5  the agreement on the whole voltage and magnetic field dependence is not so good

(see Figure 15 ). This might be due to the fact that magnetic impurities are correlated due to

the tendency of clustering of iron in gold [20].
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Figure 12: Symbols: Measured differential conductance in 6NAg I20  at 0.6 T=%  for applied voltages 0.1=8 ,

0.2  and 0.3 mV . Solid line: Calculated differential conductance by convolving the measured distribution

function at 0=%  with the function T  deduced from the Coulomb blockade signal at equilibrium. The

discrepancy between the measured curve and the calculated one at the position of the dips increases with the

voltage and is attributed to a heating of the probe electrode (see discussion in Section 7.4.3.3).
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Figure 13: Top: Symbols: Measured differential conductance in 5NAg IV20  for different applied magnetic field

for the applied voltage 0.1, 0.2, 0.3 mV=8 . The curves have been vertically offset by steps of 0.033, for

clarity. Solid lines: Fits with theory including electron-electron interaction, electron-phonon interaction and KIM

interaction. The fit parameters are -1 -1/2
3 / 2 0.5 ns meVκ = , 17 ppm=� � �F  and 2.9=J . Other parameters were

fixed: 40 mK=�7 , 0 0.08� -ν = , -1 -38 ns  meVκ =� �  and 40 mK=� �7 . Bottom: Symbols: Measured energy

distribution functions at 0=% . Solid lines: Calculated energy distribution functions with the parameters listed

above. The curves have been vertically offset by steps of  0.2, for clarity.
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Figure 14: Top: Symbols: Measured differential conductance in Cu5  for different applied magnetic field for the

applied voltage 0.1, 0.2, 0.3 mV=8 . The curves have been vertically offset by steps of 0.033, for clarity. The

curves are not symmetric because the probe electrode position is slightly different from 1/ 2=[ : 0.485=[ .

Solid lines: Fits with theory including electron-electron interaction, electron-phonon interaction and KIM

interaction. The fit parameters are -1 -1/2
3 / 2 0.4 ns meVκ = , 4.8 ppm=� � �F  and 2.3=J . Other parameters were

fixed: 300 mK=�7  and 0 0.1� -ν = . Bottom: Symbols: Measured energy distribution functions at 0=% . Solid

lines: Calculated energy distribution functions with the parameters listed above. The curves have been vertically

offset by steps of  0.2, for clarity.
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Figure 15: Top: Symbols: Measured differential conductance in Au5  for different applied magnetic field for the

applied voltage 0.1, 0.2 mV=8 . The curves have been vertically offset by steps of 0.033, for clarity. Solid

lines: Fits with theory including electron-electron interaction, electron-phonon interaction and KIM interaction.

The fit parameters are -1 -1/2
3 / 2 0.4 ns meVκ = , 8 ppm=� � �F  and 3.4=J . Other parameters were fixed:

300 mK=7  and 0 0.1� -ν = . Bottom: Symbols: Measured energy distribution functions at 0=% . Solid lines:

Calculated energy distribution functions with the parameters listed above. The curves have been vertically offset

by steps of  0.2, for clarity
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7.3.1.2.3 Discussion

The fit parameters used to account for the data are summarized in Table 3 as well as

the predicted intensity of Coulomb interaction 3/ 2κ
� �

.

&RXORPE�HOHFWURQ�HOHFWURQ�LQWHUDFWLRQ

In 6NAg I20 , 3/ 2κ  is close to 3/ 2κ
� �

. In contrast in the three other samples, 3/ 2κ  is larger than

predicted, even if the uncertainty on 3/ 2κ  in these samples displaying KIM interaction is larger

because fits are made only on low-voltage high magnetic field curves. The accessible

magnetic field was not high enough to reach the Coulomb-interaction-dominated regime at

large voltage.

.,0�LQWHUDFWLRQ

,QFUHDVHG�LQWHUDFWLRQV�DW�LQWHUPHGLDWH�ILHOGV
In 5NAg IV20 , the measurement is not sensitive to the expected increase of the KIM interaction

rate for intermediate fields because ( )I (  is already close to a Fermi function at 0=% .

5HQRUPDOL]DWLRQ�HIIHFW
In order to evaluate the renormalization effect on 0- , we have calculated the collision term in

Eq. (1) ( ( ) 2
2 /ε κ εΚ = ) with the parameters � � �F  and 0-  found to fit the data of 5NAg IV20 ,

assuming 1/ 2=6 : -1
2 0.004 nsκ = . The result for ( )I (  is shown for 0.1 mV8 =  together

with the calculated distribution function using renormalization and the same parameters on

Figure 16. One clearly sees that the bare interaction leads to much less rounding than the

e-e interaction
( )-1 -1/2

3 / 2 ns meVκ
e-ph

interaction
KIM interactions

Sample ( )2 -1 cm  s' ( )-3 210 µm×�6 3 / 2κ
� �

3 / 2κ ( )-1nsκ � 	 ( )mK
7 ν � - ( )ppm� 
 �F J
Al5 64.8 4.95 0.06 ��������� � − − − −

6NAg I20 215 4.5 0.08 �������� 8 − − − −

5NAg IV20 196 4.86 0.075 ��� ���� 8 40 0.08 �� ���
Au5 109 3.825 0.12 ��� ���� − 300 0.1 � ���
Cu5 91 4.725 0.075 ��� ���� − ��� 0.1 ��� ���

Table 3: Parameters and fit parameters (EROG�characters) used to account for the measured energy distribution functions and

differential conductance when electron-electron, electron–phonon and KIM interactions are included.
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renormalized one.

&RQFHQWUDWLRQV�RI�PDJQHWLF�LPSXULWLHV

The fit concentrations � � �F  must be compared with 
φτF , the concentrations obtained from the

fits of the measurements of the phase coherence time in long wires fabricated with the same

source materials. The values are summarized in Table 4. The concentration � � �F  is found

systematically larger than 
φτF  by at least one order of magnitude, suggesting that either
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Figure 16: Solid line: Calculated energy distribution function taking only into account the second order in

coupling between electrons and magnetic impurities with the parameters of Table 3 using Eq. (1). Dashed line:

Calculated distribution function in 5NAg IV20  for 0.2 mV=8  taking into account the renormalization of the

coupling between electrons and magnetic impurities. It is seen that the renormalization of the coupling constant

by Kondo effect considerably enhances the interactions.

Source ( )ppm� 
 �F ( )ppm
φτF

Ag6N < 0.1 0.0024
Ag5N 17 0.13
Cu5N 4.8 0.15

Table 4: Fit concentrations deduced from energy exchange measurements � � �F  and from phase coherence time

measurements 
φτF  on samples made of the same source. For sources of Ag5N  and Cu5N , the concentration

� � �F  is found larger than 
φτF , suggesting that either pollution arises in the fabrication process of energy

exchange samples, or the theory for KIM interaction is not sufficient.
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pollution arises in the fabrication process of energy exchange samples, or the effect of

magnetic impurities is not well described by theory. In order to solve this problem,

experiments in which � � �F  can be controlled are essential.

(IIHFW�RI�WKH�VSLQ�YDOXH�RI�WKH�PDJQHWLF�LPSXULWLHV
The concentration � � �F  is not correctly evaluated in the fits because the magnetic impurity spin

is assumed to be ½, which might be incorrect. According to Ref. [2,16] the product ( )1+ � � �6 6 F

enters as a prefactor for the rate. However, this result does not take into account the spin

dependence of the renormalized constant. The complete calculation was performed recently in

[21] and the authors conclude that  increasing the value of the spin 6 in the calculation does

not lead to an increased rate.

6HQVLWLYLW\�WR�WKH�.RQGR�WHPSHUDWXUH
The sensitivity of the calculated /G, G9  curves on the Kondo temperature is exemplified on

Figure 17 for parameters fitting Cu5: ( )/ 5ν =� � ���F K , 2.3=J  and D 1 eV=  and for two

Kondo temperatures: 100 mK=�7  and 300 mK=	7 . The 0.1 mV=8  curves are nearly

insensitive to 
7 . At higher voltages, slight differences can be seen, but the result is clearly

not very sensitive to 
7 .
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Figure 17: Calculated differential conductance /G, G9  for different applied magnetic field with the fixed

parameters for KIM interaction: ( )/ 5ν =� � ���F K , 2.3=J  and D 1 eV=  and the different couple of parameters

( ) ( )0, 100 mK,0.08ν =
��7 -  for the solid lines and ( ) ( )0, 300 mK,0.1ν =
��7 -  for the dashed lines. The curves

have been vertically offset for clarity.
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*\URPDJQHWLF�IDFWRU�RI�PDJQHWLF�LPSXULWLHV
The value of the gyromagnetic factor of magnetic impurities depends on many parameters: the

spin-orbit coupling, the crystalline field [22] … For diluted manganese impurities in different

matrices, it is however predicted that 2:J . Yet, the magnetic field at the position of the

samples is not measured but calculated from the characteristics of the superconducting coil. A

10 %   error on the value of %  due to the evaluation of the exact position of the sample cannot

be excluded, and corresponds to a 10%  error on the J-factor. This does not account for the

whole discrepancy.

In parallel with this work, F. Pierre and N.O. Birge have measured the Aharonov-Bohm

oscillations in copper rings as a function of the magnetic field [23]. Aharonov-Bohm

oscillations are recovered at large magnetic field demonstrating that magnetic impurities are

also present, and that electronic coherence increases when magnetic impurities are polarized.

To account for their data they need to introduce the gyromagnetic factor of the impurity: it is

found equal to 0.9.  The impurities are also believed to be associated with copper oxide, but

the discrepancy in the J-factor between this experiment and energy exchange measurements is

not understood.

������ �(QHUJ\�H[FKDQJH�LQ�DQ�DOXPLQXP�ZLUH

Measurements of energy exchange in an aluminum wire in its normal state should

provide information on the electron-phonon coupling, which we naively expected to be large

since it is responsible for the phase transition to a superconductive state. Such energy

exchange measurements had never been performed before because they were previously based

on superconductivity in aluminum. In our new set-up using Coulomb blockade where both the

probe electrode and the wire are in the normal states, measurements on aluminum can be

performed. Information on electron-phonon interaction was already inferred in aluminum

from analysis of the resistivity and electron dephasing rate in the temperature range 1-300 K

[24]. The theoretical predictions for electron-phonon interaction in aluminum are performed

like for other metals [25] (see section 7.1.3.2).
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The sample Al5  consists of a 5-µm long aluminum wire (see parameters in Tables 1 to 6).

Measurements of the conductance of the probe junction as a function of bias voltage and

magnetic field are shown in Figure 18. The differential conductance does not depend on the

magnetic field, proving that KIM interaction is not relevant in this sample. This is indeed

expected because the Kondo temperatures 
7  of magnetic impurities in aluminum are higher

than in silver, copper or gold: 
7  varies exponentially with ν �  which is roughly twice as large

in aluminum as in other metals. For the energies probed in this experiment, nothing is

therefore magnetic.

To test electron-phonon interaction, the bias voltage 8  of the wire was increased to large

values for which the electron-phonon interaction contributes significantly to energy exchange

(see Figure 19). The results are shown on Figure 20.
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Figure 18: Symbols: Differential conductance /G, G9  of a tunnel junction between a resistive probe electrode

and an aluminum wire as a function of the bias voltage 8  across the wire and the applied magnetic field % . The

curves have been vertically offset for clarity. At all the voltages, /G, G9  does not depend on the magnetic field,

proving the absence of  KIM interaction. Solid lines: Fit with the parameters of Table 3, which are the same for

all values of the magnetic field.
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The data are perfectly fit using for the electron-phonon interaction an inelastic collision term

of the form of section 7.1.3.2. The amplitude of this term is found to be -1 -34 ns  meVκ =� � .

The value in aluminum can be compared with the one deduced from phase coherence time

measurements. The dephasing rate due to electron-phonon interaction is written 3%7  where

( ) 36 3ξ κ= � ���% N  with ( )3 1.2ξ ; , the Rieman zeta function (see Chapter 6). In [26], it was

found -1 -3
exp 0.9 ns  K;% , leading to -1 -32 ns  meVκ =� � , which is of the same order of

magnitude as our experimental value. Surprisingly, the amplitude of this term,

-1 -34 ns  meVκ =� � , is in fact smaller than the one found in silver wire ( -1 -38 ns  meVκ =� � ).

According to [24]  the value of %  in silver is such as aluminum silver :% % . This non-intuitive result

provides from the difference between the sound velocity, the density of states and solid

density of both metals.
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Figure 19: Influence of the electron-phonon interaction on the differential conductance /G, G9  of the tunnel

junction of the sample Al5  for different wire bias voltage 8 . Solid lines: 0κ =� � . Dashed lines:
-1 -30.4ns  meVκ =� 	 . Dotted lines: -1 -30.8ns  meVκ =� 	  (see other parameters in Table 3). Electron-phonon

interaction has a non-negligible effect only for the larger wire bias voltage.
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���� �([SHULPHQWDO�FRQWURO

������ �5HVHUYRLU�KHDWLQJ

When a voltage 8  is applied between the reservoirs, the power 2 / 2=3 8 5  is

dissipated in each reservoir. Although these reservoirs are thick to minimize heating, heating

effects are observed when the wire resistance is small [27]. The heating effects were evaluated

by F. Pierre in [1]. The reservoir temperature can be written:

( )22
0 β= +�7 7 8 ,

with 07  the base temperature and β  a coefficient dependent on the wire resistance, on the

geometry of the reservoirs and on the nature of the metal. Typically for our experiments, it is

found that 2 2 -210  K  mVβ Ω:5 . The coefficients β  were fit parameters for experimental

data but their influence is mostly visible in short wires on the sharpest part of the large voltage
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Figure 20: Symbols: Measured bias voltage 8  dependence of the differential conductance of a tunnel junction

between a normal resistive tunnel junction and an aluminum wire in an applied magnetic field 2 T% = . The data

have been vertically offset and 9  normalized to 8  for clarity. Lines: Fits with the parameters summarized in

Table 3.
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curves. The values of β  used for the different samples are summarized in Table 5. The

geometry of the two reservoirs being slightly different, two different values are used: β �  for

the ground reservoir and β �  for the other one.

The effect of reservoirs heating is exemplified on Figure 21 for the sample Cu5. Heating

effects are visible at the dips of the differential conductance curves, which correspond to the

step positions of the distribution functions.
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Figure 21: Calculated differential conductance /G, G9  and energy distribution functions ( )I (  with the

parameters found to account for the data of Cu5 (see Table 3) taking into account heating of the reservoirs

(dashed line) or neglecting it (solid lines).

Sample -1 (K mV )β � -1 (K mV )β �
Al5 0.13 0.16

6NAg I20 0 0

5NAg IV20 0 0

Au5 0.5 0.5
Cu5 0.5 0.5

Table 5: Heating coefficient  due to the injected power in the ground reservoir β �  and the biased reservoir

β �  for all the measured samples. The less resistive the wire, the larger the injected power and the higher β .

For some samples, β β<���  because of the small difference in the reservoirs geometry.
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������ �0HDVXUHPHQWV�ZLWK�D�VXSHUFRQGXFWLQJ�SUREH

Measurements with superconducting probes have been performed for a few years in

the Quantronics group. The deconvolution procedure of /G, G9  and experimental controls are

described in [11] and [1].

Here, a complication arises from the fact that the probe electrode was designed long and

narrow and presents a non-negligible impedance, even in its superconducting state, compared

to the resistance quantum �5 . This results in corrections to /G, G9  due to dynamical

Coulomb blockade of tunneling. At frequencies smaller than 2 /∆ K , an aluminum wire

behaves like a pure inductor. Its kinetic inductance is equal to ( )/ π∆h �5 , where �5  is the wire

resistance per unit length in the normal state. At frequencies above 2 /∆ K , Cooper pairs can

be broken into two quasiparticles and the aluminum probe electrode becomes dissipative. The

admittance ( )ω<  per unit length of a diffusive superconducting wire has been calculated

within the framework of the BCS theory [28]. At zero temperature, the real and imaginary

parts of ( )ω<  are given by:

( ) ( )( ) ( )( )1

1 2 4
1  for 2 ,ω ω ω ω

ω ω
 ∆ ∆  = + − ≥ ∆    

h
h h�

< ( N ( N5 (31)

( ) ( )( ) ( )( )2

1 1 2 1 2
1 ’ 1 ’ ,

2 2
ω ω ω

ω ω
 ∆ ∆    = − + − −        h h�

< ( N . N5 (32)

where ( ) ( ) ( )2 / 2ω ω ω= ∆ − ∆ +h hN , ( ) ( )( )1/ 22
’ 1ω ω= −N N , (  and .  are complete elliptic

integrals, and �5  is the superconducting wire resistance in its normal state. In the

superconducting state, the environment impedance of the junction of capacitance &  is then:

( ) ( ) ( )1 2

1ω
ω ω ω

=
+ +

�

� � 	= < L< L& . (33)

At zero temperature, the differential conductance ( )/
 � �G, G9 9  of the tunnel junction in

presence of an electromagnetic environment is just the convolution of the differential

conductance ( )/G, G9 9  of the tunnel junction without any environment with the probability

( )3 (  that a part of the energy is released to the environment of impedance 



� � �=  [29,30] (see

also appendix of Chapter 2).
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The function ( )3 (  presents two parts: a delta function at zero energy corresponding to elastic

tunneling, and an inelastic part for energies larger than 2∆ . The weight of the zero energy

peak, which is 100 %  in absence of Coulomb blockade, is in this case:

( )( )
0

Re
exp 2 .

ω ω
ω

+∞ 
= −   

∫
�

� � �

� �

�

= G: 5 (34)

The inelastic contribution to the differential conductance is non zero only for voltages larger

than 3 /∆ H  since the inelastic part of ( )/3 ( H  is non-zero only for voltages larger than 2 /∆ H ,

and since ( )/G, G9 9  of the normal-superconducting tunnel junction is non-zero only for

voltages larger than /∆ H . Therefore, for 3 /< ∆9 H , ( )/
 � �G, G9 9  is simply renormalized:

( ) ( )/ /=� � � � 	G, G9 9 : G, G9 9 , (35)

an effect that can be interpreted as a renormalization of the tunnel conductance. As an

example, ( )/� � �G, G9 9  of the sample Cu5 is presented in Figure 22. A rounded step appears

in the curve at 3 /= ∆9 H . Without any environment, ( )/G, G9 9  is predicted to be

proportional to the convolution of the BCS density of states in the superconducting electrode

with the derivative of the Fermi function at the fridge temperature (see Chapter 2). The

proportionality factor is the tunnel conductance of the junction. The curve below voltage

3 /∆ H  is perfectly fit using a BCS function with 240 µV∆ =  and a tunnel conductance of

20.8 µS . At voltage larger than 3 /∆ H , the tunnel conductance is found to be 23.3µS . The

ratio of conductances corresponds to a factor 0.89=
 �: . Conversely, the resistance �5  of the

probe electrode and the junction capacitance &  can be inferred from the Coulomb blockade

signal in a magnetic field, when the probe electrode is in its normal state (see Chapter 2). The

weight of the elastic peak 
 �:  can then be calculated with Eqs. (34) using for 
�

� � �=  Eqs (31),

(32), and (33) and is found to be 0.89=
 �: , in agreement with the weight deduced from

experiments at 0=% .

A practical drawback of Coulomb blockade effect is that we cannot access the energy

distribution functions for 2> ∆8 . The reason is that the structure in the /G, G9  resulting

from the convolution of ( )I (  with a double step, of width H8 , with the BCS density of

states, of width 2∆ , extends down to voltages smaller than 3 /− ∆ H . The effect of Coulomb
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blockade for these voltages is no more trivial. In practice, we have deconvolved ( )/G, G9 9
within the voltage range 3< ∆9 .

������ �0HDVXUHPHQW�ZLWK�D�QRUPDO�UHVLVWLYH�SUREH

�������� 'HWHUPLQDWLRQ�RI�WKH�T�IXQFWLRQ

For each sample, we have checked that the differential conductance of the tunnel

junction when the wire is at equilibrium ( 0=8 ) does not depend on magnetic field (see

Figure 23). The environmental characteristics were deduced from the fit of this signal to

Coulomb blockade (see Chapter 2). The parameters for the effective environment impedances

are summarized in Table 6.
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Figure 22: Symbols: Differential conductance ( )/� � �G, G9 9  of a normal-superconducting tunnel junction

embedded in a superconducting environment. Due to  Coulomb blockade of tunneling of quasiparticles, a

rounded step appears at the voltages 3 /± ∆ H . Between these voltages, the curve is fit using a BCS density of

states in the superconducting probe (dashed line) with a renormalized tunnel conductance (solid line).
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�������� 0RGHOLVDWLRQ�RI�WKH�HQYLURQPHQW

The critical point in the calibration process of the junction and the environment

characteristic is the choice of a model for the environment. As explained in Chapter 2, we just

model the environment as the parallel combination of the probe electrode resistance and the
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Figure 23: Symbols: Measured Coulomb blockade signal, for the sample 5NAg IV20  when the wire is at

equilibrium for different applied magnetic fields. Solid line: Fit of the data using Coulomb blockade theory and

the parameters summarized in Table 6. The magnetic field has no visible effect.

Sample ( )kΩ�5 ( ) mK7 ( ) f F& ( ) kΩ�5 ( ) µeV∆ � �:
Al5 2.06 40 0.92 185 − −

6NAg I20 1.65 35 0.9 102 237 0.89

5NAg IV20 1.34 31 0.8 167 240 0.88

Au5 1.68 48 0.95 704 245 0.88
Cu5 1.08 68 0.8 43 240 0.89

Table 6: Environmental characteristics of the tunnel junction in the measured samples. The resistance of the

probe electrode is written �5 , its electronic temperature 7 , the capacitance of the tunnel junction & , its

tunnel resistance �5 , and the gap and the resulting reduction factor when the probe electrode is in its

superconducting state ∆  and : .
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junction capacitance. To check the validity of this model, we have measured the Coulomb

blockade singularity when the wire is at equilibrium as a function of the refrigerator

temperature � � � � � �7 . The results are shown on Figure 24 for a tunnel junction of resistance

167 k= Ω�5  between a 5-µm long silver wire and a resistive probe electrode 0.67 k= Ω�5
(sample 5NAg III5  in appendix 3). The data are perfectly fit just by changing the temperature of

the probe electrode � 	 
7 . The fit temperature � 	 
7  differs from the fridge temperature � � 
 � � �7  only

at the lowest temperature. This is attributed to spurious electromagnetic noise.

