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Chapter 1

Introduction and summary

1.1 Microelectronic industry scaling down to mesoscopic physics

Since the 60’s, the density of transistors integrated on a microprocessor doubles every 18 months, driven
by Moore’s law. The last generation of MOS transistors, used for instance in the Pentium 4 (2005), has
typical dimensions below 100nm.

At a length scale of a few nm, purely quantum effects like energy quantization in the channel of
the transistor or tunneling from the gate to the channel, will strongly degrade the performances of this
device. CMOS technology scaling to smaller and smaller dimensions is therefore likely to be compromised
by these quantum effects and fundamental limits of miniaturization are expected to be reached in the
near future, even if progress in materials can still significantly improve transistor performance.

Nevertheless, quantum effects in general are not necessarily only a nuisance and we’ll see in the next
section, dedicated to quantum computing, that quantum physics provides new principles for information
processing. A computer taking advantage of these principles would be able to perform some tasks which
are intractable for classical computers.

Although, no quantum computer has yet been operated, many physical systems have been investigated
to explore their potential for making quantum processors. Among these, superconducting circuits made of
Josephson junctions have attracted a wide interest because present fabrication techniques provide useful
design flexibility. In addition, their quantumness is now demonstrated.

The aim of this Ph.D thesis is to further investigate the quantronium circuit developed in the
Quantronics group since 2001. This circuit implements a quantum bit, which is the building block of a
quantum computer. During this Ph.D, full manipulation and control of the quantum state of this device
has been achieved experimentally. The decoherence phenomenon which prevents ordinary circuits from
behaving quantum mechanically has also been characterized, and a new setup invented at Yale University
by M.Devoret, for reading out the state of our qubit in a non-destructive way, has been implemented.

1.2 Quantum computing

As pointed out in the early 1980’s by D. Deutsch [1], a processor that exploit the laws of quantum
mechanics could indeed perform some computational tasks more efficiently than can be achieved by
classical processors. This striking discovery started a new field called quantum computing.

The simplest description for a quantum processor is an ensemble of coupled two level systems, called
quantum bits or qubits. A quantum algorithm consists in the controlled evolution of the quantum state
of the whole processor. Measurements of the quantum state are performed during the computation to
provide the answer of the problem. It was shown soon after the proposition of quantum computing that a
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Figure 1.1: A quantum processor is made of coupled qubits, each qubit having a separate manipulation
and measurement setup.

small number of single-qubit and two-qubit operations is sufficient for implementing any unitary evolution
of a quantum processor. But, could quantum computers provide a large enough advantage over classical
ones to compensate for their greater complexity?

In order to answer this question, one first needs to evaluate the difficulty of a given problem for
classical computers, using complexity theory.

1.2.1 Evaluating the complexity of a problem

Complexity theory evaluates how the resources needed to solve a given problem, like time or memory,
scale with the size of the problem. For instance the addition of two integers takes a time proportional to
the number of digits of the integers. One says it has O(N) complexity, where N is the number of digits.

In the ensemble of computable problems, there is a hierarchy, which defines two subensembles:

• ’P’: the ensemble of problems having a polynomial complexity. For instance, the multiplication of
two integers takes a time proportional to the square of the number of digits: it has a O(N2) com-
plexity. These problems are said to be easy, since a polynomial cost is almost always supportable.

• ’NP’ problems, whose solutions are easy to check. For instance, the factorization of integers. Given
an integer n, it is easy to check whether or not an other given integer a is a prime factor of n : the
euclidian division of n by a, takes a polynomial time and gives the answer. The P ensemble belongs
to NP since if you can find the solution of a problem in a polynomial time, you can also verify a
solution in a polynomial time. But it seems that NP is larger than P, and so contains problems
that cannot be solved in polynomial time. For example, if you want to find a, a prime factor of n,
until now, you have to try almost every integer up to

√
n , a process that takes an exponential time

in the length of n. As a consequence, this factorization problem seems for the moment not to be in
P. An important problem in computer science is to prove that NP is indeed larger than P.

This classification in different complexity classes relies on the modern Church-Turing thesis which asserts
that all classical computers are equivalent. This means that the complexity class of a given problem does
not depend on the hardware, i.e. the classification in P or NP problems is universal: a P problem on a
Pentium is also a P problem on the last Cray. This universality does not extend however to quantum
processors since quantum physics provides new principles for building a computer which is not subject to
the Church-Turing thesis. Indeed, in 1994, P. Shor invented a quantum algorithm for the factorization of
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integers having a polynomial complexity [2]. The impact of this discovery was extremely important since
most of cryptographic protocols used nowadays (such as RSA encoding protocols) rely on the difficulty
of factorizing large integers .

1.2.2 Quantum resources

Quantum computing uses several resources relying on the fundamental principles of quantum physics.
The main quantum resource is linearity. Due to the superposition principle, a quantum computer

could operate at the same time on a linear combination of several input data and give the output as a
superposition of all the results (see figure 1.2).

U
|000..01> +

|010..01> +

|000..11>
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Measurement

Figure 1.2: The linearity of quantum physics provides a massive parallelism. For instance, an operator
U can be calculated for every value of the input register. Nevertheless, the final measurement projects
the state of the quantum processor on a unique state and all the other results are lost.

This massive parallelism is not directly useful because the measurement process needed at the end
of the calculation projects the quantum processor on a unique state, with a certain probability. As a
consequence, quantum algorithms are not deterministic. Furthermore the no-cloning theorem [3] forbids
the copy of an unknown quantum state, this probability distribution is not measurable in a single shot.

The art of quantum algorithmics is precisely to restore the power of quantum parallelism by circum-
venting the drawback of this unavoidable projection at readout. The idea is that, for particular types
of problems different from the simple evaluation of a function, the final readout step can provide the
searched answer with a high probability. This ”quantum distillation” is exemplified by L. K. Grover’s
search algorithm [4]. This algorithm can find indeed a particular state in a Hilbert space of dimension N,
in a time O(

√
N), whereas the best classical search algorithm in a data base of N elements has a O(N)

complexity. Starting from a quantum state given by the superposition of all Hilbert space elements, the
evolution drives it towards the state that fulfills the particular condition required.

Underlying to this concept of a clever unitary evolution that can be compared with a sort of ”dis-
tillation” of the quantum states, is the entanglement phenomenon. This is a general property of almost
all states in a Hilbert space and it can be seen as a resource by itself, even if, for the moment, no sat-
isfactory measure exists for quantifying this property in a many qubit systems. Entanglement gives rise
to non classical correlations between parts of a composite system. Information can be encoded in these
correlations, leading to astonishing results. For instance, sharing an entangled pair of qubits permits
to communicate two classical bits by sending only one qubit (superdense coding [5]), or to teleport an
unknown qubit state by sending two classical bits [6].

The resources of quantum physics can thus be exploited to solve particular tasks, such as: quantum
Fourier transform [7], search problems in an unstructured ensemble, and more important, simulation of
a quantum system [8, 9]. Today, it is still unknown how many problems can be solved efficiently with
a quantum computer. The real potential of a quantum computer compared to a classical one is so far
unknown. As a consequence, an important motivation for building such a quantum processor is to deepen
our understanding of quantum physics, and in particular of the quantum-classical boundary.
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1.2.3 The problem of decoherence

From the experimental point of view the implementation of a quantum processor is obviously a formidable
task because quantum states are extremely fragile. Indeed, quantum superpositions of states are very
sensitive to errors introduced by the coupling to the environment which is unavoidable if manipulation and
measurement have to be performed. This decoherence phenomenon (see chap 4), was considered to be a
fundamental limit for quantum computation, until P. Shor [10], A. M. Steane [11] and D. Gottesman [12]
proposed schemes for quantum error correction. The idea is to use redundancy, as with classical error
correction, by entangling the main qubits with auxiliary ones, called ancillas. The correction of errors is
possible by measuring these ancilla qubits and getting enough information on the errors to correct properly
the main qubits without losing quantum coherence. For instance, four auxiliary qubits are required to
implement this scheme in the frame of the model of single qubit errors. To work, these quantum error
correcting codes need a minimal accuracy for every typical qubit operation. If the probability of errors
per gate is below a critical value of about 1 over 104 operations, which is presently beyond the reach of
all proposed implementations, then an arbitrarily long quantum computation could be performed.

1.3 Physical implementations of qubits

The requirements for implementing a quantum computer are given by the DiVincenzo criteria [13]. There
are needs for:

• Scalability: a large number of reliable qubits is needed;

• Efficient initialization of the qubit state (reset);

• Quantum coherence: long coherence times compared to gate operation time;

• High fidelity readout of individual qubits;

• Availability of a universal set of quantum gates

As the physical systems currently used for building qubits do not simultaneously satisfy all these
criteria, one can roughly classify qubits in two types:

• Microscopic systems like nuclear spins, ions or atoms. They are intrinsically quantum and have
long coherence times, but they are not easily scalable mainly because of their typical size.

• Macroscopic systems, like quantum dots or superconducting circuits, are easily scalable with lithog-
raphy techniques, but not easily quantum, since they are well coupled to their environment.

Having the DiVincenzo criteria in mind, we shall see more precisely what the advantages and the draw-
backs are of the main physical systems used as qubits.

1.3.1 Microscopic qubits

Nuclear spins

In NMR quantum computing, qubits are encoded in the nuclear spins of a molecule in a magnetic
field [14]. As it is impossible to measure a single nuclear spin about 1020 identical molecules are used
to get a reasonable signal with a weak ensemble measurement. The state of the system is controlled by
applying resonant radiofrequency pulses and logic gates are obtained from scalar coupling, which is an
interaction between neighbor spins mediated by the electrons of the chemical bounding. Since kBT is
much higher than the Zeeman splitting it is not possible to initialize the spins in a pure state, hence, the
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state of the spin ensemble is highly mixed. It is a major issue, since, a well known input state has to be
prepared before performing any quantum algorithm. Fortunately, this problem can be circumvented by
preparing a particular state, called a pseudo pure state, which behaves dynamically like a pure state [15].

Despite important breakthroughs in 1998 with the implementation of the Deutsch-Josza algorithm [16]
and in 2001 with the implementation of the Shor’s factorizing algorithm [17], NMR quantum computing is
limited by the preparation of this initial pseudo pure state. This preparation either costs an exponential
time in the number of qubits or reduces exponentially the signal to noise ratio, which makes NMR
quantum computing not scalable.

Trapped ions

In 1995, I. Cirac and P. Zoller proposed the implementation of a quantum computer with trapped ions [18].
The qubits are stored either in a long-lived optical transition of an ion [19], or in the ground state

hyperfine levels [20]. These systems are well known in metrology for their use as frequency standards,
since coherence times of several minutes are available.

The ions are confined in a harmonic potential created by a Paul trap and because they repel each
other by Coulomb interaction, the mean distance between ions is a few microns allowing individual optical
addressing for manipulation and measurement (see figure 1.3).

Figure 1.3: A set of electrodes creates a combination of DC and AC electric fields (called a Paul trap)
suitable for confining ions. The ions repeal each other by Coulomb interaction allowing individual optical
addressing. The modes of vibration of the string are used for coupling the ions.

The idea for implementing quantum gates between ions is to couple the electronic degrees of freedom
of the ions to the vibrational modes of the string with Raman transition, and use these phonons as a
quantum bus.

With such a scheme a CNOT-gate [21], four ion entangled states [22] and quantum error correction
have been achieved [23]. However, the single trap quantum computer is limited to a small number of
ions. New ”on-chip” architectures based on registers of interconnected traps should permit scaling to a
much higher number of ions without inducing significant decoherence [24]. This new type of architecture
is presently the most promising for implementing a quantum computer.

Atoms in cavity

Atoms in cavity have been extensively used since the mid 90’s mostly for studying quantum measurement
and entanglement. Such systems consist of a high Q cavity, which quantizes the spectrum of the vacuum
and enhances dramatically the interaction between an atom and the electromagnetic field.

Quantum logic operations based on Rabi oscillations between the atom and the cavity have been
achieved [25] and the progressive decoherence process of an atom entangled with a mesoscopic coherent
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field has been observed [26], enlightening the quantum-classical boundary. A three particle GHZ (Green-
berger, Horne, and Zeilinger) entangled state has been prepared [27], using the field of the cavity like a
quantum memory for storing the information of an atom. In the context of quantum computing, these
experiments enlighten the roles of entanglement and decoherence, which are two major phenomenon of
this field. Nevertheless, the scalability of such a system is limited by the preparation of single atomic
samples and by the cavity itself. New schemes for creating Bose Einstein condensates on a chip are now
being studied [28], the idea is to use microfabricated circuits similar to those used for ions to trap and
manipulate Rydberg atoms.

1.3.2 Macroscopic qubits based on electronic circuits

Electronic quantum bits divide into two classes. In the first class, qubits are encoded in the degrees
of freedom of individual electrons trapped or propagating in a semiconductor circuit. Either the orbital
state or the spin state of the electron can be used to make a qubit. In the second class, qubits are encoded
in the quantum state of an entire electrical circuit. This strategy has only been used for superconducting
circuits, which are the only ones with sufficiently weak decoherence for that purpose.

Semiconductor structures

In a semiconductor, transport properties rely on microscopic quantum effects, like for instance the mod-
ulation of the carrier density with an electric field. On a macroscopic scale, these properties are subject
to a statistical averaging which suppresses any quantum behavior. In order to recover such a behavior,
one possibility is to confine a small number of electrons in a quantum dot. If the length of the dot is
comparable to the Fermi wavelength, then, energy quantization and Coulomb repulsion permit one to
isolate a single electron on a unique quantum state of the dot [29]. The most advanced experiments
consists in using a 2D electron gas properly biased with gate electrodes (see figure 1.6). The spin state
of an electron trapped in such a dot and subject to a magnetic field (parallel to the electron gas) has
a long relaxation time, up to about 1ms. Spin manipulation can be performed using ac magnetic fields
and the exchange interaction between neighboring dots provides a controllable coupling of the qubits.
A single shot readout is achieved by transferring the spin information into the charge of a dot, which
can be measured using a quantum point contact transistor [30]. However, the coherence time is of the
order of 10 ns, much shorter than the relaxation time, due to random magnetic fields produced by the
nuclear spins of the GaAs substrate [31]. Although decoupling pulse methods inspired from NMR could
in principle be used to suppress decoherence due to these random fields, a more reliable solution would
be to use materials having a zero nuclear spin.

Alternative approaches have been proposed [32, 33], using ballistic electron propagating in quantum
wires. This is the so-called ”flying qubit” which consists in encoding the information in the presence or not
of an electron propagating on an electronic mode of the circuit. Most promising systems are probably edge
channels of a 2D electron gas in the Quantum Hall Effect regime, which provide waveguides for electrons
where the phase coherence length can exceed several tens of µm. In addition, single deterministic electron
sources using quantum dot in the Coulomb blockade regime have been demonstrated [34].

A fundamental difference here with others types of qubits is that the two states are degenerate but well
decoupled due to spatial separation. However, they can be coupled at will in quantum points contacts,
which are the equivalent of beam splitters in quantum optics. Coulomb interaction between electrons
was first proposed for implementing logical operations between flying qubits, but new ideas exploiting
single electron sources, the Fermi statistics and the linear superposition of electronic waves with beam
splitters, can lead to entangled 2 electron states [35]. The detection of a single electron in a short time
(a few ns), which is an important issue remains to be solved and the mecanisms of dephasing and energy
relaxation of an electron in an edge channel, which affects the coherence of the flying qubit, will have to
be characterized.
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Figure 1.4: Spin qubit in a quantum dot. A 2D electron gas is created at the interface of two semiconduc-
tors having different dopant concentrations. This 2D electron gas is depleted by a set of negatively biased
electrodes and form a quantum dot. Dark: conducting regions. Bright: isolating regions. Individual
electrons can be added to the dot and in a magnetic field parallel to the electron gas, the spin state form
a reliable two level system suitable to implement a qubit.

Superconducting qubits

Due to the absence of dissipation, superconductivity gives the opportunity to use a collective quantum
degree of freedom, namely, the superconducting phase.

When crossing the critical temperature of a superconductor, the electrons bind to form Cooper pairs.
The superconducting ground state can be seen as resulting from the Bose Einstein condensation of these
Cooper pairs into a single macroscopic quantum state called the superconducting condensate. This
condensate is fully characterized by the order parameter ∆ of the transition given by:

∆ = |∆|eiθ,

where |∆| is the superconducting energy gap, isolating the ground state from the first excitations, and θ
the superconducting phase. At sufficiently low kBT compared to the gap, the main microscopic excitations
are frozen out and the superconducting phase becomes a robust macroscopic quantum degree of freedom.
The energy spectrum of an isolated superconducting electrode thus consists of a non degenerate ground
state well separated from excited quasiparticle states.

When two superconducting electrodes are weakly coupled by tunnel effect across a thin isolating
barrier, a Josephson junction is formed, which is the simplest possible circuit and the building block of
superconducting qubits. This circuit is characterized by two energy scales: Ej , the Josephson energy,
characterizing the strength of the tunnel coupling, and Ec = (2e)2/2C, the charging energy of one Cooper
pair on the capacitance of the junction (see figure 1.5). These two energies are involved in the Hamiltonian
of the junction:

H = EcN̂
2 − Ej cos θ̂,

where θ̂ is the difference between the phases of each electrode and N is the number of Cooper pairs
having crossed the junction. These two variables are quantum mechanically conjugated: [N, θ̂] = i.
When Ec À Ej , i.e. for small junctions (below 0.1µm2 for aluminium junctions), the eigenstates of the
circuit are close to charge number states, whereas, in the opposite limit, they are close to phase states.
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Due to the non-linearity of the Josephson Hamiltonian, Josephson junctions can be used to build
systems having anharmonic atomic-like spectrum, the two lowest energy levels of which form the qubit.
Although superconducting qubits are so far implemented with circuits made of several junctions their

jE
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Figure 1.5: Real Josephson junctions are made by the overlap of two metallic electrodes separated by
a thin oxide layer. This overlap defines a geometrical capacitance which adds in parallel to the pure
Josephson coupling, and defines the charging energy Ec, which is the energy cost for adding an extra
Cooper pair on this capacitor.

behavior is always ruled by the comparison between a principal charging energy and a principal Josephson
energy defined by the size of the junctions and the topology of the circuit. Depending on the ratio of
these two energies Ej and Ec, several types of superconducting qubits have been realized:

• charge qubit (Ej/Ec ¿ 1) [36] [37] [38].

• flux qubit (Ej/Ec ≈ 10) [39].

• phase qubit (Ej/Ec À 1) [40].

fluxphase chargecharge-flux

ca b b

j cE E�j cE E� 10j cE E� j cE E�

Figure 1.6: Different types of superconducting qubits depending on the ratio Ej/Ec, from left to right:
NIST, Delft, Saclay, Chalmers qubits. For large Ej compared to Ec, the eigenstates of the system are
almost phase states except near degeneracy points, whereas for large Ec, the eigenstates are almost charge
states.

1.4 The Quantronium

In this thesis, we have investigated the Quantronium, a charge-flux qubit (Ej/Ec ≈ 1) described in details
in chapter 2.
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The first successful manipulation of the quantum state of a circuit was performed in 1999 by Nakamura
et.al. [36] using a circuit derived from the Cooper pair box [41], which is the simplest tunable Josephson
circuit.

Since a very short coherence time was also obtained in 2000 for the flux qubit [42], it became clear
that getting rid of decoherence was mandatory for making qubits. Although decoherence sources were not
analyzed in detail at that time, the dephasing induced by the variations of the qubit transition frequency
due to the fluctuations of the control parameters appeared as an important source of decoherence [43].
The quantronium, developed since 2001 in the Quantronics group [44], is the first qubit circuit with a
design that protects it from the dephasing resulting from random fluctuations of the control parameters.

1.4.1 Description of the circuit

The quantronium is also derived from the Cooper pair box. It is made of a superconducting loop
interrupted by two small Josephson junctions to form an island (see figure 1.7). This island can be biased
by a gate voltage Vg and the flux φ in the loop can be tuned by an external magnetic field. These two knobs
can be recast in terms of the reduced parameters Ng = CgVg/2e, which is the reduced charge induced on
the island by the gate, and δ = φ/ϕ0, where ϕ0 = ~/2e is the reduced flux quantum, the superconducting
phase difference across the two junctions in series. These two parameters permit to tune the properties
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Figure 1.7: Schematics of the split Cooper pair box circuit and dependence of the transition frequency with
the reduced parameters: Ng = CgVg/2e and δ = φ/ϕ0 the reduced magnetic flux in the superconducting
loop.

of the qubit and in particular, its transition frequency (see figure 1.7). One can notice the presence of
particular points in the parameter space where the transition frequency is stationary with respect to δ
and Ng. Consequently, fluctuations in the control parameters will induce little dephasing at such optimal
working points, since the qubit frequency ν01 varies only at second order with the control parameters. It
is now believed that the existence of an optimal working point is crucial for implementing qubits having
long coherence times. In our experiments we have used the saddle point P0(Ng = 1/2, δ = 0).
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1.4.2 Readout of the quantum state

To read out the qubit state, we use the fact that the persistent current Ik in the superconducting loop
depends on the state k. This current is given by:

Ik =
1
ϕ0

∂Ek

∂δ

for k = 0 or 1. One can notice that I1 − I0 is zero at the optimal working point since the transition
frequency is stationary with respect to the phase δ, thus one has to move away from this working point in
order to get two different currents for the states |0〉 and |1〉. We discriminate between these two currents,
by inserting in the loop a third Josephson junction, which is used as a current threshold detector (see
figure 1.8). When biasing this junction with an appropriate current pulse, it switches to a detectable
voltage state with a high probability if the qubit is in state 1, and it switches with a low probability if
the qubit is in state 0.