�������� +HDWLQJ�RI�WKH�SUREH�HOHFWURGH

The electronic temperature in the probe electrode enters in the calculation of the

Coulomb blockade signal, and of the function T  (see Chapter 2). When electrons of the probe

electrode in its resistive state are heated up, coupling to the phonons is not efficient to

thermalize them at the refrigerator temperature because this process is scarce and the probe

electrode volume small. Assuming that the electrons in the reservoir at the end of the probe
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Figure 24: Symbols: Normalized differential conductance of a tunnel junction between a normal wire at

equilibrium and a normal resistive probe electrode as a function of the fridge temperature. Solid lines: Fit using

the Coulomb blockade theory. The environment of the junction is modeled by the parallel combination of its

capacitance &  and of the resistance of the probe electrode �5 . When the refrigerator temperature � � � � � �7
increases the electronic temperatures in the wire and in the probe electrode � � �7  follow. At the lowest temperature,

the discrepancy between � � � � � �7  and  � � �7  is attributed to spurious electromagnetic noise.
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electrode are at the fridge temperature 07  (see Figure 25), one obtains the electronic

temperature at the position of the tunnel junction by solving a heat equation with a source

term:

( ) 2 2
0 /

�

�

57 9 7 95= + ° , (36)

where °  is the Lorenz number, �5  the probe electrode resistance and �5  the tunnel

resistance.

For example, for 6NAg I20 , where 1.65 k= Ω�5  and 102 k= Ω�5 , the temperature 7 at the

junction position dependence on the applied voltage 9  is shown on Figure 25.

When the wire is biased out-of-equilibrium by an applied voltage 8 , the energy distribution

function presents a double step and the differential conductance /G, G9  of the tunnel junction

two dips at / 2= −9 8  and / 2=9 8  (see Figure 2 and Figure 7). At these voltages, /G, G9  is

very sharp and is therefore very sensitive to the temperature. For 0.1,  0.2 and 0.3 mV8 = , the

respective electronic temperatures in the probe electrode at the position of the tunnel junction

are 75,100 and 135 mK=7 . We have then calculated the function T  using these different

temperatures and convolved them with the measured distribution functions at 0% = . The

Figure 25: Left: Schematic of the circuit measurement. Electrons of the probe electrode are heated up by the

measurement current only by their diffusive flow to the contact at 07 . Right: Electronic temperature 7  in the

probe electrode at the junction position dependence on the voltage 9  for the Sample 6NAg I20  where

1.65k= Ω�5  and 103 k= Ω�5 .
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results are shown on Figure 26 together with the measured differential conductance at

0.6 T% = . The discrepancies observed on Figure 12 are suppressed, proving that electronic

heating of the probe electrode was responsible for the differences.

For the other samples, in which /G, G9  is not as sharp, the heating of the probe electrode has

a negligible effect.
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Figure 26: Symbols: Measured differential conductance in 6NAg I20  at 0.6 T=%  for applied voltages 0.1=8 ,

0.2  and 0.3 mV . Solid line: Calculated differential conductance by convolving the measured distribution

function at 0=%  with a  function T  calculated with an electronic temperature 7  dependent on 8  and the

parameters ,  C�5  deduced from the fit of  the Coulomb blockade signal at equilibrium. The electronic

temperatures were respectively  75, 100 and 135 mK=7  for 0.1,  0.2 and 0.3 mV=8 . In contrast to Figure 12,

the experimental and calculated curves coincide for all applied voltages.
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$SSHQGL[����'HULYDWLRQ�RI�WKH�NHUQHO�Κ�ε��RI�&RXORPE�HOHFWURQ�
HOHFWURQ�LQWHUDFWLRQ�IURP�IOXFWXDWLRQ�GLVVLSDWLRQ�WKHRUHP

In the following, another derivation of the Kernel of interactions between electrons is

developed using the fluctuation-dissipation theorem. A mesoscopic wire is treated as a system

of fermions weakly coupled to a reservoir of bosons (the electrodynamics modes

corresponding to currents and voltages propagating along the wire).

A fermionic system S and a bosonic reservoir R weakly coupled by a local interaction in space

are considered. The Hamiltonian of this system in second quantification is then:

 

( ) ( ) ,

   ( ) ( ) ( )

�����

� �����
�

� ���	�
�

�

+ + + +
+ D D
+ E E

+ H [ Y [ G[
H [ [ 9 [ G[

ε

ω

ρ

+

+

+

= + +

=

=

=

= Ψ Ψ

∑
∑

∫
∫

h (37)

where *( ) ( )  and ( ) ( ) ( ) 
�
 �
�����

 �

[ [ D 9 [ 9 [ E 9 [ E+Ψ = Ψ = +∑ ∑ .

The fermionic operators  and ���D D+  respectively creates and annihilates an electron in a given

state O. The energy of this state is ε � . The bosonic operators  and ���E E+  respectively creates and

annihilates a photon in a given state P. The energy of this state is ωh � . The field ( )9 [  is the

local voltage in the fermionic system with a gauge such that 0=
r$ .

By application of the Fermi Golden Rule, the rate at which fermionic states O and S,

respectively occupied and empty decays into O and S being empty and occupied while the

bosonic environment decays from state 5 to 4 is:

2
2 *

, ,

2
* *

2

2
( ) ( ) ( ) ( )

           ( , ) ( ,0) ( ) ( ) ( ) ( ),
� �

����� � ������ � �!� �"�
�#�

$%

�&�'���

H S [ [ 5 9 [ 4 G[ ( (

H G[G\GW 9 [ W 9 \ H [ [ \ \ε

π δ ε→

−

Γ = Ψ Ψ + −

= Ψ Ψ Ψ Ψ

∑∑ ∫

∫
(

h

h

(38)

where )S  is the probability for the environment to be in the state 5 , O  denotes an occupied

state, O  the same state but empty, and ε ε ε= −* +,*-+ .
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Since the fermionic states taken into account are near the Fermi surface,

* *( ) ( ) ( ) ( )Ψ Ψ Ψ Ψ�������[ [ \ \  only depends on ε * +  and ,  [ \  and is called ( ), ,ε � �0 [ \ . The

average quantity ( , ) ( ,0)9 [ W 9 \  only depends on −[ \  and W  and is called ( ),−�6 [ \ W .

Then,

2

, , 2
  ( , ) ( , ).

2

ε
ε

π→Γ = Ω −∫
h h

� 	

 � 	� 	��
� 	��

H GN 6 N 0 N (39)

The rate per unit of volume at which electrons lose the energy ωh , taking into account the

spin conservation between respectively states S and S , and O  and O , is:

2 2( )
( )  ( , ) ( , )  ( ) (1 ( ))

4
ω ω ω ω

π
= − − −∫ ∫h h

h

�
�

1 ( HS GN 6 N 0 N G( I ( I ( , (40)

where ( )�1 (  is the number of states per unit of energy at the Fermi level.

When a stationary voltage wave 0 0 0( , )  cos( ) cos( )ω=9 [ W 9 W N [  is applied, its spectral density

is 2 2
0 0 0 0 0 [ ( - ) ( )][ ( - ) ( )]π δ δ δ ω ω δ ω ω+ + + +9 N N N N . The electromagnetic field associated to

this voltage is ( ) ( ) ( )0 0 0 0, cos sinω=( [ W N 9 W N [  and the current density in a complex notation:

( ) ( ) ( )2
0 0, , / 1 /σ ω= +M [ W ( [ W LN '  where σ  is the dc-conductivity. The total absorbed power

by electrons in the wire of section �6  per unit length is then:

( )
2 2 2

* 0 0 0
2 2 4
0 0

1
Re . 

2 4

σ ω
ω

= =
+
�6 N 93 M ( ' N , (41)

where  denotes the average on [ .

 By identification with 0 0 0[ ( ) ( )] ω ω ω= − + − h3 S S 6 , knowing that:

0

0
0 ( ) (1 ( ))

1β ω

ωω− − =
−∫ �

h
hG( I ( I ( H ,

one finds:

2

2 2 4 2
( , )  

2 ( )

νω
π ω

=
+h

�

�

'N0 N 1 ( ' N , (42)

where ( ) /ν = Ω� �1 (  is the density of states per unit of energy and of volume at the Fermi

level. This result for ( ),ω0 N  is also available for ( ),ω0 N  and was used in this chapter for

the precedent derivation of the Kernel of electron-electron interaction.

If only Johnson-Nyquist noise is assumed to take place in the wire, by the fluctuation-
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dissipation theorem, one finds that:

2 2

2 2
( , )   ’ ( ’) (1 ( ’ )).

1 β ω

ρ ω ρω ω−= = − +
− ∫�

h
h�

� �

6 N G( I ( I (6 N H 6 N (43)

Then, by substitution in (40) and by identification with:

( ) ( ) ’ ( ’) (1 ( ’ ))  ( ) (1 ( ))�S G( I ( I ( G( I ( I (ω ν ω ω ω= Κ − + − −∫ ∫h h h , (44)

 one obtains

3/ 2 -1 3/ 2( ) ( 2     )  .���' 6ε π ν ε −Κ = h (45)

This calculation gives the same results as our first derivation. When comparing to the

experiment, we nevertheless use a factor twice as large that corresponds to the result of

Kamenev and Andreev [14].
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We reproduce here the paper published in Phys. Rev. Lett. ��, 076806 (2003).



Magnetic-Field-Dependent Quasiparticle Energy Relaxation in Mesoscopic Wires

A. Anthore, F. Pierre, H. Pothier, and D. Esteve
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In order to find out if magnetic impurities can mediate interactions between quasiparticles in metals,
we have measured the effect of a magnetic field B on the energy distribution function f�E� of
quasiparticles in two silver wires driven out of equilibrium by a bias voltage U. In a sample showing
sharp distributions at B � 0, no magnetic field effect is found, whereas, in the other sample, rounded
distributions at low magnetic field get sharper as B is increased, with a characteristic field proportional
to U. Comparison is made with recent calculations of the effect of magnetic-impurities-mediated
interactions taking into account Kondo physics.

DOI: 10.1103/PhysRevLett.90.076806 PACS numbers: 73.23.–b, 71.10.Ay, 72.10.–d, 72.15.Qm

The understanding of the phenomena which, at low
temperature, limit the extent of quantum coherence in
electronic transport and allow the quasiparticles to ex-
change energy is presently an important issue in meso-
scopic physics. There is indeed a discrepancy between the
theory [1], which predicts that Coulomb interactions pro-
vide the dominant mechanism for decoherence and for
energy exchange, and measurements of the coherence
time [2,3] or of energy exchange rates [4–7] in numerous
metallic samples. This discrepancy has been attributed
either to a flaw in the theory [2], or to the presence in
these samples of other mechanisms involving the scatter-
ing of electrons by undetected two-level systems or mag-
netic impurities. It has been indeed recently predicted
that even a minute concentration of such scatterers would
result in sizable energy exchange if the Kondo effect
occurs [8–10]. Whereas the limitation of quantum
coherence by the Kondo effect is widely known [11], its
efficiency for mediating energy exchange between quasi-
particles had not been anticipated. In the case of magnetic
impurities, a significant weakening of this effective
electron-electron interaction is furthermore predicted
when a large magnetic field is applied [12]. In order to
test these new predictions and more generally to under-
stand inelastic processes in mesoscopic conductors, we
have investigated the magnetic field dependence of the
energy exchange rate in mesoscopic wires.

The samples are wires connected to reservoirs biased at
potentials 0 and U (see Fig. 1). The energy distribution
function in the middle of the wire, f�E�, depends on the
ratio of the typical interaction time �int and the diffusion
time of quasiparticles �D � L2=D. If �int � �D, interac-
tions can be neglected and f�E� is the average of the
Fermi functions in both reservoirs, which have electro-
chemical potentials shifted by eU. In the experimental
situation where kBT � eU, f�E� is then a two-step func-
tion. In the opposite limit �int � �D, local equilibrium is
achieved at each coordinate along the wire, and f�E� is a
Fermi function at a temperature given by the balance
between Joule heating and electronic heat conductivity

to the reservoirs: This is the ‘‘hot-electron’’ regime [13].
The intermediate regime is of interest for experiments
because the precise shape of f�E� and its dependence onU
are characteristic of the interaction rate and of its energy
dependence [4].

FIG. 1. Top: Layout of the experiment: Awire is connected to
two large electrodes biased at potentials 0 and U. A resistive
probe electrode (in grey) forms a tunnel junction with the wire.
At equilibrium �U � 0�, the differential conductance dI=dV�V�
of this junction displays a dip at zero bias, due to Coulomb
blockade of tunneling (left). When the quasiparticles of the
wire are driven out of equilibrium by a finite voltage U (right),
their energy distribution function f�E� depends on the inter-
action rate between quasiparticles. In the absence of interac-
tions, f�E� is a two-step function and dI=dV�V� presents two
dips (solid lines). With strong interactions, f�E� is rounded, and
dI=dV�V� presents a broad dip (dashed lines).
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At zero magnetic field, the distribution function f�E�
can be inferred from the differential conductance
dI=dV�V� of a tunnel junction between the central part
of the wire and a superconducting (aluminum) probe
electrode biased at potential V [4]. In magnetic fields
larger than the critical field Bc � 0:1 T of the supercon-
ducting electrode, another method is required. Here, we
have taken advantage of the nonlinearity of the current-
voltage characteristic of a tunnel junction placed in series
with a resistance R. When both electrodes of the junction
are in the normal state and at thermal equilibrium, the
differential conductance dI=dV�V� displays a dip at
V � 0 (see Fig. 1), due to the Coulomb blockade of
tunneling [14]. Assuming that the two electrodes have
different distribution functions f and fref , the differential
conductance reads

dI
dV

�V� �
1

RT

Z
dEf�E�

Z
d"P�"�

�
@
@E

�fref�E	 eV 	 "� 
 fref�E	 eV 
 "��;

(1)

where RT is the tunnel resistance of the junction, and
P�"� �

R
dt
2� �h e

J�t�	i"t= �h the probability for an electron to
tunnel through the barrier while releasing to the environ-
ment an energy ", J�t� �

R
d!
! �f2Re�Z�!��g=RK���e
i!t


1�=�1
 e
 �h!=kBT�� with Z�!� � 1=�1=R	 jC!�, C the
junction capacitance, RK � h=e2 � 25:8 k� the resis-
tance quantum, and T the environment temperature. In
the case where the distribution function f�E� presents two
steps, as in Fig. 1, and fref is a Fermi function at tem-
perature T, one obtains, by linearity, two dips in
dI=dV�V� at V � 0 and V � 
U. In contrast, in the hot
electron regime, dI=dV�V� displays a broad dip centered
at V � 
U=2 (see Fig. 1). In the experiments, a large
series impedance at the relevant frequencies (up to about
50 GHz) was obtained by designing the probe electrode
as a long, narrow, and thin aluminum electrode
(25  m� 150 nm� 12 nm), which presents a resistance
R� 1:5 k� in the normal state.

We present here the results obtained on two silver
samples in which the distribution functions found at
B � 0 were extremely different. The samples were ob-
tained from nominally five-nines purity (99:999%,
sample No. 1) and six-nines purity (99:9999%, sample
No. 2) source material. For both wires, the length and
cross-section area are L � 20 �m, S � 100 nm� 48 nm.
The diffusion constants D � 196 and 215 cm2=s, respec-
tively, were deduced from the low temperature resistance.
The tunnel resistances RT (167 and 102 k�� and the
capacitances C (0.8 and 0.9 fF) of the junctions, as well
as the environment resistances R (1.34 and 1:65 k�), were
obtained from fits with Eq. (1) of dI=dV�V� measured at
B � 0:3 T and U � 0. We have checked that these curves
do not change with B when B > Bc.

At low magnetic field and low temperature, the probe
electrode is superconducting. Its impedance is purely
imaginary at frequencies lower than 2�=h [15]. It results
that for eV 2 �
3�	U; 3�� Coulomb blockade leads
only to a reduction of the differential conductance, which
is multiplied by a factor exp�


R
1
0
d!
! f2Re�Z�!��=

RKg�� 0:9. Numerical deconvolution of dI=dV�V� is
therefore possible, and the distribution functions ob-
tained at U � 0:15 mV are presented in the top of Fig. 2
for both samples. Whereas f�E� is close to a double-step
function in sample No. 2, it is much more rounded in
sample No. 1, indicating that the energy exchange rate is
much larger in the latter, since the diffusion times are
very similar (�D � L2=D ’ 20 ns�. In the bottom of
Fig. 2, we plot the calculated RTdI=dV�V� using formula
(1) with f�E� the distribution function measured at B � 0
(dashed curves), and present the measured curves for B �
0:3 T and B � 1:2 T (symbols) [16]. In sample No. 2, the
magnetic field has no visible effect. Note, however, that
the distribution functions are so close to a double step that
the experiment is not sensitive enough to detect a possible
slight reduction of the energy exchange rate with B. In
contrast, in sample No. 1, the rounded dip at zero field is
replaced at 1.2 T by a double dip, showing that the energy
exchange rate has been reduced. Figure 3 shows the
evolution of dI=dV�V� with magnetic field, from 0.3 to
1.5 T by steps of 0.3 T, for U � 0:1, 0.2, and 0.3 mV. A
similar behavior is observed at all values of U: The low-
field broad conductance dip at B � 0:3 T tends to be
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FIG. 2. (a) Symbols: Distribution functions f�E� at U �
0:15 mV and zero magnetic field in samples No. 1 and No. 2,
obtained by deconvolution of dI=dV�V� with the probe elec-
trode in the superconducting state. Solid lines: Fits with theory
including the effect of Kondo impurities (see text). (b) Dashed
line: Calculated Coulomb blockade signal dI=dV�V� using the
measured f�E� at B � 0. Symbols: Measured dI=dV�V� at U �
0:15 mV, with B � 0:3 and 1.2 T, the probe electrode being in
the resistive state. Solid line: Fits with theory.
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replaced at large fields by a double-dip structure. In
particular, the crossover field at which dI=dV�V� is nearly
constant over a broad voltage range is 0.6 T at U �
0:1 mV, 0.9 T at U � 0:15 mV (not shown), 1.2 T at U �
0:2mV, and 1.5 T at U � 0:25 mV (not shown), hence,
presenting a linear increase with U. The comparison of
the raw data on sample No. 1 and sample No. 2 in Fig. 2
already allows one to conclude that sample No. 1 presents
an extra interaction which can be strongly reduced by
applying a magnetic field.

We now compare the experimental data with theoreti-
cal predictions. The distribution function is calculated by
solving the stationary Boltzmann equation in the diffu-
sive regime [18,19]:

1

�D

@2f�x; E�

@x2
� 
I in

coll�x; E; ffg� 	 Iout
coll�x; E; ffg�; (2)

where I in
coll and Iout

coll are the rates at which quasiparticles
are scattered in and out of a state at energy E by inelastic
processes. Assuming that the dominant inelastic process
is a two-quasiparticle interaction which is local on the
scale of variations of the distribution function,

I in
coll �

Z
d"dE0K�"�fxE	"�1
 f

x
E�f

x
E0 �1
 fxE0
"�; (3)

where the shorthand fxE stands for f�x; E�. The out-
collision term Iout

coll has a similar form. The kernel func-
tion K�"� is proportional to the averaged squared
interaction between two quasiparticles exchanging an
energy ". Coulomb interactions lead, in diffusive wires,
to K�"� � $="3=2 [1], where $ � ��

���������
D=2

p
�h3=2%FS�
1

with %F the density of states at the Fermi level [20].
The B � 0 data for sample No. 2 can be well fit using
this term with $ � 0:12 ns
1 meV
1=2, of the same order
of magnitude as the theoretical value 0:07 ns
1 meV
1=2

[21], and a term of lesser importance describing phonon
emission [22]. The B � 0 data for sample No. 1 can be fit
similarly, with $ � 2:4 ns
1 meV
1=2; however, the re-
duction of the energy exchange rate with B indicates that
an extra process is present at B � 0. We have in the

following fixed $ to the best fit value obtained for the
large field, low U data, where the B dependent interaction
has essentially vanished: $ � 0:5 ns
1 meV
1=2 [21]. The
remaining part of the energy exchange rate was fit with
the theory of Göppert et al. [12,23], which accounts for
the effective interaction in the presence of a concentration
c of spin- 12 impurities, with Kondo temperature TK, gyro-
magnetic factor g, and coupling constant J between qua-
siparticles and magnetic impurities. The Kondo effect is
included in this calculation, under the assumption that the
distribution functions are not too sharp, leading to a
renormalization of J depending on the distribution func-
tion itself. The corresponding inelastic integral can also
be written in the form of Eq. (3), but with a K�"� function
depending on the energies E and E0 and on f. At zero
magnetic field, the effect of this term on f�E� is similar to
that of a phenomenological kernel K�"� / 1="2 as found
in [4]. For compatibility with phase-coherence time mea-
surements (see below), the Kondo temperature was fixed
at TK � 40 mK, which is the Kondo temperature of Mn in
Ag. As shown by solid lines in Figs. 2 and 3, the data can
be accurately reproduced using c � 17 ppm, g � 2:9, and
%J � 0:08 [24]. Note, however, that according to material
analysis of the silver batch used to fabricate sample No. 1,
no magnetic impurity was present in the source at the
level of 1 ppm. Since in some samples made out of the
same batch the intensity of the energy exchange rate
measured at B � 0 was found to be up to 4 times smaller,
pollution of the sample during fabrication might, at least
partly, explain this large impurity concentration.

The impurity concentration deduced from the fits of
f�E� must be further compared with the one obtained
from the analysis of measurements of the phase-
coherence time in long wires fabricated previously with
the same source materials. We have extracted the phase-
coherence time �’ from the magnetoresistance of wires
much longer than the phase-coherence length, using the
weak localization theory. In samples made of 6N purity
Ag, �’�T� � A
1T
2=3 from 1 K down to 40 mK, with
A � 0:36 ns
1 K
2=3, in reasonable agreement with the
theory of Coulomb interactions in disordered wires
(Atheory � 0:31 ns
1 K
2=3). At T � 40 mK, �’ � 21 ns.
In samples made of 5N silver, �’�T� does not vary be-
tween T � 200 mK and 40 mK, where we find �’ �
3:5 ns. This behavior can be attributed to the presence
of magnetic impurities, with concentration c, spin s, and
Kondo temperature TK, which lead to a spin-flip rate
described by [11,25] +sf�T� � �c=� �h%��2s�s	 1�=
��2s�s	 1� 	 ln2�T=TK��. The resulting phase-coherence
time �’�T� � 1=�AT2=3 	 +sf�T�� shows very little varia-
tion between 40 and 200 mK and describes precisely
the experimental data for c � 0:13 ppm, TK � 40 mK,
s � 1=2 and A � Atheory � 0:4 ns
1 K
2=3. This value of
c, compatible with the nominal source purity, is smaller
by 2 orders of magnitude than the value obtained from the
fits of energy exchange data on sample No. 1. A similar
set of results was also obtained with Cu samples, a
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FIG. 3. Magnetic field effect in sample No. 1: differential
conductance dI=dV�V� at U � 0:1, 0.2 and 0.3 mV, for B
ranging (from bottom to top) from 0.3 to 1.5 T by steps of
0.3 T. Successive curves have been vertically offset by steps of
0.033, for clarity.
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material in which the oxide at the surface of the films was
found to cause dephasing at low temperature [26]. Data on
energy exchange [17] could also be fit with the theory of
Göppert et al. [12], using TK � 300 mK, c � 4:8 ppm,
g � 2:3, %J � 0:1, on top of a Coulombic term with
intensity $ � 0:5 ns
1 meV
1=2 [23]. This result gives
evidence that the anomalous interactions observed in
many Cu wires at B � 0 [4,7] are also due to magnetic
impurities. Here also, measurements of the phase-
coherence time [7] are explained by significantly smaller
impurity concentrations ( � 0:3 ppm). This repeated dis-
crepancy on the concentrations deduced from the two
types of measurements remains an open problem. From
an experimental point of view, a more quantitative test of
theory could be obtained in samples with added, identi-
fied magnetic impurities at a known concentration [27].

In conclusion, we have found that anomalous energy
exchange rates between quasiparticles were strongly re-
duced by the application of a magnetic field. Moreover,
the energy and magnetic field dependence of the exchange
rate can be accurately accounted for by the presence of a
small concentration of Kondo magnetic impurities [12]. It
is worthwhile to compare this result with recent mea-
surements on Aharonov-Bohm rings, which show that the
small phase-coherence times found at B � 0 were in-
creased in a finite magnetic field [28]. All these measure-
ments indicate that the presence of very dilute magnetic
impurities is a very plausible candidate to explain both
extra dephasing and extra energy exchange observed in
many mesoscopic samples.

We acknowledge the technical help of P. Orfila, fruit-
ful discussions and correspondence with G. Göppert,
H. Grabert, and N. Birge, and permanent input from
M. Devoret, P. Joyez, C. Urbina, and D. Vion.
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$SSHQGL[����0HDVXUHPHQWV�RQ�RWKHU�VLOYHU�ZLUHV
During this thesis, we have measured other silver samples made of 3 different sources

(5N, 6N and 6N’). The two samples presented in the main body of this chapter were obtained

from the source 5N and 6N.

The electrical and geometrical characteristics of the other samples are summarized in Table 7.

To label the samples, we used the notation described in Figure 27. The samples 6N’Ag II10  and

6N’Ag III40  were the only ones made using the two-step process (see Chapter 3).

The measured distribution functions and fits to the theory taking into account electron-phonon

interaction and electron-electron interaction are presented in Figure 28. The electron-phonon

interaction is included with -1 -38ns meVκ =� �  and 40 mK=� �7 . The single fit parameter is

the intensity of electron-electron interaction 3/ 2κ . We have measured the interaction in a

magnetic field to know whether KIM interaction occurs in these samples.

5N
Ag I5

Material

Wire length (µm)

Source purity Sample label

Figure 27: System used to label the samples.

Sample Source ( )µm/ ( ) nmZ ( ) nmW ( ) Ω5 ( )2 -1 cm  s' ( ) nsτ �

5NAg I5 Ag5N 5.45 117 45 17 230 1.3

5NAg II5 Ag5N 5.15 101 45 24 178 1.5

5NAg III5 Ag5N 5.27 120 45 20 184 1.5

6N’Ag II10 Ag6N’ 9.55 124 45 30.7 210 4.3

6N’Ag III40 Ag6N’ 38.4 185 45 − : 200 : 80

Table 7: Geometrical and electrical characteristics of the measured samples. The length is / , the width Z ,

the thickness W , the wire resistance 5 , the diffusion coefficient ' , and the diffusion time from one end to

the other τ �  .
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The results for 6N’Ag II10  and 5NAg I5  are presented on Figure 29. For all the samples, the

differential conductance of the tunnel junction does not depend on the magnetic field, and is

close to the one inferred from the 0=%  measurements (heating effects as described in

Section 7.4.3.3 are included). The small effect of %  observed at the lowest bias voltage for

5NAg I5  is not significant compared to the measurement precision.

The results for the samples made of the 5N-source are in sharp contrast with the results found

for 5NAg IV20 : in this sample, energy exchange was dominated by KIM interaction up to large

magnetic field, and the fit impurity concentration was 17 ppm. We have checked that in the

samples presented in this appendix, we would have been able to detect impurity concentration

larger than 2 ppm. These results suggest that the impurities in 5NAg IV20  come from a

pollution during the fabrication process.
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Figure 28: Symbols: Energy distribution functions for 0.1, 0.2 and 0.3 mV=8  in five silver wires of different

diffusion time τ � . Top: The samples made using a 6N-pure silver source can be fit using the Kernel of Coulomb

interaction only (Solid lines: Fits with -1 -1/2
3 / 2 0.09 ns meVκ =  for 6N’Ag II10  and -1 -1/2

3 / 2 0.17 ns meVκ =  for

6N’Ag III40 ). Bottom: Samples made using a 5N-pure source; The curves are fit using Coulomb interaction kernel

(Solid lines: Predictions with -1 -1/2
3 / 2 0.6 ns meVκ = , -1 -1/2

3 / 2 0.3 ns meVκ =  and -1 -1/2
3 / 2 0.6 ns meVκ =

for 5NAg I5 , 5NAg II5  and 5NAg III5  respectively).
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&KDSWHU�� 6XPPDU\��,QHODVWLF�VFDWWHULQJ
PHFKDQLVPV�LQ�GLIIXVLYH�PHWDOOLF
ZLUHV

The results of the phase coherence time and energy exchange measurements presented

in Chapter 6 and 7 bring evidence that at low temperature, two mechanisms dominate inelastic

scattering: Coulomb electron-electron interaction and electron-magnetic impurities (KIM)

interaction.

In energy exchange measurements, the presence of magnetic impurities is suggested by an

anomalous energy dependence of the interaction at zero-magnetic field, and revealed by the

magnetic field dependence of the electron energy distribution functions. In phase coherence

time ( φτ ) measurements, the signature of magnetic impurities is the “saturation” of φτ . In the

following, we compare quantitatively the theoretical predictions and experimental

observations for both inelastic scattering mechanisms in the two types of experiments.

���� &RXORPE�HOHFWURQ�HOHFWURQ�LQWHUDFWLRQ

������ &RXORPE�HOHFWURQ�HOHFWURQ�LQWHUDFWLRQ�DQG�HQHUJ\�H[FKDQJH

The predicted kernel for Coulomb electron-electron interactions is written in diffusive

wires [1]:

( ) 3/ 2
3/ 2

κε
ε

Κ = , (1)

with ( ) 1
3/2

3/ 2 e/ 2     Sκ π ν
−

= h �'  [2]. The parameter 3 / 2κ  was the main fit parameter for the
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samples in which energy exchange does not change with magnetic field. For the samples

displaying a magnetic field dependence, 3 / 2κ  was determined by fitting the low-voltage high-

magnetic field curves for which the Coulomb interaction dominates, but this determination is

less accurate. The experimental values of 3 / 2κ  are summarized in Table 1 (samples measured

during this thesis) and Table 2 (samples measured by F. Pierre [3]1).

The experimental value 3/ 2κ  is always found larger (from 1 to 10 times) than the theoretical
                                                          
1 The process to measure energy exchange in presence of a magnetic field has only been developed during this
thesis work, this is why the B-dependence of energy exchange in samples of Table 2 was not tested.

Sample   

(µm)

/
( )
  

nm

Z

( )2 -1

     

cm  s

'
( )
 

ns

τ �
3 / 2

-1 -1/2

      

(ns  meV )

κ 3 / 2

-1 -1/2

      

(ns  meV )

κ
� �

B
-dependent

   

(ppm)

� � �F

6NAg I20 21.7 100 215 21.9 0.1 ± 0.02 0.08 No < 0.1

6N’Ag II10 9.55 124 210 4.3 0.09 ± .01 0.06 No < 0.5

6N’Ag III40 38.4 185 200 80 0.17 ± 0.02 0.05 ? ?

5NAg I5 5.45 117 230 1.3 0.6 ± 0.1 0.06 No < 2

5NAg II5 5.15 101 178 1.5 0.3 ± 0.05 0.085 No < 2

5NAg III5 5.27 120 184 1.5 0.6 ± 0.1 0.07 No < 2

5NAg IV20 20.0 108 196 20.4 0.5 ± 0.1 0.075 Yes 17

Al5 5.05 110 64.8 3.9 0.06 ± 0.02 0.06 No < 0.1
Au5 5.1 85 109 2.5 0.4 ± 0.2 0.12 Yes 8
Cu5 5.0 105 91 2.8 0.4 ± 0.2 0.075 Yes 4.8

Table 1: Summary of sample characteristics and Coulomb interaction intensity 3 / 2κ  deduced from energy

exchange measurements in this thesis. The expected theoretical value 3 / 2κ
� �

 is also indicated.

Sample   

(µm)

/
( )
  

nm

Z

( )2 -1

     

cm  s

'
( )
 

ns

τ
3 / 2

-1 -1/2

      

(ns  meV )

κ 3 / 2

-1 -1/2

      

(ns  meV )

κ

AgI5 5.0 90 115 2.2 1.2 ± 0.2 0.13

AgII5 5.2 65 150 1.8 0.45 ± 0.2 0.15

AgII10 10.3 65 165 6.4 0.55 ± 0.15 0.15

AgIII20 19.6 160 230 16.7 0.5 ± 0.05 0.05

AgIV20α 19.7 95 205 19.0 0.4 ± 0.05 0.09

AgIV20β 19.9 100 185 21.0 0.4 ± 0.1 0.09

Table 2: Summary of sample characteristics and Coulomb interaction intensity deduced from energy

exchange measurements in the silver samples, made from the 6N source (same as 6NAg I20 ), measured by F.

Pierre [3] previous to this work. No test of KIM interaction was performed, but fits with Coulomb interaction

only were excellent.
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one 3/ 2κ
� �

. Variations from sample to sample are not correlated with the sample characteristics:

width, length, thickness, or diffusion coefficient. The dispersion of the experimental values of

3/ 2κ  is illustrated in Figure 1 on which 3/ 2κ  is plotted as a function of 3/ 2κ
� �

.

������ (OHFWURQ�HOHFWURQ�LQWHUDFWLRQ�DQG�HOHFWURQLF�SKDVH�FRKHUHQFH

From phase coherence time measurements, the intensity and energy dependence of

Coulomb interactions can also be inferred. It is predicted that the electronic decoherence rate

dependence on temperature due to Coulomb interaction is written [4,5]:

1 2 / 3
φτ − = $7 , (2)

with ( ) 2 / 3
2

B F e2 2  /   Sν
−

= h$ ' N . The dependence in 2 / 37 is consistent with the kernel (1)

dependence in 3/ 2ε − . The parameters $  and 3/ 2κ  depend on the same combination of the

sample characteristics and one can identify: ( )( ) 2 / 3

3/ 24 /  /π κ
−

= h �$ N .

Measurements of phase coherence time dependence on temperature were performed on

samples made from the same sources (Ag6N, Ag6N’, Ag5N, and Cu5N) as the samples used
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Figure 1: Left Panel: Symbols: Experimental value of the intensity of Coulomb interaction 3 / 2κ  deduced from fits

of energy exchange measurements as a function of the value 3 / 2κ
� �

 calculated from samples characteristics. Right

panel: Symbols: Experimental value of the intensity of Coulomb interaction $  deduced from fits of phase

coherence time measurements as a function of the value � �$  calculated from samples characteristics. In both

panels, the disagreement with theory is the distance to the solid line of slope 1.
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to measure energy exchange. In the samples displaying no saturation, the experimental value

of $  was the only fit parameter at low temperature. In the samples displaying saturation, the

Coulomb interaction was never dominant on KIM interaction on the explored temperature

range and the determination of $  was less accurate, or even not possible. The experimental

values are summarized in Table 3 (samples measured at Michigan State University by F.

Pierre and N.O. Birge) and Table 4 (samples that we have measured).

The experimental values of $  are of the same order of magnitude as the predicted value � �$ .

In silver the difference between the two values is at worse 25 %. The dispersion of $
illustrated in Figure 1 is smaller than the dispersion of 3 / 2κ .

������ &RQFOXVLRQ�RQ�HOHFWURQ�HOHFWURQ�LQWHUDFWLRQ

Although theoretical predictions for energy exchange and decoherence rate due to

electron-electron Coulomb interactions are performed using the same formalism, experimental

Sample    

(µm)

/
( )
   

nm

W
( )
  

nm

Z
( )2 -1

     

cm  s

'
-1 -2/3

     

(ns  K )

$
-1 -2/3

   

(ns  K )

� �$ saturation    

(ppm)
φτF

Ag(6N)a 135 45 65 115 0.68 0.55 No 0.009
Ag(6N)b 270 45 100 70 0.54 0.51 No 0.011
Ag(6N)c 400 55 105 185 0.35 0.31 No 0.0024
Ag(5N)a 135 65 108 105 0.41 0.33 Yes 0.17
Ag(5N)b 270 65 90 135 0.35 0.31 Yes 0.13
Cu(5N)a 270 45 110 70 0.55 0.35 Yes 0.15
Cu(5N)b 270 45 100 160 − 0.29 Yes 0.75

Table 3: Summary of sample characteristics and Coulomb interaction intensity deduced from phase coherence

time measurements in samples made from our 6N-, and 5N-sources. These measurements were performed by

F. Pierre and N.O. Birge at Michigan State University.

Sample   

(µm)

/
( )
   

nm

W
( )
   

nm

Z
( )2 -1

     

cm  s

'
-1 -2/3

     

(ns  K )

$
-1 -2/3

    

(ns  K )

� �$ saturation    

(ppm)
φτF

Ag(6N’) 1790 45 150 139 0.38 0.30 No 0.05
Ag(5N)c 895 45 150 280 0.51 0.24 Yes 0.12

Table 4: Summary of sample characteristics and Coulomb interaction intensity deduced from phase coherence

time measurements in silver samples, made from the 6Nb source (same as 6NAg I20 ) and 5N-source (the

sample Ag(5N)c was made after the sample of energy exchange measurement 5NAg IV20 ). The measurements

were performed at Saclay.
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consistency with theoretical predictions differs strongly between the two types of

measurements.

The major difference between the two manifestations of Coulomb interaction is the probed

energy range. Quasi-elastic scattering dominates decoherence, whereas processes at energies

between 0 and roughly / 4H8  determine the shape of the energy distribution function ( )I (
(see Figure 2). In term of interaction time, this means that phase coherence time is sensitive to

long-time interaction, whereas energy exchange is sensitive to short-time interaction. In our

experiments, the diffusion coefficient is inferred from resistance measurement which is also

sensitive to long-time dynamics. If in the experiments, the electron dynamics was not

diffusive at all scales with the same diffusion coefficient, for example because of the granular

structure or surface-dominated scattering (see Figure 3), the evaluation of '  from the

resistance would only be valid for phase coherence time measurements and not for energy
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Figure 2: Scale of energies probed in phase coherence time measurements (exemplified for (Ag6N)c) and energy

exchange measurements (exemplified for 6NAg I20  and 5NAg III5 ). Top: Measured curves and fits to Coulomb

interaction theory. The probed energy limit ε  is indicated . Bottom: Log-log representation of the Coulomb

interaction Kernel using 3 / 2κ
� �

 (solid lines), and 3 / 2κ  (dashed lines) The bold lines indicate the range of probed

energies.
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exchange measurements. This would explain the large discrepancy between the experimental

values of 3/ 2κ  compared to the theoretical values and also the samples to samples variations,

since the grain structure is different for each sample.

��� .,0�LQWHUDFWLRQ
We have demonstrated with our energy exchange measurements that in several

samples KIM interaction dominates Coulomb interaction on a large range of temperature, as

recently predicted [6]. KIM interaction manifests itself on phase coherence time

measurements for all the samples made of 5N-copper and 5N-silver, and on energy exchange

measurements for one of the samples made of 5N-silver and for the sample made of 5N-

copper. Yet, a large discrepancy remains between the fit concentrations for both

measurements (see Table 5).

Measurements on 5N-silver indicate that the discrepancy can be partly attributed to pollution

Figure 3: Top: Model of a wire and diffusive electron trajectory: the dispersion of times between two collisions is

small. Bottom: Model of a wire and pseudo-diffusive trajectory: two typical times between collisions exist. The

shorter one is probed in energy exchange measurements and the longer one in resistivity and phase coherence

time measurements.

Source ( )ppm� � �F ( )ppm
φτF

Ag6N < 0.1 0.0024, 0.009, 0.011
Ag5N < 2, 17 0.13, 0.17
Ag6N’ < 0.5 0.05
Cu5N 4.8 0.15, 0.75

Table 5: Fit concentrations of energy exchange measurements � � �F  and phase coherence time measurements

φτF  on samples made of the same source. For sources of Ag5N  and Cu5N , the concentration � � �F  is found

larger than 
φτF , suggesting that either pollution arises in the fabrication process of energy exchange samples,

or that the theory for KIM interaction is not sufficient.
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during fabrication: 5NAg IV20  is the single 5N-silver sample to present more than 2 ppm of

impurities whereas the sample Ag(5N)c made later from the same source only displays 0.1

ppm of impurities, according to weak localization measurements. Yet, fit concentrations on

copper wires display also a discrepancy between phase coherence time and energy exchange

measurements. A quantitative test of the theory of KIM interactions must be done by

measuring energy exchange in samples made with very pure metal, in which controlled

concentrations of magnetic impurities are implanted. A quantitative test was made on silver

samples for phase coherence time measurements and proved that the fit concentrations are

well estimated in this type of measurements [7]. To definitely settle out the concentration

problem, a new fabrication process is presently being developed to allow measurements of

phase coherence time and energy exchange on co-evaporated and co-implanted samples.
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&KDSWHU��� 7KHRUHWLFDO�GHVFULSWLRQ�RI
QRQ�HTXLOLEULXP�VXSHUFRQGXFWLYLW\
DQG�SUR[LPLW\�HIIHFW

The BCS theory of superconductivity [1] deals with equilibrium thermodynamical

properties of superconductors. To predict out-of-equilibrium properties, this theory has been

reformulated using Green functions in the Keldish formalism [2], leading to the general theory

of non-equilibrium superconductivity. This formalism applies to situations in which

superconducting properties are not homogeneous, it is therefore very powerful to deal with

proximity effect, a phenomenon which occurs when normal (non-superconducting) and

superconducting metals are in contact. In this chapter, the general starting points of non-

equilibrium superconductivity and the derivation of Usadel equations are presented. Usadel

equations are at the basis of the description of diffusive systems like ours. Starting from the

Dyson equation, two usual approximations are made: quasiclassical approximation and

diffusive limit [3]. For practical purposes, the Green functions are parameterized with two

complex numbers, corresponding to a pairing angle and a superconducting phase.

���� 'HULYDWLRQ�RI�WKH�8VDGHO�HTXDWLRQV

������ 2XW�RI�HTXLOLEULXP�*UHHQ�IXQFWLRQV��.HOGLVK�IRUPDOLVP

�������� *HQHUDOLW\

Thanks to Green functions, the description of a complex electronic system can be

achieved starting from the description of a simpler one, for example free and independent
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electrons, on which an Hamiltonian describing impurity scattering or electron-electron

interaction, or coupling with phonons, is adiabatically branched between the times = −∞W  and

0=W .

The exact Green function of the system can be expressed with the Dyson equation from the

free Green function 0* :

0

01
=

− Σ
** * , (1)

where Σ  is the self-energy. The self-energy is a summation of an infinite number of distinct

diagrams describing interactions [4]. Green functions are only useful if one can perform a

perturbative development and approximates the self-energy by the lowest order terms in the

series.

Starting from a fundamental state describing the system at = −∞W , each perturbation term

consists of the mean value of operators that act one after another in time. The state of the

system at = +∞W  has then to be known. At equilibrium, the final state is identical, modulus a

phase, to the fundamental one. Out-of-equilibrium, the final state is unknown. Keldish’s trick

is to make time return to the past at = −∞W , by ordering time in the complex plan (see Figure

1).

The out-of-equilibrium formalism uses therefore the Green functions at equilibrium. Time has

a positive or negative imaginary part and Green functions are 2 2×  matrices expressed in term

of 
�* , 
�*  and 

�* , the retarded, advanced and Keldish Green’s functions as:

 

0   

 
=  

 

���

�

* ** * , (2)

Figure 1 : Keldish contour in the complex plan. The arrows indicate the ordering of time.
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where

( ) ( ) ( ){ }
( ) ( ) ( ){ }

( ) ( )

’ , , ’, ’

’ , , ’, ’

, , ’, ’ ,

�

�

�

* L W W U W U W

* L W W U W U W

* L U W U W

θ ψ ψ

θ ψ ψ

ψ ψ

+

+

+

= − −

= −

= −   

(3)

with ( ),ψ + U W  the creation operator of a particle at the position U  at time W . Here { } stands

for anticommutators, [ ]stands for commutators and  �  stands for an average on the

dynamic state of the system. The functions 
�

*  and 
�

*  describe the equilibrium states of the

system and 
�

*  describes the occupation of these states.

�������� $SSOLFDWLRQ�WR�VXSHUFRQGXFWLYLW\

The Green functions formalism, adapted to superconductivity, describes a system of

interacting electrons in terms of correlation functions *
�
 and *
�
, defined as the matrices:

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

†

† † †

†

† † †

, , , ’

, , , ’

 ˆ

ˆ  ,

�	�

W W

F F F F
* L

F F F F

F F F F
* L

F F F F
↓

↑ ↑ ↑ ↓>

↓ ↑ ↓ ↓

↑ ↑ ↓ ↑<

↑ ↓ ↓

 
= −   − − 

 
=   − − 

[ [ [ [
[ [

[ [ [ [

[ [ [ [
[ [

[ [ [ [

�W �W
 �W �W

� W �W
 �W �W


�W
 � W �W
 �W
�W
 �W �W
 �W

�������� � �����
�������� � �����


 
 



 



 





 


(4)

where the fermionic operators †

, ,
 and ↑ ↓ ↑ ↓F F  respectively create and annihilate an electron of

spin up or down and  �  stands for an average on the dynamic state of the system for each

matrix element. This theory, which contains the “anomalous” components ( (�W� �W
�� ↑ ↓F F 
[ [  and

† †( (�W� �W
�↓ ↑F F 
[ [ , corresponding to the annihilation and creation of an electronic pair, treats the

normal-like and superconducting-like correlations all at once. The retarded, advanced and

Keldish Green’s functions are 2 2×  matrix, noted ˆ �* , ˆ �*  and ˆ 
* , with

( )( )
( )( )

’

’

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ .

�

�

�

W W

W W

* * *

* * *

* * *

θ

θ

< >

< >

< >

−

−

= −

= − −

= +

(5)

The correlation functions obey the Dyson equation:

( ) ( )( ) ( ) ( ) ( )
0

1 ’’, ’’, ’, ’ ’’, ’’, ’, ’ , , ’’, ’’ ’’’ ’’ δ δ− − −− Σ =∫
� � �

W W W W W W W WG GW * * , 
[ [ [ [ [ [ [ [[ , (6)
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where

ˆ ˆ 
,

ˆ0   

 
=    

(
���

�

* **
*

and

 
,

0   

 Σ Σ 
Σ =  

Σ 

���

�

the generalized self-energy, dependent on the Hamiltonian of the system, including the pairing

hamiltonian of the BCS theory [1], electron-phonon scattering and elastic scattering on

impurities. The function 0

(*  is the free-electron Green’s function, which reads:

( ) ( )( ) ( )
0

1 2
0, , , ’ ’

1

2
τ µ τ δ− −

 = ∂ + − Φ +  

( (( (
h �
	W W W W* L HP
 ∇ �[ [ [ ,

where the covariant spatial derivative and the Pauli matrices are defined as:

( )
0

0

,

ˆ     0 1    0
ˆ,  ,  

ˆ0    0    1

0    1 0   1     0
ˆ ˆ ˆ,  ,  ,

1    0       0 0 1

�










� � �

LH

L
L

τ τ

τ
τ τ

τ

τ τ τ

= −

   
= =   

  
−     

= = =     −     

( ( (

h

(

���

[$∇ ∇

with ( ) ( ),  and µΦ [ [$  respectively the scalar, vector and chemical potential, with the gauge

convention ( ) 0.=∇ � [$
When substracting the Dyson equation to its conjugate, Eq. (6) leads to:

( ) ( ) ( )1
0 ’’, ’’, ’, ’ ’’, ’’, ’, ’ , , ’’, ’’’’ ’’ , 0.W − − Σ = ∫
( (

W W W W W WG G * *[ [ [ [ [ [[

This equation is the Gorkov equation [5]. The expression of the self-energy will be given

below.

������ 4XDVLFODVVLFDO�DSSUR[LPDWLRQ

The quasiclassical approximation consists of a perturbative development of the Dyson

equation using a small parameter. In the case of superconductivity, this parameter is the ratio
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∆�(� , with ∆ the superconducting gap and (�  the energy at the Fermi level. In typical

superconductor 3/ 10−∆ =�( . The perturbative development aims at integrating out all

physical quantities on scales smaller than ξ � , the characteristic size of Cooper pairs.

Physically, Cooper pairs are large enough compared to the Fermi length to be considered as

having a quasiclassical motion. Since Cooper pairs are correlations of two electrons, knowing

the phase of the two-electron wave function is sufficient in most cases. This wave function

only depends on the center of mass coordinate and it is possible to integrate out the

dependence on the relative coordinate in the Gorkov equation.

A Fourier transform to the momentum energy space leads then to the quasiclassical Green

function

( )
( ) ( )

( )
( )

ˆ ˆ, , , , , ,
ˆ ˆ, , , , , ,

ˆ, , ,

ˆ ˆ  

ˆ        0           

ε ε
ε ε

ε
ζ

π
 

= = 
 

∫
((

� �

��
W WW W

W
J J LJ G *J

[ S [ S
[ S [ S

[ S
,

where Ŝ �is a vector on the unit sphere and 2 / 2ζ µ= −� S P .

The quasiclassical Green function obeys the equation

( ) ( ) ( )
0

1 ˆ ˆ ˆ, , , , , , , , ,, 0ε ε εσ− − = 
( (W W WJ J[ S [ S [ S , (7)

with

( )
0

1 ˆ, , , ˆYε τ ετ− = ∂ − +
(( ( (

h h�
	��
�WJ ∇ �[ S S� ,

where Y �  is the Fermi velocity and with

( )
( ) ( )

( )
ˆ ˆ, , , , , ,

ˆ, , ,
ˆ, , ,

ˆ ˆ   

ˆ        0             

ε ε
ε

ε

σ σ
σ

σ
 

=  
 

� �

�
W WW

W
[ S [ S

[ S
[ S

,

the full quasiclassical self-energy. This equation, called the Eilenberger equation for

superconductivity [6], is the central equation of the quasiclassical theory.

(J  also obeys a normalization condition: ( )2
0

ˆ, , , .ε τ=( (WJ [ S



156

������ 'LIIXVLYH�OLPLW��8VDGHO�HTXDWLRQV

�������� 'LIIXVLYH�OLPLW

In superconductivity, the diffusive limit applies when the mean free path is shorter

than the superconductivity coherence length 0 /Yξ = ∆h �  with Y �  the velocity at the Fermi

level and ∆  the superconducting gap. In this limit, scattering on non-magnetic impurities,

lattice defects or sample boundaries occur frequently on a trajectory of length 0ξ , and the full

quasiclassical self-energy, associated to elastic scattering, can be written in the Born

approximation:

( ) ( )ˆ ˆ, , , , , ,ˆ
2

ε ε
πσ
τ

=� � W WJ[ S [ S ,

where ...  is the average value on the angles, justified because of the fast direction memory

loss of electrons, and 
2

1/ 2 2τ π ν= ���Q 8 . The concentration of impurities is �Q , ν �  is the

density of states at the Fermi level and 8  is the Fourier transform of the impurities scattering

potential. When the number of scatterers is large enough, this self-energy term dominates and

the Green function is almost isotropic. Then, an expansion in spherical harmonics keeping

only the s- and p- wave parts is performed:

( ) ( ) ( )
( ) ( ) ( )

ˆ, , , , , , ,

ˆ, , , , , , ,

ˆ

ˆ ,

	 


	 


W W W
W W W

J Jε ε ε

ε ε εσ σ
+
+

(( (
;

;

[ S [ [
[ S [ [

S J
S
�
�σ

where ˆ ˆ and .σ( (
= =�
� ���JS J S� �σ

Splitting Eq. (7)  into an even and odd part with respect to Ŝ  yields to:

0

1 ’

,

, 0,�

����� �

� ���

J O J J
' J J L Jσ−

 = −  
 − − = 

(( ( (

( (( ( (
h

�

���

∇

∇ ∇
(8)

where 1/ 3 Y= �' O  is the diffusion constant, ’σ �  the quasiclassical self-energy in which the

elastic collision term σ � �  has been removed, and 
0

1 τ ετ− = ∂ −( ( (
h� ��� �J L .

Eq. (8) are called Usadel equations [7]. They are the general starting point to calculate non-

equilibrium effects in diffusive superconductors.
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�������� 8VDGHO�HTXDWLRQV

In BCS theory, superconductivity is due to electron-phonon interaction. A pairing

potential is then included in the self energy:

ˆ 0          0 ˆ,  
ˆ     0 0      

σ −
∗

  ∆∆  
= ∆ =     ∆∆   

��� �
� � � � L ,

where ∆ is the superconducting order parameter:

( )( ) 

 
ˆ ˆ ˆ 

8

ω

ω

ν
ε τ τ

−
∆ = −∫

�

�

�

�

	�
 � � 

�����

9 G 7U L JL , (9)

with � � �9  the pairing interaction strength and ω �  the Debye pulsation as defined in the BCS

theory of superconductivity [1].

The spin-flip scattering rate 1/τ � � contribution σ � �  to the self energy is:

.
2

σ τ τ
τ

−= − h ( ( (
� � �����

� �

L J

Using ’σ σ σ−= +
��� �

 � ! " #%$ & yields in Eq. (7) to equation:

0 , 0
2

τ τ
τ

 
+ − = 

  

( ( ( h( ( ( ( (
h ' ()'*(+'

, -
' J L+ J J./.∇ ∇ , (10)

with 
0

0 0

0

ˆ             0 ˆ,  
ˆ   0      

ε
ε∗

  ∆ 
= =     ∆ −  

( L++ + L+
.

Equation (10) is equivalent for the advanced, retarded and Keldish Green function to:

( )

0

0

0

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, 0
2

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ, 0
2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ, ,

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,
2

0 010
2 3)2�3+2

4 5

6 616
2 3)2�3+2

4 5

087 7 6
282 292

7 0:7;0:7 7
2 3)2)3)2;2�3)2<3=3)2<3)2
4 5

' J L+ J J

' J L+ J J

' J J J J

L + J J J J J J J

τ τ
τ

τ τ
τ

τ τ τ τ τ τ
τ

 
+ − = 

  
 

+ − = 
  

   +   

 + − − + 

h
h

h
h

h

h

>?>

>@>

>@> >A>

∇ ∇

∇ ∇

∇ ∇ ∇ ∇

( )ˆ ˆ ˆ ˆ 0.
6 7 6
2<3)2�3J Jτ τ− =

(11)

Equations (11) are the detailed Usadel equations. The projection on the s- wave of 
(J  obeys

the same normalization condition as 
(J : 2

0( , )ε τ=( (
BJ [ ,
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which is equivalent to

0 0
ˆ ˆ ˆ ˆ ˆ ˆ,   

ˆ ˆ ˆ ˆ 0.

τ τ= =
+ =

��� ���
��� ���

�������
�����	�

J J J J
J J J J

Eq. (8) is equivalent to the conservation of the current. The spectral density of current is

defined as:

( , ) ( ) ,ε σ=
(( (

�
- J J�∇[ [

where ( )σ [  is the normal-state conductivity. This leads to the current density:

ˆ ˆˆ ˆ ˆ ˆ ˆ( ) ( )
8

σ ε τ = − + ∫

������
���������- G 7U J J J JH ∇ ∇� �[ .

The density of quasiparticle states is given by :

( )( ), ,ˆ ˆ( ) Re ( )
2

ε ε
ν τ=

��
�1 7U J[ [ .

���� 3DUDPHWHUL]DWLRQ�RI�WKH�8VDGHO�HTXDWLRQV

������ 'HILQLWLRQ�RI�WKH�SDLULQJ�DQJOH�DQG�RI�WKH�FRPSOH[�SKDVH

The normalized condition 0
ˆ ˆ ˆ ,τ=
���
���J J  and the fact that ( )ˆ 0,=

�
�7U J  allows to

parameterize ˆ
�
�J  with two complex parameters ( ) ( ), , and ε εθ ϕ[ [ :

i

-i

ˆ ˆ ˆ ˆcos  sin  cos  sin  sin  

cos             sin  e
    .

sin  e       - cos  

ϕ

ϕ

θ τ θ ϕ τ θ ϕ τ

θ θ
θ θ

= + −

 
=  

 

�
 ! " #J

(12)

The advanced and retarded component of  ˆ
�
�J  are related by the equation:

ˆ ˆ ˆ ˆ .τ τ+= −
$ %
&(')&*'J J

Hence,

*

*

* * i

* -i *

cos            sin  e
ˆ

sin  e        cos

ϕ

ϕ

θ θ

θ θ

 −
=    

+
,J . (13)
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The last renormalization condition allows to write ˆ
�

�J  as

ˆ ˆˆ ˆ ˆ .= −
�����

���	�J J K KJ (14)

The distribution matrix K̂  (also called filling matrix) can be chosen as diagonal and is related

to the distribution functions for electrons 
I and holes �I :

1 2     0ˆ
0            2 -1

− 
=  

 

�




IK I , (15)

where the energy is measured from the chemical potential of the superconductor.

For convenience, K̂  is also written

0 ,
ˆ ˆ ˆτ τ= +� � 
 ���K I I (16)

with � �I  and � �I respectively odd and even functions of energy, related to the physical

distribution functions of electrons through the expression:

( ) ( ) ( )( ), , ,1 / 2ε ε ε= − −� � � �I I I[ [ [ . (17)

For example, in a reservoir at potential V and at thermal equilibrium 7,

2

2

tanh            0
ˆ

0                   tanh

ε

ε

+

+

 
 
 =
 
 
 

�

�

� �

H9
N 7

H9
N 7

K , (18)

and

2 2

2 2

1
tanh tanh

2

1
tanh tanh .

2

ε ε

ε ε

+ −

+ −

 
= + 

 
 

= − 
 

� �

� �

�  

! "

H9 H9
N 7 N 7
H9 H9

N 7 N 7

I

I
(19)

The odd and even functions are represented in Figure 2.
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������ (TXDWLRQV�IRU�WKH�SDLULQJ�DQJOH�θ�DQG�WKH�SKDVH�ϕ

The parameterization in θ  and ϕ  of the Usadel equations leads to the following

equations.

�������� 2UGHU�SDUDPHWHU�HTXDWLRQ

In the general case, with the previous definition, the order parameter reads:

( ) ( )* * 

 
( )  sin  sin  sin  sin  

4

ω ϕ ϕ ϕ ϕ

ω

ν
ε θ θ θ θ∗ ∗

−
∆ = − − +∫

�

�

�

�

��� � � � � � �

� � � 	
9 G I H H I H HL[ . (20)

At equilibrium, for a bulk superconductor, ϕ is real, 0=
 �I  and ( )/ 2tanh ε= �
 � N 7I , leading

to

( ) 

 0 2
( )  tanh Im sin

ω ϕεν ε θ∆ = ∫
�

�

� �
��� � �

N 7
9 G H[ .

�������� (TXLOLEULXP�8VDGHO�HTXDWLRQV

The part of equation concerning the advanced and retarded Green functions defines

-1
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1

-eV eV0

 

 

f od
d
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-eV eV0

 

f ev
en

Figure 2: Odd and even part of the energy distribution function used in the theory of non-equilibrium

superconductivity, in the case where the system is a reservoir at a potential V.
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equilibrium equations:

( ) ( )

( ) ( )( )

2

2

2

2
cos sin

2 2

cos 0
2

2 sin
sin .

ϕ ϕ

ϕ ϕ

θ ε ϕ θ θ
τ

θ

θϕ θ

− ∗

− ∗

   + − + − +        
 ∆ + ∆  = 
 

  − = ∆ − ∆    

h h h

h

h h

� �

� �

� �

' ' HL

H H

H L H H'

∇ ∇

∇ ∇

[ [

[ [

$

$

(21)

For a bulk superconductor, where ϕ is real, Eqs. (21) have simpler expressions:

2

2

2

2
( ) cos sin ( ) cos 0

2 2 2

2
( ) sin 0.

ϕθ ε ϕ θ θ θ
τ

ϕ θ

−
   + − + − + ∆ =        

  − =    

h h h

h

h

�

� �

' ' HL H

H

∇ ∇

∇ ∇

$ [ [

$ [

(22)

In a normal metal, the order parameter is zero and the equations describing a normal metal

with only spin-flip scattering are found taking 0∆ =  in Eq. (21).

�������� 'HQVLW\�RI�VWDWHV

The density of quasiparticle states is related to the pairing angle by:

( , ) Re(cos )ε ν θ= �1 [ . (23)

In bulk superconductors obeying BCS theory, the order parameter ϕ∆ = ∆
�

� 	 
 H  is constant and

Eq. (21) simply reduces to

tanθ
ε

∆=
� � 
L , (24)

or

( )  arctanh           if 
2

             arctanh                  if .

π εθ ε ε

ε
ε

= + < ∆
∆

∆= > ∆

� � � � � �

� � �

� � �
� � �

L

L
(25)

The energy dependence of the pairing angle in bulk superconductor is represented in Figure 3.

From the definition (23), the density of states is found as
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( )

2 2

0                                 if 

                    if ,

� � �

� � � �
� � �

Q ε ε
ε

ν ε
ε

= < ∆

= > ∆
− ∆

in agreement with the BCS result.

�������� 2XW�RI�HTXLOLEULXP�8VDGHO�HTXDWLRQV

The equation on the Keldish Green function allows to calculate the filling factors. In

the limit when τ → ∞� �  and� 0=$ , the following two equations are obtained:

( )( ) ( ) ( ){ }
( )( ) ( ) ( ){ }

( ) ( )( )( ) ( ) ( )( )( )

2 2 2 2
2 2

2 2 2 2
2 2

* *

1 cos sin cosh 2 sin sinh 2 2 Im sin  0

 1 cos sin cosh 2 sin sinh 2 2Im sin  

2 Re sin  2 Re sin  ,

� � � 	 � 	

� 	 � � � �


 
 
 

� � � 	

I I I

' I I I
I H H I H Hϕ ϕ ϕ ϕ

θ θ ϕ θ ϕ θ ϕ

θ θ ϕ θ ϕ θ ϕ

θ θ− −

+ − − + =

+ + + +

= ∆ − ∆ − ∆ + ∆

h

[ [ [ [

∇ ∇ ∇ ∇

∇ ∇ ∇ ∇ (26)

where ϕ �  and ϕ �  denote the real, and imaginary parts of the complex phase ϕ, respectively.

For a bulk superconductor, where ϕ is real, Eqs. (26) read:

( ){ }
( ){ } ( )

2 2
1

2 2
2

cos Im sin  0

cosh Im sin  2 Re sin ,


 � � �

� � 
 � � �

I I
I I I

θ θ ϕ

θ θ ϕ δ θ

+ =

+ = −

∇ ∇ ∇

∇ ∇ ∇
(27)

where θ �  and θ �  denote the real and imaginary parts of the pairing angle θ, respectively and

( )( )Re ϕδ −= ∆
�H[ . Equations (27) generalize Boltzmann equations to situations where

superconducting correlations are present. The “source” term in the second equation, related to

the order parameter, is in a bulk superconductor proportional to

Figure 3: Energy dependence of the pairing angle in a homogeneous superconductor in the complex plane.
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( )
2 2

Re sin       if 

                   0                      if .

θ ε
ε

ε

∆= < ∆
∆ −

= > ∆

� � �
� � � � � �

� � �

� � �

This term represents the Andreev reflections of electrons into holes below the gap. It is of

importance for the following to note that inelastic processes are not included in Eqs. (26).

�������� &XUUHQW�GHQVLW\

The current density is related to the pairing angle and the complex phase by:

( )( ) ( )( )
( ) ( )

 
2

0

 2 2 2

2 20

2
( ) Im sin  

           1 cos sin cosh 2 sin sinh 2
2

      .

 

σ ε θ ϕ

σ ε θ θ ϕ θ ϕ

∞

∞

  = − −    

− + + +
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∫

∫

h
� �
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� �

HG IH
G I IH

- [ $

- [ - [

∇

∇ ∇ (28)

The first term corresponds to a supercurrent, proportional to the phase gradient. At

equilibrium, when 0=	 
I ,

( )  
2

 0 2

2
tanh Im sin  

εσ ε θ ϕ
∞   = −    ∫

h�N 7
HGH�- [ $∇ . (29)

The second term corresponds to a current of quasiparticles due to a gradient of occupation

factors. When the phase is real, 
-  is equal to

( ) 2

 0
cosh

σ ε θ
∞

= ∫ � �
G IH�- [ 2∇ . (30)

���� 3UR[LPLW\�HIIHFW�DQG�ERXQGDU\�FRQGLWLRQV
At an interface between a superconductor and a normal metal, the superconducting

correlations are delocalized. The decay of the correlations can be handled with Usadel

equations, the normal metal being described with 0∆ = . The boundary conditions determine

the properties inside the electrodes. In the next section, the general boundary conditions at

interfaces for Green functions are presented as well as their equivalences in term of pairing
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angle and complex phase.

������ &RQWLQXLW\�RI�*UHHQ�IXQFWLRQV�DQG�UHVHUYRLUV

At a transparent interface, the advanced, retarded and Keldish Green functions are

continuous. With the parameterization chosen in the previous section, this is equivalent to the

continuity of ,  θ ϕ ,  and  � ��� �I I . These values are well defined in reservoirs of bulk

superconductor and normal metal and are listed below.

In a bulk superconductor, the phase ϕ  is real, and the order parameter is equal to ϕ∆ = ∆
�

� � � H ,

leading to

( )  arctanh           if 
2

             arctanh                  if .

π εθ ε ε

ε
ε

= + < ∆
∆

∆= > ∆

	 
 � 	 
 �

	 
 �

	 
 �

	 
 �

L

L
(31)

In a bulk normal metal, Eq. (21) leads to 0θ =�  and the phase ϕ  is not defined.

In a normal reservoir at potential V, the distribution functions are given by:

2 2

2 2

1
tanh tanh

2

1
tanh tanh .

2

ε ε

ε ε

+ −

+ −

 
= + 

 
 

= − 
 


 



 


� �

� �

H9 H9
N 7 N 7
H9 H9

N 7 N 7

I

I
(32)

������ 6SHFWUDO�FXUUHQW�FRQVHUYDWLRQ

In the quasiclassical approximation, the information on length scales of the order of

Fermi wavelength has been integrated out. Consequently, effects of potential barriers or

interfaces can not be accounted for on this level. It turns out from a full study of theory that

these effects are equivalent to effective boundary conditions for the quasiclassical Green

functions. These boundary conditions couple the classically transmitted and reflected

trajectories and are equivalent to the conservation of the spectral current:
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[ ]int ,
2

σ σ= =
( (

( ( ( ( ( (

����������� ���
JJ J J J J J� �∇ ∇ , (33)

where  ,
( (

	�
J J  and intJ  are respectively the Green functions of left and right parts and the

conductance of the interface,  and σ σ�
�  are the conductivity of left and right parts.
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&KDSWHU���� 'HQVLW\�RI�VWDWHV�LQ�D�VXSHUFRQGXFWRU
FDUU\LQJ�D�VXSHUFXUUHQW�DQG�H[SRVHG
WR�D�PDJQHWLF�ILHOG

The superconducting order is based on pairing electronic states that transform into one

another by time reversal. Superconducting order is modified by physical phenomena that

break time reversal symmetry, such as a magnetic field, or that hinder the pairing of time-

reversed electronic states, such as a supercurrent. In the early stages of the theory of

superconductivity, it was predicted that in diffusive superconductors, in which the electron

mean free path is short compared to the BCS coherence length 0ξ , and in homogeneous

situations, the effect of all depairing mechanisms can be described by a single parameter, the

depairing energy [1]. Later on, the theory of out-of-equilibrium superconductivity (see

Chapter 9) extended this equivalence in the diffusive limit to inhomogeneous situations where

the order parameter may vary in space.

Experimentally, measurements of the density of states (DOS) in a thin superconductor placed

in an in-plane magnetic field were well accounted for by the concept of depairing energy [2].

On the other hand, the effect of a supercurrent was probed in a single experiment, focused on

the reduction of the superconducting gap close to the critical temperature [3].

In order to test the predicted fundamental equivalence between the effect of a magnetic field

and a supercurrent in a diffusive superconductor, we have measured the DOS in a

superconducting wire carrying a supercurrent or exposed to a magnetic field (see Figure 1).

The width and thickness of the wire were chosen smaller than the London length so that the

current flow is homogeneous and the magnetic field penetrates uniformly. This situation is the

simplest that allows to test quantitatively the theoretical predictions.
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In this chapter, the theoretical predictions for the dependence of the DOS and of the

superconducting order parameter on the depairing energy are first detailed. Then, the

experimental realization is described. At the end, the obtained results are compared with

theory.

�����7KHRUHWLFDO� SUHGLFWLRQV� IRU� WKH� GHQVLW\� RI� VWDWHV� DQG� RUGHU
SDUDPHWHU�LQ�WKH�ZLUH

������� �8VDGHO�HTXDWLRQV�DQG�VXSHUIOXLG�YHORFLW\

We calculate the DOS in a superconducting wire in presence of a supercurrent or a

magnetic field using the equilibrium Usadel equations. The superconducting order is

parameterized with the complex pairing angle ( ),θ ε[ and phase ( ),ϕ ε[  (see Chapter 9):

( )22 cos sin ( ) cos 0
2 2 2

ϕθ ε θ θ θ
τ

−
  

+ − + + ∆ =      

h h h �
�

� �

' L 9 H'∇ [ [ , (1)

( )( )2sin 0;θ =�9∇ [ (2)

the order parameter equation (see Chapter 9):

( ) 

 0 2
( )  tanh Im sin

ω ϕεν ε θ∆ = ∫
�

�

� �
	�
 � �

N 7
9 G H[ , (3)

Figure 1: Layout of the experiment: A wire of width and thickness smaller than the London length

175 nm
λ = can be current biased and exposed to a magnetic field.
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and the current phase relation (see Chapter 9):

( ) ( )( ) 
2

 0 2
tanh Im sin  

εσ ε θ
∞

= ∫ � �
N 7

M G 9H'� [ [ , (4)

where �9  is the superfluid velocity:

( ) ( ) ( )2ϕ = −  h
� H9 ' ∇[ [ $ [ . (5)

The supercurrent and the magnetic field induce respectively a phase gradient ϕ∇  and a

vector potential ( )$ [  that appear in the combination ( ) ( ) ( ) ( )/ 2 /ϕ − h�9 ' H= ∇[ [ $ [  in

the Usadel equations.