Using this method, the experimental readout fidelity happens to be imperfect: the maximum difference
between the switching probabilities in state 1 and state 0 that we have obtained is only 40%, whereas
a simple adiabatic theory, which consists in decoupling the dynamics of the qubit from the one of the
junction, predicts 95%. We attribute this discrepancy to spurious relaxation effects during the readout,
and to a possible non validity of the adiabatic hypothesis. Furthermore, this readout is destructive for
the qubit. In chapter 5 of this thesis, we describe a new microwave readout method that may provide a
non destructive (i.e. Quantum Non Demolition) readout for the quantronium.

1.5 NMR-like manipulation of the qubit

The aim of the chapter 3 of this thesis is to demonstrate that full control of the quantum state of the
quantronium can be achieved. First, an arbitrary unitary transformation of the qubit can be achieved
by combining simple rotations using microwave pulses. Second, qubit transformations can be made more
robust against experimental imperfections by applying NMR methods. Let us see first how the qubit
state is manipulated with the use of microwave pulses applied to the gate electrode of the quantronium,
analogous to the way atomic states are manipulated with laser pulses.

1.5.1 Rabi oscillations

The qubit is a two level system for which an equivalent representation is a spin 1/2 in a magnetic field.
One can represent quantum states by a vector on the Bloch sphere (see figure 1.9). State |1〉 is at the
South pole, state |0〉 at the North pole, and the equatorial plane represents superpositions of |0〉 and |1〉
with equal weights but different phases. To control coherently the qubit state, the most direct way is
to use Rabi precession. It consists of applying a resonant microwave pulse to the gate. In the rotating
frame, which rotates at the microwave frequency around the Z axis, such a pulse is equivalent to a static
magnetic field lying in the equatorial plane (see figure 1.9) with an angle χ with respect to the X axis
defined by the microwave carrier. The pseudo spin of the qubit precesses around this magnetic field at
the Rabi frequency, which is proportional to the microwave amplitude. The probability of being in state
|1〉 oscillates with the pulse duration: these are the celebrated Rabi oscillations (figure 1.10). The qubit
continuously evolves from |0〉 to |1〉, and the phase coherence between the two states is preserved during
this oscillation. Two particular values of the pulse duration, for which the spin has rotated by π/2 and
π, are notable. These two specific rotations form the basis of the manipulation of the quantum state,
and they will be often used in our experiments.
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Figure 1.8: Top: schematics of the readout setup. A third Josephson junction is inserted in the loop
of the split Cooper pair box. This junction plays the role of a current threshold detector: when biased
with an appropriate current pulse, it switches to a detectable voltage state with a high probability if the
qubit is in state 1, and with a low probability if the qubit is in state 0. Bottom: current bias pulse and
measured voltage when the junction switches and when it keeps superconducting.



18 Chapter 1. Introduction and summary

1

νµw

χχχχ
X

0

Y

Z

m
ic
ro
w
a
v
e
o
u
tp
u
t

v
o
lt
a
g
e
 (
m
V
)

1.0 2.0 3.0 4.0

-50

0

50

100
16 GHz

time (ns)

Amw cos(2pnmwt + c)

nRabi ~ Amw
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|1〉 oscillates with the microwave pulse duration.
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|1〉 oscillates with the microwave pulse duration. Right: as expected the Rabi frequency is proportionnal
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1.5.2 Combined rotations

It is well known that any unitary operation on a spin 1/2 can be performed by combining three rotations
around two orthogonal axes, such as the X and Y axes of the Bloch sphere [45]. In order to probe if
rotations do combine as predicted, we have performed a series of two π/2 pulse experiments, following
the famous Ramsey sequence (see figure 1.11). Between the two π/2 pulses the spin undergoes a free
evolution of duration ∆t that corresponds to a rotation at the detuning frequency ∆ν = νµw−ν01 around
the Z axis. The switching probability after the second pulse as a function of ∆t produces an interfering
pattern, oscillating at ∆ν which renders the free evolution of the qubit between the two pulses. In further
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Figure 1.11: Left side: Ramsey sequence. A first π
2 pulse brings the state vector in the equatorial plane

where it precesses at the detuning frequency. Then the probability of being in state 1 is measured after
a second π/2 pulse. Right side: Ramsey fringes resulting from combinations of π/2 rotations around the
(X,X), (X,-X), (X,Y) and (X,-Y) axes. By rotating the axis of rotation by an angle χ, the fringes are
dephased by the same angle.

experiments, the second π/2 pulse is dephased by an angle χ with respect to the microwave carrier, which
corresponds to performing the second rotation around an axis in the equatorial plane of the Bloch sphere
at an angle χ with respect to the X axis. The observed Ramsey pattern is shifted precisely by the same
angle χ, as expected. The results of a series of Ramsey experiments corresponding to phase shifts π/2 and
π are shown in figure 1.11. The overall good agreement with the predictions proves that qubit rotations
do combine as predicted, which indicates that arbitrary qubit operations can be performed. The accuracy
of these qubit operations is less than that required for quantum computation. However, we will see in
the next section that the sensitivity of an operation to unavoidable noise can be improved using control
methods borrowed from NMR.
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1.5.3 Implementation of robust operations

When performing a rotation of the qubit state many sources of errors are possible: for example the dura-
tion and the amplitude of the RF pulse may be wrong, or the frequency may be out of resonance. In NMR
several techniques were developed to reduce the sensitivity to pulse imperfections by using combinations
of several pulses called composite rotations. For instance, the CORPSE sequence (Compensation for
Off Resonance with a Pulse SEquence) aims at reducing strongly the sensitivity to frequency detuning
of the qubit. In the case of the implementation of a NOT operation, this sequence was compared with
a standard π rotation. As shown in figure 1.12, it is less sensitive to frequency detuning than the π
pulse since the efficiency stays close to its maximum over a larger frequency range. By performing the
CORPSE sequence after an arbitrary rotation of angle θ around the X axis, we have shown that this
sequence works for every initial state and not only for state |0〉.
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Figure 1.12: Demonstration of the robustness of the CORPSE sequence with respect to frequency de-
tuning. A NOT operation is implemented with a π pulse and with a CORPSE sequence. The efficiency
of the CORPSE sequence applied to state |0〉 is preserved over a larger frequency range than for the π
pulse. The dashed line is the prediction for the CORPSE, and the arrow indicates the qubit transition
frequency. Inset: to demonstrate that the CORPSE sequence works for any initial state, a rotation of
angle θ is performed followed by the CORPSE sequence. The switching probability oscillates with θ in
phase opposition compared to a single θ rotation, as predicted for a NOT operation.

To summarize, any one-qubit operation can be performed and the robustness of this operation can
be improved by using composite pulse sequences. These fundamental tasks will have to be perfectly
mastered before a quantum processor can be built. In this respect, note that these experiments have not
reached the accuracy achieved in NMR or ion-trap experiments.
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Presently, no system has achieved the accuracy required for error correction of single qubit operations.
Although somewhat technical, this difficulty will pose a serious problem for making a quantum processor.

1.6 Analysis of decoherence during free evolution

Single qubit operations permit to prepare coherent superpositions of the qubit states: α|0 > +β|1 >.
An essential issue is to understand how the quantum coherence of this superposition of states disappears
when the system evolves freely or when it is driven with a microwave field. In other words, how does
decoherence destroy the quantum behavior of the qubit? The chapter 4 of this thesis addresses this
question.

The quantum coherence of the system is limited by its interaction with the degrees of freedom of
the environment. In the weak coupling regime, the effect of this interaction can be described in simple
terms: it induces depolarization and dephasing. Depolarization processes involve an irreversible energy
transfer between the qubit and the environment. At low temperatures, only relaxation of the qubit from
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Figure 1.13: Decoherence processes can be divided in two parts: relaxation and pure dephasing. The
relaxation process involves the emission of one photon by the qubit which is irreversibly absorbed by the
environment. The dephasing process is caracterized by a diffusive behavior of the phase ϕ accumulated
between state |1〉 and state |0〉 and coming from the fluctuations of δ and Ng.

its excited state to its ground state has to be considered, since thermal excitation can be neglected. This
phenomenon is characterized by a time T1 which involves the spectral density of the environment at the
frequency ν01: Γ1 = 1/T1 ∝ S(ω01).

For dephasing processes, the degrees of freedom of the environment are sources of noise for the control
parameters of the qubit, namely, δ and Ng. As the transition frequency of the qubit depends on these two
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parameters, a random contribution is added to the phase ϕ accumulated between states 1 and 0 during
free evolution: |0 > +eiϕ|1 > where

ϕ(t) = 2π

∫ t

0

ν01(δ,Ng)dt′.

At the optimal working point P0 = (δ = 0, Ng = 1/2), ∂ν01/∂δ = 0 and ∂ν01/∂Ng = 0. Fluctuations
of the parameters only couple at second order to the phase ϕ, thus, there is no dephasing at first order.
This dephasing process is characterized to first approximation by a rate Γϕ related to the environmental
noise at low frequency: Γϕ ∝ S(ω ≈ 0).

The aim of these experiments is to relate quantitatively the measured decoherence in the quantronium
to the properties of the noise sources coming from its environment.

1.6.1 Noise sources in the quantronium

Through the variables δ and Ng, the quantronium is coupled both to microscopic and macroscopic degrees
of freedom of the environment. These degrees of freedom are pictured in fig 1.14. Previous experiments
on Cooper pair boxes have shown that the background charge noise contribution to Ng is an important
source of dephasing, and the first experiments on flux qubits have shown that the flux noise is also
important in small superconducting devices with a loop geometry. The interest of the optimal working
point is precisely to minimize the effect of these noise sources.

_e
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Figure 1.14: Examples of noise sources in the quantronium’s environment: microscopic sources, like
charge fluctuators or moving vortices and macroscopic sources, such as the impedance of the measuring
and driving circuits. These noise sources contribute to relaxation and/or to dephasing.

1.6.2 Relaxation measurement

The relaxation time of the qubit has been measured at the optimal working point P0(Ng = 1/2, δ = 0)
and also along the lines δ = 0 and Ng = 1/2 (see figure 1.15). A dependence of T1 with the working point
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is observed, implying that the density of modes available in the environment for absorbing one photon
from the qubit depends on the frequency.
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Figure 1.15: T1 measurements as a function of the working point. The variation of T1 is a direct signature
of the dependance of the density of electromagnetic modes of the environment with the frequency.

1.6.3 Dephasing measurement

For characterizing dephasing, we have used several methods:

• Resonance linewidth measurement

The resonance line of the qubit is recorded at low microwave power as a function of frequency. The
width of the line is equal to Γ2 = Γ1/2 + Γφ, which includes contributions from dephasing and
relaxation. The results of these measurements are summarized on figure 1.18.

• Ramsey Fringe experiments

The two-pulse Ramsey experiment provides a direct probe of coherence in the time domain. The
damping of the Ramsey signal measures the progressive loss of coherence.

• Detuning pulse method

The detuning pulse sequence is a Ramsey experiment having the two π/2 pulses performed at the
optimal working point. In addition, during the free evolution the qubit is detuned with an Ng pulse
or a phase pulse in order to probe T2 at a specific point in the parameter space. This technique
has the advantage that the two π/2 pulses are always performed at the same working point, which
makes the experiment more efficient.

These three methods probes T2 in different ways but yield consistent results. The next method measures
another time scale: Techo and gives information on the characteristic frequency of the noise sources
involved in the decoherence phenomenon.
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Figure 1.16: The damping of the Ramsey fringes renders the progressive decoherence of the quantum
state during its free evolution. The qubit evolves from a pure state to a statistical mixture on a time
scale T2 = 300 ns ±50ns at the optimal working point.
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• Echo experiments

An echo sequence is similar to the Ramsey sequence one but with an additional π pulse (see figure
4.15) precisely in the middle of the free evolution period. It is used in NMR for suppressing,
in particular, the broadening of NMR lines due to an inhomogeneous magnetic field around the
ensemble of spins. In the case of the Quantronium, there is only a single spin but the experiment
is repeated 104 times for each data point. The echo sequence thus compensates for inhomogeneous
broadening coming from slow fluctuations of the transition frequency from one sequence to an
other. The decay of the echo signal with the sequence duration then probes the stability of the
qubit frequency on the time scale of the pulse sequence. We obtain experimentally a time Techo of
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Figure 1.17: An echo sequence is made of a Ramsey one with an additional π pulse. Inset: we observe a
revival of the Ramsey signal when this π pulse is just in the middle of the sequence. We have mapped the
envelope of this echo revival, and we get a characteristic time scale Techo = 500ns± 50ns at the optimal
working point.

about 500ns at the optimal working point which is larger than T2. This result already demonstrates
that most of the qubit frequency fluctuations responsible for dephasing occur at low frequency, which
was expected from previous measurements of the charge noise in Coulomb blockade devices and of
the flux noise in SQUIDs.

1.6.4 Summary and analysis of decoherence during free evolution

We have measured Techo and T2 at the optimal working point and along the lines δ = 0 and Ng = 1
2

(see figure 1.18). We find that a detuning of 5% of a Cooper pair in charge or a detuning of 10% of a
flux quantum in phase is sufficient for dividing T2 by a factor 10. This result validates the concept of
the optimal working point whose existence is crucial for achieving long coherence times. We notice also
that the echo sequence is much more efficient for suppressing the effect of charge fluctuations than that
of phase fluctuations.
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An important result of this thesis work is that all these decoherence data can be explained within
a simple theoretical framework. This framework is inspired from the standard Bloch-Redfield model of
decoherence and incorporates some specific features only recently understood. The model assumes that
the noisy variables follow a diffusive behavior and treats rigorously divergences of the noise spectra, if any.
Departure from a Gaussian model for the noise mechanism has also been considered. The main input
for the model is the spectral densities of the charge and phase noises. First, we take a 1/f spectrum,
both for charge and phase noises, since from experiment, these two noises are well known to have such a
behavior at low frequency. These spectra already explain most of the T2 data, since T2 is sensitive only
to the low frequency part of the noise, but it is not compatible with the echo data.

We then determine the minimum modification to the 1/f spectra which renders the model compatible
with the echo data. For the charge noise we found that a high frequency cutoff in the MHz range has to
be introduced and for the phase noise we found that a white component has to be added. The overall
good agreement of the experimental data with the theoretical model implies that this phenomenologi-
cal description of noise sources is sufficient to describe dephasing in the quantronium and probably in
most other qubit circuits. However, these spectral density models do not provide many clues about the
underlying mechanisms for the noise generation.
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Figure 1.18: Summary of decoherence during free evolution. T2 and Techo are measured at the optimal
working point and on the lines δ = 0 and Ng = 1

2 . Several techniques are used for measuring T2:
Ramsey experiments, resonance line width and detuning pulse methods, (be aware of the logarithmic
scale). Dashed line: predicted decay times calculated with a simple model for the spectral densities of
the charge and phase noise sources (insets).

All of the measurements so far consider decoherence processes during free evolution. In the second
part of chapter 4 we explore decoherence when a microwave field is applied to the qubit.
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1.7 Decoherence during driven evolution

The concept of decoherence is usually only considered during the free evolution of a qubit. It is however
important to understand and characterize the phenomenon when the qubit is controlled via an external
hamiltonian. A particular situation relevant for qubits is when the system undergoes Rabi precession in
a resonant microwave field. An interesting question then arises: is quantum coherence of a driven qubit
better or worse than during free evolution?

During driven evolution, depolarization and dephasing are defined with respect to the new eigenbasis
of the qubit coupled to the field, {|0∗ >,|1∗ >} (see figure 1.19). The effective rates of relaxation and

Figure 1.19: Driven evolution of a qubit. The depolarization and dephasing rates are given with respect
to the new eigenbasis of the system coupled to the field { |0∗ >,|1∗ >}. η is the angle between the free
evolution eigenbasis and the driven evolution one. This angle is related to the Rabi frequency and to the
detuning: tan η = νRabi/∆ν.

dephasing: Γ̃1 and Γ̃2 pertain to the decay of the longitudinal and transverse parts of the density matrix
in the rotating frame. The theoretical expressions for these rates involve a new quantity related to the
noise of the environment at the Rabi frequency: ΓνRabi

∝ S(ωRabi). One has:

Γ̃1 = 1
2Γ1 + 1

2ΓνRabi
, Γ̃2 = 3

4Γ1 + 1
2ΓνRabi

. (1.1)
The measurement of decoherence in the rotating frame thus provides new information on the spectral
density of the noise sources. Experimentally, the effective relaxation rate Γ̃1 is measured by preparing
a longitudinal density matrix in the rotating frame using the so-called spin-locking protocol in NMR.
The effective dephasing rate is simpler to obtain, since it is given by the decay of the Rabi oscillations.
We have measured this time T̃2 by exciting on resonance the qubit (see figure 1.20). We find that T̃2

is greater than T2, which means that the phase coherence of the qubit is better preserved when driving
the qubit than during free evolution. Secondly, T̃2 is almost constant from 1 MHZ to 100 MHz, which
means that the noise of the environment is white in this frequency range, in qualitative agreement with
our analysis of decoherence during free evolution. In further experiments, the Rabi frequency is fixed to a
value of 15MHz, while we detune progressively the microwave from the resonance. We see that T̃2 drops
down to T2 and the free evolution case is recovered on a frequency scale which is the Rabi frequency.
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Figure 1.20: Characteristic decay time T̃2 of the Rabi oscillations at the optimal working point. Left
panel: T̃2 measured as a function of the Rabi frequency with zero detuning. T̃2 is constant for all Rabi
frequencies from 1 MHz to 100MHz, which indicates that the noise of the environment is white in this
frequency range. Right panel: T̃2 measured as a function of the detuning with a fixed Rabi frequency of
15.4MHz. As ∆ν increases, one recovers the free evolution case on a frequency scale which is the Rabi
frequency.
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To summarize, by encoding the information on the dynamical states of the qubit coupled to the field it
is possible to preserve the coherence on a longer time than during free evolution. Studying the decoherence
under driven evolution is also a powerful tool for probing the environment within the available range of
Rabi frequencies.

1.8 Towards Quantum Non Demolition measurement of a qubit

The successful operation of the quantronium and soon after of the flux-qubit at an optimal point, raised
the problem of how to further improve this strategy. In particular, could it be possible to perform the
readout without moving away from the optimal working point and in a QND mode, i.e. by projecting
and letting the qubit on states |0〉 and |1〉 according to their probability amplitudes in the measured
state? A QND readout would be useful for probing quantum correlations between coupled qubits and in
particular, Bell inequalities for mesoscopic systems. The hope is also that a QND readout could yield a
better readout fidelity, which is a key issue. For that purpose, the qubit can be maintained close to the
optimal point by applying a small ac drive in the microwave domain and by measuring the ac response
of the circuit. Different microwave reflectometry methods have now been developed for the quantronium,
for the flux qubit and for the Cooper pair box.

1.8.1 Principle of the ac dispersive readout of the quantronium: the JBA

For the Quantronium, M. Devoret and his team at Yale University have developed a readout scheme based
on the dynamics of the readout junction when it is excited by a nearly resonant microwave signal [46, 47].
I have implemented the same readout in Saclay and its study is described in the chapter 5 of this thesis.

The dynamics of the resonator formed by the readout junction depends on the qubit state because its
resonance frequency is modified by the state dependent qubit inductance LQk

connected in parallel (see
figure 1.21):

1
LQk

=
1

ϕ0
2

∂2Ek

∂δ2
,

for k = 0 or 1.
At low driving amplitude the behavior of the circuit is simply that of an LC oscillator. Although a

direct measurement of the state dependent resonance frequency could be envisioned, the frequency change
between state 0 and 1 is too small to achieve single shot readout with current low noise amplifiers and
in a reasonable amount of time. The required sensitivity can however be obtained due to the bifurcation
phenomenon.

When increasing the driving microwave power, the non-linear regime of the Josephson junction reso-
nance is explored, and at large enough driving amplitude, the readout junction undergoes a dynamical
transition to an oscillation state with a larger amplitude and a different phase. This bifurcation phe-
nomenon is identical to the transition of the well known Duffing anharmonic oscillator in classical me-
chanics [48]. Two oscillation states for the phase of the junction in the Josephson potential can coexist,
the first with a small oscillation amplitude and the second with a large one (see figure 1.21). The switch-
ing from one dynamical state to the other discriminates between the qubit states because it is extremely
sensitive to the different parameters and in particular to the effective inductance of the readout junction.
It provides a sensitive amplifier, called the Josephson Bifurcation Amplifier (JBA), which permits single
shot readout. In addition, this readout is dispersive since the plasma frequency and consequenctly the
probing frequency is chosen far away from the qubit resonance.
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Figure 1.21: Principle of the AC dispersive readout of the quantronium. The qubit has a state dependent
inductive behavior which moves the plasma resonance of the anharmonic oscillator formed by the readout
junction in parallel with an on-chip capacitor. At large microwave driving, this resonator undergoes a
bifurcation between two oscillation states in the Josephson potential, which depends on the qubit state.
The signature of this bifurcation, and thus the qubit state, appears in the phase of the reflected microwave
probing pulse.

1.8.2 Characterization of the microwave readout circuit

The setup we have built is close to the one at Yale, with the extra possibility of performing both DC
switching and dynamical switching measurements.

The plasma frequency of the readout junction in the sample, which were fabricated at Yale, is lowered
to the convenient 1− 2GHz range by an on-chip capacitor in parallel with the junction.

The first experiment performed was to characterize the bifurcation phenomenon of the readout junc-
tion with the qubit in the ground state. For this purpose, a CW signal is sent to the sample, and the
phase of the reflected signal is measured with a network analyser, as a function of frequency. As there is
no dissipation in this superconducting circuit all the microwave power is reflected and the phase of the
reflected component gives a convenient signature of the dynamics of the junction.

At low driving amplitude we can observe the resonance of the readout circuit and the associated phase
shift (see figure 1.22). When increasing the microwave power, the phase shift of the plasma resonance
gets steeper and steeper, as the junction starts to explore the nonlinear region of the Josephson potential.
The bifurcation occurs above a certain microwave amplitude which depends on the driving frequency.

1.8.3 Measurement of the quantronium qubit with a JBA

In order to readout the state of the qubit in a time shorter than the qubit relaxation time T1, we have
measured the switching probability from one dynamical state to the other during a probing pulse of about
100ns. These measurements were done as a function of the microwave power and for the two qubit states
0 and 1 (see figure 1.23).
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Figure 1.22: Phase of the reflected signal in the JBA operated with continuous microwave. The phase
of the reflected microwave is measured as a function of frequency and for different probing powers. At
low microwave power (blue), one observes the plasma resonance of a linear system. When increasing the
power, the superconducting phase starts exploring the non linear region of the Josephson potential and
a bifurcation happens for a critical power (red).

One observe a behavior similar to the one observed with DC pulses: there is an optimal amplitude
for which the contrast between states 0 and 1 is maximized. The best value achieved is 51%, a value
larger than the 40% obtained with dc switching, but still significantly lower than the predicted one. Rabi
oscillations measured at maximum readout contrast are also shown in Fig.1.23. We attribute the lack of
readout fidelity to spurious relaxation during the ac excitation of the system. This phenomenon is similar
to the one observed with the DC switching readout and it might be attributed to a coupling with two
level systems recently identified in phase qubits with larger junctions [49, 50].

This unwanted relaxation also affects the QND character of the readout, as we shall discuss now.

1.8.4 Partially non-demolition behavior of the readout

Excitation and relaxation induced by the readout not only corrupt the result of the measurement but
also affect the projection of the quantum state. The error on the projection of the state during the
readout can be quantified by the probabilities q0 and q1 (see figure 1.24). These two probabilities define
the QND fraction of each state at readout. In order to measure q0 and q1, an experiment with two
adjacent identical readout pulses was performed. Preparing the qubit either in state |1〉 or in state
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Figure 1.23: Left: bifurcation probability as a function of the microwave power for the two qubit states
at the optimal working point. Right: Rabi oscillations at the maximum contrast.

|0〉, the switching probabilities was measured during the first and second readout pulses and also the
conditional probabilities.

From these measurements and using a simple probabilistic model we have determined q1 = 0.34 and
q0 = 1. There is, thus, no excitation of the qubit during readout, but significant relaxation.

Starting from state 1, the correct answer and the correct projection occur with a probability of only
0.24. The experiment is thus far from implementing an ideal quantum measurement of the qubit state.

1.9 Conclusion

If one compares our results to the requirements of the DiVincenzo criteria for quantum computing, it is
clear that there is still a long way to go. For single qubit gates we estimate the accuracy achieved for the
quantronium at about a few per cent, whereas the most optimistic value requires 10−4.

For two qubit gates, the gate accuracy is unknown yet but the complexity of the presently considered
designs for the quantronium leaves little hope of achieving an excellent figure. For readout, the achieved
contrast of 0.5 is far from being sufficient for operating even a very simple processor.

But one can expect future improvements since there is no known fundamental reasons that limits the
quantum performance of electronic circuits. Even if building a quantum computer in the near future is
not realistic, this research field is important since it addresses a fundamental question in Physics: Does
the quantum framework developed during the first part of the 20th century, and thoroughly tested since
then in the microscopic world apply to large objects? for instance, objects having collective variables?
And in particular, is there a limit for the size of a system showing quantum coherence and entanglement
phenomena?
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Figure 1.24: With a simple probabilistic model for the readout process, the QND fractions of each state,
and the probabilities of the outcomes for the five as a function of the result of the projection, can be
determined.
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Chapter 2

A superconducting qubit: the
Quantronium

The circuit of the quantronium is derived from the Cooper pair box [51] which is the first superconducting
qubit whose quantum state was manipulated coherently [36].

2.1 The Cooper pair box

Circuit description

A Cooper pair box is made of a superconducting island, connected to a superconducting reservoir by a
small junction ( area . 0.1µm2). A gate capacitance Cg permits to bias the island, adjust the number
N̂ of excess Cooper pairs on the island by tunneling of the Cooper pair pairs through the junction (see
Fig. 2.1).

The Hamiltonian of the system is the one of a single junction (see Fig. 2.1) with a shifted kinetic
energy term

Ĥ = Ec(N̂ −Ng)2 − Ej cos(θ̂),

where N̂ is the charge operator of the island conjugated of the gauge invariant phase difference θ̂ across
the junction: [N̂ , θ̂] = i.

Ec = (2e)2/2CΣ is the charging energy of the island, with CΣ = Cj + Cg the total capacitance of the
island to ground and Ng = CgVg/2e is the reduced gate charge with e the absolute value of the charge of
an electron.

Charge regime

In the case of aluminum junctions having an area smaller than ≈ 100nm×100nm, one has Ec > Ej and
the Cooper pair box is said to be in the charge regime. The eigenstates of the system are then almost
charges states |N〉 of the island, with eigenenergies Ec(N −Ng)

2, except near the degeneracy points:
Ng = 1/2 + n, n ∈ Z where the Josephson coupling mixes successive charge states (see Fig. 2.2). The
two lowest energy states form the qubit.

Coherent manipulation and measurement of the Cooper pair box

The first time domain measurement of the coherent oscillations of a Cooper pair box was performed
in 1999 by Nakamura et al [36]. By pulsing the gate voltage, the system was moved back and forth

35
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Figure 2.1: A Cooper pair box is made of a superconducting island connected to a superconducting
reservoir through a single Josephson junction. By biasing the island with a gate voltage, the number of
excess Cooper pairs on the island can be ajusted.
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Figure 2.2: Top: principle of the manipulation of the quantum state of the Cooper pair box. A non-
adiabatic trapezoidal gate pulse of duration t brings the working point to the degeneracy point Ng = 1/2,
where the Josephson coupling mixes successives charge states and induces coherent oscillation. Bottom:
coherent oscillations of the quantum state of the Cooper pair box (Nakamura & al [36]).
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non-adiabatically to its degeneracy point. At this point, two successive charge states are coupled during
a time t, which induces coherent oscillations (see Fig. 2.2).

An extra probing junction provides readout in a similar way than the selective ionization in atomic
physics: the Cooper pair box is ”ionized” only if it is in state |1〉, which gives rise to a sequential flow of
two electrons, measurable by repeating the experiment at a fast enough rate. This measurement setup
is destructive but has the advantage to reset the qubit in its ground state. The readout is thus not a
single shot readout, since the quasi-particle current needs to be averaged over many experiments to be
detectable.

The coherence time obtained (. 10 ns) could not be fully explained by the relaxation induced by
the measuring apparatus. It appeared later that the fluctuations of the control parameter Ng, due to
background charge noise, was also an important source of decoherence for this charge qubit [52].

2.2 The Quantronium

The Quantronium, developed in the Quantronics group in 2001, is the first qubit having a design that
protects it from decoherence due to random fluctuations of its control parameters, which appear to be the
dominant source of decoherence in this type of qubit. It combines a split Cooper pair box implementing
the quantum bit and an hysteretic Josephson junction for read out. It can be easily manipulated using
microwave techniques analogous to spin manipulation in NMR and the readout setup has the advantage
that it can be switched off during the manipulation of the qubit, which minimize the back-action. In
addition, the sensitivity of this readout is sufficient for allowing a single shot measurement, that we define
by a probability of error on the answer of a measurement . 10%.

2.2.1 Quantronium circuit

The circuit is made of a superconducting loop interrupted by two small Josephson junctions (area ≈
150nm×150nm) with Josephson energies: Ej1 = Ej(1 − d)/2 and Ej2 = Ej(1 + d)/2, where d is an
asymmetry parameter made as small as possible for minimizing relaxation (see chapter 4), and by the
readout junction with Josephson energy: Ej À Ej (see Fig. 2.3 and Fig. ??).

The two small junctions define an island which has a total capacitance to ground: CΣ = Cj1+Cj2+Cg,
where Cji are the capacitance of each junction and Cg is the gate capacitance. The Cooper pair charging
energy is Ec = (2e)2/2CΣ.

This island can be biased by a gate voltage Vg and the flux Φ in the loop can be tuned by an external
magnetic field. These two parameters Vg and Φ can be recast in terms of the reduced parameters :
Ng = CgVg/2e the reduced gate charge, and δm = Φ/ϕ0 (where ϕ0 = ~/2e).

Ng controls the electrostatic term of the split box Hamiltonian:

Ec(N̂ −Ng)2,

where N̂ is the reduced charge operator of the island.
As the inductance of the loop is negligeable compared to the inductance of the junctions, δm and γ̂

are related to the phase δ̂ = δ̂1 + δ̂2 across the two small junctions in series by the relation: δ̂ = γ̂ + δm.
The Josephson Hamiltonian of the split box alone is given by:

Hj = −Ej cos (δ̂/2) cos θ̂ + dEj sin (δ̂/2) sin θ̂,

where θ̂ = (δ̂1 − δ̂2)/2 is the phase operator of the superconducting island, conjugated of N̂ : [θ̂, N̂ ] = i.
The total hamiltonian of the split Cooper pair box is thus:

Ĥ = Ec(N̂ −Ng)2 − Ej cos (δ̂/2) cos θ̂ + dEj sin (δ̂/2) sin θ̂. (2.1)
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Figure 2.3: The Quantronium is based on a split Cooper pair box made of a superconducting loop
interrupted by two small Josephson junctions to form an island, and by a large junction for readout. The
superconducting island can be biased by a gate voltage Vg, and the flux in the loop Φ can be tuned by an
external magnetic field. The two reduced parameters Ng = −CgVg/2e and δ = Φ/ϕ0 + γ permits to tune
the properties of the qubit. For readout, the large junction is biased by a current source near its critical
current, and a room temperature amplifier is used to detect the possible switching of this junction which
is correlated to the state of the qubit.

Figure 2.4: SEM image of the Quantronium sample A. Bright: quasi-particle traps made with a 40nm
thick gold film deposited with an e-gun evaporator. Grey strips: aluminum electrodes (20nm of thickness
for the first deposited layer and 30nm for the second layer) deposited in the same evaporator. Top: gates
electrodes for DC biasing and AC excitation. The black regions are probably alumina films coming from
aluminum scattered during the evaporation below the undercut of the resist by gas residues.
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Figure 2.5: SEM image of the island of the Quantronium sample A. The two Josephson junctions (≈ 160
nm x 160 nm for each junction) are made by oxidation under a O2 20% Ar 80% mixture during 10′ and
at a pressure of 12 mbar.

The third Josephson junction has a Josephson energy Ej and a charging energy Ec = (2e)2/2Cj .
As Ej À Ec, for a small biasing current Ib < Ic, the Josephson junction is equivalent to a harmonic

oscillator. As this resonator is off-resonance with the qubit, it is always in a quasi-classical coherent state.
The behavior of the phase γ̂ is thus almost classical. The split Cooper pair box eigenstates are thus only
determined by the parameters: Ng and δ̂ ≈ δ = γ + δm.

Note that in the ideal case where d = 0, the Josephson Hamiltonian is the one of a Cooper pair
box with a tunable Josephson energy: E

′
j = Ej cos (δ/2). In practice, the value of d is a few %, but

qualitatively, the split Cooper pair box behaves like a single Cooper pair box with a tunable Ej .
For the two samples investigated in this thesis, one has Ej ≈ Ec. A numerical diagonalization of the

Hamiltonian is required, which gives the eigenstates and the spectrum of the split Cooper pair box, and
their dependance with the external parameters Ng and δ (see Fig. 2.6).

2.2.2 Energy spectrum

Contrary to an atom or an ion, where Hamiltonians are set by natural constants, the parameters Ej and
Ec, are controlled by the fabrication of the junctions (size and oxide thickness). The typical capacitance
of the junctions made at Saclay with a standard low pressure O2 oxidation at room temperature, is 1fF
per 100nm∗100nm and does not depend on the oxidation parameters with a ±10% accuracy. By tuning
the oxidation pressure and time, it is possible to tune Ej from about 2 to 20K/µm2. The transition
frequency of the qubit can thus be chosen by design, in a wide frequency range: from ≈ 1GHz to a few
tens of GHz for aluminum junctions.

Then, because of the non-linearity of the Josephson junctions, the spectrum is sufficiently anharmonic
to isolate the transition between the two lowest energy levels |0〉 → |1〉. On figure 2.7 is plotted the
anharmonicity of the system, for a fixed transition frequency of 16GHz and as a function of the ratio
Ej/Ec. The minimum acceptable value of the anharmonicity is given by the transition frequency of the
qubit and the speed of manipulation desired: for instance, for operating a resonant qubit at about 20GHz,
with a bandwidth of 1GHz (one-qubit operation of ≈ 1ns) the anharmonicity must be larger than 5%.

The transition frequency between state |0〉 and state |1〉 is tunable with the parameters δ and Ng,
like electric and magnetic fields can modify the spectrum of an atom with the Stark and Zeeman effects
(see figure 2.6). However, much smaller fields are here required to change the Hamiltonian drastically:
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Figure 2.6: Dependance of the transition frequency with the parameters Ng and δ for the sample A
(Ej = 0.87K and Ec = 0.655K). There are several points in the parameter space where the transition
frequency is stationary with respect to δ and Ng. At these points, any noise on these two parameters
couples only at second order, and thus induces less dephasing. In our experiment, we have used the
optimal working point P0 = (δ = 0, Ng = 1/2).

an applied magnetic field of a few mT gives rise to one flux quantum in the loop and several mV on the
gate, with a reasonable coupling capacitance, gives rise to a Cooper pair induced on the island. This
tunability is required to compensate for static offsets in charge and in flux due for instance to background
charges or vortices in the vicinity of the sample.

2.2.3 The optimal working point strategy

During the free evolution of the qubit, an initial pure state α|0〉+ β|1〉 evolves like:

α|0〉+ βeiφ0(t)ei∆φ(t)|1〉,

where φ0(t) = 2πν01t is the deterministic phase related to the mean value of the transition frequency
and

∆φ(t) = 2π

∫ t

0

δν01(t)dt′

is an extra random phase related to time fluctuations of ν01. Indeed, as ν01 depends on Ng and δ, any
noise on these two external parameters induces fluctuations of ν01. The extra random phase ∆φ(t) thus
destroys the quantum coherence between state |0〉 and |1〉, leading to a statistical mixture of these two
states.

The quantronium incorporates a strategy for minimizing the dephasing coming from the fluctuation of
the control parameters. Indeed, as the dependance of ν01 is periodic with Ng and δ, there are stationary
points in the parameter space where ν01 depends only at second order on the parameters. At these
points, the possible fluctuations of δ and Ng are thus coupled to ν01 only at second order, which is
essential for achieving long coherence times (see chapter 4). During our experiments, we have used the
optimal point P0 = (Ng = 1/2, δ = 0). The other point (Ng = 0, δ = 0) could have also be used, but the
transition frequency at that point was higher than the maximum frequency achievable by our microwave
generator. Note, however that in the charge regime (Ec > Ej), at the optimal point (Ng = 1/2, δ = 0),
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Figure 2.7: Top: anharmonicity of the system at the optimal working point as a function of Ej/Ec and
for a fixed transition frequency of 16GHz. For the sample A of this thesis, the anharmonicity is about
40%. Bottom: sensitivity to phase and charge noise at the optimal working point P0 = (Ng = 1/2, δ = 0)
as a function of Ej/Ec and for a fixed transition frequency ν01 = 16GHz.
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the transition 0 → 1 can be to close from the 0 → 2 one. This is not the case in the mixed charge-phase
regime, and there is no fundamental reason for not using the working point Ng = 0, δ = 0. Concerning
the optimal point (Ng = 1/2, δ = π), the transition frequency is of order of the temperature, for a
reasonable asymmetry of the junctions (d < 5%) and for typical parameters (Ej ≈ 1K and Ec ≈ 1K),
which prevents from using this working point. At the optimal point (Ng = 0, δ = π), the curvature of the
energy bands (E0(δ), E1(δ)) with respect to the phase is stronger than at P0, which could be interesting
for the dispersive readout described in chapter 5. Note however that this higher curvature in phase
increases the sensitivity to phase noise.

On figure 2.7, the curvature of the transition frequency at the optimal working point P0 is plotted
as a function of the ratio Ej/Ec and for a fixed ν01 = 16GHz. As expected, when Ej/Ec increases, the
sensitivity to charge noise decreases to zero exponentially.

2.2.4 Loop current

The quantum operator associated with the current circulating in the loop is [44]:

Î(Ng, δ) =
1
ϕ0

∂Ĥ

∂δ
.

Following this relation, the average currents for states |0〉 and |1〉 are:

ik(Ng, δ) = 〈k|Î|k〉 =
1
ϕ0

∂Ek(Ng, δ)
∂δ

.

Examples of current dependance with δ are given on Fig. 2.8.
A first strategy for the readout is to measure the state of the qubit by discriminating between the two

currents i0 and i1.
Indeed, apart from the line δ = 0, the two currents i0 and i1 are different and |i0 − i1| has a maximal

value of |∆Imax| ≈ 5 − 20nA (depending on the values of Ej and Ec) which can be measured with the
readout Josephson junction used as a current threshold detector.

2.3 Measuring the quantum state of the quantronium

A good readout setup has to fulfil two apparently contradictory requirements: long coherence times, which
supposes that the qubit is well decoupled from its environment, and efficient readout, which supposes that
the qubit is well coupled to the measuring apparatus. The readout implemented with the quantronium
satisfies these two requirements since it is a single shot readout that can be switched off during the
manipulation of the qubit, in order to minimize decoherence.

2.3.1 Principle of the switching readout

The large Josephson junction inserted in the loop of the split Cooper pair box is used as a current
threshold detector in order to discriminate between i0 and i1. Roughly speaking, this third Josephson
junction is a very sensitive fuse: if the current flowing inside exceeds its switching current Is, the junction
switches to a detectable voltage state V ≈ 2∆/e ≈ 400µV.

Let us see in details how the switching of a junction takes place and what is the current resolution of
such a threshold detector.

2.3.2 Dynamics of a current biased Josephson junction

Since Ej À Ec, the junction is in the phase regime and its dynamics can be conveniently described by a
pseudo particle with position γ moving in a potential.
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Figure 2.8: Theoretical loop current dependance on δ for Ng = 1/2, for the states |0〉 and |1〉, in the case
of sample A. The maximum expected value of |i0 − i1| is ≈ 15nA.
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Potential of the pseudo particle

When biasing a Josephson junction with a current Ib, an extra energy term −ϕ0Ibγ adds to the Josephson
energy term −Ej cos γ and leads to metastable wells in the potential energy U of the pseudo particle:

U(γ) = −Ej cos γ − ϕ0Ibγ = −Ej(cos γ + sγ).
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Figure 2.9: Metastable well in the tilted Josephson potential. The phase γ of the junction oscillates
in the well around the local minimum γ0 = arcsin s (s = Ib/Ic) at the plasma frequency ωp(s)/2π =
ω0

p/2π(1 − s2)1/4. The pseudo particle can escape out of the well either by thermal activation when
T > Tco or by tunnel effect when T < Tco.

When the tilt coefficient s = Ib/Ic is smaller than 1, the phase γ oscillates in a well around its
equilibrium position: γ0 = arcsin(s) (see Fig. 2.9), at the characteristic angular frequency ωp = ω0(1 −
s2)1/4, ω0 being the bare plasma frequency at zero tilt (ω2

p = Ic/(ϕ0C) with C the capacitance of the
junction).

In the hysteretic regime, characterized by underdamped dynamics (Q = RCωp > 1 where R is the
parallel resistance of the environment of the junction), the escape of the phase γ out of a well triggers its
run away all along the potential, which gives rise to a detectable voltage V = ϕ0γ̇ across the junction.

Mechanism of the escape

The escape of the pseudo-particle from the well is a probabilistic process for which two different regimes
have to be distinguished:

• The quantum regime called Macroscopic Quantum Tunneling (MQT) at low temperature [53, 54].
The term macroscopic stands for the superconducting phase which is a collective variable of the
circuit. In this regime, the escape is dominated by tunnelling out of the well from the ground state
at a rate [55](when Q À 1)

Γs(Ib) ≈ 52

√
∆U

~ωp
e
−7.2 ∆U

~ωp ,
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where ∆U(s) is the height of the energy barrier

∆U(s) ≈ 4
√

2
3
Ej(1− s)3/2.