In the following, the set of self-consistent equations ((1)-(5)) are first solved for the simple

situations where there are no magnetic field or supercurrent, and when the superfluid velocity

is uniform in space. Then, the effects of the magnetic field and of the supercurrent in the

experimental situation are described.

������� 'HQVLW\�RI�VWDWHV�LQ�DEVHQFH�RI�PDJQHWLF�ILHOG�DQG�VXSHUFXUUHQW

We focus first on the simple case without magnetic field or supercurrent. In the

absence of magnetic field and supercurrent, 0=�9  and the superconducting wire remains

invariant by translation. No spatial dependence remains in Eq. (1), Eq. (2) and Eq. (3), which

simplify to the two following equations:

cos
cos

sin

θε γ θ
θ

+ = ∆L L , (6)

( )
0 2

 tanh Im sin
ω εν ε θ∆ = ∫
�

�

	

�� 
 


N 7
9 G , (7)

with /γ τ= h � �  the spin-flip rate.

In aluminum, the spin-flip rate is negligible and Eq. (6) leads to:

( )tanθ ε
ε
∆= L

,

which is the BCS result, while Eq. (7) gives the BCS gap equation in the bulk:
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0 2 0 2

1
 tanh Re

1

ω εν ε
ε

∆ =
−∫

�

�

	

 � 
 


N 7
9 G .

In the following the spin-flip rate will be neglected.

������� 'HQVLW\�RI�VWDWHV�LQ�WKH�FDVH�RI�DQ�XQLIRUP�VXSHUIOXLG�YHORFLW\

When �9  is uniform in space, Eq. (1) and Eq. (2) also simplify to Eq. (6) with

( ) 2/ 2  γ = h �' 9 .

Equation (6) has a non-trivial analytical solution for 0γ ≠ :

( ) ( )2 21 3 3
cos , ,

2 22 3 6

ε εθ ε γ γ
γ γ γ

+
∆ = + + − − + ∆

+
S TL T LS S T , (8)

with 2 2 22 2γ ε= − − ∆S , ( )2 2 /α= +T U U , ( )1/ 3
3 2 3 22 2α β β α β= − + − +U , and

2 2 2α γ ε= ∆ − − , 3 3   β ε γ= ∆ .

Eq. (8) is solved self-consistently with Eq. (7) to calculate the DOS in the wire and the order

parameter when 0γ ≠ .

The natural energy scale is the gap energy, which is the modulus of the order parameter 0∆

when 0γ = . In Figure 2, the DOS ( ) ( )( )( )Re cosε θ ε=�Q  is plotted versus 0/ε ∆  for several

values of 0/γ ∆ . When γ  increases, the smearing of the peak gets more pronounced and the

gap in the DOS is reduced. Increasing the superfluid velocity weakens the superconductivity

by inducing more depairing in the wire. The previous resolution proves that depairing is

accounted for in Usadel equations by a single quantity, denoted γ  here, corresponding to an

energy. The energy γ  is called the depairing energy in the following.

In Figure 3, the reduction of the order parameter and the reduction of the spectral gap ( )γΩ � ,

L�H� the gap observed in the DOS, are plotted versus the depairing energy. These two quantities

are related by:

( ) ( ) ( )

3/ 22 / 3

1 .
γγ γ
γ

  
 Ω = ∆ −    ∆  

� (9)

From Eq. (9), a superconductor is gapless, which means that the spectral gap is zero, when
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( )/ 1γ γ∆ = . This corresponds to values of depairing energy such as 00.45 γ∆ ≤ . Above a

depairing energy of 00.5∆ , superconductivity is suppressed: ( ) 0γ∆ = .

The function ( )γ∆  should depend on the superconductor nature since the pairing

potential � � �9  and the Debye pulsation ω �  are material dependent. However, it was found

numerically that this reduction is similar within 5 parts in thousand for niobium, aluminum,

and lead using the parameters given in Table 1 [4].

In the following, we focus on the case of the experiment, where a transverse magnetic field is

applied and the wire is current biased. The corresponding vector potential and phase gradient

have then to be determined to calculate the superfluid velocity, which is D�SULRUL dependent on
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Figure 2: Theoretical predictions for the DOS in a superconductor versus reduced energy for several values of the

depairing energy γ . Left panel: γ = 0 and 0.0002. Right panel: from right to left: γ = 0.0125, and 0.05 to 0.5 by

steps of 0.05 in units of 0∆ , the order parameter when 0γ = .

Superconductor
0  (meV)∆  (meV)ωh �

Aluminum 0.18 36.2
Lead 1.1 8.3

Niobium 1.4 23.8

Table 1: Bulk order parameter and Debye energies for different superconductors.
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the position in the wire, the corresponding depairing energy and DOS.

������� 'HSDLULQJ�LQGXFHG�E\�D�PDJQHWLF�ILHOG

The width and thickness of the wire are smaller than the London length

( )0 0/ 175nmλ µ πσ= ∆ =h� , where σ  is the conductivity of the wire in its normal state,

7
0 4 .10  H.mµ π −=  and 0∆  is the gap of the bulk superconductor; it is then predicted that the

magnetic field applied perpendicularly to the wire penetrates uniformly [5] (see Figure 4).

The vector potential in the wire corresponding to the applied magnetic field in the London

Figure 3: Order parameter ( )γ∆  and spectral gap ( )γΩ �  in units of the order parameter 0∆  at 0=%  and

0=�,  versus depairing energy. When 0 00.45 0.5γ∆ ≤ ≤ ∆ , gapless superconductivity occurs. When

00.5 γ ≥ ∆ , superconductivity is suppressed.

Figure 4: Sketch of a superconducting wire in a magnetic field B.
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gauge can be written:

( ) = r
�$ \ %\X (10)

where 
r
�X  is the unitary vector in the direction of the wire. The induced current density by the

magnetic field is:

( ) ( ) ( ) 
2

 0 2

2
tanh Im sin .

εσ ε θ
∞

= − ∫
h �
�

N 7
M \ $ \ G� (11)

These currents tend to screen the magnetic field. According to the laws of electromagnetism,

these currents give rise to a magnetic field 
r%  with: ( ) 0curl ���% M Xµ=

r r
. The maximum value of

( ) ( ) 
2

 0
tanh / 2 Im sinε ε θ

∞

∫ �G N 7  is 0 / 2π∆ , a value reached when the density of states in the

wire is a pure BCS one. Induced currents result then in a negligible correction

factor ( )2
1 1/ 60 / 0.99λ−; ;	Z  for the magnetic field in the middle of the wire, justifying the

assumption of uniform penetration of 
r%  in the wire.

The variations of the pairing angle along the transverse direction to the wire were numerically

calculated using equilibrium Usadel equations and the boundary conditions 0θ∇ = . The

densities of states in the middle and on the side of the wire for a magnetic field of 30 mT  are

plotted in Figure 5 for two situations: 0ξ;Z  (experimental situation) and 02 ξ=Z . It is

found that, despite the transverse variation of $ , θ  is homogeneous for 0 ξ;Z : the “rigidity

length” of the order parameter, given by 0 0/ξ = ∆h' , is such that only an average effect of

$  is seen. In contrast, for 02 ξ=Z , variations of θ  occur in the transverse y-direction,

following the variation of $ . For the experimental situation, we can thus use one-dimensional

Usadel equations. The effect of the magnetic field is included in Eq. (6) by averaging 2$  over

the width of the wire: 2 2 2 /12=
$ % Z . The resulting depairing energy is then:

( ) 2 2 2

6
γ =

h

'% H % Z . (12)

The superfluid velocity �9  is constant, and the equations to calculate the DOS in presence of a

magnetic field are the Eqs. (6) and (7) like in Section 10.1.3.
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������� 'HSDLULQJ�LQGXFHG�E\�D�VXSHUFXUUHQW

The large reservoirs at the end of the wire are bulk superconductors with a real phase

independent of energy. The difference in their phases is determined by the bias current. As a

consequence, the phase gradient in the wire is also energy independent, so that the current

density can be written as:

( ) 
2

 0 2
tanh Im sin

εσ ϕ ε θ
∞

= ∇ ∫ �N 7
M GH� , (13)

leading to:

( )ϕ
θ

∇ =
�

�

,H5
/ 8 ,

with:

( ) 
2

 0 2
tanh Im sin

εε θ
∞

= ∫ �
�

N 7
8 G .

Since ϕ∇  is constant, the superfluid velocity �9  is uniform in space. The calculation of the

DOS in presence of the supercurrent is then carried out using Eqs. (6) and (7) like in Section
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Figure 5: Density of states at two transverse positions in a wire of width w. The length 0 0/ξ = ∆h'  is the

coherence length in the superconducting wire. The dotted line represents the DOS in the middle of the wire, the

dashed line the DOS on the side of the wire. The experimental situation corresponds to 0ξ=Z , where the

differences between the two DOS are small.
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10.1.3.

The depairing energy due to the supercurrent is equal to:

( ) ( )

22

2
γ

γ
  =        

h �
�

�

,' H5, / 8 . (14)

A complication in the determination of the depairing energy arises from its self-consistent

definition through Eq. (6), (7) and (13): the supercurrent density depends, on one hand on the

depairing energy, and on the other hand on the density of states in the wire, which itself

depends on the depairing energy. An approximate expression for the resulting  ( ) 0/γ ∆�8 ,

valid at << ∆�N 7 , for 0/ 0.3γ ∆ ≤  was found numerically (see Figure 6):

( ) ( )2

0 0 0/ / 2 1.8 / 1.0 /γ π γ γ∆ − ∆ − ∆;�8 . (15)

A by-product of the Usadel equations is a calculation of the critical current. According to Eqs.

(11) and (13), the supercurrent density in the wire can be written as a product of a density of

charge in the superconducting state ρ ν=�����H 8  and of the superfluid velocity �9 . The density

of charge in the superconducting state decreases with the depairing energy whereas the

superfluid velocity increases. In zero magnetic field, the supercurrent versus the depairing

0.0 0.2 0.4

1  

 

U
S
 /

 ∆
0

γ /∆
0

Figure 6: Symbols: Numerical calculation of the pair energy 	8  in units of 0∆  versus the depairing energy. Solid

lines: Approximate expression ( ) ( )2

0 0 0/ / 2 1.8 / 1.0 /γ π γ γ∆ − ∆ − ∆;
8 .
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energy reaches a maximum corresponding to the critical current at 0/ 0.238γ ∆ = , leading to

( )( )0 00.75 / ξ∆;�, H5  (see Figure 7.) Note that when the critical current is reached in such a

wire, the density of states still presents a gap since 0/ 0.45γ ∆ < .

This result has been obtained for a one-dimensional wire where �8  and therefore the current

Figure 7: The normalized supercurrent (bottom panel) through a wire is proportional to a density of charge in the

superconducting state ρ �  (upper panel) times the superfluid velocity �9  (middle panel). The supercurrent versus

the depairing energy reaches a maximum corresponding to the critical current at 0/ 0.238γ ∆ = , leading to

( )( )0 00.75 / ξ∆;�, H5 .
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density is homogeneous over the width of the wire. Such a simplification results from the

negligible effect of the magnetic field created by the supercurrent in the experimental situation

λ< �Z . This can be checked by calculating the vector potential created by the homogeneous

current �, . Assuming a cylindrical wire, the potential vector in the wire due to �,  is:

( ) 20
2

,
µ
π

=
�

�
,$ U UZ (16)

U  being the distance from the center of the wire. The depairing energy due to this field is then

on average:

2 2 2
0

240

µγ
π

=
h

�
� � �

H ' ,
, (17)

whereas the direct depairing energy due to the supercurrent is equal to:

( )

22

2
γ

γ
  =        

h �
	 
 �

�

,' H5
/ 8 . (18)

The ratio of the depairing energy due to the induced field and due to the supercurrent is

( )2 5/ / 90 3.10λ −≈ ≈�6  (we have used the fact that 0∆;
8 ). The effect of the induced

magnetic field is thus negligible compared to the effect of the supercurrent for a wire of

smaller width than λ� .

For wider wires, the density of current is non-homogeneous and the superconducting velocity

can be locally larger than the critical velocity [6]. The problem becomes non-local and non-

linear. In this case, the critical current is equal to the current that results in the critical field on

the side of the wire.
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�����([SHULPHQWDO�UHDOL]DWLRQ

������� &KDUDFWHULVWLFV�RI�WKH�VDPSOH

A SEM micrograph of the measured sample is shown in Figure 8. The density of states in the

wire was probed by two tunnel junctions. In chapter 2, we have shown that the differential

conductance ( )/G, G9 9  of a Normal-Superconducting tunnel junction is at 0=7  directly

proportional to the DOS in the superconducting wire neglecting charging effects. In the

following, the contribution of charging and finite temperature effects are evaluated.

������� &RQWULEXWLRQ�RI�WKH�&RXORPE�EORFNDGH

In our experiment, it was found out that charging effects had a measurable effect. This

is seen in Figure 9, which shows the differential conductance of the tunnel junction when

superconductivity is suppressed by an applied magnetic field 0.1 mT=% . The conductance at

zero voltage is reduced by 8%; .

Figure 8: SEM micrograph of the sample viewed at an angle of 40°. The 120 nm-wide, 10 µm-long

superconducting wire is connected to large superconducting thick pads.  Two normal probes form tunnel

junctions with the wire in order to measure the density of states in the superconducting wire.
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Since this correction is small, a perturbative calculation in the impedance of the environment

of the tunnel junction is sufficient (see Appendix of Chapter 2 and [7]). This impedance is

modeled by the parallel combination of a resistance � � �5  with a capacitance � � �& . In the

perturbative theory, the probability to transfer a part ε  of the available energy in the tunnel

event to the environment ( ),ε3 7  does not depend on the temperature: ( ) ( ), ,0ε ε=3 7 3 , and

is equal at low energy to:

( )
1

0

0 0

   for 0 ,
α

α εε ε ε
ε ε

−
 

≈ < << 
 

3 (19)

where 2 /α = � � ���5 5 , and ( )2
0 / � � �H &ε πα= . The parameters α  and 0ε  are deduced from the

differential conductance when a magnetic field larger than the critical field of the

superconductor is applied. The DOS in the wire is then constant and the differential

conductance is given by:

( ) 0

0

1
 for .

α

ε
ε

= <<
�

G, H99 H9G9 5 (20)

In Figure 9, a fit of the differential conductance of the tunnel junction by the perturbative

theory of Coulomb blockade is presented. The fit parameters for the environment are

250 = Ω� � �5  and 8 fF=� � �& .

1E-3 0.01 0.1
0.90

0.95

1.00

 

 

G
/G

0

V(mV)

Figure 9: Differential conductance of the tunnel junction between the side probe electrode and the wire in its

normal state, normalized to the conductance 0*  at large voltage. Due to Coulomb blockade, the conductance

presents a dip at low voltage. The line is a fit using Coulomb blockade theory (Eqs. (19) and (20)) with an

electromagnetic environment that consists of the parallel combination of 250 = Ω	 
 
5  and 8fF=	 
 
& .
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Using this expression of ( ),ε3 7 , the differential conductance reads (see Chapter 2):

( ) ( ) ( ) ( ) ( )
0 0

1
 ,ε ε ε

+∞ +∞ ∂ ∂ = − − + + ∂ ∂ ∫ ∫
� �

�

�

I IG, 9 G( G Q ( 3 7 H9 ( H9 (G9 5 ( ( , (21)

where �Q  is the density of states in the superconducting wire and �I the quasiparticles energy

distribution according to a Fermi function.

In Figure 10, the corrections due to Coulomb blockade are exemplified by a fit of data with

and without taking into account Coulomb blockade. The peak value in /G, G9  is just reduced

by a few percent when Coulomb blockade is included.

The finite temperature of the normal probe is now to be taken into account in �I .

������� )LQLWH�WHPSHUDWXUH�HIIHFWV

In the experiment, the temperature of the probe electrodes is slightly dependent on 9
due to their geometry. Indeed, Joule heating is a concern at low temperature. Any current

1
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T
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Figure 10: Symbol: Measured differential conductance of the tunnel junction between the normal slightly

resistive probe electrode and the superconducting wire exposed to a magnetic field of 23 mT . Dashed line: fit of

the data without taking into account charging effect of the junctions.  Solid line: Fit of the data taking into

account Coulomb blockade of tunneling with an electromagnetic environment that consists of the parallel

combination of 250 = Ω	 
 
5  and 8fF=	 
 
& .
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results in production of heat (thermic energy), which can be transferred directly to the

phonons in the wire or to electrons in the large pads. At sub-Kelvin temperatures, the first

process is very inefficient because the phonon emission rate goes like ( )3
5 κ � ����� �N 7  with

-1 -310 ns meVκ ;� � [8]. Moreover, in our experiment, the normal probe electrode is thermally

isolated from the larger contact pad by superconducting connections due to the fabrication

process, limiting the efficiency of the second process. Therefore, heat transport only takes

place through electron-phonon coupling in the probe electrode and electron tunneling through

the junction. Since the volume, in which the coupling to phonons can take place is small, this

thermalization mechanism is all the more inefficient: an input power in the fW range can

significantly rise the temperature. At bias voltages larger than the superconducting gap,

heating of the normal part by the tunnel current has a sizeable effect on electron temperature.

In contrast, at bias voltages slightly smaller than the gap voltage, only quasiparticles with a

large energy can tunnel from the normal part (see Figure 11), resulting in an effective cooling

of the normal part. The electronic temperature 7  is found by solving the heat equation [9]

(see Equation (22)) taking into account the heat transfer to the phonon bath at temperature � �7
and the heat transfer through the junction:

( ) ( ) ( )( )5 5

2
1 , 0	 
 � � 
 �

�

(7 7 G( Q ( H9 I ( 7 3H 5ΣΩ − + + − − =∫ , (22)

with Σ  the electron-phonon coupling constant, Ω  the volume of the isolated normal probe

Figure 11: Principle of electron cooling effect in a normal superconducting tunnel junction. When the junction is

biased just below the gap of the superconducting part, only hot quasiparticles from the normal part can tunnel,

resulting in an effective cooling of the normal part.
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and where � �3  accounts for additional uncontrolled heat flow, which can be attributed to

spurious electromagnetic noise. The electron-phonon coupling constant depends on the metal

and is related to κ � �  by ( ) 524 5ζ ν κΣ = � � ���N  with ( )5 1.04ζ = . In copper, -3 -52 nW µm KΣ ; .

In the experiment, the differential conductance of the probe tunnel junction at 0=%  and

0=�,  was fit using Ω  and 3  as fit parameters in Eq. (22) and including Eq. (21) with a

BCS DOS for �Q , a Fermi function at an effective temperature dependent on 9  for I . The

volume of the normal part is also a fit parameter because of the poorly defined geometry of

the electrode. Coulomb blockade of tunneling was taken into account with the parameters

determined above. The phonons were assumed to be thermalized at the refrigerator

temperature 25 mK=� �7 . In Figure 12, the differential conductance calculated using the fit

parameters 30.08 µmΩ =  and 185 aW=	 
3  is compared to the data. The corresponding
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Figure 12: Bottom panel: Symbols: Measured differential conductance of the tunnel junction between the normal,

thermally isolated, probe and the superconducting wire. Solid line is a fit using a BCS density in the

superconducting part and assuming an energy distribution according to a Fermi function at ( )� � �7 9  plotted in the

top panel.  Dashed line is the calculated /G, G9  using a BCS density in the superconducting part and assuming

an energy distribution according to a Fermi function at 30 mK=7  (corresponding to the dashed line in the top

panel).
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electronic temperature dependence on the bias voltage 9  is also plotted. The order of

magnitude of Ω  is in agreement with the geometry. The value of 	 
3  leads, for bias voltages

smaller than the gap, to an effective temperature of 65 mK.

�����0HDVXUHPHQW�RI�WKH�GHQVLW\�RI�VWDWHV�LQ�D�VXSHUFRQGXFWRU
FDUU\LQJ�D�VXSHUFXUUHQW�RU�H[SRVHG�WR�D�PDJQHWLF�ILHOG

������� '26�LQ�WKH�VXSHUFRQGXFWLQJ�ZLUH��H[SHULPHQW�YHUVXV�WKHRU\

The results of our paper published in Phys. Rev. Lett. ��, 127001 (2003) are

reproduced here. In Figure 13, the solid lines are fits taking into account Coulomb blockade of

tunneling and temperature corrections.