• The classical regime at high temperature where the escape is dominated by thermal activation up
to the top of the barrier, at a rate given by a Kramers law:

Γs(Ib) = a
ωp

2π
e
(− ∆U

kBT )
,

where a ≈ 1 is a prefactor depending on the quality factor Q.

The crossover temperature Tco = ~ωp/2πkB from the quantum regime to the classical one is reached when
the thermal fluctuations of the phase in the well are of the same order of magnitude than the quantum
fluctuations.

Escape temperature

A useful quantity is the escape temperature Tesc, defined by:

Γs =
ωp

2π
e

−∆U
kBTesc .

Tesc is equal to the real temperature at high temperature and saturates at a value T 0
esc = ~ωp/7.2kB

when T goes to zero (quantum regime, see figure 2.10).
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Figure 2.10: The escape temperature Tesc, defines the current resolution of the readout junction by quan-
tifying the fluctuations either quantum or classical of the phase across the junction. At high temperatures:
T > Tco, one has Tesc ≈ T , whereas at low temperature: T < Tco, Tesc saturates at T 0

esc = ~ωp/7.2kB .
The optimal operating temperature is thus T . Tco where the current resolution is maximum and does
not depend on the temperature.

The escape temperature represents the equivalent noise temperature of either the quantum fluctuations
or the thermal fluctuations of the phase in the well. It defines the current resolution of the detector. In
our experiments, the plasma frequency of the junction is lowered with a shunt capacitor in order to get
a smaller T 0

esc, slightly higher than the actual temperature of the experiment. The sensitivity os thus
maximum and constant on small temperature changes.

We now consider the complete circuit of the quantronium: the split Cooper pair box coupled to the
readout junction.
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2.3.3 Escape dynamics of the readout junction coupled to the split Cooper
pair box

When the superconducting loop is biased by a magnetic flux Φ = ϕ0δm, the phase δ across the split
Cooper pair box is equal to δm + γ, where γ is the phase across the readout junction (see figure 2.3).

The Hamiltonian of the whole system is given by:

H = Hqubit(Ng, δm + γ) + Ecq
2 − Ej [cos(γ) + sγ] ,

where q is the reduced charge on the readout junction capacitance, conjugated variable of γ.

Adiabatic approximation

A first approach for solving the dynamics of H is to use an adiabatic approximation: over a wide range
of parameters (|δ| < π/2 and any Ng), the transition frequency of the qubit is higher than the plasma
frequency of the readout junction (ν01 ≈ 10GHz to be compared to ωp/2π ≈ 4GHz when s is close to 1).

One can then diagonalize the Hamiltonian of the qubit for each value of the phase γ and get a modified
adiabatic potential for γ in each state k of the qubit:

Uk(γ, Ib, Ng, δm) = Ek(Ng, δ = δm + γ)− Ej(cos γ + sγ),

Expression of the potential with the loop current

Since Ej À Ej , a simple approximation consists in neglecting the dependance of γ0, the minimum of the
potential Uk(γ, Ib, Ng, δm) (see figure 2.9), with Ng or δ. γ0 depends only on s = Ib/Ic:

γ0 ' arcsin (s).

A first order expansion of the energy Ek(Ng, δm + γ) with respect to γ around γ0, yields to the
potential [44]:

Ũk(s,Ng, γ) = −Ej cos γ − [Ib − ik(Ng, δm + γ0)]γϕ0.

In the framework of this adiabatic approximation, the effect of the qubit state can thus be described
by the addition of the current −ik(Ng, δm + γ) to the biasing current Ib, which modifies the tilt of the
potential and consequently the height of the barrier ∆U .

Switching rate of the complete system

As a consequence, the switching rate of the whole system can be approximated by:

Γk(Ib, Ng, δm) ≈ Γs(Ib − ik(Ng, δm + γ0)).

One can notice that the current in the loop of the quantronium is probed at δ = δm + γ0. The phase
δ is thus shifted between the manipulation and the readout of the qubit.

The predicted ratio between the escape rates for states |0〉 and |1〉 is:

Γ1

Γ0
= exp

(
2
√

2
kBTesc

√
1− s0ϕ0(i0 − i1)

)
,

where s0 is the mean s value at which switching occurs. One can notice that this ratio depends on Ej

only through the tilt s0 and Tesc.
With typical values s0 = 0.96, Tesc = 40mK, and i0 − i1 ≈ 10nA, we expect Γ1/Γ0 ≈ 100. For

measuring the qubit state, a trapezoidal current bias pulse of duration τ is applied to the junction in
such a way that: τΓ1 À 1 and τΓ0 ¿ 1. The junction switches with a high probability if the qubit is in
state 1, and with a low probability if the qubit is in state 0.
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Pre-bias technique

The qubit being operated at the optimal working point δ = δm = 0, a standard readout pulse probes the
loop current at δ = γ0 ≈ 75◦ and get a value |i0− i1| ≈ 9nA for sample A, which is not the optimal value
(see figure 2.11). Indeed, for larger δ, the current difference |i0 − i1| is larger, and has a maximal value
of 16nA for δ ≈ 160◦.
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Figure 2.11: In the case where the qubit is manipulated at the optimal working point, a standard
readout pulse probes the loop current for a phase δ = γ0 ≈ 75◦ where the current difference is only
9nA. With a prebias pulse, the flux in the loop is tuned to compensate the pre-biasing of the junction:
δ = δm + γ1 = 0, γ1 ≈ −45◦ being the phase across the junction during the prebiasing pulse. The total
phase shift experienced by the qubit during the readout is thus γ0 − γ1 ≈ 120◦, which increases the
current signal to be measured.

In order to get a larger signal, the readout junction is biased during the manipulation of the qubit.
During this pre-bias pulse, the phase across the junction is γ1 ≈ −45◦ which is, according to the pre-pulse
duration, the minimum value achievable without switching the junction. The flux in the loop δmϕ0 is
ajusted in such a way that δ = γ1 + δm = 0. The qubit is thus tuned to its optimal working point where
it can be efficiently manipulated.

Then, during the ramping of the readout pulse, the phase of the junction experiences a shift of
γ0 − γ1 ≈ 120◦, which sets the phase of the qubit to a value δ ≈ 120◦ where |i1 − i0| is expected to be
≈ 14nA (see figure 2.11).
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Switching probability during a readout pulse

The probability for the large junction to switch to its voltage state during a pulse of duration τ is given
by:

Pk(Ib, τ, Ng, δm) = 1− e−Γk(Ib,Ng,δm)τ ,

for k = 0 or k = 1.
This expression can be very well approximated by a universal curve:

P (s) = 1− exp
(
−| ln 0.4| exp

(
α

0.4| ln 0.4|∆s

))
,

where ∆s = s − s0, s0 being defined by P (s0) = 0.6, where the slope of the Ps curve is maximum and
equal to α with

α = 0.4| ln 0.4| 2
√

2Ej

kBTesc

√
1− s0.

α defines the sensitivity of the readout setup and 1/α gives the typical width of the P (s) curve (see
figure 2.12). For the sample A, we expect 1/α ≈ 1.9% of Ic leading to a current resolution of ≈ 8nA.
The theoretical switching curves for state |0〉 and |1〉 are plotted on figure 2.12. The expected contrast
between state |0〉 and |1〉 is 90% for the set of parameters: Tesc = 40mK, |i0− i1| ≈ 10nA, Ej/ϕ0 = 500nA
and s0 ≈ 0.96, which should lead to a single shot measurement.

10nA

90%

|1> | 0 >

1

Ps

s0

s=Ib/Ic

1

α

Figure 2.12: Calculated switching curves P (s) for the ground state (in plain) and for the excited state
(in dash). The quantity 1/α defines the current sensitivity of the readout junction. For i1 − i0 ≈ 10nA,
Ic ≈ 500nA and Tesc ≈ 40mK, the theoretical resolution is 90%.

Switching probability for any state of the qubit

Now, we consider the case where the qubit is in a coherent superposition α|0〉+ β|1〉 before the readout.
The ramping of the bias current moves the qubit out of the optimal point; as a consequence, the dephasing
rate increases transforming the qubit state into a statistical mixture with a probability |α|2 for state |0〉
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and a probability |β|2 for state |1〉 (see chapter 4). The switching probability of the readout junction is
then the weighted sum of the probabilities of switching for state |1〉 and state |0〉:

P (Ib, τ,Ng, δm) = |α|2P0(Ib, τ, Ng, δm) + |β|2P1(Ib, τ, Ng, δm).

2.4 Experimental setup and characterization of the readout

The full experimental setup for reading out the state of the qubit is described on figure 2.13.

2.4.1 Current biasing line

For biasing the readout junction, we use an arbitrary waveform generator Agilent 33250, with a minimum
rise time of 5ns. The voltage pulses generated are strongly filtered along a lossy line going from room
temperature to 20mK, and attenuated with −30dB and −20dB discrete attenuators at 4K and 600mK
respectively. The aim of this strong attenuation is to increase the signal to noise ratio by using the full
dynamic range of the generator. Any spurious RF or microwave noise received on top of the cryostat is
thus strongly attenuated. The aim of the filtering is to reduce the bandwidth to the minimum required in
order to strongly suppress microwave noise, and particularly noise around the frequencies ν01 and ωp/2π.
This filtering is achieved of course at the expense of the speed: here, the rise time of the line is 50ns which
could probably be reduced to 5ns, while keeping an adiabatic ramping of the current readout pulse.

The voltage pulse biases a 4kΩ resistor at 20mK in order to inject in the readout junction a current
of about 1µA for a few Volts at the top of the cryostat. This 4kΩ resistor is made of several resistors in
series included into a copper box filled with black Stycast, in order to properly thermalize the electrons at
the base temperature of the dilution refrigerator (Tbase ≈ 15mK for the Kelvinox300 fridge from Oxford
Instruments used for this experiment).

In order to decrease the escape temperature, the plasma frequency of the large junction is lowered with
an interdigitated capacitor of 0.6pF, to a value of about 8GHz at s = 0, and ≈ 4GHz at s ≈ 0.97, giving
expected value for the escape temperature T 0

esc = ~ωp/7.2kb ≈ 35mK and the crossover temperature
≈ 40mK.

2.4.2 Measuring line

The switching of the junction gives rise to a voltage pulse of 2∆/e ≈ 400µV across it. This voltage
pulse is measured with a room temperature low noise amplifier NF LI75A ( 1.2nV/

√
Hz with 1MHz

bandwidth). This amplifier is connected to the sample with a lossy twisted pair, which gives a differential
voltage measurement and a continuous filtering from room temperature down to 20mK. An extra filtering
is needed at 20mK to suppress any noise at the frequency of the qubit ν01 or at the plasma frequency of
the readout junction. This extra filtering is provided by microfabricated RC distributed filters placed at
20mK and avoids either spurious excitation of the qubit or an artificial increase of the escape temperature
of the readout junction, leading to a diminution of the discrimination power.

Due to this strong filtering, the capacitance of the measuring line needs several µs to be loaded, which
creates a delay between the switching of the junction and the measurement of the voltage pulse at the
top of the cryostat. After amplification, the signal is sent to a threshold detector and then to a counter
in order to obtain the statistics of the switching of the readout junction over 104 events.

2.4.3 Experimental characterization of the readout junction

The switching probability of the readout junction is measured by repeating the experiment 104 times,
at a rate 10 − 50kHz, in order to lower the statistical noise to a value ≤ 1%. The experimental results
are shown on figure 2.15: the qubit being in its ground state, P0 is measured as a function of Ib and
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Figure 2.13: Experimental setup of the readout. Left: current biasing line. Right: measuring line. The
two RC = 47Ω/100pF shunts the measuring and biasing lines above 100MHz, which protects the qubit
from any spurious resonance in these lines and sets the quality factor of the readout junction to Q ≈ 3.
Since the measuring line is not attenuated contrary to the biasing one, this line needs an extremely strong
filtering in the microwave frequency range, in order to avoid any thermal photons exciting the qubit or
the readout junction. This filtering is provided by microfabricated distributed RC filters, having more
than 110dB attenuation above 100 MHz.
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Figure 2.14: Typical current pulse used for biasing the readout junction. A prebias plateau is used for
increasing the signal to be measured (see section 2.3.3), then the junction is tilted near its critical current
for a duration of 50ns. In case the readout junction switches, a sustain prevents any retrapping, the
voltage can thus develop across the junction.

for δ = 0 and Ng = 0. The quantity [− ln (2πΓ/ωp)](2/3) is plotted as a function of s = Ib/Ic and
for several temperatures. The slope of these curves gives the escape temperature of the readout setup:
Tesc = 35mK±5mK at T ≈ 15mK.

2.4.4 Experimental characterization of the quantronium sample A

Apart from reading out the qubit state, it is also important to probe the dependance of the ground
state current i0 with the parameters δ and Ng. This permits to find the optimal working points in the
parameter space, and also to check the behavior of the readout setup.

Modulation of the ground state current

The measurement of the ground state current of the quantronium is a preliminary experiment needed
for finding the optimal working point in the parameter space. i0 is measured by using the readout setup
in a feed-back mode: as the parameter δm or Ng is ramped, the amplitude of the bias current pulse is
adjusted in order to keep a constant switching probability of 60%, where the sensitivity is maximum.
One thus gets an effective switching current: I60%

b (Ng, δm) for the whole system, which depends on the
pulse duration (here 50ns). Assuming the adiabatic approximation is valid, I60%

b should be equal to the
switching current of the readout junction alone modulated by the ground state current i0:

I60%
b (Ng, δ) = Is + i0(Ng, δ). (2.2)

Charge modulation of i0

The effective switching current of the system I60%
b is measured as a function of Ng (see figure 2.16).

This experimental curve is periodic as expected permits to locate the half integer Ng points, where the
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sensitivity of the qubit to charge noise is minimum.
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Figure 2.16: Dependance of the effective switching current of the quantronium I60%
b on Ng. The mod-

ulation is recorded at δ ≈ 165◦ where its amplitude is maximum. This modulation is one Cooper pair
periodic and permits to locate the half integer Ng points.

Flux modulation of i0

The current I60%
b (Ng, δm) has been measured at Ng = 1/2 and Ng = 0 as a function of δ (see figure 2.16).

For Ng = 0, the sensitivity to charge noise of the ground state current is minimum, which makes the
flux modulation a robust tool for characterizing the ground state current. We observe experimentally
that the amplitude of the current modulation ≈ 10nA for the sample A, is much smaller than the one
calculated with the Hamiltonian 2.1 in the adiabatic approximation (16nA). We attribute this mismatch
to the non validity of the adiabatic approximation. Indeed, during the readout the qubit frequency is
only twice the plasma frequency of the readout junction (8GHz to be compared to 4GHz).

In ref [56, 57], a framework going beyond the adiabatic approximation is developed in order to explain
quantitatively the flux modulation of the ground state current, and succeeds at fitting the experimental
data.

2.4.5 Spectroscopy of the qubit

After having characterized the ground state of the qubit, we look now for the resonance line of the
transition |0〉 → |1〉.

Spectroscopy

For this purpose, the switching probability is measured as a function of the microwave frequency after a
long microwave pulse (≈ 1µs) is applied on the gate. The microwave power is sufficiently low for getting
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Figure 2.17: Experimental (dots) and theoretical (lines) amplitudes I60% of 100 ns long current pulses
giving a switching probability p = 60%, as a function of the reduced phase δ/2π at Ng = 0 (top)
and Ng = 1/2 (bottom). The solid lines are best fits using the formalism of ref [56, 57] based on the
calculation of diabatic potentials for the readout junction, and considering the possibility of Landau-Zener
transitions between the two states of the qubit during the tunneling. These fits lead to EC = 0.0051 kBK,
EJ = 10.2 kBK for the readout junction, and to the CPB asymmetry d = 3.0 %. The dashed curve of the
bottom panel is a fit calculated without Zener flips. For Ng = 0, the shape of the current modulation has a
similar shape than the one obtained with the simple adiabatic approximation but the current amplitude
modulation is smaller by a 0.6 factor. For Ng = 1/2, in the B region, the I60%

b curve is modified by
Landau-Zener transitions during macroscopic quantum tunneling, which enhance the tunneling rate. In
the region C, the transition frequency of the qubit is comparable to KBT , thermal population of state 1
is thus possible. In region A, there is no Zener flips of the qubit state during the tunneling.
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a desaturated line (see figure 2.18). The dependance of the transition frequency with the working point
is plotted on the same figure. Notice that the dependance of ν01 along the lines δ = 0 and Ng = 1/2 leads
to the parameters Ej = 0.870kBK ±0.5% and Ec = 0.65kBK ±0.5%, for the sample A of this thesis.

Note also that the derivative of ν01 with δ gives the difference between the two currents i0 and i1:

i1 − i0 =
e

π

∂ω01

∂δ/2π
≈ 43

δ

2π
nA,

for |δ| < 2rad (sample A).
Via spectroscopy, we thus have a direct access to the loop current difference i1 − i0 which should be

around 14nA during readout with a prebias pulse (δ = 120◦). One can thus check if the expected i1 − i0
is coherent with the discrimination power obtained. We’ll see that this is not the case.

As predicted, the resonance line is the sharpest at the optimal working point. At this point, the
resonance linewidth is ≈ 1.3MHz leading to a quality factor of Q = ν01/∆ν ≈ 12.103 suitable for
performing time resolved experiments (see next chapter).

Discrimination power

The qubit being tuned to its optimal working point, one can prepare state |1〉 by applying a π pulse (see
for more details Sect. 3.1.2), and compare the switching curve of the readout junction for the two states
|0〉 and |1〉 (see figure 2.19).

We observe experimentally that, even with the prebias technique, the maximum sensitivity is only
40% instead of the 90% expected in the adiabatic hypothesis. Taking into account this loss of contrast,
the readout process can be phenomenologically modelized by the schematic diagram on figure 2.20.

The expected switching curves for state |1〉 are also plotted on Fig. 2.19 for 2 values of i1 − i0. One
can notice that the shift between the experimental curves ( from state |0〉 to state |1〉) differs from the
current difference i1 − i0 expected from the adiabatic approximation by a factor 2. In addition, an extra
relaxation phenomenon, increasing when the switching probability increases, is also present.

As explained in Sect. 2.4.4, the amplitude of the flux modulation of the ground state current is
different from the expected value by an important factor: 10nA measured instead of the 16nA expected.
The discrepancy between the expected sensitivity and the experimental one also suggest that the adiabatic
approximation is not valid. Further investigations using the theoretical framework developed in [56, 57]
are now in progress, in order to go beyond the adiabatic approximation.

2.4.6 Back-action of the readout on the qubit

During manipulation of the qubit

For Ib < Ic, the readout junction behaves as a small inductor L ≈ 1nH. With the interdigitated shunting
capacitor C ≈ 0.5pF, this readout junction forms an LC filter which rejects any noise coming down the
measuring lines outside of a bandwidth centered at the plasma frequency and whose broadness is defined
by the quality factor of the plasma oscillations. The phase fluctuations across the readout junction are
those of an harmonic oscillator with resonant frequency ωp/2π = 8GHz thermalized at the temperature
Tesc ≈ 35mK, and are thus dominated by quantum fluctuations. We’ll see in detail in chapter 4 that the
phase noise is not the dominant noise source for the dephasing process at the optimal working point.

Back-action during the readout

One can estimate the strength of the coupling ∆ between the readout junction and the qubit, during the
measurement.
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Figure 2.18: Spectroscopic data of sample A. Top: the transition frequency is plotted as a function of
δ(left) and Ng(right). The resonance line broadens as the working point is moved away from P0 = (δ =
0, Ng = 1/2), as expected. Note that the curvature of the transition frequency (in the charge direction:
25GHz/(2e)2 and in the phase direction: 1.66GHz/(rad)2 for sample 1) leads to a precise determination
of the parameters Ej and Ec. Bottom: resonance line at P0. The linewidth is 1.3MHz, which corresponds
to a quality factor of 12.103.
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As explained in section 2.3.3, the interaction term is Îγϕ0. Since at s ≈ 0.96 and T = 20mK, one
has ωp(s)/2π = 4GHzÀ kBT/~, the fluctuations of γ are thus determined by quantum effects. One can
estimate 〈(γ − γ0)2〉 in the harmonic oscillator limit:

〈(γ − γ0)2〉 = L~ωp/ϕ2
0,

assuming that the junction is in its ground state during the measurement.
This leads to a mean value for the phase fluctuations of

√
〈(γ − γ0)2〉 = 0.1rad. With a typical current

term of 〈Î〉 = 10nA, the interaction strength is thus ∆ = 5% of hν01. The qubit is weakly coupled to the
measuring apparatus.

As a consequence, the projection during the readout happens in the eigenbasis of the hamiltonian of
the qubit and not in the eigenbasis of the coupling operator, Î [58, 59].

Relaxation during the ramping of the readout pulse

Assuming that the qubit is operated at the optimal working point P0 with the prebias technique (see
section 2.3.3), the phase across the qubit experiences a total shift of 120◦ during the ramping of a readout
pulse. As a consequence, the transition frequency decreases from ≈ 16GHz to ≈ 8GHz: the qubit can
thus cross spurious resonances in the environment which induce relaxation. Such a phenomenon has
already been observed on other qubits [50, 49]. In order to quantify the loss of population of state |1〉
during the ramping of the readout pulse, we have added to the biasing pulse a plateau with tunable height
Ip and duration (see figure 2.21). On such a plateau the transition frequency is constant and depends
on the current flowing in the readout junction. When ramping the amplitude of the plateau, one can
observe dips in the signal for particular values of Ip. This dips correspond to a resonance of the qubit
with some spurious mode of the environment, which induces a faster relaxation of the qubit state.

With this method, it is possible to probe this relaxation phenomenon for Ip up to 95% of the amplitude
of the readout pulse, but not above because the junction starts switching on the plateau. Due to the
relative high speed of the ramping of the readout pulse, we estimate that this spurious relaxation during
95% of the ramping explains only 5% of the signal loss.

Back-action during the switching of the readout junction

When the readout junction switches to the finite voltage state, the phase accross this junction aquires a
dynamical behavior which modulates the qubit transition frequency over about an order of magnitude. As
a consequence, relaxation of the qubit can occur by crossing any spurious resonance of the environment.

Then, the finite average speed of the phase running down the tilted potential generates about 105

quasi-particles (≈ 1µA during ≈ 50ns). These quasi-particles are extra sources of relaxation for the qubit,
which explains why this readout can not be QND.

We’ll see in chapter 5 that it is possible to use the same measurement circuit, i.e. a large Josephson
junction, to implement a possibly QND readout with an AC dispersive method.

In addition, these quasi-particles take a certain time to recombine together, which limits the repetition
rate of the experiment.

By using small pads of a normal metal (here gold) connected to the superconducting circuit and close
to the junctions, it is possible to trap spurious quasi-particles and thus increase the repetition rate up to
50kHz which makes the acquisition process more convenient.

2.4.7 Conclusion

In the framework of the adiabatic approximation, the readout setup should have an error rate . 5%,
which is not what we observe experimentally. In addition, the ground state current modulation shows
that the adiabatic picture of the qubit current adding to the biasing current in the readout junction does
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Figure 2.21: Top: for probing the relaxation during the ramping of the readout pulse, and extra plateau
is added to the current biasing pulse. Middle: for a fixed duration (100ns), the amplitude of the plateau is
ramped from −300nA to +380nA. One can observe dips in the signal for particular values of the plateau
height. On these dips, the transition frequency of the qubit is on resonance with some spurious mode of
the environment. Down: the amplitude of the plateau is fixed to two particular values 1 and 2, and the
duration of the plateau is ramped. For the plateau value n◦1, the relaxation time is of the same order
than the relaxation time of the qubit at the optimal working point, whereas for the plateau value n◦2,
which corresponds to a transition frequency for the qubit of about ≈ 15.6GHz, the relaxation time is
shorter meaning that the qubit can relax its energy faster in the environment at this frequency.
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not hold. This simple picture, which separate the dynamics of the two subsystems: qubit and readout
junction, does not yield the correct switching rates for the global system. This is not so surprising when
considering the typical frequencies of these two systems during the readout: 8GHz and 4GHz for the
qubit and the readout junction respectively. The framework developed in [56, 57], which goes beyond
the adiabatic approximation, explains well this ground state modulation. Using this framework, further
investigations are now in progress to determine the escape rate of the excited state of the qubit, and test
quantitatively the adiabatic hyphothesis.

Whatever, the fidelity of the readout was sufficient to perform time resolved experiments using the
high quality factor of the resonance line of the qubit (see chapter 3).
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Chapter 3

Manipulation of the quantum state
of the Quantronium

The quantum state of the quantronium can be efficiently manipulated by techniques inspired from NMR.
A significant difference with NMR is that the quantronium is a unique two level system operated at a
temperature T = 20mK much smaller than the splitting energy hν01 ≈ 1kBK. At thermal equilibrium,
the qubit is thus in its ground state, and relaxation provides a natural reset of the qubit.

3.0.8 Bloch sphere representation

1

X

0

Y

Z

θ

ϕ

u

�

Figure 3.1: A qubit is a two level system, equivalent to a spin 1/2 in a magnetic field, which can be
conveniently represented by a vector on the Bloch sphere.

The qubit is a two-level system which is equivalent to a spin 1/2 in a magnetic field. Any state |−→u 〉
of the qubit can thus be conveniently represented by a unit vector −→u on the Bloch sphere. The angles
characterizing |−→u 〉 are given by the decomposition of |−→u 〉 on the basis {|0〉, |1〉}:

|−→u 〉 = cos(θu/2)e−iϕu/2|0〉+ sin(θu/2)eiϕu/2|1〉.
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In this thesis, states |0〉 and |1〉 correspond to the North and South pole respectively. The equatorial
plane represents the superpositions of states |0〉 and |1〉 with equal weight.

A single qubit unitary gate Û is equivalent to a rotation of the vector state on the Bloch sphere, and
as a consequence can be decomposed on the Pauli matrices basis:

Û = eiζR−→u (θ) = eiζ exp (−i−→u .
−→̂
σ θ/2),

where −→u and θ are the axis and the angle of the rotation respectively, ζ is a phase factor, and −→σ =
(σ̂x, σ̂y, σ̂z), with σ̂i the Pauli matrices.

In order to implement a qubit operation, an external parameter of the Hamiltonian has to be mod-
ulated either in a non-adiabatic way with DC pulses (rise time much shorter than the characteristic
evolution time) or AC resonant pulses, or in an adiabatic way by using slowly varying trapezoidal pulses.

3.1 Manipulation of the qubit state with non-adiabatic pulses

The Rabi precession is the simplest coherent manipulation of the qubit state in the time domain. It can
be either implemented with DC or AC non-adiabatic pulses.

3.1.1 Non-adiabatic DC pulses

This technique was developed by Nakamura et awl for manipulating the quantum state of a Cooper
pair box [36, 60]. A non adiabatic gate pulse brings the system to its degeneracy point where the
Josephson coupling mixes successive charge states and induces Rabi precession (see section 2.1). To be
non-adiabatic, the rise time of the gate pulse has to be much smaller than the characteristic time of
the Josephson coupling: τ ≈ 1/Ej ≈ 200ps. As a consequence, the required bandwidth for properly
controlling the shape of such pulses is several tens of GHz. The excitation technique using AC resonant
pulses is more versatile and easier to implement experimentally.

3.1.2 Non-adiabatic AC resonant pulses

This technique has already been used for several superconducting qubits [61, 60, 40]. An important
advantage of AC resonant pulses is that the qubit can stay at the optimal working point, which preserves
the quantum coherence of the qubit.

In the case of the quantronium, a nearly resonant microwave pulse is applied to the gate, ∆Ng(t) =
∆N0

g cos (2πνµwt + χ) (see figure 3.2), which adds the time dependant term

Hµw = −2Ec∆Ng cos (2πνµwt + χ)N̂ ,

to the Hamiltonian.
Ĥµw couples states |0〉 and |1〉 through the operator N̂ with N̂ = Nxσ̂x + 1/2 at the optimal working

point P0 and Nx = Re[〈1|N̂ |0〉] ( Im[〈1|N̂ |0〉] = 0 at P0. However any σy component appearing at P 6= P0

can be converted into a phase shift of χ). Note that the operator N̂ aquires a small σ̂z component Nz,
when the working point is detuned from the optimal one. However, Nz 6 0.2Nx if Ng ∈ [0.45, 0.55],
which is the typical range of Ng explored experimentally in this thesis. Neglecting the σ̂z component,
Ĥµw can be decomposed in two counter rotating terms:

Ĥ±
µw = −hνR0

2
(cos (2πνµwt + χ)σ̂x ± sin (2πνµwt + χ)σ̂y),

where νR0 = 2Ec∆Ng|〈1|N̂ |0〉|/h is called the Rabi frequency on resonance.
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Figure 3.2: Left: oscilloscope trace of a typical microwave pulse applied to the qubit. Right: in the
rotating frame, the precession of the vector state happens around the effective dc field, at the Rabi
frequency νR.

In the frame rotating at the microwave frequency νµw ≈ ν01, the effect of the component H−
µw can be

neglected within the scope of the rotating wave approximation (RWA) [62, 63]. The only efficient term
in the rotating frame is H+′

µw:

Ĥ+′
µw = −hνR0

2
(σ̂x cos χ + σ̂y sin χ).

When the microwave excitation field is out of resonance, an extra detuning term appears in the
rotating frame:

∆̂H = −h∆ν

2
σ̂z,

where ∆ν = ν01−νµw is called the Ramsey frequency. The total effective Hamiltonian in the rotating
frame is thus:

Ĥ ′
µw = −h∆ν

2
σ̂z − hνR0

2
(σ̂x cos χ + σ̂y sin χ)

The dynamics of the vector state in the rotating frame is then equivalent to that of a spin 1/2 in a
static magnetic field −→

b = ∆ν−→u z + νR0(−→u x cosχ +−→u y sinχ),

where
−→
b is expressed in units of frequency.

During the driven evolution, the dynamics of the vector state on the Bloch sphere is given by the
equation:

d−→u
dt

=
−→
b ∧ −→u .

The fictitious spin 1/2 thus precesses around
−→
b at the Rabi frequency:

νR =
√

ν2
R0 + ∆ν2.
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When the qubit evolves freely, the precession takes place around the detuning field
−→
∆b = ∆ν−→u z at

the Ramsey frequency ∆ν.

Experimental setup

For generating the excitation pulses, we use a continuous microwave generator (Rhode&Schwartz SMR20),
whose output is split into two channels. One of the channels, used as a carrier reference, feeds two Marki
mixers (M80420LS) in series controlled by trapezoidal pulses (see figure 3.3). These trapezoidal pulses
used for shaping the envelopes of the microwave pulses are generated by a BitErrorRate analyser (Agilent
81200). This generator has 6 programmable outputs (which permits to combine several pulses) and has
an accuracy time base better than 50ps providing a precise control of the pulse duration and of the delays
between pulses. In addition, the minimum rise time of the generator is 0.5 ns which permits to generate
short pulses of duration < 2ns.

The other channel is dephased by a tunable dephasor (DC-16GHz Arra) before being mixed which
permits to excite the qubit with sequences of pulses having very well defined dephasings. Note that
each DC line drives two mixers in series in order to increase the On/Off ratio of the microwave signal
(Pon/Poff & 40dB).

The two channels are then recombined together and sent to a 50Ω strongly attenuated line (−20dB
at 4K, −20dB at 600mK and −3dB at 20mK), the idea here being also to work with the highest signal to
noise ratio, and to attenuate gradually the thermal noise generated by each stage. At 20mK, the signal
is coupled to the island of the qubit by a gate capacitance of 80aF. The amplitude of the Ng oscillation
is about 0.6% of a Cooper pair for a typical Rabi frequency of 100MHz, which corresponds to a gate
voltage of several µV.

Experimental results

For an applied microwave excitation pulse of fixed duration t and amplitude, the switching probability
Ps of the readout junction is measured by repeating 105 times the same sequence of excitation and
measurement pulses. The observed Rabi oscillations of Ps (see fig. 3.4) when t is ramped are a consequence
of the coherent oscillation of the qubit between states |0〉 and |1〉, during the precession around the
microwave field. Note that the maximum amplitude of the Rabi oscillations is only 40%.

The π and π/2 rotations are noticeable since they are at the basis of the manipulation of the quantum
state of the qubit. A π pulse implements the NOT operation (with an extra phase term), and prepares
state |1〉 starting from state |0〉. A π/2 pulse prepares the coherent superposition (|0〉+ |1〉)/√2 starting
from state |0〉.

The dependance of the Rabi frequency with the microwave amplitude is plotted in figure 3.4, and has a
linear behavior until the mixers get saturated, which demonstrates that the microwave excites a transition
between two discrete energy levels and not a spurious resonance of the environment of the circuit. The
maximum Rabi frequency available is 140MHz, without saturating the mixers, which provides a minimum
bit flip time smaller than ≈ 4ns.

Fidelity of a qubit manipulation

One can notice a loss of contrast of the Rabi oscillations (see fig. 3.5) as the driving time increases. This
phenomenon is related to the decoherence during driven evolution (see chapter 4) and leads to errors when
implementing a rotation. These random errors affect the unitary character of the implemented rotation.
Indeed, we’ll see in the next chapter that starting from a pure state, the ground state for instance, the
result of the operation is a statistical mixture. By fitting the decay of the Rabi oscillations, and taking
into account the simplest model for the readout (see section 2.20), one can evaluate the coefficients of
the density matrix resulting from the rotation (see section 4.4). For instance, the state after a π rotation
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Figure 3.3: Experimental setup for the manipulation of the qubit state. A microwave source is split in
two channels, one of them being dephased by a tunable dephasor. Then the two channels are mixed
with trapezoidal pulses coming form a pulse pattern generator before being recombined together. The
microwave pulses are applyied on a strongly attenuated line in order to use the full dynamic range of the
microwave generator and increase the signal to noise ratio. The microwave line is then coupled to the
superconducting island through a gate capacitance. Inset: each mixing line is made of 2 Marki mixers
in series in order to increase the ON/OFF ratio (> 40dB). Attenuators of 1dB are added in order to
minimize the effects of possible standing waves in the setup, coming from impedance mismatches.
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Figure 3.5: A typical π rotation takes a time . 4ns. The decay of the Rabi oscillations is related to the
decoherence during driven evolution. This phenomenon introduces errors into any rotation which can
be estimated by fitting the decay and using the simple model of the readout described in section 2.20.
The error is ≈ 0.3%/ns of rotation. After a π rotation of typical duration 4ns, the qubit state is thus
represented by a density matrix ρ with ρ11 ≈ 0.99 and ρ00 ≈ 0.01.

of duration ≈ 4ns, is described by a density matrix ρ with ρ11 ≈ 0.99, ρ00 ≈ 0.01, ρ10 = 0, and ρ01 = 0.
The fidelity is thus ≈ 99%.

3.2 Combination of rotations: Ramsey experiments

Any one qubit operation Û can be decomposed into the product of 3 rotations around two perpendicular
axes such as the X and Y axes [64]. As a consequence, there exist real numbers: α, β, γ, δ such that:

Û = eiαRx(β) ◦Ry(γ) ◦Rx(δ).

The ability to properly combine several rotations is thus an important issue for implementing an arbitrary
single qubit gate. The aim of this section is to demonstrate that rotations around either the X and the
Y axes are achievable and that they can be combined together. For this purpose, a Ramsey experiment
based on a well known manipulation sequence in atomic physics and NMR is performed.

The Ramsey experiment combines two excitation pulses separated by a tunable delay and gives the
most precise way to compare the frequency of an excitation source with the transition frequency of a
two-level system. For instance, this sequence is used in atomic clocks for defining the time reference.

In our case, a Ramsey sequence constitutes the simplest experiment for probing the free evolution of
the qubit in the time domain.

3.2.1 Principle

A first π/2 pulse around the axis −→u 1 defined by the microwave phase χ1 is applied to the qubit and
bring the vector state in the equatorial plane where it precesses around the detuning field at the Ramsey
frequency δν (see Fig. 3.6). During this free evolution, a phase φ(t) =

∫
∆νdt′ is accumulated between

state |1〉 and state |0〉.
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After a time t of free evolution, a second π/2 pulse around the axis −→u 2 defined by χ2 is applied. This
pulse converts the information about the phase φ(t) into a change of the population of state |1〉 which is
then measured. At the end of the sequence, the probability for the qubit to be in state |1〉 is thus

P1(t) = cos2
(

φ(t) + (χ1 − χ2)
2

)
.

P1 oscillates with time t, at the Ramsey frequency, as a consequence of the free precession of the
qubit between the two pulses. The phase of the Ramsey oscillations is given by the difference between
the microwave phases of the two π/2 pulses.

readoutFree evolution

π/2 
pulse

π/2 
pulse

Z Projection
t

1
u

��

2
u

���

ν =ν01−νmw

Figure 3.6: The Ramsey sequence is the simplest sequence revealing the free evolution of the qubit in the
time domain. It consists of two π/2 pulses separated by a free evolution period of duration t. During the
free precession, state |1〉 accumulates a phase φ(t) =

∫
∆νdt with respect to state |0〉. The second π/2

pulse converts the information about φ into the population of state |1〉, which is then measured.

3.2.2 Experimental results

The switching probability of the readout junction is plotted on fig. 3.7 for different combinations of two
π/2 rotations around two of the four axes: X,-X,Y and -Y.

The switching probability of the readout junction oscillates at the Ramsey frequency as predicted and
the Ramsey pattern is phase shifted by the difference of microwave phase between the two π/2 pulses, as
expected, which proves that the two rotations combine properly. However, one can notice sudden phase
shifts that we assume to be due sudden jumps of the transition frequency of the qubit due to charge two
level fluctuators (see chapter 4). We’ll see in section 3.4, how it is possible to decrease the sensitivity of
an operation to such errors.

One can also notice a slight decay of the contrast of the Ramsey fringes, which is related to the
decoherence during free evolution (see chapter 4).

Nevertheless, the fact that combinations of rotations combine as expected at least qualitatively shows
that any single qubit operation can be achieved.
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Figure 3.7: Combination of rotations around the X,-X,Y, and -Y axes. The Ramsey patterns are shifted
by the expected dephasing proving that the rotations combine together properly. The sudden phase shifts
are assumed to be due to small frequency drifts of the transition frequency of the qubit.
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3.3 Manipulation of the quantum state with adiabatic pulses:
Z rotations

Any rotation around the Z axis can be implemented by applying three microwave induced rotations
around the X and Y axes (see section 3.4.1):

RZ(θ) = RX(
π

2
) ◦RY (θ) ◦RX(

π

2
).

But it can be implemented in a simpler way by a period of free evolution in the rotating frame with
a finite fixed frequency detuning. By controlling the detuning ∆ν(Ng, δ) of the transition frequency with
adiabatic pulses on the parameters Ng or δ, one can control the speed of precession around the Z axis.
The qubit is therefore moved away from the optimal working P0 to a working point P = (Ng, δ) for a
certain time t so that an extra rotation of angle

θ = 2π

∫
∆ν(Ng, δ)dt

′ t

0,

is achieved around Z.

3.3.1 Principle

As described in chapter 4, the sensitivity of the qubit to charge noise is higher than to phase noise.
As a result, only Z rotations coming from a detuning of the working point in the phase direction are
considered. For changing the phase δ = δm + γ at a fast enough speed, one cannot use the coil which
controls δm since the bandwidth is not sufficient (≈ 100Hz). As a consequence, a biasing current Ib into
the readout junction is used and sets the phase across the readout junction to γ = arcsin (Ib/Ic). Due to
a limited bandwidth of 100MHz, we use triangular pulses. During this pulse, an extra phase builds up
between state |0〉 and |1〉, whose total value is at the end of the current biasing pulse:

ζ = 2π

∫
δν01(Ng, δ(t))dt.

Near the optimal working point, the dependance of δν01 with δ can be approximated with a 1%
accuracy by a parabolic function: δν01 ≈ −αδ2 with α = 1.66GHz/rad2 (sample A), over the range
[−π/2, π/2]. Using the prebias technique, the value of δ for a biasing current Ib is expected to be:

δ = arcsin (
Ib

Ic
)− arcsin (

Ipb

Ic
) ≈ ∆I√

I2
c − I2

pb

,

where Ipb is the current during the prebias plateau, Ib is the biasing current during the detuning pulse,
and ∆I = Ib − Ipb.

The predicted extra phase for a triangular detuning pulse of maximum amplitude ∆I and total
duration τ is thus:

ζ =
2π

3
α

∆I2

I2
c − I2

pb

τ.

This current detuning pulse is inserted into a Ramsey sequence (see fig. 3.8) for probing the extra
phase factor ζ.

Note that the current pulse has to fullfil the adiabaticity criterion:

|dλ/dt〈1|∂Ĥqb/∂λ|0〉|/(~ω01) ¿ ω01,
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Figure 3.8: Rotation around the Z axis with a detuning pulse. Left: a current pulse changes adiabatically
the transition frequency during a Ramsey sequence. Top: during triangular adiabatic current pulse,
the working point is moved away from (δ = 0, Ng = 1/2) in the phase direction and put back. Right:
The switching probability oscillates with the amplitude of the current detuning pulse which renders
the rotation of the qubit around the Z axis. The experimental curve is fitted (dashed line) by taking
into account the parabolic dependance of ν01 with δ. The maximum contrast of the signal has been
optimized and is lower than during a Rabi. We attribute this discrepancy to errors on the microwave
pulses durations.

with λ = δ. This is indeed the case for the typical set of parameters: 〈1|∂Ĥqb/∂δ|0〉/ϕ0 = 〈1|Î|0〉 < 10nA
and dδ/dt < 40Mrad/s, which give

|dλ/dt〈1|∂Ĥqb/∂λ|0〉|/(~ω01) ≈ 108 ¿ ω01 ≈ 1011.

3.3.2 Experimental setup and results

The adiabatic detuning pulse is generated by an Agilent 33250 arbitrary waveform generator and is added
to the readout pulse, with a combiner.

The experimental results are plotted on figure 3.8. The switching probability of the readout junction
oscillates as the amplitude of the current bias ∆I is increased, as a consequence of the rotation of the
vector state around the z axis. The experimental curve is fitted by the function

cos ζ = cos

(
2π

3
α

∆I2

I2
c − I2

pb

τ

)
,

where the parameters α = 1.66GHz/rad2, Ic = 445nA±20nA, have been measured by previous experi-
ments, and where Ipb = 330nA and τ = 50ns are set experimentally.