As predicted by theory, the gapless regime obtained for 0 00.45 0.5 γ∆ < < ∆  cannot be

reached with a supercurrent, because the wire switches to the resistive branch for a depairing

energy equal to 00.24 ∆ . The critical current was estimated to be 106 µA=�, . The values of
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Figure 13: Normalized differential conductance of the probe tunnel junction: Left: at 0=% , as a function of the

supercurrent �, . Right:  at 0=�, , as a function of the magnetic field % . The solid lines are the best fits of the

data.
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the fit parameters γ  are given in Figure 14. By fitting ( ) 0, /γ ∆�, %  with the equation,

deduced from Usadel equations:

( )

2 2

0

0 γ γ

γ
γ

   ∆= +      ∆    

�

�

, %
8 , % , (23)

and Eq. (15) , we find 240 µAγ =,  and 105 mTγ =% . The theoretical values assuming that

the “electrical dimensions” of the wire are the geometrical ones are

( )1 1
0 02 / 310 µAγ ξ− −= ∆ =, H / 5  and ( ) 1

06 105 mTγ ξ −= =h% HZ . The depairing induced by

the current is then larger than the predicted one. Knowing that 1
0γ ξ −∝,  and ( ) 1

0γ ξ −∝% Z , the

experimental values of γ,  and γ%  can be used to extract effective values 0eff 162 nmξ =

(instead of 125 nm ) and eff 93 nm=Z  (instead of 120 nm ). This corresponds in turn to an

increased value of the diffusive coefficient 2 -181 cm s='  and, through the expression of the

resistance, to an effective thickness eff 31 nm=W (instead of 40 nm ). Reduced effective

dimensions could be partly attributed to the surface oxidation of aluminum, which was

exposed to air before measurement, and to surface roughness. Yet, the typical thickness of the

oxide layer is about 2 nm  and surface roughness is usually estimated at about 3 nm . It can be

argued that it is not enough to account for the reduced dimensions. Another explanation might

be that the diffusion coefficient '  is misestimated from the DC conductivity through the

Einstein relation 2
� H 'σ ν= .
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Figure 14: Depairing energy γ  (in units of the gap 0∆  at 0=%  and 0=�, ) for different currents and magnetic

fields, deduced from the fits of the /G, G9 . Solid lines are fits with theory leading to depairing current and

magnetic field 240 µAγ =,  and 105 mTγ =% . Dashed lines: Theoretical predictions with the depairing current

and magnetic field 310 µA,γ =  and 105 mTγ =%  calculated from the electrical and geometrical characteristics

of the wire.
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������� �'26�DW�WZR�GLIIHUHQW�SRVLWLRQV�LQ�WKH�ZLUH

In the paper, only the results obtained for the side junction are presented. The

reduction of the gap and the smearing of the peaks when the magnetic field or the supercurrent

increase are also observed at the position of the middle junction. Yet, the DOS in the wire at

the two positions for a fixed supercurrent or a fixed magnetic field were different (see Figure

15). When comparing the DOS at the side position to the middle position, a given magnetic

field induces more depairing, whereas a given supercurrent induces less depairing. This

difference is attributed to a difference in the wire width Z  at the two junction positions. The

depairing energy scales as 2Z  in the case of a magnetic field and as 21/Z  in the case of a

supercurrent. The difference estimated from the depairing energy gives / 1.2=���Z Z , where

�Z  and �Z  are the width of the wire at the side and middle positions, respectively. This ratio

is in good agreement with the estimated one from SEM observation.
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Figure 15: Comparison of differential conductances of the two probe tunnel junctions at 69 mT=%  and 0=�,
(left panel) and 0=%  and 86µA=�,  (right panel). At the position of the side junction, the magnetic field

induces more depairing whereas supercurrent induces less depairing than at the middle junction. This difference

is explained by the different widths of the wire at the two junctions. At the position of the side junction, the wire

is wider.
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�����&RQFOXVLRQ
The effect on the superconducting order of a supercurrent �,  and of a magnetic field

%  has been probed by tunneling spectroscopy. As predicted by the theory of mesoscopic

superconductivity in diffusive conductors, the overall effect solely depends on a single

parameter, the depairing energy. For our narrow wire, the Usadel equations lead to a simple

expression for this depairing energy as a function of �,  and % , which compares with the

experimental determination of the depairing energy. Yet, the experimental values of the

characteristics depairing current γ,  and magnetic field γ%  correspond to effective dimensions

of the wire smaller than the geometrical dimensions measured on a SEM micrograph. This

discrepancy, also observed on another sample, is partly attributed to surface roughness and

surface oxidation but is not totally understood.
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We have measured the tunneling density of states (DOS) in a superconductor carrying a supercurrent
or exposed to an external magnetic field. The pair correlations are weakened by the supercurrent,
leading to a modification of the DOS and to a reduction of the gap. As predicted by the theory of
superconductivity in diffusive metals, we find that this effect is similar to that of an external magnetic
field.
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How is the superconducting order modified by a super-
current? The superconducting order is based on pairing
electronic states which transform into one another by
time reversal. The ground-state wave function corre-
sponds to a coherent superposition of doubly empty and
doubly occupied time-reversed states, in an energy range
around the Fermi level given by the BCS gap energy.
When an external magnetic field ~BB � curl ~AA is applied,
time-reversed states are dephased differently, resulting in
a weakening of superconductivity. In the presence of a
supercurrent, the superconducting order no longer corre-
sponds to the pairing of time-reversed states, which re-
sults in a kinetic energy cost, and again in a weakening of
superconductivity. In the early stages of the theory of
superconductivity, it was found that, in diffusive super-
conductors (in which the electron mean-free-path is short
compared to the BCS coherence length) and in homoge-
neous situations, the modification of the superconducting
order by a magnetic field, by a current, and by paramag-
netic impurities can be described by a single parameter,
the depairing energy � [1]. Later on, the reformulation of
the theory by Usadel [2,3] in the diffusive limit extended
this equivalence to inhomogeneous situations, where the
modulus of the order parameter may vary in space. In
the Usadel equations, all physical quantities involve only
the intrinsic combination ~rr’� �2e= �h� ~AA, where the gra-
dient ~rr’ in the phase of the superconducting order
parameter is associated with the supercurrent, revealing
the equivalence of a supercurrent and of an applied mag-
netic field. The Usadel equations are now at the basis of
the understanding of mesoscopic superconductivity in
diffusive conductors [4,5]. Experimentally, measure-
ments of the density of states (DOS) in a thin super-
conductor placed in an in-plane magnetic field were
well accounted for by the concept of depairing energy
[6]. In contrast, the effect of a supercurrent has been
partly addressed in a single experiment, focused on the
reduction of the superconducting gap close to the critical
temperature [7]. A complication of the experiments with a
supercurrent is that, if the sample width exceeds the
London penetration length �L, the current distribution
given by the nonlocal equations of electrodynamics [8] is

not homogeneous. In the experiment reported here, the
superconductor is wire shaped, with thickness and width
smaller than �L, so that the current flow is homogeneous
and the magnetic field penetrates completely. Moreover,
the effect of the magnetic field induced by the super-
current is then negligible. This simple geometry allows
one to test the fundamental equivalence between the
effect of a magnetic field and of a supercurrent in a
diffusive superconductor and to compare precisely with
the predictions of the Usadel equations.

Our experiment was performed on a current-biased
superconducting wire made of aluminum, placed in a
perpendicular magnetic field B (see Fig. 1). The density
of states in the wire was inferred from the differential
conductance dI=dV�V� of a tunnel junction formed

FIG. 1. Inset: layout of the experiment: a 10-
m-long, 120-
nm-wide, and 40-nm-thick superconducting (aluminum) wire
can be current biased at IS or exposed to a magnetic field B. A
normal probe electrode forms a tunnel junction (dashed area)
with the wire. Main panel: measured dI=dV�V� for different
combinations of the bias current and magnetic field: dashed
line: IS � 0 and B � 0; solid lines: IS � 70 �A and B � 0, and
IS � 0 and B � 23 mT. To a good approximation (see text), the
differential conductance of the junction dI=dV�V� is propor-
tional to the DOS in the superconductor.
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between a small section of the wire and a normal probe
electrode made of copper. Disregarding Coulomb block-
ade and temperature effects (see below), dI=dV�V� is
proportional to the DOS n�eV�. The sample was fabri-
cated in an electron-beam evaporator in a single pump-
down, using the three-angle shadow-mask technique
through a PMMA suspended mask patterned using
e-beam lithography [9]. The substrate was thermally
oxidized silicon. The 10-�m-long aluminum wire, with
width w � 120 nm and thickness t � 40 nm was super-
ficially oxidized in order to form a tunnel barrier with the
copper probe electrode overlapping it on an area 150 �
60 nm2. The sample was mounted in a copper box ther-
mally anchored to the mixing chamber of a dilution
refrigerator. Measurements were performed at 25 mK.
From the low-temperature, high-magnetic-field wire re-
sistance in the normal state, R � 77 �, the conductivity
� � 27 ��1 �m�1 is inferred assuming that the electri-
cal cross section of the wire is S � wt. The diffusion
coefficient D � 49 cm2 s�1 is then deduced using
Einstein’s relation � � N�0�e2D, where N�0� �
2:15 � 1047 J�1 m�3 is the density of states at the Fermi
level of aluminum and e is the electronic charge. The
superconducting gap �0 � 205 �eV was deduced from
the differential conductance-voltage characteristic
dI=dV�V� measured at B � 0; IS � 0 (dashed line in
Fig. 1). Using these parameters, we obtain the supercon-
ducting coherence length �0 �

���������������
�hD=�0

p
� 125 nm and

the London length �L �
����������������������������
�h=�
0���0�

p
� 175 nm.

Since �L � w=2, the current density is homogeneous
when the wire is current biased, and a magnetic field
penetrates uniformly in the wire. The measured critical
current of the wire at B � 0 was Ic � 106 �A.

In Fig. 1, two dI=dV�V� curves are shown, respectively,
measured at Is � 70 �A, zero field, and at zero current,
B � 23 mT. The reduction of the gap and the smearing of
the peak near the gap energy are similar in the two
situations, bringing already evidence of the equivalent
effect of IS and B. Note that the magnetic field created
by the supercurrent has a negligible effect: for Is �
70 �A in the wire (see Fig. 1), 
0Is=�2�w� 	 0:15 mT
whereas the resulting DOS is recovered at IS � 0 with
B � 23 mT. A complete set of data is presented in Fig. 2,
with dI=dV�V� measured for IS � 17, 51, and 85 �A at
B � 0, and for B � 11:5 to 69 mT by steps of 11.5 mT, at
IS � 0. Note that when the wire is current biased, the
superconducting state is metastable. In practice, for bias
currents larger than 85 �A, the system switches to
the resistive state during the recording of the dI=dV�V�
curve. The measured curve is then similar to that
obtained in the normal state. In order to account quanti-
tatively for the data, we use the Usadel theory [2,3].
In this theory, correlations between electrons of oppo-
site spins and momenta are described by a complex
function ��~rr; E�, the pairing angle, which depends on
both space and energy, and a local complex phase

’�~rr; E�. The local density of states is given by n�~rr; E� �
N�0�Refcos���~rr; E��g. The pairing angle and the complex
phase obey the Usadel equations:

�hD
2

r2��
�
iE�

�h
2D

~vv2
s cos�

�
sin�� � cos� � 0; (1)
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FIG. 2. Normalized differential conductance dI=dV�V� of the
probe tunnel junction: Top: at B � 0, as a function of the
supercurrent IS (from right to left: IS � 17, 51, and 85 �A).
Bottom: at IS � 0, as a function of the magnetic field B (from
11.5 to 69 mT by steps of 11.5 mT). Solid lines are best fits with
dI=dV�V� calculated with an electronic temperature dependent
on V (see text); dashed lines are the best fits with dI=dV�V�
calculated with a constant electronic temperature. Insets: de-
pairing energy � (in units of the gap �0 at B � 0 and IS � 0)
for different currents and magnetic fields, deduced from the fits
of dI=dV�V�. In the top inset, square symbols correspond to the
data in the main panel (B � 0), whereas triangles and disks
were obtained from data taken at B � 10:2 mT and B �
27 mT, respectively. Solid lines: fits with theory, leading to
depairing current and magnetic field I� � 240 
A and B� �
105 mT.
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~rr� ~vvs sin2�� � 0; (2)

where we have introduced the superfluid velocity ~vvs �
D� ~rr’� �2e= �h� ~AA�. A term describing spin-flip scattering,
which is found negligible in our experiment, has been
omitted here. The pairing potential ��~rr� is determined
self-consistently by

��~rr� � N�0�Veff

Z �h!D

0
dE tanh

�
!E
2

�
Im�sin��; (3)

where Veff is the pairing interaction strength, !D is the
Debye pulsation, ! � �kBT�

�1, kB is the Boltzmann con-
stant, and T is the temperature of the superconductor.

The supercurrent density ~jj is given by

~jj�~rr� �
�
eD

Z 1

0
dE tanh

�
!E
2

�
Im�sin2�� ~vvs: (4)

In a situation such as ours where the system consists
entirely of a single superconductor, ~rr’ does not depend
on energy, and ~jj can be written as a product of the den-
sity of charge in the superconducting state %S�~rr� �
eN�0�US�~rr�, with US�~rr� �

R
1
0 dE tanh�!E2 �Im�sin2��.

We have first checked numerically that the dependence
of � on the directions transverse to the wire could be
neglected because the width and thickness are smaller
than the superconducting coherence length �0, which is
the characteristic length scale for the variations of �. As a
consequence, all the quantities can be replaced by their
values averaged on the transverse directions. In the
London gauge, the effect of the magnetic field is de-
scribed by a vector potential parallel to the wire axis x,
with an amplitude Ax � By, so that hAxi � 0 and

���������
hA2
xi

p
�

Bw=�2
���
3

p
� [10]. The constant phase gradient @’=@x is

given by the supercurrent IS � jS � USL=�eR��@’=@x�.
Since @2’=@x2 � 0, Eq. (2) reduces to @�sin2��=@x � 0.
No spatial dependence remains in Eq. (1), and one recov-
ers the generic equation given in Ref. [1]:

E� i� cos� � i�
cos�
sin�

; (5)

where

� �
�h

2D
h ~vv2
si �

�hD
2

��
@’
@x

�
2
�

�
2e
�h

�
2
hA2
xi

�
(6)

is the depairing energy, which contains the effect of both
a phase gradient and a magnetic field. Note that since
�=�0 � 1

2 ��0@’=@x�
2 � 1

6 ��0wB=� �h=e��2 the relevant pa-
rameters are the phase difference between two points of
the wire distant by �0 and the number of flux quanta in an
area w�0. The depairing energy is related to the external
parameters Is and B by the equation

�

�0
�

�
�0

US���
Is
I�

�
2
�

�
B
B�

�
2
; (7)

where we have introduced the characteristic depairing

current and magnetic field I� �
���
2

p
�0=�eR��0��, with

R��0� � R�0=L the resistance of the wire on a length
�0, and B� �

���
6

p
� �h=e�=�w�0�. Since the transverse di-

mensions of the wire are smaller than the London length
�L, the depairing energy due to the induced field is
negligible (smaller by a factor 	10�4 [11]) compared
to the one due to the supercurrent. The DOS for a
given depairing energy � is obtained from the self-
consistent solution of Eqs. (3) and (5). For practical
purposes, we give the approximate expressions for the
resulting ����=�0 and Us���=�0, valid, at kBT � �, for
�=�0 & 0:3:

����

�0
’ 1 � 0:75

�

�0
� 0:54

�
�

�0

�
2
;

Us���
�0

’ �=2 � 1:8
�

�0
� 1:0

�
�

�0

�
2
: (8)

The differential conductance measured in the experi-
ments is not exactly proportional to the density of states
n�E� in the superconducting wire. Two effects must be
taken into account in order to calculate dI=dV�V� from
n�E�: Coulomb blockade and the temperature of the probe
electrode. Coulomb blockade results from the finite im-
pedance of the electromagnetic environment of the tunnel
junction [4]. The characteristics of the environment are
found from the dI=dV�V� characteristic of the circuit in
the normal state, reached at B > 0:1 T, which presents a
10% logarithmic dip at zero voltage. The environment can
be modeled by a capacitance C � 8 fF in parallel with a
resistance R � 250 �. Coulomb blockade results in a
convolution of the density of states with a function
P�E�, the probability for the electromagnetic environ-
ment of the tunnel junction to absorb an energy E [12]:

dI
dV

�V� �
1

Rt

Z eV

0
dEn�E�P�eV � E�: (9)

Here, P�E� � -=E0�E=E0�
-�1 for E smaller than E0 �

e2=�-C, with - � 2R=�h=e2�. The tunnel resistance of
the junction was Rt � 140 k�. As a result of this correc-
tion, the peak value of n�E� is reduced by a few percent in
dI=dV�V�. Finite temperature in the normal probe results
in a further convolution with the derivative of a Fermi
function. In our experimental setup, this temperature is
slightly voltage dependent, because the probe electrode is
thermally isolated from the larger contact pads by super-
conducting connections. Heat transport occurs only by
electron-phonon coupling and by electron tunneling
through the junction. Since both mechanisms are very
inefficient, even an input power P in in the fW range can
induce a significant temperature increase. At bias voltages
large compared to the superconducting gap, heating by
the tunneling current has a sizable effect. In contrast, at
bias voltages V slightly below �=e, only quasiparticles at
energies larger than � � eV can tunnel, resulting in
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evaporative cooling [13]. The effective electron tempera-
ture T is obtained by solving the heat equation

&��T5 � T5
ph� � P in�Z

dE
E

e2RT
n�E� eV��1 � f�E�� � 0: (10)

The first term describes heat transfer to the phonon bath,
with & ’ 2 nW�m�3 K�5 for Cu [9], � ’ 0:08�m3 is
the volume of the normal region of the probe electrode,
and Tph � 25 mK is the phonon temperature. The second
term accounts for additional uncontrolled heat flow, which
we attribute to spurious electromagnetic noise. The third
term accounts for heat transfer through the junction, with
f�E� the Fermi function at temperature T. From the fit of
the data at B � 0 and Is � 0, we find P in � 185 aW,
corresponding to T � 65 mK at eV � �0. The maxi-
mum cooling effect is reached at eV=�0 � 0:99, where
T � 30 mK; heating dominates for eV=�0 > 1:02, with
T � 210 mK at eV=�0 � 1:5.

In Fig. 2, we present the best fits of the data by solid
lines, taking into account both Coulomb blockade and
temperature corrections. The values of the fit parameter �
for each curve are given in the insets. For a comparison,
fits with a constant electron temperature (T � 60 mK)
are shown by dashed lines. The V-dependent temperature
correction matters only for the sharpest curves. In turn,
by fitting ��Is; B�=�0 with Eqs. (7) and (8), we find I� �
240 
A and B� � 105 mT. The theoretical values, as-
suming that the electrical dimensions of the wire are
identical to the geometrical ones, are I� � 310 
A and
B� � 105 mT. Conversely, the experimental values of
I� / ��1

0 and B� / �w�0�
�1 can be used to extract effec-

tive values �0eff � 162 nm (instead of 125 nm) and
weff � 93 nm (instead of 120 nm). This corresponds in
turn to an increased value of the diffusive coefficient:
D � 81 cm2 s�1 and, through the resistance, to an effec-
tive thickness teff � 31 nm (instead of 40 nm). Reduced
effective dimensions for electrical transport could be
attributed partly to the surface oxidation of the alumi-
num, which was exposed to air at atmospheric pressure
before measurement, and to surface roughness.

A by-product of the Usadel equations is a straightfor-
ward calculation of the critical current. According to
Eq. (4), IS / Us���@’=@x. Since Us��� decreases with
�, Is presents a maximum as a function of @’=@x, which
is the thermodynamic critical current. At B � 0 and
kBT � �0, the maximum occurs at �0@’=@x � 0:69
and corresponds, in agreement with [14], to Ic �
0:75S�3=2

0

�������������������
N�0��= �h

p
� 0:53I� � 125 �A (using the ex-

perimental determination of I�). The difference with the
measured Ic � 106 �A might be due to the uncontrolled

environment of the wire and to inhomogeneities in the
wire cross section.

In conclusion, we have measured by tunneling spec-
troscopy on a superconducting wire the effect on the
superconducting order of a supercurrent IS and of an
external magnetic field B. As predicted by the theory of
superconductivity in diffusive conductors, the overall
effect solely depends on a single parameter, the depairing
energy �. For our narrow wire, the Usadel equations lead
to a simple expression for this depairing energy as a
function of IS and B, which compares well with the
experimental determination of �.
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The modification of the properties of a normal metal electrode close to a contact with a

superconducting one, a phenomenon called proximity effect, has been highlighted by

experiments on mesoscopic devices [1]. Properties of proximity effect structures can be well

understood using the concept of Andreev reflection: an Andreev reflection consists of the

reflection of a quasielectron into a quasihole (or vice versa) at the N side of an NS interface, a

process that transfers a Cooper pair into the superconductor. The pair made of the

quasielectron and reflected quasihole is called Andreev pair. In diffusive systems, the Usadel

equations allow the calculation of electronic properties such as the densities and filling of

states, directly taking into account Andreev reflections. For example, in metallic proximity

structures, equilibrium properties such as the density of states [2] or the conductivity [3] are

well explained. In a diffusive short normal wire connected to superconducting pads, a

supercurrent was measured [4]. A quantitative agreement was found with the predictions

using Usadel equations. In [4], the focus was on the low voltage regime ε< �H9  where

2/� ' /ε = h  is the Thouless energy, /  the length of the normal part and '  the diffusion

coefficient. In this regime close to equilibrium, the Andreev pairs remain coherent along the

wire and carry the supercurrent. In the experiment presented in this chapter, the set-up,

described in the first part, is similar: a normal diffusive wire is connected to two

superconducting pads. A supercurrent and signatures of the minigap, which is predicted to

open in the wire density of states when a supercurrent flows, were observed. Comparison of

these observations and theoretical predictions are performed in the second part. We focus in

the third part of this chapter on the large voltage regime where, even if Andreev pairs of large

energy loose their coherence along the wire, signatures of Andreev reflections are still visible

in the quasiparticles energy distribution function in the normal wire and in the current-voltage
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characteristic.

������6XSHUFRQGXFWLQJ�1RUPDO�6XSHUFRQGXFWLQJ�VWUXFWXUH

��������([SHULPHQWDO�UHDOL]DWLRQ

Two samples were fabricated. The SEM Micrographs of these samples are presented in

Figure 1. In the first one, a 5-µm-long, 45-nm-thick silver wire extends at both ends into large

contact pads, which are covered by a 300-nm-thick layer of aluminum. The reservoirs are thus

made of an Ag/Al bilayer and have a gap reduced by proximity effect. In order to obtain a

larger superconducting gap, a second sample in which the reservoirs have no underlying silver

layer on an area of 300 500×  nm2 just at the ends of the wire was made. The scale of

500 nm is typically the distance on which proximity effect extends in aluminum, so that at the

ends of the wire the superconducting layer is expected to have recovered its bulk property.

Transport was probed by measuring current-voltage characteristic. Moreover, in both samples,

two superconducting probe electrodes form tunnel junctions with the wire at 0.5=[  (middle

junction) and at 0.25=[  (side junction) where [  is expressed in reduced units of the wire

Figure 1: SEM micrographs of the samples used to investigate proximity effect. A normal 5-µm-long silver wire

is connected to aluminum superconducting pads. Two superconducting probe electrodes form tunnel junctions

with the wire. The quasiparticle energy distribution function in the wire is inferred from the differential

conductance of the tunnel junctions. Left, the wire is connected to pads made of a bilayer silver-aluminum,

leading to weakened superconductivity. Middle, the region of the pads where the wire is connected is only made

of aluminum. Right: Schematic of the contact between the wire and the superconducting pads for sample 2.
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length / . As shown in Chapter 2, these electrodes allow the tunnel spectroscopy of the

quasiparticle energy distribution function in the wire if the modification of the density of

states in the normal wire can be neglected. The geometrical and electrical characteristics of the

samples are summarized in Table 1.

��������0RGHO

The model of the system is presented in Figure 2. The diffusive normal wire of length

5 µm=/  is connected to two superconductors. The modulus of the parameter order in the

superconductors is noted ∆ . In the calculation, the wire is considered as one-dimensional

since its width (80 nm ) and thickness ( 45 nm ) are smaller than the coherence length

0 / 300nm'ξ = ∆h ; . The contacts between the superconducting pads and the normal wire

are assumed to be perfectly transparent. The theoretical predictions are made for the

experimental conditions of sample 1 at temperature 14mK7 = :

330,

3.5.

�

�

�

N 7
ε

ε

∆ =

=

In the equilibrium regime, detailed calculations were performed by P. Charlat  [5,6] and

Dubos [4,7] using the Usadel equations derived from the theory of non-equilibrium

superconductivity (see Chapter 9).