We now discuss how to improve the robustness of a rotation with respect to experimental imperfec-
tions.
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3.4 Implementation of more robust operations

The manipulation and the evolution of the qubit state is very sensitive to random errors arising from
decoherence processes (see chapter 4). But, systematic errors coming from reproducible imperfections of
the microwave pulses can affect also the manipulation of the qubit state. The accuracy of a single-qubit
operation is indeed very sensitive to imperfections of the driving field used. For instance, a Rabi pulse
implementing a rotation of the vector state on the Bloch sphere is characterized by the Rabi frequency
νR given by the microwave amplitude, its duration τ , and by the detuning ∆ν and the phase χ. Errors

»0\

»1\

»0\

»1\

»0\

»1\

»0\

»1\

Figure 3.9: Errors during the implementation of a π/2 rotation around the Y axis starting from the initial
state |0〉. Top left: ideal rotation. Top right: 10% error on the pulse duration. Bottom left: 20◦ error on
the microwave phase. Bottom right: error on the excitation frequency (∆ν = 0.2νR0 error).

on these quantities are directly translated into errors on the axis and on the angle of the rotation. A
frequency offset, coming from fluctuations of the transition frequency of the qubit (see Fig. 3.7) affects
both the axis and the angle of the rotation, whereas an error on the microwave phase will affect only the
axis of the rotation. Fig. 3.9 illustrates these different errors in the case of a π/2 rotation around the Y
axis.
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3.4.1 Composite rotations

As previously mentionned, any rotation can be decomposed into the product of three rotations around
two perpendicular axes. As a consequence, there are many equivalent ways to implement the same
operation on the Bloch sphere. These different ways can however have different sensitivities to pulses
imperfections. Indeed, in NMR, sequences made of several rotations, called composite sequences, have
demonstrated being less sensitive than single pulse operation to systematic errors. The idea is that the
systematic error affecting a single pulse can cancel during the concatenation of several pulses adequately
chosen [45, 65]. At first sight, one could think that a composite sequence just redistributes the errors
on the Bloch sphere so that the sensitivity to imperfections is decreased compared to a single rotation
only for some particular initial states. This is indeed the case for most of the composite rotations used
in NMR, where a compensation of imperfections is only needed for particular initial states.

But surprisingly, there exist also composite sequences of pulses whose sensitivity to imperfections
is lower compared to a single rotation for every initial state on the Bloch sphere, which is a crucial
requirement of quantum computing.

First, we will quantify the difference between an ideal unitary operation and its practical implemen-
tation.

3.4.2 Fidelity of unitary operations

For quantifying the effect of systematic errors, we will define the fidelity between an ideal operation
and its practical implementation. First, one can notice that, contrary to random errors caused by the
decoherence for instance, systematic errors does not affect the unitary character of an ideal rotation.

Having a particular initial state |a〉, and two unitary operations Û1 = R−→u1
(α1) = exp (i−→u1.

−→̂
σ α1/2) and

Û2 = R−→u2
(α2) = exp (i−→u2.

−→̂
σ α2/2), one can quantify the difference between the final states |b〉 = Û1|a〉

and |c〉 = Û2|a〉 with the hermitian product:

hp(|a〉) = 〈b|c〉 = |〈a|Û†
2 Û1|a〉|.

If hp is equal to one, then |b〉 and |c〉 are equal up to a phase factor. If hp < 1, the difference of hp with 1
quantifies the discrepancy between the final states of Û1 and Û2 applied to the same particular state |a〉.

By using the general formula:

(
−→̂
σ .−→u1)(

−→̂
σ .−→u2) = −→u1.

−→u2 + i
−→̂
σ .(−→u1 ∧ −→u2),

the hermitian product hp can be expressed for any initial state as a function of the angles and of the
vectors −→u1 and −→u2 of the rotations Û1 and Û2:

hp(|a〉) = i
[
cos (α1

2 ) sin (α2
2 )−→u2 − sin (α1

2 ) cos (α2
2 )−→u1 + sin (α2

2 ) sin (α1
2 )−→u1 ∧ −→u2

]
.−→a

+ 1
2Tr(Û†

2 Û1).

with
Tr(Û†

2 Û1) = 2
[
cos (

α1

2
) cos (

α2

2
) + sin (

α1

2
) sin (

α2

2
)−→u1.

−→u2

]
.

We can now define the averaged fidelity between two rotations, which does not depend on the initial
state:

F (U1, U2) = |〈a|U†
2U2|a〉| = |Tr(U†

2U1)|
2

,

where the average is taken over all initial states |a〉.
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Since quantum error correcting codes need for working a single qubit gate accuracy of 1− F < 10−4

in the best case, the issue of implementing robust gates is thus crucial.
In the following, we use the algebra of quaternions to calculate F in the case of composite rotations.

Quaternions and rotations of the qubit state

The quaternion corps give another representation of rotations which is more convenient than the Pauli
matrices for calculating composition of rotations.

A rotation of angle θ around a unitary axis −→u is represented by a 4−component vector q = {s,−→v },
where s = cos θ/2 and −→v = −→u sin θ/2.

For instance, a π/2 rotation around the X axis is given by the quaternion: q = (1/
√

2, 1/
√

2, 0, 0),
whereas a π rotation around X has the quaternion: q = (0, 1, 0, 0).

The composition of two rotations can then be easily calculated by multiplying quaternions according
to the product rule:

q1 ∗ q2 = {s1.s2 −−→v1 .
−→v2 , s1

−→v2 + s2
−→v1 +−→v1 ∧ −→v2}.

As an example, the combination of the three rotations: R−x(π/2) ◦ Ry(θ) ◦ Rx(π/2) can be easily
calculated and gives Rz(θ).

Then, to quantify the difference between an ideal rotation and its practical implementation, one uses
the quaternion fidelity, which is defined by:

F(−→q1 ,−→q2) = |−→q1 .−→q2 | = |s1.s2 +−→v1 .
−→v2 |,

and is equal to the average fidelity defined for two operators F (Û1, Û2).
A fidelity of 1 means that the two quaternions q1 and q2 correspond to the same rotation, up to a

phase factor.
As an example, one can compare an ideal π rotation around X with the same rotation having an

error on the excitation frequency: ε = ∆ν/νR0, where νR0 is the Rabi frequency on resonance. The
corresponding quaternions are given by:

q1 = (0, 1, 0, 0)

and

q2 =
[
cos (π/2

√
1 + ε2), sin (π/2

√
1 + ε2)/

√
1 + ε2, 0, ε sin (π/2

√
1 + ε2)/

√
1 + ε2

]
.

The fidelity between q1 and q2 is:

F (ε) =
sin (π/2

√
1 + ε2)√

1 + ε2
≈ 1− ε2

2
,

which is plotted on fig. 3.10. Around ε = 0, the fidelity thus scales at second order with ε.
In the following, we will focus on off-resonance errors and we’ll see that the fidelity of a composite

pulse sequence coming from NMR, the CORPSE sequence, scales like ε4.

3.4.3 The CORPSE sequence

The CORPSE sequence, which means Compensation for Off Resonance with a Pulse Sequence, was
developed in the context of NMR [65]. It is used for applying the same rotation Rx(θ) to different spins
even if they have different transition frequencies.

In the quantronium case, the CORPSE sequence can reduce strongly the sensitivity of an operation
to frequency detuning of the qubit, caused by low frequency fluctuations of ν01.
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The CORPSE sequence is composed of the three subsequent rotations: Rx(θ1), then R−x(θ2) and
finally Rx(θ3). For any rotation Rx(θ), there exist several sets of angles {θ1, θ2, θ3} for which the CORPSE
sequence implements the rotation Rx(θ). The angles can be calculated with the quaternion product and
are given by the formulas [65]:

θ1 = 2n1π + θ
2 − arcsin ( sin θ/2

2 )

θ2 = 2n2π − 2 arcsin ( sin θ/2
2 )

θ3 = 2n3π + θ
2 − arcsin ( sin θ/2

2 )

where n1, n2, n3 are integers. It can be shown [65] that the fidelity of the CORPSE sequence compared
with the ideal rotation Rx(θ) does depend on ε only at fourth order, and that the behavior of the ε4 term
is only determined by n1−n2 +n3 which is the number of turns additional to the desired rotation around
the X axis. The ε4 term is then minimum for n1 − n2 + n3 = 0.

We have experimentally tested the CORPSE sequence in the particular case of the implementation
of a NOT operation.

3.4.4 Implementation of a robust NOT operation

The CORPSE sequence has been tested and compared to a single π rotation.
The integers ni were chosen such that n1 = n2 = 1 and n3 = 0, which gives the angles 7π/3X , 5π/3−X , π/3X

for the different rotations. The fidelities of the CORPSE sequence and of a real π rotation with respect
to an ideal π rotation are plotted as a function of the frequency detuning on figure 3.10.

Fidelity
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Figure 3.10: The fidelity of π rotation with a single pulse as a function of the frequency error ε = ∆ν/νR0

is plotted in dashed. The fidelity scales like ε2 around ε = 0. In plain is plotted the theoretical fidelity
for the CORPSE sequence, which scales like ε4.
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Figure 3.11: Comparison between the trajectory of the vector state during a simple π rotation (left) for
a detuning of 20MHz and a Rabi frequency of 100MHz, and the corresponding case of the CORPSE
sequence (right).

The fidelity of the standard π pulse has a ε2 behavior as previously described, whereas the CORPSE
fidelity scales like:

1− αε4 − βε6,

with α = 0.003, and β = 4.9, for the considered sequence (7π/3x, 5π/3−x, π/3x). As a consequence, for
an error of 10−4, the maximum acceptable detuning for the CORPSE sequence is 16% of νR0 whereas
for a single Rabi pulse, it is only 1.5% of νR0.

For the typical parameters: νR0 ≈ 100MHz and a maximum frequency fluctuation ∆ν . 10MHz, one
can estimate the different errors expected. For the CORPSE: 1 − F . 5.10−6 whereas for the standard
π rotation 1− F . 5.10−3.

The error due to a frequency detuning is thus greatly reduced by the CORPSE sequence. To illustrate
this, on fig. 3.11 is plotted the trajectory of the vector state on the Bloch sphere in the case of a π rotation
and of a CORPSE sequence both applied to the ground state.

Experimental results

We have first compared the CORPSE sequence and a standard π pulse for the same initial state: |0〉.
It happens that in this particular case, the probability P1 for the qubit to be in state |1〉 after each

operation is rigorously equal to the square of the fidelity, F 2, of the considered operation. By measuring
P1, one gets the fidelity of the CORPSE sequence compared to an ideal π rotation.

The switching probability of the readout junction is then measured after each sequence and as a
function of the frequency detuning (see fig. 3.12). As expected, the efficiency of the CORPSE sequence is
better than those of a standard π pulse since the switching probability stays close to its maximum over
a wider frequency range.

Then, we have checked that the CORPSE sequence was implementing a NOT operation for every
initial state, by performing the sequence after an arbitrary rotation Rx(θ). The experimental results are
plotted on figure 3.12, the switching probability for the combination of the rotation Rx(θ) and of the
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Figure 3.12: NOT operation is implemented with a standard π pulse and with a CORPSE sequence, on the
quantronium whose transition frequency is 16.402GHz. Left: switching probabilities after a CORPSE
sequence and a π pulses. The sensitivity of the CORPSE sequence to frequency detuning is smaller
since the switching probability stays close to its maximum over a larger frequency range than for the π
pulse. The theoretical prediction for the CORPSE sequence is represented in dash. Right: for a 70MHz
detuning, a sequence of a CORPSE with an additionnal rotation of tunable angle θ around the −X
axis (full points), is applied and compared with the θ rotation alone (open points). The two switching
probabilities oscillates in phase opposition as expected for a NOT operation. One can notice however a
slight phase shift possibly due to pulse length errors.
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CORPSE sequence oscillates qualitatively in phase opposition with the rotation Rx(θ) alone, as predicted
for a NOT operation. However, one can notice a slight phase shift that is assumed to be due to pulse
length errors.

The CORPSE sequence thus implement a NOT operation for every initial state on the Bloch state,
and not only for state |0〉.

3.5 Conclusion

The quantum state of the qubit can be efficiently manipulated with non-adiabatic AC resonant pulses
and adiabatic pulses. The evolution of the qubit is equivalent to the one of a spin 1/2 precessing in
a static magnetic field. Any rotation of the state vector on the Bloch sphere can be achieved, and as
a consequence any one-qubit operation. The error rate of single qubit operations has been estimated:
≈ 1% for a fast single π rotation. It is far from the fidelity achieved with trapped ions.It will be shown
in the next chapter that this error rate is dominated by random errors coming from the decoherence
during the driven evolution of the qubit. Another source of errors coming from the imperfections of the
manipulation pulses has been characterized. These systematic errors are not the dominant one for the
moment for our qubit. However, it has been shown that the sensitivity to these systematic errors could
be decreased by using composite sequences coming from NMR. In addition, these composite sequences
are also efficient for compensating the effects of slow fluctuations of the transition frequency the qubit,
slower than the duration of the composite sequence.

The fidelity of an operation remain to be probed with a better precision, and for this purpose, a high
fidelity readout would be of great interest.



Chapter 4

Analysis of decoherence in the
quantronium

4.1 Introduction

4.1.1 Decoherence

The decoherence phenomenon controls the transition from the quantum world to the classical one. The
interaction between a quantum system and its environment induces a complex entanglement between
both parties that selects so-called classical states for the system after a certain interaction time T2 called
the coherence time [58, 59]. During this time T2, quantum properties such as interferences can still be
demonstrated after the preparation of a coherent superposition of states, whereas for longer times, the
state of the system gets projected on one of the classical states, which correspond to a small fraction of
the Hilbert space states robust with respect to the system-environment interaction.

Coherence times range from ns in mesoscopic solid state devices, up to seconds for trapped ions, atoms
or nuclear spins.

From a quantum computing point of view, this decoherence phenomenon is equivalent to random
errors affecting qubit state during an operation and thus severely hinders the implementation of a quantum
computer. The discovery of algorithms for quantum error correction proved nevertheless that decoherence
can be fought and does not completely rules out quantum computing. The idea behind quantum error
correction is to encode a qubit using several ones, and to perform partial measurements on the group of
qubits in order to retrieve the error performed, if any, and to correct for it. These codes nevertheless
require an error rate of less than 1 error for 104 operations, or equivalently long coherence times.

4.1.2 Decoherence in superconducting quantum bits

Despite significant advances in coherence times during recent years, with coherence times of order 0.5 µs
reached, decoherence due to the coupling between the quantum electrical circuit and the degrees of
freedom of the environment is still a major issue to solve before using these circuits for developing a
quantum processor [64], even with a small number of qubits. The quantitative characterization and
understanding of decoherence processes in superconducting circuits is thus presently a major concern for
the development of superconducting qubits.

In this chapter, largely inspired from [66], we present experiments that characterize the sources of
decoherence in the quantronium circuit. First, the principal noise sources responsible for decoherence are
described. In Sect. 4.2, a general framework, elaborated in collaboration with A.Shnirman, Y. Makhlin,

81
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J.Schriefl, and G.Schön, is introduced for the description of decoherence processes during the free evolution
of the qubit and during its driven evolution when coupled to a small AC excitation. This theoretical
framework, which can be adapted to other circuits, takes into account both linear and quadratic coupling
of the qubit to variations in the control parameters. The decoherence rates are related to the spectral
densities of the noise sources coupled to the qubit.

In Sects. 4.3 and 4.4, experimental results on the measurement of decoherence in all these situations
are reported, and analyzed within the theoretical framework of Sect. 4.2. Methods inspired from nuclear
magnetic resonance (NMR) are then introduced, such as spin echoes and spin locking, which probe
the spectral density of the noise sources responsible for decoherence at different frequencies. From the
experimental results, we infer constraints on the spectral density of the noise sources. Improvement of the
quantum coherence time of a qubit is also discussed. Then, Sect. 4.5 summarizes what has been learnt
with the quantronium on decoherence processes in Josephson qubits, and how to fight decoherence.

4.1.3 Decoherence sources in the Quantronium circuit

Like any other quantum object, the quantronium qubit is subject to decoherence due to its interaction with
uncontrolled degrees of freedom in its environment, including those in the device itself. This interaction
leads in the general case to a complex entanglement between the qubit and the environment. However,
at low temperature, the main microscopic dissipation channel due to quasiparticles is suppressed in a
superconductor, the qubit is thus only weakly coupled to the remaining sources of decoherence present
in the environment. In this weak coupling regime, the effect of the interaction with the environment is to
turn the parameters Ej , δ and Ng (see Fig. 4.1) into dynamical variables. The full dynamics of the control
parameters being unknown, the degrees of freedom of the environment appear as a noisy modulation of
the qubit Hamiltonian (4.1):

ĤCPB(Ng, δ) = EC(N̂ −Ng)2 − EJ cos(δ̂/2) cos θ̂ + dEJ sin(δ̂/2) sin θ̂. (4.1)

The external control parameters are thus open channels for a coupling to the environment.
Using dimensionless parameters λ = EJ/EJ0 (EJ0 being the nominal EJ), λ = Ng, or λ = δ/(2π), each

noise source is conveniently described by its quantum spectral density Sλ(ω) ≡ 1/(2π)
∫

dt〈δ̂λ(0)δ̂λ(t)〉e−iωt,
where δ̂λ is regarded here as an operator acting on environmental variables. This function quantifies the
ability of the source to absorb and to emit an energy quantum ~|ω|, at positive and negative ω, respec-
tively. The symmetrized spectral density Ssλ(ω) = 1/2[Sλ(−ω) + Sλ(ω)] and its classical limit Scλ(ω)
at kBT À ~ω will also be used. Decoherence of the qubit will be described here in terms of energy
exchange with a noise source on one hand, and in terms of random dephasing between states |0〉 and |1〉
due to adiabatic variations of the transition frequency on the other hand. We distinguish between, on
one hand, relaxation involving Sλ(+ω01) and excitation involving Sλ(−ω01), i.e. the quantum noise and,
on the other hand, dephasing processes involving the classical noise Scλ(|ω| ¿ ω01). As kBT ¿ hν01 in
our experiment, the excitation process is negligeable compared to the relaxation one. In addition, since
”pure” dephasing (see Sect. 4.2) dominates decoherence, special attention is paid to the low-frequency
part of the noise Scλ(ω ¿ 1/T2), where T2 is the coherence time.

The main noise sources acting in the quantronium are schematically depicted in Fig. 4.1, and their
spectral densities are discussed below. They can be roughly separated into macroscopic sources includ-
ing the excitation and measurement circuits and microscopic sources, like charge fluctuators or moving
vortices for instance.

Critical current noise: Two-level fluctuators in the tunnel barriers

A first source of decoherence arises from the fluctuations of the Josephson energy EJ of the two small
junctions. The associated critical current noise, which has not been measured in our samples, has been
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Figure 4.1: Equivalent schematic drawing of the noise sources responsible for decoherence in the quantro-
nium. These sources are coupled to EJ , Ng, or δ. In part, they are of microscopic nature like the two-level
fluctuators (TLFs) inside the junction that induce EJ variations, like a charged TLFs (represented as a
minus sign in a small double arrow) coupled to Ng, or like moving vortices (Φmicro) in the vicinity of the
loop. The macroscopic part of the decoherence sources is the circuitry, which is represented here as an
equivalent circuit as seen from the qubit. The relevant resistances and temperatures of the dissipative
elements are indicated. Capacitance with no label represent a shunt at the qubit frequency and an open
circuit at frequencies below 200 MHz.

characterized, at frequencies f up to 10 kHz and at temperatures T between 100 mK and 4 K, in various
Josephson devices [67, 68] made of different materials, and different processes, including the Al-AlOx-Al
junction process used in this work. The Josephson energy noise is empirically described, for a single
junction with critical current I0 and area A, by a 1/f spectral density that scales as

SI0(f) = C
I2

0T 2

Af
,

where C ≈ 10−23m2/K2 was found to be remarkably constant (up to a factor 3) for several oxydation
parameters and junction technologies. The T 2 dependance has been experimentally verified from 90mK
to T = 4.2K [69].

By extrapolating the above expression down to the measured temperature Te of the quantronium
during its operation, 40 mK, one obtains an estimate for the spectral density of relative EJ fluctuations:

ScδEJ/EJ
(|ω| < 2π × 10 kHz) ∼ (0.5× 10−6)2/|ω|/rad.s.

The critical current noise is presently attributed to charge trapping at atomic defects located in the
oxide of the tunnel junctions. A simple model assumes that these defects are independant two-level
fluctuators (TLFs) switching between two states that correspond to an open and a closed tunneling
channel through the junction.

The distribution of the energy splittings of these TLFs is thought to be very broad and to extend above
the transition energies of Josephson qubits. This picture is supported by the observation of a coupling
between a phase qubit and uncontrolled TLFs randomly distributed in frequency [49]. By isolating a
particular level crossing between the qubit and a unique sufficiently coherent TLF, Martinis et al were
even able to observe coherent oscillations between the qubit and the TLF [50].
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With the quantronium sample A, an avoided level crossing in the spectroscopic data (see fig. 4.2)
was also observed in one of the experimental runs, which demonstrated a strong coupling (in this case
≈ 400MHz) between the qubit and an unknown degree of freedom that was later eliminated by annealing
the sample at room temperature. These observations suggest that this spurious resonance should come
from the microscopic environment of the qubit, and probably from TLFs located in the tunnel barriers.
These TLF would thus not only generate low-frequency EJ noise, but could also play an important role
in the relaxation of Josephson qubits.
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Figure 4.2: Spectroscopy of the qubit as a function of the phase δ. Solid dots: level crossing between
the qubit and a spurious resonance, on sample A. The level splitting is ≈ 400MHz. Open dots: the level
crossing was eliminated by annealing sample A at room temperature.