Sample w (nm) t (nm) L (µm) R ( Ω ) D ( 2 -1cm .s ) (µeV)�ε (µeV)∆ ( )k
�

�5 Ω ( )k
�

�5 Ω

1 80 45 5.15 38 140 0.35 115 132 46
2 70 45 5.6 58 116 0.25 130 192 247

Table 1: Geometrical and electrical characteristics of the measured samples: width Z , thickness W , length / ,

resistance 5 , diffusion coefficient ' , Thouless energy 2/ε = h� ' / , gap energy in the superconducting reservoirs

∆ , tunnel resistance of the side junction 
�

	5 , and of the middle one 



�5 .
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������(TXLOLEULXP�UHJLPH

��������7KHRUHWLFDO�SUHGLFWLRQV

We consider first the situation where the system is current-biased, assuming a static

phase difference, L�H�� with no voltage across the wire. The phase gradient between the

superconducting reservoirs ϕ∇  and the supercurrent are related by:

( ) ( ) 
2

 0 2
tanh Im sin  

εσ ε θ ϕ
∞

= ∇∫ �N 7M [ GH� . (1)

The determination of the phase gradient from the supercurrent depends on the pairing angle

( ),θ ε[  in the wire. This leads, like in Chapter 10, to the self-consistent solution of the Usadel

equations.

In order to discuss the density of states in the normal wire, the phase difference 0χ  between

the superconducting reservoirs is taken as a parameter. This phase difference resulting from

the supercurrent does not depend on energy. The equilibrium Usadel equations are then:

22

2 2 2

2

cos  sin 0
2 2

sin 0,

' 'L/ [ / [

[ [

θ ϕε θ θ

ϕ θ

 ∂ ∂ + − =   ∂ ∂  
∂ ∂  = ∂ ∂ 

h h

(2)

with the boundary conditions for the superconducting reservoirs:

Figure 2: Layout of the experiment. The normal wire is connected to two superconductors. When the normal wire

sustains a supercurrent, it is current biased. Otherwise the wire is voltage biased. The positions in the wire are

given in reduced units /=[ ; / , with /  the wire length.
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( ) ( ) ( )

( ) ( ) 0

0, 1, arctan

0, 1, .

θ ε θ ε θ ε
ε

ϕ ε ϕ ε χ

∆ = = =   
− =

� � �
L

The modification of the pairing angle in the superconducting reservoirs due to proximity

effect is neglected. We recall here the results obtained from these equations in [8] and [4]:

- A minigap appears in the density of states of the normal wire. The value of this gap does not

depend on the position in the wire but just on the phase difference 0χ  between the two

superconductors (see Figure 3). Its value �(  is of the order of the Thouless energy and is

much smaller than the gap in the superconducting reservoirs.

The densities of states at various positions along the wire are presented in Figure 4 for 0 0χ = .

In Figure 5, the average DOS on the sample length for different values of 0χ  is presented

(from [6]).

Figure 3: Energy gap �(  in units of the Thouless energy versus the phase difference 0χ  between the two

superconducting contacts (from [5]). The inset shows the linear dependence of �(  near 0χ π= .
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-  The maximum supercurrent that the wire can sustain was evaluated by Dubos et al [4]. This

critical supercurrent �,  is predicted to be:

T �
�

, H5
εα= , (3)

where �5  is the wire resistance in its normal state and α  a numerical constant dependent on

/ �ε∆  and /���N 7 ε . In the experimental conditions of sample 1, 5α ; .

0 100 200
0

1

E
g
/ ε

T

x=1/2

x=3/8
x=1/4 x=1/8

 

 

ν 
/ 

ν F

ε / ε
T

Figure 4: Density of states along a normal wire connected to two superconducting pads at the same phase. A

minigap appears in the DOS. Its value does not depend on position.

Figure 5: From [6]. Square power of the average density of states on the wire length versus reduced energy /ε �(
near the gap edge. Curves labeled 0, 1, 2, 3, 4, 5, 6, and 7 are for 0 0, / 2, 3 / 4, 7 / 8, 15 /16, χ π π π π=
31 / 32, 63 / 64, and .π π π  The insert shows the full density of states curves.
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��������6XSHUFXUUHQW

The small-scale current-voltage characteristic of sample 1 is presented in Figure 6. A

supercurrent branch is observed. Switching to a resistive state is found at =39 nA�, , a value

slightly smaller than the predicted critical current 45 nA=�,  from Eq. (3). This discrepancy

could be due to thermal fluctuations that induce switching before �,  is reached or to the

presence of vortices in the superconductors. This last hypothesis is reinforced by the

observation of a hysteretic magnetic field dependence of �, , with the maximum 39 nA=�,  at

50G% =  (at 0=% , 15 nA=�, ).

In sample 2, no supercurrent was found. The predicted critical current was 11 nA .

Anticipating on distribution function measurements, the absence of supercurrent is attributed

to a finite contact resistance between the wire and the superconducting pads: as explained in

Figure 1, the two samples strongly differ in the geometry of this contact.
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-40
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Figure 6: Current voltage characteristic of  sample 1.
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��������6LJQDWXUHV�RI��D�PLQLJDS�LQ�WKH�GHQVLW\�RI�VWDWHV�LQ�SUHVHQFH�RI�D
VXSHUFXUUHQW

When the wire sustains a supercurrent, a phase difference appears between the

superconductors, leading to a change in the DOS ( )Q (  of the normal wire and in a change of

the minigap energy �( . This effect would be best probed with a tunnel junction to a normal

electrode. In the experiment, the probe electrodes were superconducting because the main

goal of the experiment was to probe the quasiparticles energy distribution function in the

normal wire (see 11.3). Yet, signatures of the minigap in the density of states of the normal

wire could be observed in the differential conductance curves ( )/G, G9 9   of the tunnel

junctions. In Figure 7, we present an example of ( )/G, G9 9  for the side junction of sample 1

when the wire sustains a supercurrent of 9 nA .

Singularities are visible near 0.2 mV= ±9 . At zero temperature, it is known that the

differential conductance of a tunnel junction between two electrodes with gaps ∆  and *∆

presents a gap at the value *∆ + ∆  [9] (see Figure 8). Here a second peak appears at *∆ − ∆

because *∆  corresponds to the Thouless energy �( , which is the typical energy scale of the

minigap in the wire density of states, and which is of the same order as the electronic

temperature in the normal wire [10]. This situation corresponds to the case 2) of Figure 8. The

-0.2 0.0 0.2
0

25

50

 

 

V (mV)
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d
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Figure 7: Differential conductance /G, G9  of the side tunnel junction when the normal wire sustains a

supercurrent 9nA=�, . Additional structures appear near the gap of the probe electrode 200µV∆ =� .
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analysis of this singularity allows to gain information on the minigap.

���������:KDW�GRHV�WKH�VXSHUFRQGXFWLQJ�HOHFWURGH�SUREH�LQ�WKH�ZLUH"

In the conditions of these measurements, the quasiparticle energy distribution function

( )I (  in the wire is a Fermi function at a temperature close to the fridge temperature and the

density of states ( )Q (  in the wire is unknown. The differential conductance of the probe

junction between the superconducting probe and the normal wire is written:

( ) ( ) ( ) ( ) ( ) ( )
  

1
+∞

−∞ −∞

∂ − ∂
= + + −

∂ ∂∫ ∫
� ��

�
Q ( H9 Q (G, 9 G( Q ( I ( G( Q ( H9G9 ( ( . (4)

This expression is not a simple convolution and the DOS ( )Q (  cannot be easily extracted

from ( )/G, G9 9 . Therefore, we compare directly the predicted ( )/G, G9 9  curves using a

calculated ( )Q (  with the experimental measurements of ( )/G, G9 9 .

Figure 8: Differential conductance /G, G9 of a tunnel junction between a superconductor of BCS density of

states with a gap ∆  and a modified superconductor with an unknown density of states with a gap *∆ . The left

part represents the occupied states (Gray) and the emptied states in both electrodes of the tunnel junction. 1)

When the modified gap is much larger than temperature, *∆ >> �N 7 , /G, G9  presents a gap at *∆ + ∆ . 2) When

the modified gap is smaller than temperature, *∆ < < ∆�N 7 , /G, G9  presents a gap at about *∆ + ∆  and a

characteristic structure at *∆ − ∆ .
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���������0LQLJDS�UHYHDOHG�E\�WKH�WXQQHO�MXQFWLRQV�GLIIHUHQWLDO�FRQGXFWDQFH

The results discussed here were obtained on sample 1 (the single one that presents a

supercurrent).

11.2.3.2.1 Temperature dependence

We have investigated the temperature dependence of ( )/G, G9 9  at a fixed value of

the supercurrent (9 nA ). If the modification of the superconducting properties of the bulk

pads with temperature can be neglected, only the filling factor of the states in the normal wire

is modified. Figure 9 presents a comparison between the theoretical and experimental

evolutions of /G, G9  with temperature around 0.2 mV9 = −  (data around 0.2 mV= +9  are

identical). If the overall shape of the curves is correctly described by theory, the peak at

0.22  mV−  is found sharper in the experiment whereas the one near 0.19 mV−  is found more

rounded. This discrepancy arises possibly from the wrong evaluation of the density of states in

the normal wire, which neglects the effect of electron-electron interaction.
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Figure 9: Measured and calculated differential conductance of the side tunnel junction as a function of the

temperature when a supercurrent of 9 nA  flows in the wire. Assuming that the superconducting pads are not

modified, only the filling of the states in the normal wire is modified. When the temperature increases, the same

evolution is found qualitatively.
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11.2.3.2.2 Supercurrent dependence

The minigap and the density of states depend theoretically on the phase difference

between the two superconductors (see Section 11.2.1), which is determined by the bias current

(Eq. (1)). Experimentally, we observe an evolution of the ( )/G, G9 9  of the tunnel junction

with the supercurrent, as shown in Figure 10 (the data were taken at 0=% , where

15 nA=�, ). To predict the density of states in the normal wire versus the supercurrent, Eq.

(1) must be solved self-consistently with Eq. (2). Qualitatively, 0χ  is expected to evolve in a

nearly sinusoidal way [7] from 0  to / 2π  when ,  goes from 0  to �, . The minigap energy is

therefore expected to decrease to 0  for increasing values of , . The minigap can be directly

inferred from the ( )/G, G9 9  curves: as exemplified on Figure 8, /�( H  is equal to half the

distance in voltage 1 2���9 9−  between the two peaks. At 0 0χ = , ( )1 2 / 2 2.4 µV���9 9− =

instead of the theoretical value 3.1 1.0 µVε; ;� �( . Instead of decreasing with , , 1 29 9−

increases (see Figure 10). We assume that this evolution is due to vortices in the pads that

move with the current, as for the critical current dependence on magnetic field.

11.2.3.2.3 Position dependence

All the data shown till here correspond to the side junction. For a given phase

difference, theory predicts that the density of states in the wire varies with position (see Figure
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Figure 10: Left panel: Differential conductance of the side tunnel junction when the wire carries a supercurrent.

A minigap opens in the wire density of states, leading to the peak near the gap edge of the superconducting

electrode. Right panel: Difference between the positions 1 2�	�9 9− of the peaks in the differential conductance

versus the supercurrent.
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4) but that the minigap is constant. In the experiment (see Figure 11), the density of states in

the middle of the wire appears to be much rounded than at 0.25[ = , an effect not predicted by

theory. We attribute this discrepancy to the effect of electron-electron interaction in the

normal wire.

���������&RQFOXVLRQV�RQ�WKH�PLQLJDS�REVHUYDWLRQ

This set of measurements brings evidence for the existence of a minigap in the density

of states of a normal wire connected to two superconductors. The observed dependence of the

DOS on the supercurrent and on position does not correspond to theory. Part of the

discrepancy can be attributed to vortices in the superconductors. The fact that we neglect

electron-electron interaction in theory is also probably another reason. More information

would be gained in a dedicated experiment in which the probe electrode would be normal

instead of superconducting.
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Figure 11: Left: Normalized differential conductance of the two tunnel junctions when the phase difference 0χ
between the two superconducting pads is zero. Right: Theoretical predictions using the DOS calculated in
Section 11.2.1.
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������2XW�RI�HTXLOLEULXP�UHJLPH

��������4XDVLSDUWLFOH�HQHUJ\�GLVWULEXWLRQ�IXQFWLRQ�LQ�WKH�RXW�RI�HTXLOLEULXP
UHJLPH

In this section, our results published in Phys. Rev. Lett. ��, 1078 (2001) are described

and completed.

���������7KHRUHWLFDO�SUHGLFWLRQV

The quasiparticle energy distribution function in the normal wire can be simply

accounted for by the picture of Andreev reflections: at an NS interface, a quasielectron of

energy ε  smaller than the gap of the superconductor cannot enter the superconductor, and is

reflected into a quasihole with energy ε− , while a Cooper pair enters the superconductor (see

Figure 12). The energy reference is the chemical potential of the superconductor.

Due to proximity effect, the density of states in the normal metal is modified near the NS

interface. The distance over which the normal metal is affected depends on energy. In absence

of spin-flip scattering, this distance is predicted to be infinite at energy equal to the

electrochemical potential of the S electrode. In experiments, this distance is limited by all

decoherence phenomena in the normal wire, and is much smaller than the wire length. To a

Figure 12: Left: A normal wire is connected to a superconductor. Middle: Representation in the energy

(horizontal axis) and position (vertical axis) space of an Andreev reflection responsible for the current transport

at an NS interface. The excitation spectrum of the superconductor has a gap 2∆  centered on its chemical

electropotential �� , with quasielectrons states occupied at negative energies (dark area) and empty at positive

energies (light gray area). A quasielectron from the normal part (dark disk) of energy smaller than the

superconducting gap can not enter the superconductor and is reflected in a quasihole (light gray disk).
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first approximation, this modification is neglected and the SNS system can be modeled like in

Figure 13. Electrons with a small energy bounce back and forth between the two

superconducting reservoirs before exiting the wire. Within the diffusive approximation, the

occupation factors of the quasiparticles states vary linearly between 0  and 1 along the paths

between the reservoirs. The path length depends on bias voltage (see Figure 13). This

representation allows to predict the energy distribution function of electrons anywhere in the

wire.

���������%LDV�YROWDJH�GHSHQGHQFH

The energy distribution functions obtained by deconvolution of the differential

conductance of the middle junction in sample 1 as a function of 8  are presented in Figure 6.

The predictions of the simplified model taking into account only Andreev reflections are also

Figure 13: Left: Layout of the experiment: A voltage U is applied between two superconductors (S) connected

through a normal wire (N) of length L. A superconducting probe, represented by an arrow, forms a tunnel

junction with the central part of the wire. Top center and top right: Representation in the energy (horizontal axis)

and position (vertical axis) space of the quasiparticle paths responsible for the current transport. The excitation

spectrum of the top and bottom superconductors has a gap 2∆  centered on their electrochemical potentials µ �
and µ �  ( µ µ− =��� H8 ), with quasielectron states occupied at negative energies (dark areas) and empty at

positive energies (light gray areas). Quasiparticle paths consist of quasielectrons (dark disk) and quasiholes (light

gray disk) trajectories at symmetric energies about µ �  and µ � , connected by Andreev reflection. The area of the

disk is proportional to the occupation factor of the quasiparticle state, which varies linearly along the path from 1

to 0 . The bottom plots are the energy distribution predicted at the center of the wire, at 2> ∆H8  (center) and

2∆ < < ∆H8  (right).
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presented: the energy gap in the superconducting aluminum reservoirs is a fit parameter equal

to 115 µeV , which is smaller than the gap of bulk aluminum ( 200 µeV ), as expected for an

NS bilayer. For the two larger bias voltages the position and the width of the steps are well

accounted for by this theory. Yet, the measured steps are rounded. For the lower voltage, the

predicted steps are washed out by the rounding.

The rounding of the steps is due to energy exchange between quasiparticles in the normal

wire. The longer the quasiparticles stay in the wire, the more they interact, and the more

rounded is the distribution function [11]. This effect is visible on the curve taken at

595 µV=8 , where the plateau centered at 0.5  corresponding to quasiparticles going through

the wire once has a smaller slope than the ones at 0.25  and 0.75 , which correspond to

quasiparticles going through the wire twice.

To evaluate the rate of energy exchange in the normal wire, we have applied a magnetic field

that turns the reservoirs normal, but keeps the probe electrode superconducting. Indeed, the

bilayered Al-Ag reservoirs are less robust to magnetic field. It was then possible to measure

the out-of-equilibrium energy distribution function of quasielectrons like in [11] and to
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Figure 14: Energy distribution functions in the middle of the wire of sample 1, when the reservoirs are in the

superconducting states and voltage biased at 8 . Symbols are experimental data; solid lines are the expectation

of a simplified theory taking only into account multiple Andreev reflections.
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deduce the rate and energy dependence of energy exchange (see Figure 15). Afterwards, the

deduced rate was included in a calculation of ( )I ( , (see [11] and Chapter 7 for more

details):

( )
2

2
0

∂ + =
∂

� � � �
I' , I[ . (5)

Andreev reflections at the NS interfaces enter in the boundary conditions for E < ∆ :

( ) ( )1µ µ+ = − −I ( I ( (6)

( ) ( )µ µ∂ ∂+ = − −
∂ ∂
I I( ([ [ . (7)

The condition (6) accounts for the equality of the occupancy of quasielectrons and quasiholes

states at symmetric energies about the electrochemical potential µ  of the superconductor. The

condition (7) is the conservation of the quasiparticle current.

The data in Figure 14 are well accounted for with a calculation including in ( )� � � �, I  electron-

electron interaction and electron-phonon interaction (see Figure 16). The intensity of

interactions were found to be -1 -1/2
3/ 2 0.75 ns  meVκ =  and -1 -38 ns  meVκ =� � . The predicted
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Figure 15: Energy distribution function in the middle of the wire of sample 1, when the reservoirs are in the

normal state and voltage biased at 597 µV=8 .
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electron-electron interaction intensity is -1 -1/2
3/ 2 0.12 ns meVκ =

� �

(see Chapter 7).

���������3RVLWLRQ�GHSHQGHQFH

In sample 1, at the position of the side junction, whatever the bias voltage, the energy

distribution functions display strange features (see Figure 17 for 08 =  and 595µV8 = ). The

reason is that at this position, the density of states in the normal wire is modified by proximity

effect. The length over which this modification extends depends on the energy relatively to the

electrochemical potential µ  of the superconducting reservoir. At µ , this modification

typically extends in the normal part over /φ  at the electronic temperature �7 . In our out-of-

equilibrium situation, �7  must be replaced with the width of the energy distribution function

28 + ∆ : At 595 µV=8 , for example, 9 K�7 ;  and 1.5µm/ϕ ;  for 6N-silver (see Chapter

6). As a consequence, like in Section 11.2.3.1, ( )Q (  is modified at the position of the side

junction, which is 1.25 µm  away from the left superconductor and the deconvolution of the

differential conductance of the tunnel junction does not give ( )I ( . The observation on

Figure 17 that some extra peaks on the deconvolved data are at an energy equal to the

chemical potential �µ  of the nearest superconducting reservoir whereas nothing is observed at
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Figure 16: Energy distribution function in the middle of the wire of sample 1, when the reservoirs are in the

superconducting state and voltage biased at 8 . Symbols are experimental data; solid lines are the solution of the

Boltzmann equation taking into account multiple Andreev reflections and energy exchange.
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the other chemical potential �µ  buttresses the previous explanation.

In sample 2, the measured distribution functions at two different positions along the wire are

well accounted for by the simplified theory (see Figure 18), if one assumes that the positions

of the junctions are 0.58[ =  (instead of 0.5 ) and 0.35[ =  (instead of 0.25 ). This shift is

attributed to a significant contact resistance at the reservoirs in this sample, equivalent to an

extra length of the wire. The effective positions of the probe junctions correspond to an

effective lengthening of the left side of the wire by about 850nm . The existence of such a

contact resistance was also inferred from the absence of supercurrent, and prevents from a

modification of the density of states by proximity effect at the position of the side junction

like in sample 1. This explains why the strange features of Figure 17 are absent on Figure 18.

The widths of the side steps give slightly different gaps at both ends: 120 µV  and 140 µV .
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Figure 17: Symbols: Apparent energy distribution functions ( )" "I (  obtained by deconvolution of /G, G9
measured at 1/ 4[ =  for 08 =  and 595µV8 = . Bottom: Solid line is the calculated energy distribution

function at 1/ 4[ =  with the fit parameters that account for energy distribution functions in the middle of the wire

(see Figure 16).
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��������&XUUHQW�YROWDJH�FKDUDFWHULVWLF�RI�WKH�616�VWUXFWXUH

���������([SHULPHQWDO�REVHUYDWLRQ

For both samples, even if the current voltage characteristic looks linear at first glance,

a subgap structure is revealed by differential conductance measurements (see Figure 19). Such

a subgap structure, which was already observed by Hoss HW� DO�� [12] is not expected in the

simplified picture of Andreev reflections. In order to describe the modification of the density

of states near the NS interface, we have performed a calculation using the theory of non-

equilibrium superconductivity.
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Figure 18: Distribution functions in sample 2 as measured by the middle and side junctions for 700 µV=8 .

Symbols: Experiment. Solid line: Solution of the Boltzmann equation accounting for the Andreev reflections at

the reservoirs and electron-electron interaction within the wire for / 0.58= =[ ; /  and / 0.35= =[ ; / .
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���������7KHRUHWLFDO�SUHGLFWLRQV

To calculate the current voltage characteristic of the SNS structure, we use the

equilibrium and out-of-equilibrium Usadel equations. The current is derived from the

quasiparticle energy distribution function in the wire.

11.3.2.2.1 Energy distribution function in the middle of the wire

In the finite voltage regime, proximity effect has two consequences: the modification of the

density of states in the normal wire near the NS interface and the modification of the filling

factors of the quasiparticles states in the normal wire as a whole. In presence of a finite

voltage, the phase difference between the two superconducting pads depends on time. The

theory of non-equilibrium superconductivity does not apply to such a non-stationary case. In

order to circumvent this difficulty, we assume that the wire is long enough so that, in the

middle, the wire is normal and the pairing angle equal to zero. The problem can then be

solved by separating the wire into two systems made of a normal wire connected at one end to

a single superconducting reservoir: A first one between 0=[  and 1/ 2=[ , with a

superconducting reservoir at 0=[ , a second one between 1/ 2=[  and 1=[ , with a
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Figure 19: Left panel: Measured differential conductance /G, G9  of the normal wire in sample 1. The

conductance of the wire shows a step-like behavior as a function of the voltage. Right panel: Differential

conductance, normalized to the conductance at large voltage 1/ 5 , versus voltage, normalized to the gap voltage

of the superconducting pads ∆ , for sample 1 (black line) and 2 (gray line).
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superconducting reservoir at 1=[ . The equilibrium and out-of-equilibrium Usadel equations

can then be used (see Chapter 9). Afterwards, both solutions are matched together by

continuity. This model is solved in details in Appendix 1. An example of solutions is shown

in Figure 20. This approach fails to account for the smoothing of the energy distribution

function because electron-electron interaction is not included in the calculation. The positions

of the steps are the same as those found with the approach of Andreev reflections. The sharp

features, at energies equal to the electrochemical potential of the superconducting reservoirs,

in the middle of the plateaus, are signatures of proximity effect. Note that at the position of the

side junction of sample 1, the apparent energy distribution functions on Figure 17 present

sharp feature at energy equal to the electrochemical potential of the nearest superconducting

reservoir but for a different reason, as seen from their shape: by tunneling one obtains a

contribution of the density of states as explained before.
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Figure 20: Calculated quasielectron energy distribution functions in the middle of a normal wire connected to two

superconducting pads, of gap 115 µV∆ = , voltage biased at 151 µV=8  and 595µV . The calculations are

based on the Usadel equations. The modification of the pairing angle in the normal wire and in the

superconducting pads near the NS interface due to proximity effect is taken into account and is responsible for

the sharp feature on the steps at energies equal to the electrochemical potential of the superconducting reservoirs.