Charge noise: Background charged two-level fluctuators and gate line impedance

A second source of decoherence is the noise on the gate charge Ng. Like any Coulomb blockade device,
the quantronium is subject to background charge noise (BCN) due to microscopic charged TLFs acting
as uncontrolled additional Ng sources. These TLF could either be trapped electrons or ions in defects of
the material, moving between 2 metastable positions.

Although the whole collection of TLFs produces a noise whose spectral density approximately follows
a 1/f law [70, 71, 72] telegraph noise due to some well-coupled TLFs can be observed as well [41, 70].
These well-coupled TLFs are, for instance, responsible for the substructure of the quantronium resonance
line recorded at Ng 6= 1/2 (see Fig. 4.12 further below). Complementary works [73] have shown that the
charged TLFs are partly located in the substrate, partly in the oxide layer covering all the electrodes, and
partly in the oxide barriers of the tunnel junctions themselves. It has been suggested that some TLFs
contribute both to the critical current noise and to the charge noise[74]. Indeed, fluctuating charges in the
oxide layer of the junctions and generating the charge noise could also open or close tunneling channels
due to Coulomb repulsion, which would induce a correlation between Ng and Ej noises.

The typical amplitude A of the spectral density ScBCN
Ng (|ω| < 2π × 100 kHz) = A/|ω| depends on

temperature, on junction size and on the screening of the island by the other electrodes. Its value is
commonly found in the range

[
10−6, 10−7

]
for the parameters of our experiment. The amount and the

energy splitting distribution of charged TLFs in Josephson devices is still unknown at frequencies of the
order of ω01, and their role in the relaxation of a Josephson qubit has not been clearly established. Note
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that a recent work on a CPB qubit [52] suggests that they might contribute significantly to relaxation.
Another cause of charge noise is the finite impedance Zg (see Fig. 4.1) of the gate line (GL), which can

be treated as a set of harmonic oscillators coupled to N̂ . As seen from the pure Josephson element of the
CPB (junction capacitance not included), the gate circuit is equivalent [44] to an effective impedance Zeq

of about 70Ω in series with a voltage source κgVg , with κg = Cg/CΣ. Here κg ≈ 2%, the weak-coupling
limit κg ¿ 1 is achieved and for all relevant frequencies, one has Re(Zeq) ' κ2

gRe(Zg). At thermal
equilibrium, the contribution of the gate line to Ng fluctuations is characterized by the spectral density

SGL
Ng (ω) ' κ2

g

~2ω

E2
C

Re[Zg(ω)]
Rk

[
1 + coth

(
~ω

2kBT

)]
, (4.2)

where Rk = h/e2 ' 26 kΩ. At low frequencies (ω ¿ kT/~ ≈ 400MHz at 20mK), the noise spectral
density simplifies to

ScGL
Ng (ω) ' 2κg

2 ~kBT

E2
C

Re[Zg(ω)]
Rk

and gives with the parameters previously mentionned:
ScGL

Ng (|ω| < 2π × 10 MHz) ' (20× 10−9)2/(rad/s), which is negligeable compared to the background
charge noise at all frequencies smaller than 1GHz . At large positive frequencies (ω À 400MHz), the
spectral density due to the gate impedance simplifies to:

SGL
Ng (ω) ' 2κ2

g

~2ω

E2
C

Re[Zg(ω)]
Rk

,

which leads to SGL
Ng (ω) ' (1 − 4 × 10−9)2/(rad/s) in the 6 − 17 GHz frequency range. Finally, the out-

of-equilibrium noise generated by the dc gate voltage source is fully filtered by the line and does not
contribute to decoherence. The conclusion of this analysis is that the background charge noise dominates
SGL

Ng (ω) at low frequency.

Phase noise: Magnetic flux noise and readout circuit

The last source of decoherence encountered is the noise on the superconducting phase δ. A first contribu-
tion is the noise in the macroscopic flux externally applied to the quantronium loop. This contribution
is however negligible because the external flux is shielded by a superconducting aluminum cylinder sur-
rounding the sample holder, and because the coupling to the flux coil is weak: κL = M EJ/ϕ2

0 ¿ 1,
where M is the mutual inductance between the qubit loop and the coil.

A second phase noise source arises from the magnetic vortices moving in the superconducting elec-
trodes of the device. Taking the width ` of the aluminum lines used in this work (` ≈ 200nm), the
depinning field of these vortices [74, 75] Bm w Φ0/`2 is of order 50 mT, a value two orders of magnitude
larger than the maximum field we apply, which suggests that vortices should be pinned. Nevertheless,
many experiments on superconducting quantum interference devices (SQUIDs) have shown that an ex-
tra flux noise whose origin is unknown, and which does not depend on the temperature below a few
100 mK[69, 76], is always present with a spectral density

Scmicro
δ/2π (|ω| < 2π × 1 kHz) ∼ (10× 10−6)2/ |ω| /rad.s.

Finally, the readout circuitry also induces phase fluctuations, due to the thermal noise of the admit-
tance YR (see Fig. 4.1) in parallel with the pure Josephson element of the readout junction, and due to
the output noise of the arbitrary waveform generator (AWG) used. More precisely, when a bias current

Ib < I0 is applied to the quantronium, the effective inductance LJ ' (ϕ0/I0)/
√

1− (Ib/I0)
2 of the
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readout junction converts the current noise produced by YR into phase fluctuations characterized by the
spectral density

SYR
δ/2π(ω) =

1
π2

Re[Z(ω)]
Rk

1
ω

[
1 + coth

(
~ω

2kBT

)]
. (4.3)

where Z(ω) is the total impedance seen by the qubit:

Z(ω) =
1

1/LJωj + YR(ω)
.

This spectral density is the result of the filtering of the white noise generated by the resistive components
of the biasing and measuring line by the LC resonator formed by the readout junction and its shunting
capacitor. The transfert function from the current Johnson noise in YR(ω) to the δ noise is

H(ω) =
δ(ω)
i(ω)

=
Z(ω)

2πφ0ωj
=

R(ω)

φ0ωj
[
1 + jQ( ω

ω0
− ω0

ω )
] ,

where Q is the quality factor of the plasma oscillations of the readout junction. Q is given by the
resistive part R(ω) of YR(ω), which incorporates the biasing resistor and the RC shunt.

At low frequency ω ¿ ωp, Z(ω) ≈ LJωj and

H(ω) ≈ LJ

(2πφ0)
=

2π

Ic
. (4.4)

The filtering of the low frequency noise source increases as the critical current increases. At high frequency
(ω À ωp), Z(ω) ≈ 1/Cωj and H(ω) ≈ −1/(2πφ0Cω2), the high frequency noise is filtered by the
capacitor. Only the current noise at the plasma frequency can enhance the fluctuations of the phase.
This is why the biasing and measuring lines are extremely well filtered in this frequency range (see
section 2.4). Using the parameters mentioned in the previous section, we find ScYR

δ/2π(|ω| < 2π×10 MHz) '
(2× 10−9)2/(rad/s) and SY R

δ/2π(ω) ' [(20− 80)× 10−9]2/(rad/s) in the 6− 17 GHz frequency range.
Apart from the thermal equilibrium noise generated by the resistive parts of the measuring lines, the

noise coming from the arbitrary waveform generator used for generating the readout current pulses is also
filtered by the readout junction. This noise is flat up to 200MHz and has a typical standard deviation
of 0.15% of the total dynamic range of the generator (5V). Considering the attenuation of the line and
the final 4kΩ biasing resistor, this voltage noise gives rise to a current noise in the readout junction of√

< i2 > ≈ 0.6nA which is converted in a phase noise ∆δ by the relation 4.4. The spectral density of this
phase noise is equal to ScAWG

δ/2π (|ω|) ' (15 × 10−9/ cos γ)2/(rad/s) and γ is the average phase across the
readout junction.

A last possible source of phase noise is due to the parasitic junction due to the double shadow
evaporation process (see ref [77]). As the number of junctions in the quantronium loop is odd, the
connection between the top and the bottom aluminum layers is provided by a fourth unintended junction
distributed all over the overlapping electrodes. As the distance required for the loop current to go from
the bottom layer to the top one is approximately given by the Josephson length: λJ ≈ 100µm for Al and
for typical electrodes dimensions (width ≈ 200nm and thickness ≈ 40nm), trapped vortices inside this
long parasitic junction might be coupled to the qubit, and contribute to dephasing and to relaxation.
The observation of a sub-gap structure in the I − V curves of the readout junction already proves that
the readout+parasitic junctions can dissipate energy at Josephson frequencies in the 10− 100GHz range
, and thus possibly the energy of the qubit itself. This dissipation phenomenon, whose origin is unclear,
requires further investigation, and fabrication methods avoiding parasitic junctions should be tested.

The conclusion of this analysis is that the phase noise is dominated at low frequency by local sources
close to the junction loop.
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4.2 Theoretical description of decoherence

We now consider the dynamics of a qubit from a general point of view in two situations: free evolution,
and evolution driven by a sinusoidal excitation.

0 0( )H �
����

Figure 4.3: During decoherence, the fluctuations of the effective field induces relaxation to the ground
state and pure dephasing, which is caracterized by fluctuations of the precession speed around the Z axis.

During the free evolution, after an initial preparation in a coherent superposition of the two qubit
states, the effective spin precesses under the influence of the static field ~H0, set by the control parameters
λ0, and of its classical and quantum fluctuations, set by the fluctuations δλ. One distinguishes two time
scales, the depolarization time T1 (dominated at low temperatures by the relaxation to the ground state)
for the decay of the diagonal Z component of the spin density matrix, and the decay time T2 of the
off-diagonal part, which is the qubit coherence time (see Fig. 4.3). As described in the experimental
Sect. 4.3, the time T2 is inferred from the decay of Ramsey oscillations in a two-π/2-pulse experiment.
These Ramsey oscillations are the equivalent of the free induction decay in NMR [62]. Note that the
decay law can be non-exponential, the time T2 being then defined by a decay factor exp(−1). In a
modified version of the Ramsey experiment, an extra π pulse is applied in the middle of the sequence in
order to perform a Hahn echo experiment[78, 62]. The decay time TE of this echo is longer than T2, and
the enhancement factor provides important information on the spectral density of the noise mechanisms.

In the driven case, the decay of the spin density matrix is investigated in the rotating frame. Experi-
mentally, this decay is obtained from spin-locking signals [62] and from Rabi oscillations. It is shown that
time scales T̃1 and T̃2, similar to T1 and T2, describe the dynamics in the rotating frame[62, 79].

4.2.1 Expansion of the Hamiltonian

We first start by expanding the Hamiltonian of the qubit

Ĥqb = −1
2

~H0(λ0).~̂σ
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to second order in the perturbation δλ:

Ĥqb = −1
2

[
~H0(λ0) +

∂ ~H0

∂λ
δλ +

∂2 ~H0

∂λ2

δλ2

2
+ ...

]
~̂σ . (4.5)

Introducing the notations ~Dλ ≡ (1/~) ∂ ~H0/∂λ and ~Dλ2 ≡ (1/~) ∂2 ~H0/∂λ2, one finds in the eigenbasis of
~H0(λ0).

−→̂
σ :

Ĥqb = −1
2
~ (ω01σ̂z + δωzσ̂z + δω⊥σ̂⊥) (4.6)

where ~ω01 ≡ | ~H0(λ0)|, δωz ≡ Dλ,zδλ + Dλ2,z δλ2/2 + ..., and δω⊥ ≡ Dλ,⊥δλ + .... Here σ⊥ denotes
the transverse spin components [i.e., the last term in Eq. (4.6) may include both σx and σy]. We write
explicitly only the terms in the expansion that dominate decoherence (as will become clear below).

These longitudinal coefficients ~Dλ,z and ~Dλ2,z are related to the derivatives of ω01(λ):

∂ω01

∂λ
= Dλ,z , (4.7)

and

Dλ2,z =
∂2ω01

∂λ2
− D2

λ,⊥
ω01

(4.8)

As discussed below, the quantities ∂ω01/∂λ and ∂2ω01/∂λ2 are sufficient to treat pure dephasing whereas
the calculation of the depolarization rates involves Dλ,⊥.

Application to the quantronium sample used in this work

As already mentioned in chapter 2, the parameters of the qubit for sample A are EJ = 0.87kB K,
EC = 0.66kB K and were measured by fitting the spectroscopic data ω01(Ng, δ) (see Fig. 4.12 below) with
a numerical diagonalization of the Hamiltonian ĤCPB . This fit gives an upper limit for the asymmetry
of the qubit junctions, d < 13%. By measuring the enhancement of MQT coming from Landau Zener
transitions [57, 56], this value was estimated as d ∼ 3%. From EJ , EC , and d, the numerical values
of the Dλ’s introduced above were calculated as a function of the working point (δ,Ng). Since we have
characterized decoherence only along the two segments δ/(2π) ∈ [−0.3, +0.3], Ng = 1/2 and δ = 0,
Ng−1/2 ∈ [−0.1, +0.1] in the (δ,Ng) plane, we only give below simple expressions that approximate ω01,
Dλ and ∂2ω01/∂λ2 with a ±3 % accuracy in the range of parameters explored experimentally. We found
for the transition frequency

ω01(δ,Ng = 1/2) ' [
103− 425 (δ/2π)2

] × 109 rad/s, (4.9)

ω01(δ = 0, Ng) '
[
103 + 145 (Ng − 1/2)2

] × 109 rad/s, (4.10)

which lead for the longitudinal coefficients to

Dδ/2π,z(δ = 0 or Ng = 1/2) =
π

e
(i1 − i0) ' −850

δ

2π
× 109 rad/s, (4.11)

∂2ω01

∂(δ/2π)2
' −850 × 109 rad/s, (4.12)

DNg,z(δ = 0 or Ng = 1/2) = −2EC

~
(〈1| N̂ |1〉 − 〈0| N̂ |0〉) ' +290

(
Ng − 1

2

)
× 109 rad/s, (4.13)

∂2ω01

∂N2
g

' +290 × 109 rad/s, (4.14)
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where i0 and i1 are the average currents
〈
î
〉

in the two states. Note that DNg,z vanishes at Ng = 1/2 for
all δ, so that a gate microwave pulse corresponds to a purely transverse perturbation of the Hamiltonian.
Consequently, the perturbed Hamiltonian of Eq. (4.53) does apply exactly to the quantronium at Ng =
1/2. At other values of Ng, Eq. (4.53) would nevertheless be a good approximation. For critical current
noise, the coupling coefficient

DδEJ/EJ ,z(δ = 0) = cot(
δ

2
)
i1 − i0

e
' +85 × 109 rad/s (4.15)

DδEJ/EJ ,z(Ng = 1/2) '
[
+85− 240

(
δ

2π

)2
]
× 109 rad/s (4.16)

is maximal at the optimal working point P0. One can notice that the coupling to the critical current noise
is much smaller than for flux qubit [67], where the tunnel coupling between flux states is exponentially
dependant on Ic leading to value of DδEJ/EJ ,z in the range 5.1012 rad/s.

Expressed in the same way, the transverse coefficients Dλ,⊥, which are involved in the manipulation
and in the relaxation of the qubit, are given by

Dδ/2π,⊥(δ = 0 or Ng = 1/2) =
2π

e

∣∣∣〈0| î |1〉
∣∣∣ ' 380 d

[
1 + 6.0

(
δ

2π

)2
]
× 109 rad/s, (4.17)

DNg,⊥(δ = 0 or Ng = 1/2) =
4EC

~

∣∣∣〈0| N̂ |1〉
∣∣∣ = 193 × 109 rad/s. (4.18)

The relaxation through the phase channel being proportional to the asymmetry of the junctions, in the
ideal case d = 0, the current operator î is diagonal in the qubit eigenbasis and the 1 −→ 0 transition is
forbidden. The coupling coefficient to the critical current noise is

DδEJ/EJ ,⊥(δ = 0 or Ng = 1/2) =
2EJ cos(δ/2)

~

∣∣∣〈0| cos θ̂ |1〉
∣∣∣ = 108

∣∣∣∣Ng − 1
2

∣∣∣∣ × 109 rad/s. (4.19)

Since it vanishes at Ng = 1/2, there is no relaxation through the channel of critical current fluctuations
at the optimal working point (at first order). Finally, note that since the lines δ = 0 and Ng = 1/2 are
symmetry lines in the parameter space, the cross derivative ∂2ω01/∂δ∂Ng is equal to zero along these
two lines.

Bloch-Redfield approach

In the regime of weak coupling between the qubit and its environment, the Bloch-Redfield [63, 79,
80] theory gives a simple description of the decoherence process. The dynamics of two-level systems
(spins) involves two rates (times): the longitudinal relaxation (depolarization) rate Γ1 = T−1

1 and the
transverse relaxation (dephasing) rate Γ2 = T−1

2 . The dephasing process is a combination of effects of the
depolarization (Γ1) and of the so-called pure dephasing. The pure dephasing is usually associated with the
inhomogeneous broadening in ensembles of spins, but occurs also for a single spin due to the longitudinal
low-frequency noise. Indeed, due to our experimental protocol, we will suffer from an equivalent temporal
inhomogeneous broadening (see Sect. 4.3). The pure dephasing is characterized by the rate Γϕ. The two
processes of relaxation and pure dephasing combine to a rate

Γ2 =
1
2
Γ1 + Γϕ . (4.20)
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The Bloch-Redfield approach applies only if the noise is short-correlated and weak[62] (i.e. τc, h/kBT ¿
T1, T2, where τc is the correlation time of the environment), regardless of the noise statistics. The decay
is exponential since weak dissipative elements from many uncorrelated time intervals add up. In more
general situations the decay of the off-diagonal part of the density matrix is non-exponential. In partic-
ular, when the pure dephasing is dominated by a noise singular near ω ≈ 0, the decay law exp(−Γϕt)
is replaced by other decay functions which we denote as fz,...(t) (additional indices ... describe the par-
ticular experiment). It can be shown [81] that the transversal decays due to the depolarization and to
the pure dephasing processes factorize, provided the high-frequency noise responsible for the depolariza-
tion is regular. That is, instead of the exponential decay e−Γ2t, one obtains the transverse decay law
fz,...(t) exp(−Γ1t/2). In this general case, one can write the density matrix of the system at any time t
during the free evolution, and for an initial pure state α|0〉+ β|1〉 at t = 0:

(
1 + (|α|2 − 1)e−

t
T1 α∗βe−

t
2T1 fz,R(t)e−i∆νt

αβ∗e−
t

2T1 fz,R(t)ei∆νt |β|2e− t
T1

)

4.2.2 Depolarization (T1)

For the relaxation process, we assume a short correlated noise of the environment and we thus keep the
framework of the Bloch-Redfield approximation. The depolarization rate Γ1 = T−1

1 is given by the sum

Γ1 = Γrel + Γex, (4.21)

of the relaxation rate Γrel and the excitation rate Γex. The Fermi golden rule gives

Γrel =
π

2
Sδω⊥(ω01) =

π

2
D2

λ,⊥Sλ(ω01), (4.22)

Γex =
π

2
Sδω⊥(−ω01) =

π

2
D2

λ,⊥Sλ(−ω01). (4.23)

Thus
Γ1 = πSsδω⊥(ω01) = πD2

λ,⊥Ssλ(ω01). (4.24)

This result holds irrespective of the statistics of the fluctuations. At lowest order of the perturbation
theory in Dλ,⊥, the expression of the rates only require the second moments of the noise expressed
through the correlator Sλ. This approximation is sufficient when the noise is weak enough with a smooth
spectrum at the transition frequency ω01 on the scale of the relaxation rate Γ1. At low temperatures
kBT ¿ ~ω01, making the assumption that the high frequency environment is at thermal equilibrium, the
available modes at the transition frequency of the qubit are empty, the excitation rate ΓE is exponentially
suppressed, and Γ1 ≈ ΓR.

4.2.3 Pure dephasing

During pure dephasing, the transition frequency of the qubit is fluctuating due to the coupling to the
environment. The phase difference φ01 =

∫
0

t
ω01dt′ between state |0〉 and |1〉 thus diffuses around an

average value 〈φ〉(t) = 〈ω01〉t. Disregarding relaxation, an initial pure state α|0〉 + β|1〉 turns into a
statistical mixture of states α|0〉+βei(∆φ(t)+ω01t|1〉, with a probability distribution of ∆φ(t). The density
matrix of such a statistical mixture is given by:

( |α|2 αβ∗ei∆νtfz,R(t)
α∗βe−i∆νtfz,R(t)∗ |β|2

)
,

where fz,R(t) = 〈ei∆φ(t)〉, this average being considered over all possible realization of the random
process δλ(t′) from t′ = 0 to t′ = t. Assuming the ergodic character of the process, this ensemble average
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is equivalent to the temporal sampling average that we perform during the data acquisition process. The
next paragraph is dedicated to the calculation of the Ramsey and Echo functions in different practical
cases.