The rounding of ( )I (  is absent because electron-electron interaction is not included in the calculation.
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11.3.2.2.2 Current-voltage characteristic

From the distribution function in the middle of the wire, the current-voltage

characteristic is obtained by integrating out the following equation (see Chapter 9):

 
2 2

1 20
cos cosh

σ ε θ θ
+∞ ∂ ∂ = + ∂ ∂ ∫

� � � �
�

I IM GH [ [ , (8)

with σ  the conductivity in the normal metal. This formula gives the normal wire resistance

when 0θ = . Since the current is conserved along the wire, it can be calculated in the middle

where the wire is assumed to be normal, ( ) ( )1 21/ 2, 1/ 2, 0θ ε θ ε= = , so that Eq. (8) simplifies

to:

 

0

σ ε
+∞ ∂ ∂ = + ∂ ∂ ∫
� ��� 	



I IM GH [ [ . (9)

The differential conductance obtained from this calculation is presented in Figure 21. Peaks

appear in the differential conductance at energies equal to submultiple of twice the gap 2 /∆ Q .

Even if the experimental results show some similarities with this curve, they are much more

rounded. Moreover, the order of magnitude of the predicted effect is smaller than the

experimental one, proving that this model fails to capture the essential physics.

0.0 0.5 1.0 1.5 2.0
1.00
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1.10
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I/
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Figure 21: Predicted differential conductance of a normal wire connected to two superconducting reservoirs of

gap ∆ . The length of the normal wire is 9 9 /∆ = ∆h/ '  with '  the diffusion constant of the normal wire.

Peaks appear in the differential conductance at energies equal to submultiple of twice the gap.
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������&RQFOXVLRQ
Two theoretical descriptions of proximity effect have been used to compare with

experiments. The first one, based on Usadel equations, neglects the effect of Coulomb

electron-electron interaction, but describes the propagation of pair correlation. We have

adapted it to out-of-equilibrium situations in which two superconductors are biased at

different potentials. The second theoretical framework is based on the Boltzmann equation

and treats Coulomb interaction in details. Proximity effect is introduced as a boundary

condition, which is an oversimplification. All the properties specific to pair correlation cannot

be found from this second formalism: the supercurrent, the DOS, the voltage-dependent

resistance are only expected from Usadel equations. It is however found that the agreement

with this theory based on Usadel equations is rather poor, suggesting that Coulomb interaction

does play an important role, too. A term that accounts for electron-electron interaction should

be added in the earlier steps of the mesoscopic superconductivity theory in the self-energy

expression (see Chapter 9 and [13]). For the energy distribution functions, the adapted Usadel

equations only predict slight modification of ( )I ( , whereas the most salient modifications of

( )I (  are due to Coulomb interaction. Boltzmann equation gives then the best description.

More experiments are needed in this field: for shorter wires, modifications of ( )I (  by pair

correlations should become measurable, and interactions should be less important. The

simplest geometry would be a wire with one contact superconducting, the other one normal

(SNN). Both normal and superconducting probe electrodes would allow for independent

measurements of the density of states and energy distribution functions.
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$SSHQGL[����&DOFXODWLRQ�ZLWK�WKH�8VDGHO�HTXDWLRQV�RI�WKH�HQHUJ\
GLVWULEXWLRQ�IXQFWLRQ�LQ�WKH�PLGGOH�RI�DQ�616�VWUXFWXUH

To calculate the energy distribution function in the middle of the normal wire, the

system is modeled by two half systems made of a normal wire connected to only one

superconducting reservoir (see Figure 22). The energies are expressed in units of ∆ , the gap

of the superconductor pads. The pairing angle θ  and the filling factors � �I  and � �I  are

introduced.

'HQVLW\�RI�VWDWHV�LQ�D�QRUPDO�ZLUH�FRQQHFWHG�DW�RQH�HQG�WR�D�VXSHUFRQGXFWRU

The modifications of the density of states near the NS interface are taken into account

on both side of the contact. When neglecting the spin-flip scattering, since 0ϕ∇ = , the

equilibrium Usadel equations can be simplified to:

( )2

2
2 sin 2 cos 0

θ ε θ θ
∆∂ + + =

∂ ∆
[L[ ,

where ( ) 0∆ =[  in the normal part and ( )∆ = ∆[  far from the interface in the superconductor.

The out-of-equilibrium equations in the normal wire can be written:

{ }
{ }

2
1

2
2

cos 0

cosh 0.

θ

θ

=

=

� �

� �

I
I

∇ ∇

∇ ∇

Figure 22: Left: Layout of the experiment. A normal wire is connected to two large superconducting voltage-

biased electrodes. Right: To perform the calculation of the energy distribution function in the middle of the wire

with Usadel equations, the density of states in the middle of the wire is assumed to be normal so that the wire can

be modeled by two SN systems with different reference energies.
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The density of states at the end of the wire is assumed to be normal, so that:

( )1/2, 0θ ε = .

By symmetry, one also has:

( )1/2, 0
θ ε∂ =

∂[ .

When integrating twice the equilibrium Usadel equation, one obtains for 0>[ :

( ) ( ) ( )10,
, 4arctan tan

4
εθ ε

θ ε − 
=  

 

���[ H .

Far inside the superconducting reservoir, bulk BCS properties are recovered. In practice,

superconductivity is modified on a distance from the contact / ∆ <: h' / , so that we take:

( ) ( )

( )

-1,

-1, 0.

� � �

[

θ ε θ ε
θ ε

=
∂ =
∂

When integrating once the equilibrium Usadel equation, one obtains for 0<[ :

2

24 cos 4sin 4 1
θ ε θ θ ε∂  − + = − ∂ 

L[ .

The contact between the superconductor and the normal wire is assumed to be perfectly

transparent, so that by continuity: ( )( ) 2sin 0, 1θ ε ε ε= + −L .

For the out-of-equilibrium equations, the superconductor is assumed to be a reservoir at zero

temperature so that:

( )
( )
( )

0, 0

0, 1   if  0

0, 1     if  0.

� �

� 	

� 	

I
I
I

ε
ε ε
ε ε
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= − <
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One obtains then:

( ) ( ) ( ) ( )

( ) ( ) ( )
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∫

with ( ) 0ε =D  for 1ε < .
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(QHUJ\�GLVWULEXWLRQ�IXQFWLRQ�LQ�WKH�PLGGOH�RI�WKH�ZLUH

A voltage 8  is applied between the two superconducting reservoirs. The energy

reference is taken in the middle of the wire (see Figure 22).

Then the distribution function can be written for the left and right part:

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )
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2 0
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∫

Writing that the energy distribution function and the spectral current are continuous at

1/ 2=[ , the following equation is obtained:
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We reproduce here the paper published in Phys. Rev. Lett. ��, 1078 (2001).
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We have performed the tunnel spectroscopy of the energy distribution function of quasiparticles in
5-mm-long silver wires connected to superconducting reservoirs biased at different potentials. The dis-
tribution function f�E� presents several steps, which are manifestations of multiple Andreev reflections
at the NS interfaces. The rounding of the steps is well explained by electron-electron interactions.

DOI: 10.1103/PhysRevLett.86.1078 PACS numbers: 74.50.+r, 72.10.–d, 73.23.–b

The modification of the properties of a normal (i.e., non-
superconducting) metallic electrode when it is connected
to a superconducting one, a phenomenon called “proximity
effect,” has been highlighted by experiments on meso-
scopic devices [1]. In metallic nanostructures, equilibrium
properties, such as the density of states [2], the conduc-
tivity [3], or the supercurrent [4], are now well explained.
The propagation of the correlations between time-reversed
states from a superconductor (S) into a diffusive normal
metal (N) is described by the Usadel equations [5], which
apply to situations where all superconductors are at the
same potential. In this Letter, we address an out-of-
equilibrium situation, in which two superconductors con-
nected through a long �L � 5 mm�, diffusive normal wire
are biased at different potentials (see Fig. 1). We have
measured the energy distribution function of quasipar-
ticles in the middle of the wire, which is expected to be
strongly modified by the presence of superconductors at
the ends, since quasiparticles can escape the wire only
if their energy exceeds the energy gap D of the super-
conductor. Therefore, in the presence of a finite voltage
across the wire, the quasiparticles in the wire are expected
to be “heated” up to the gap energy [6]. A quantitative
description follows from the concept of multiple Andreev
reflections, which recently has been shown to describe
in great detail the current-voltage characteristics [7], the
noise [8], and the supercurrent [9] in atomic point contacts
between superconductors. An Andreev reflection consists
of the reflection of a quasielectron into a quasihole (or
vice versa) at the N side of an NS interface, a process
which transfers a Cooper pair into the superconductor.
The energies of the two quasiparticles involved are sym-
metrical with regard to the electrochemical potential of the
superconductor. When two superconductors are present,
successive Andreev reflections at both superconductors
lead to a progressive rise of the quasiparticle energies, till
the superconducting gap is exceeded. At zero voltage,
multiple Andreev reflections lead to the formation of
bound states which carry the supercurrent [10]; at finite
voltage, they result in nonlinearities in the current voltage
characteristics [6,7]. Here, we focus on the fingerprint of
multiple Andreev reflections in the shape of the energy
distribution function f�E� of the quasiparticles.

For simplicity, we first make the following assumptions:
(i) electron-electron and electron-phonon interactions are
neglected; (ii) the renormalization of the diffusion con-
stant in the normal wire by proximity effect is neglected;
(iii) the probability of Andreev reflection is taken equal
to 1 for quasiparticle energies within the gap, and to 0
elsewhere. Under assumptions (i) and (ii), the distribution
function varies linearly with the position X along the wire
[11]. Because of Andreev reflection, the occupation factor
for quasielectrons and quasiholes at symmetrical energies
about the electrochemical potential m of the superconduc-
tor is equal at the NS interfaces, as well as their gradients.

FIG. 1. Left: layout of the experiment: a voltage U is applied
between two superconductors (S) connected through a normal
wire (N) of length L. A superconducting probe electrode, rep-
resented by an arrow, forms a tunnel junction with the central
part of the wire. Top center and top right: representation in
the energy (horizontal axis) and position (vertical axis) space of
the quasiparticle paths responsible for the current through the
normal wire. The excitation spectrum of the top and bottom
superconductors has a gap 2D centered on their electrochemi-
cal potentials mt and mb �mt 2 mb � eU�, with quasielectron
states occupied at negative energies (dark areas) and empty (light
gray areas) at positive energies. Quasiparticle paths consist of
quasielectron (dark disks) and quasihole (light gray disks) tra-
jectories at symmetric energies about mt or mb , connected by
Andreev reflection. The area of the disks is proportional to the
occupation factor of the quasiparticle state, which varies linearly
along the path from 1 to 0. The bottom plots are the energy dis-
tribution functions at the center of the wire, at eU . 2D (center)
and D , eU , 2D (right).

1078 0031-9007�01�86(6)�1078(4)$15.00 © 2001 The American Physical Society
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One can therefore define quasiparticle paths in the
energy-position space between occupied and empty quasi-
particle states in the superconductors, along which both
the nature of the quasiparticle and its energy change at
each NS interface. The occupancy f of the quasiparticle
state on this diffusive path varies continuously from 1 to
0 along the trajectory, with a gradient given by the inverse
of the length of the trajectory. Hence, f is simply, at a
given point of a trajectory, the remaining fraction of the
path. The distribution function f�E�, which is defined
for quasielectrons, is then equal to f at a point where the
quasiparticle on the considered trajectory is a quasielec-
tron, and to 1 2 f where it is a quasihole. This allows one
to determine the distribution function as a function of en-
ergy and position in the wire. Two examples are illustrated
in Fig. 1. In the first one, the voltage U � �mt 2 mb��e
is larger than 2D�e (with mt and mb the electrochemical
potentials of the two superconductors). The leftmost
quasiparticle path in Fig. 1, labeled a, is emitted from
a filled quasielectron state in the top superconductor
at an energy E between mb 2 D and mb 1 D. This
quasielectron is then reflected as a quasihole at the bottom
NS interface, at an energy symmetrical about mb . It is
then absorbed in the top superconductor where quasihole
states are unoccupied at the corresponding energy (since
quasielectron states are filled), and the quasiparticle
path has a total length 2L. At the energy of the initial
quasielectron, the position X � L�2 is reached when 3�4
of the total path remains; therefore, f�E� � 3�4. The
second path in Fig. 1, labeled b, has length L: quasi-
electrons from the top superconductor with an energy
between mb 1 D and mt 2 D are absorbed in the bottom
superconductor after one traversal of the wire. Therefore
f�E� � 1�2 at X � L�2. The third path, labeled c,
resembles path a, with an inversion of quasiholes and
quasielectrons. One obtains thus f�E� � 1 2 3�4 � 1�4
at the middle of the wire. Altogether, the energy dis-
tribution function at X � L�2 presents three steps, at
3�4 (width 2D), 1�2 (width eU 2 2D), and 1�4 (width
2D). The right diagram of Fig. 1 deals with the case
D , eU , 2D. The steps of f�E� at 3�4 and 1�4 are
still present, since the paths of length 2L of the former
diagram (not reproduced here) are still relevant for the
energy intervals �mb 1 D 2 eU; mb 2 D 1 eU� and
�mt 1 D 2 eU; mt 2 D 1 eU�. In addition, a new type
of path appears, labeled d, with length 3L. One obtains
then three extra steps in f�E�, at 5�6, 1�2, and 1�6. More
generally, multiple Andreev reflections lead to the appear-
ance of steps in f�E� at energies between mb 2 D and
mt 1 D. The number of steps is 2 3 int� 2D

eU � 1 3, and the
sum of the widths of two successive steps is eU. In the
limit U ! 0, f�E� varies linearly from 1 at E � 2D

to 0 at E � D. To conclude, this simple model predicts a
staircase pattern in the energy distribution function, which
directly reveals multiple Andreev reflections.

We report results obtained on two samples, fabricated
by shadow mask evaporation in order to obtain the com-

plete structure schematically described in Fig. 1. The nor-
mal metal 45-nm-thick wires are made of 99.9999% pu-
rity silver, as samples in which phase coherence lengths
beyond 10 mm were found [12]. The wire length of
sample No. 1 (sample No. 2) is L � 5.15 mm (5.6 mm),
the width w � 80 nm (70 nm), and the normal state resis-
tance, measured at large voltage, R � 38 V (58 V). The
length is chosen short enough for the energy redistribution
among quasiparticles to be small [13], but long enough for
the density of states at the middle of the wire to be almost
energy independent [2]. In sample No. 1, the wire extends
at both ends into large contact pads which are covered by a
300-nm-thick aluminum layer. The reservoirs are therefore
bilayers of Ag and Al and have thus a reduced supercon-
ducting gap. In sample No. 2, the contact pads have no
underlying silver layer on a rectangle of 300 3 500 nm2

just at the ends of the wire, in order to obtain a larger
superconducting gap. A tunnel junction is formed at the
middle of the wire (and, on sample No. 2, also at 1.25 mm
from the top electrode), with a 100-nm-wide aluminum
probe electrode. The samples were mounted in a shield-
ing copper box on a sample holder thermally anchored to
the mixing chamber of a dilution refrigerator. All connect-
ing lines to the samples are filtered at 4.2 K and at the
sample temperature. The experiment consists of measur-
ing the differential conductance dI�dV �V � of the probe
junction when a voltage U is applied across the wire. Un-
der the assumptions that the density of states of the normal
wire is constant at the position of the probe junction and
that the temperature of the probe electrode remains negli-
gible compared to the critical temperature of aluminum,
the differential conductance of the junction is simply a con-
volution product of the derivative of the density of states
of the superconductor and of the distribution function in
the wire [11,14]. We deconvolve the data numerically,
after determining the junction resistance and gap energy
at equilibrium �U � 0� where f�E� is expected to be a
Fermi function. In Fig. 2, we present with open sym-
bols the distribution functions measured on sample No. 1
at U � 151 mV, 310 mV, and 595 mV, and in Fig. 3 on
sample No. 2 at U � 700 mV, for both positions. The en-
ergy reference was taken at the potential of the center of the
wire (mt � eU�2, mb � 2eU�2). As expected from the
simplified description of multiple Andreev reflections pre-
sented above, the distribution function for sample No. 1
presents, at large voltages (310 and 595 mV in Fig. 2),
three steps near 3

4 , 1
2 , and 1

4 (dashed lines). The distance
between the center of the side steps is well given by eU.
Their width gives the value of the gap in the reservoirs:
D � 115 meV, which is as expected smaller than the gap
of aluminum (200 meV). In contrast with the simplified
model, the steps are not flat, and the slope of the side steps
near 3�4 and 1�4 is larger than the slope at 1�2. More-
over, the model predicts five steps in f�E� when U is be-
tween D�e and 2D�e (see Fig. 1), whereas the data taken
at U � 155 mV display only slight inflections of f�E�
around the predicted values. At voltages below 100 mV,

1079



VOLUME 86, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 5 FEBRUARY 2001

FIG. 2. Distribution functions at the middle of the wire of
sample No. 1, when the reservoirs are in the superconducting
state or in the normal state (inset), for different values of the
bias voltage U. Symbols are experimental data, dotted lines are
the expectations of the simplified theory with multiple Andreev
reflections alone as in Fig. 1, and solid lines correspond to the
solution of the Boltzmann equation with the Coulomb inter-
action term.

no structure can be seen in the distribution function, and ir-
regularities appear in the deconvolved data, resulting from
our neglection of the modification of the density of states
in the wire at the scale of the Thouless energy h̄D�L2

[15] (data not shown). In sample No. 2, the evolution of
the distribution function with position agrees qualitatively
with the model. However, the exact position of the steps
is slightly shifted from the expected values. We attribute

FIG. 3. Distribution functions on sample No. 2, at two
positions (x � X�L � 0.58 and x � 0.35), for U � 700 mV.
Symbols: experiment. Solid lines: solution of the Boltzmann
equation accounting for the Andreev reflections at the reservoirs
and electron-electron interactions within the wire.

this shift to the small size of the top NS contact, which
introduces a significant contact resistance, accounted for
by an extra length of the wire. The relative position of
the probe junctions needed to explain the position of the
steps in f�E� turns out to be X�L � 0.58 (instead of 0.5)
and X�L � 0.35 (instead of 0.25), which corresponds to
an effective lengthening of the top end of the wire by about
850 nm. The widths of the side steps give slightly differ-
ent gaps at both ends: 120 and 140 meV.

In order to account for the rounding of the steps, we
now include in the analysis the effect of energy relaxation
of quasiparticles, due to Coulomb electron-electron [13]
and electron-phonon [16] interactions. These interactions
contribute to the stationary Boltzmann equation which de-
termines the variations of f�E�:

D
≠2fE

≠X2 1 Ie-e
in � fE� 1 I

e-ph
in � fE� � 0

through the interaction collision integrals [11,13]

Ie-e
in � fE� �

Z
d´ dE0 Ke�´�

3 � fEfE2´fE0fE01´ 2 fEfE2´fE0fE01´	 ,

I
e-ph
in � fE� �

Z
d´ Kph�´�fEfE2´ ,

where Ke�´� � ke�´3�2, Kph�´� � kph´2 [17], fE stands
for f�E�, and fE stands for 1 2 f�E�. In order to
determine the Coulomb interaction parameter ke, we have
taken advantage in sample No. 1 of the weaker supercon-
ductivity in the reservoirs than in the probe finger, which
allows one to turn just the reservoirs normal in a moderate
magnetic field (H � 16 mT, applied perpendicular to the
sample plane), while keeping the probe superconduct-
ing. The distribution function with normal reservoirs at
U � 595 mV is displayed in the inset in Fig. 2, and has,
as expected [11], only one step near 1�2. From the fit
of a set of such curves at different values of U, we have
confirmed the ´ dependence of K�´� and obtained [13]
ke � 0.75 meV21�2 ns21. The coupling constant kph
between electrons and phonons was extracted from the
temperature dependence of the phase coherence time
on similarly fabricated silver samples [12]: kph �
8 meV23 ns21. When the reservoirs are superconduct-
ing, the same Boltzmann equation also allows one to
compute numerically f�E�, with the following boundary
conditions for jEj , D: (a) f�m 1 E� � 1 2 f�m 2 E�
accounts for the equality of the occupancy of quasielec-
tron and quasihole states at symmetric energies about the
electrochemical potential m of the superconductor and
(b) ≠f

≠x �m 1 E� � 2
≠f
≠x �m 2 E� is the conservation of

the quasiparticle current. The results for f�E�, using the
value of ke and kph given above, are plotted with solid
lines in Fig. 2. Note that the inclusion of the phonon term
I

e-ph
in � f� changes only slightly f�E�. The side steps at 3

4
and 1

4 are more rounded than the step at 1
2 , as observed.
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Indeed, they correspond to quasiparticles staying in the
wire 4 times longer on average (path length 2L), which
are thus more likely to interact with other quasiparticles.
The distribution function at U � 151 mV is very rounded
by interactions, as expected for quasiparticle paths with
lengths 2L and 3L. The overall agreement with the mea-
surements indicates that this simple picture of multiple
Andreev reflections [i.e., with assumptions (ii) and (iii)]
together with Coulomb interactions captures the essential
phenomena. In sample No. 2, a good fit of the data is
found with ke � 0.35 meV21�2 ns21 at both measuring
positions (see solid curves in Fig. 3).

We now discuss the influence of a more precise descrip-
tion of Andreev reflection, i.e., when relaxing assumptions
(ii) and (iii). This can be achieved using the Usadel equa-
tions [5], assuming that the wire is long enough so that
the superconducting correlations are completely lost in the
middle of the wire [18], and neglecting electron-electron
interactions. Qualitatively, in the example of trajectory a
in Fig. 1, the time spent near the bottom NS interface is
shortened by the renormalization of the diffusion constant
at energies close to the electrochemical potential of the
superconductors [3], which results in a shorter remaining
length when X � L�2 and thus to a value for f�E� smaller
than 3�4. However, in our experiment, where the length
of the wire is 1 order of magnitude larger than the super-
conducting coherence length

p
h̄D�D, this effect on f�E�

turns out to be negligible.
To conclude, our measurements display clear signa-

tures of multiple Andreev reflections in SNS junctions and
demonstrate the importance for the proximity effect of
electron-electron interactions, a contribution which is not
taken into account in the standard Usadel formalism.
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