Linear coupling

First, we analyze a noise source coupled linearly (and longitudinally) to the qubit, i.e., ∂ω01/∂λ = Dλ,z 6=
0. As a starting point, we make the assumption that the noisy parameter λ follows Gaussian statistics,
which is a reasonable hypothesis. Indeed, due to the central limit theorem, Gaussian statistic is a general
property of any noise generated by many independant fluctuators, regardless of their individual noise
statistics, and provided they are weakly coupled to the considered parameter λ.

The weak coupling hypothesis will be questionned in Sect. 4.2.4, where the possibility of non-Gaussian
effects is considered.

Considering δλ as Gaussian, the random phase accumulated at time t,

∆φ = Dλ,z

t∫

0

dt′δλ(t′),

is then also Gaussian distributed, and one can calculate the decay law of the free induction signal as
fz,R(t) = 〈exp(i∆φ)〉 = exp(−(1/2)〈∆φ2〉). The average is performed here over all possible realizations
of the stochastic process ∆φ(t).

2
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Figure 4.4: Weighting functions of the noise spectral density entering equations ??. The Ramsey decay is
thus sensitive to the low frequency part of the spectrum (ω < 2π/t), whereas the Echo one is sensitive to
frequencies around ω ≈ 2π/t. Note that the area under these two weighting functions is the same which
explains that, in the case of a white noise, the echo technique is unefficient.

This gives

fz,R(t) = exp
[
− t2

2
D2

λ,z

∫ +∞

−∞
dωSλ(ω)sinc2 ωt

2

]
, (4.25)
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where sincx ≡ sinx/x. In an echo experiment, the acquired phase is the difference between the two
phases accumulated during the two free evolution periods,

∆φE(t1, t2) = −∆φ1 + ∆φ2 = −Dλ,z

t1∫

0

dt′δλ(t′) + Dλ,z

t1+t2∫

t1

dt′δλ(t′) , (4.26)

so that when t1 = t2 = t/2 (echo revival)

fz,E(t) = exp
[
− t2

2
D2

λ,z

∫ +∞

−∞
dωSλ(ω) sin2 ωt

4
sinc2 ωt

4

]
. (4.27)

For the echo, the spectral density is weighted by the function gz,E(ω, t) = sinc2(ωt/4) sin2 (ωt/4). Note
that, since the noise is supposed Gaussian, only the second moment of the fluctuations, related to the
spectral density Sλ(ω), enters the dephasing function. In addition, the spectral density of the noise is
weighted by the functions gz,R and gz,E (see fig. 4.4), which involves only the very low frequency part of
the spectrum for the Ramsey and the echo (0 < ω < 1/t with t . T2s).

White spectrum
In the case of a white spectrum, the decay functions simplify to :

fz,R(t) = fz,E(t) = exp
[−πD2

λ,ztSλ(ω = 0)
]

(4.28)

Both Ramsey and echo decays are thus exponential and identical. The echo technique does not
improve the coherence time.

These results can be generalized for the case of a regular spectrum at ω = 0 on a frequency scale
|ω| < 1/t . 1/T2. In this case one has

∫ +∞

−∞
dωSλ(ω)sinc2 ωt

2
≈ 2π

t
Sλ(0).

One recovers the result of the Bloch-Redfield theory for the dephasing time:

Γϕ = πSδωz (ω = 0) = πD2
λ,z Sλ(ω = 0) = πD2

λ,z Scλ(ω = 0). (4.29)

which is also valid for the echo time. This result is of the golden rule type [similar to Eq. (4.24)] and is
meaningful if the noise power Scλ is regular near ω ≈ 0 up to frequencies of order Γϕ.

The Bloch-Redfield approach fails when the noise has very long correlation time (compared to T1 and
T2), and thus a singular spectral density at ω = 0, like 1/f noise.

1/f spectrum:
Here and below we assume a 1/f Gaussian noise with a 1/f law extending in a wide range of frequencies

limited by an infrared cutoff ωir and an ultraviolet cutoff ωc:

Sλ(ω) = A/|ω|, ωir < |ω| < ωc . (4.30)

The infrared cutoff ωir is usually determined by the measurement protocol, as discussed further below.
The decay rates typically depend only logarithmically on ωir, and the details of the behavior of the noise
power below ωir are irrelevant to logarithmic accuracy. For most of our analysis, the same remark applies
to the ultraviolet cutoff ωc. However, for some specific questions considered below, frequency integrals
may be dominated by ω & ωc, and thus the detailed behavior near and above ωc (cutoff “shape”) is
relevant. We will refer to an abrupt suppression above ωc (S(ω) ∝ θ(ωc − |ω|), with θ(ω) the Heaviside
function) as a “sharp cutoff”, and to a crossover at ωc to a faster 1/ω2 decay (motivated by modelling of
the noise via a set of bistable fluctuators, see below), as a “soft cutoff”.
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Figure 4.5: 1/f possible spectrums. Left: wide band 1/f noise. Middle: static 1/f noise having a hard
cutoff at ωc. Right: quasi-static 1/f with a soft cutoff at ωc, the noise crossovers to a 1/f2 behavior.
The frequency ωir is a low frequency cutoff introduced for taking into account the finite time of data
acquisition.

For wideband Gaussian 1/f noise (see fig. 4.5), at times t such that ωir ¿ 1/t < ωc, the free induction
(Ramsey) decay is dominated by the frequencies ω < 1/t, i.e., by the quasistatic contribution[44], and
Eq. (4.25) reduces to:

fz,R(t) = exp
[
−t2 D2

λ,z A

(
ln

1
ωirt

+ O(1)
)]

. (4.31)

where A ln(1/ωirt) = σ2
λ is the variance of the 1/f noise and is logarithmically time dependant. The

expected decay for a wide band 1/f noise is thus almost Gaussian.
The infrared cutoff ωir ensures the convergence of the integral 4.25.
For the echo decay, using the fact that

∫ +∞
−∞ sin (x)4/x3dx = 2 ln 2 we obtain

fz,E(t) = exp
[−t2 D2

λ,z A · ln 2
]
. (4.32)

The echo method thus only increases the decay time by a logarithmic factor:

TE/TR ≈
√
| ln ωirt|

ln 2
,

of order 4.5 when calculated with ωir = 1Hz and t = 1µs. This limited echo efficiency is due to the high
frequency tail of the 1/f noise [82, 83].

Static case:
As the experiment is performed by repeating each sequence of excitation pulses and readout about

104 times in order to decrease the statistical noise, the measured quantities are subject to low frequency
fluctuations form one sequence to the other. By ”static noise”, we thus consider noise having frequencies
slow compared to the typical duration of a single sequence, such that the transition frequency is constant
over a sequence (≈ 1µs), but its fluctuations are fast compared to the total acquisition time (∼ 1s).

In many cases, the contribution of low frequencies ω ¿ 1/t dominates the pure dephasing. This
happens when the noise spectrum is strongly peaked at low frequencies [cf. Eq. (4.31)], in particular when
it has a sufficiently low ultraviolet cutoff frequency ωc. This simple regime pertains to the quantronium.
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We distinguish two approximations used to perform the calculation of the fz functions: In the static
approximation, the noisy control parameter λ is considered as constant during each pulse sequence and its
value is given by an effective distribution probability P (δλ). This approach gives a direct evaluation of the
Ramsey decay function fz,R(t). In the relevant cases of linear or quadratic coupling to the fluctuations,
the decay function fz,R(t) is the Fourier- or Fresnel-type transform of the distribution P (δλ), respectively.
Since the static approximation would yield no decay for the echoes, the calculation of the echo decay
function fz,E(t) requires a “quasistatic approximation” that takes into account variations within each
pulse sequence. A noise with an ultraviolet cutoff frequency ωc can be considered as quasistatic on time
scales shorter than ω−1

c . The relevant results obtained in Refs. [84, 85, 86] are given below.
In the static approximation, the contribution of low frequencies ω ¿ 1/t to the integral in Eq. (4.25)

is evaluated using the approximation sinc(ωt/2) ≈ 1:

f stat
z,R (t) = exp

[
− t2

2
D2

λ,zσ
2
λ

]
, (4.33)

where σ2
λ =

∫ +∞
−∞ dω Sλ(ω) is the variance of δλ. The decay is thus Gaussian for any Gaussian static

noise.
This formula can be generalized to the case of an arbitrary static noise, regardless of its statictics, by

using the Fourier tranform of the probability distribution of δλ:

f stat
z,R (t) =

∫
d(δλ)P (δλ) eiDλ,z δλ t. (4.34)

For 1/f Gaussian noise, characterized by Sλ = (A/|ω|) in the bandwidth [ωir, ωc], we obtain σ2
λ =

2A ln(ωc/ωir). The result is only logarithmically sensitive to the value of the ultraviolet cutoff ωc and
to the specific functional form of the suppression of noise at high ω & ωc. The static approximation is
sufficient for the evaluation of the dephasing rate if, e.g., 1/Tφ > ωc , i.e., D2

λ,z A ln(ωc/ωir) À ω2
c .

Let us now analyze the echo decay. For 1/f noise with a low ωc, the integral in Eq. (4.27) over the
interval ω . ωc is dominated by the upper limit. This indicates that the specific behavior at ω & ωc is
crucial. For instance, in the case of a sharp cutoff, by using sin (ωt/4)2sinc2ωt/4 ≈ (ωt/4)2 we obtain

fz,E(t) = exp
(
− 1

32
D2

λ,z Aω2
c t4

)
. (4.35)

However, if the 1/f behavior for ω < ωc crosses over to a faster decay ∝ 1/ω2 at ω > ωc (as one would
expect when the noise is produced by a collection of bistable fluctuators with Lorentzian spectra, cf. Refs.
[87, 88, 89]) then the integral in Eq. (4.27) is dominated by frequencies ωc < ω < 1/t, and we find

fz,E(t) = exp
(
− 1

12
D2

λ,zAωct
3

)
.

In either case, one finds that the decay is slower than for a wide band 1/f noise (i.e., with a high
cutoff ωc > 1/Tφ ≈ Dλ,zA

1/2): the exponent involved in the decay function is indeed reduced by a factor
∼ (ωct)2 for the sharp cutoff, or ωct for the soft one.

To summarize, in the case of a linear coupling, the decay of the Ramsey and echo signals are expected
to be exponential in the case of a regular noise spectrum around ω = 0 on a frequency scale 1/T2. For
a 1/f noise having Gaussian statistics the Ramsey decay is expected to be gaussian, whereas the echo
signal follows a exp (−αntn) law, the exponent n depending on the precise high frequency cuttoff of the
noise spectrum.
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Quadratic coupling

At the optimal working point, the first-order longitudinal coupling Dλ,z vanishes and eq. 4.20 predicts
that the decay of the coherent oscillations is determined only by the relaxation processes: Γ2 = Γ1/2.
However, it appears that the second-order contribution of the longitudinal noise can be comparable, or
even dominate over Γ1/2. Due to the quadratic coupling, the qubit is subject to an a priori non-Gaussian
λ2 noise, which modifies the type of the decay of the Ramsey function that is no longer exponential as
in the Bloch-Redfield approximation.

To evaluate this second order contribution, one has to calculate

fz(t) =

〈
exp


i

1
2

∂2ω01

∂λ2

t∫

0

χ(τ) δλ2(τ)dτ




〉
. (4.36)

Equation (4.36) can be used for the analysis of the free induction decay (Ramsey signal) if one sets
χ(τ) = 1, and for the investigation of the echo-signal decay using χ(τ < t/2) = −1 and χ(τ > t/2) = 1.

Gaussian hypothesis for the λ2 noise
A first way to estimate the Ramsey decay is to assume λ2 as a Gaussian variable, and apply the

framework for linear coupling to the new noisy variable λ′ = λ2.
The spectral density of λ2 can be evaluated by the approximated formula:

Sλ2(ω) =
1
π

∫ +∞

−∞
Sλ(ω′)Sλ(ω − ω′)dω′, (4.37)

which is an exact formula when λ is itself a Gaussian variable.
For a 1/f noise, Sλ(ω) = A/ω, the spectral density of λ2 is [84]

Sλ2(ω) =
4
π

A
ln | ω

ωir
|

|ω| ,

and the decay is gaussian and given by:

fz,R(t) = exp

[
−

(
1
2

∂2ω01

∂λ2

A

π
t ln ωirt

)2
]

(4.38)

One can also calculate the pseudo-dephasing rate in the case of a regular noise at low frequency:

Γφ ≈ ∂2ω01

∂λ2

2 ∫ +∞

−∞
dωSλ(ω)2.

These formulas will be useful for estimating the dephasing rate at the optimal working point due to the
white noise generated by the gate and measuring lines.

Gaussian hypothesis for λ
A more elaborate approach which assumes λ to be Gaussian has been implemented for revaluating

the free induction decay in the case of a 1/f noise with a high cutoff ωc [84] (the highest energy scale
in the problem). The decay law can be approximated by the product of the low-frequency (ω < 1/t,
quasistatic) and of the high-frequency (ω > 1/t) contributions:

fz,R(t) = f lf
z,R(t)fhf

z,R(t).

This approximation permits one to determine the decay law qualitatively; moreover, in the short- and
long-time limits one of the terms dominates, and one obtains accurate estimates. The contribution of
low frequencies is given by (cf. Refs. [84, 85, 86]):

f lf
z,R(t) =

1√
1− i ( ∂2ω01/∂λ2) σλt

. (4.39)
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At short times:

|f lf
z,R(t)| ≈ 1−

(
∂2ω01

∂λ2

A

π
t ln ωirt

)2

(4.40)

matches with the result obtained when assuming the noisy variable λ2 as being Gaussian (see eq. 4.38).
The dephasing time being defined by |f lf

z,R(t)|/|f lf
z,R(0)| = 1/e is:

1
Tφ

=
1

7.3
∂2ω01

∂λ2
σ2

λ,

which corresponds to the value obtained using the Gaussian approximation for λ2, the 7.3 factor being
replaced by a 2π factor. The crude approximation of considering the noisy variable λ2 as Gaussian thus
give the correct value of the dephasing time, and the correct decay shape at short times, but a wrong
decay law at long times: gaussian instead of algebric, the latter being experimentally distinguishable from
the first (see Sec. 4.3.4).

For 1/f noise with variance σ2
λ = 2A ln(1/ωirt), the low frequency contribution is

f lf
z,R(t) =

1√
1− 2i ( ∂2ω01/∂λ2) tA ln (1/ωirt)

. (4.41)

At longer times: t À tc =
[
(∂2ω01/∂λ2) A/2

]−1, the high-frequency contribution dominates the decay
and one finds

ln fhf
z,R(t) ≈ −t

∞∫

∼1/t

dω

2π
ln

(
1− 2πi

∂2ω01

∂λ2
Sλ(ω)

)
(4.42)

i.e.
fhf

z,R(t) ≈ exp
(−(π/2)(∂2ω01/∂λ2)At

)
.

The decay at long time should thus be exponential in this case.
The crossover between the algebraic decay and the exponential one happens at a time tc, and is

observed only if tc < T2.
Note that the experimentally quantity to monitor is a spin component, say 〈σx〉, in the rotating frame

which evolves according to 〈σx〉 = Re[fz,R(t) ei∆ωt], where ∆ω is the detuning frequency. In a typical
situation of interest fz,R(t) changes more slowly than the period of oscillations, and thus the envelope of
the decaying oscillations is given by |fz,R(t)|, the phase of fz,R(t) shifting the phase of the oscillations. In
the opposite limit ∆ω = 0, the measured decay curve reproduces the real part of fz,R(t) (the imaginary
part corresponds to σy and could also be measured).

Static case: In the quasistatic case, that is, when ωc ¿ Γφ, i.e. when ωc is lower than 1/t for all
relevant times, the Ramsey decay is simply given by the static contribution (4.39). At all relevant times
the decay is algebraic and the crossover to the exponential law is not observed. More generally, in the
static approximation with a distribution P (δλ), the dephasing law is given by the Fresnel-type integral
transform

f st
z,R(t) =

∫
d (δλ)P (δλ) ei ( ∂2ω01/2∂λ2) δλ2 t , (4.43)

which reduces to Eq. (4.39) for a Gaussian P (δλ) = 1/
√

2πσλ exp
(−δλ2/2σ2

λ

)
. In general, any distribu-

tion P (δλ), finite at δλ = 0, which can be approximated by a Gaussian, yields a t−1/2 decay for f st
z,R at

long times.
For a Gaussian quasistatic noise in λ, the echo decay is given by [90]

fz,E(t) =
1√

1 + ( ∂2ω01/∂λ2)2 σ2
λ

∫ +∞
−∞ dω (ωt/4)2 Sλ(ω) t2

, (4.44)
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where we assumed that the frequency integral converges at |ω| ¿ 1/t. This is the case, for instance, if
Sλ(ω) has a sharp cutoff at ωc ¿ 1/t. For 1/f noise, Sλ = (A/|ω|)θ(ωc − |ω|) with ωc ¿ 1/t, Eq. (4.44)
yields

fz,E(t) =
1√

1 + 1/16 ( ∂2ω01/∂λ2)2 σ2
λ Aω2

c t4
. (4.45)

Note that this result is sensitive to the precise form of the cutoff. At an optimal working point, the echo
decay is thus predicted to be algebraic.

4.2.4 1/f noise: a few strongly coupled fluctuators versus many weakly cou-
pled ones

The background charge fluctuations are induced by random redistributions of charge in the vicinity of
the sample, e.g., trapping and release of electrons or by random rearrangements of charged impurities.
Many groups have observed this noise with a smooth 1/f spectrum in the frequency range from 1 Hz to
1 MHz([89, 87]). Occasionally, single fluctuators were observed, with a significant fraction of the total
charge noise [41, 70]. When individual fluctuators play an important role, the noise statistics is non-
Gaussian and mesoscopic fluctuations from sample to sample become important. We summarize here
some of the results( [88, 91]) relevant to this thesis.

The noise δλ(t) contains contributions from all TLFs:

δλ(t) =
∑

n

vnσn,z(t). (4.46)

Every fluctuator switches randomly between two positions, denoted by σn,z = ±1 with rate γn (for
simplicity, we assume equal rates in both directions for relevant TLFs) and is coupled to the qubit with a
strength vn. Assuming independant fluctuators to simplify the problem, these random flips create charge
telegraphic noise which contributes to the total noise power Sλ =

∑
n Sn:

Sn =
1
π

γnv2
n

ω2 + γ2
n

. (4.47)

For a single fluctuator (longitudinally and linearly coupled to the qubit) the free induction (Ramsey) and
the echo decays are given by

fz,R,n(t) = e−γnt

(
cosµnt +

γn

µn
sin µnt

)
, (4.48)

and

fz,E,n(t) = e−γnt

(
1 +

γn

µn
sin µnt +

γ2
n

µ2
n

(1− cos µnt)
)

, (4.49)

where µn ≡
√

(Dλ,zvn)2 − γ2
n. The main effect of a single slow fluctuator γ ¿ 1/t for every relevant t,

is thus to induce a static energy shift of the qubit ±~Dλ,zvn leading to a beating in the Ramsey signal
having the envelope: cos Dλ,zvnt .

In the case of several independant fluctuators, the decay produced by all the fluctuators is given by
the product of the individual contributions, i.e., fz,R(t) = Πn fz,R,n(t) and fz,E(t) = Πn fz,E,n(t). In the
intermediate case of a noise produced or dominated by a few fluctuators, the conditions of the central
limit theorem are not satisfied and the distribution of δλ(t) may be strongly non-Gaussian. Then the
simple relation between decoherence and noise power given by Sλ(ω) does not hold and the knowledge
of higher orders of the statistics of the noise is needed. In Ref. [91], a continuous distribution of vn’s
and γn’s was considered, with a long tail of the distribution of the coupling strengths vn such that rare
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configurations with very large vn dominate the ensemble properties. The distribution P (v, γ) considered
in Ref. [91] is defined in the domain [vmin,∞]× [γmin, γmax] by:

P (v, γ) =
ξ

γv2
. (4.50)

Assuming the rates γ are exponentially dependant on some barrier height ∆U which is uniformely
distributed, then the density of probability of γ follows a 1/γ law. The broad distribution of coupling
constants in 1/v2 is similar to the models of spectral diffusion in NMR: two different types of spins A
and B interact and the random flip-flop of spin B lead to a random walk of the resonance line of spin
A [92, 93].

Let us introduce the parameter vtyp
max ≡ Nvmin, which gives the typical value of the strongest (closest)

fluctuator, with N being the number of fluctuators. Normalization of P to N fluctuators requires that
ξ = vtyp

max/ ln(γmax/γmin). For this distribution any quantity whose average value (that is integrals
over v’s and γ’s) is dominated by TLFs with[91] v & vtyp

max is not self-averaging, i.e., depends on the
particular realization of the environment and has thus considerable sample-to-sample fluctuations. The
free induction decay averaged over many sequences repeated on the same sample is described by [91]

ln |fz,R(t)| ∝ −Dλ,z ξ t ln(γmax/γmin) = −Dλ,z vtyp
maxt. (4.51)

It is dominated by the fluctuators with strength of order v ∼ vtyp
max and is thus not self-averaging. Conse-

quently, the decay is exponential and the decaying rate can have important sample to sample fluctuations.
Similarly, the echo signal on a unique sample but averaged over many repeated experimental sequences

is given by [91]

ln |fz,E(t)| ∝ −Dλ,z ξ γmaxt2 for t < γ−1
max

ln |fz,E(t)| ∝ −Dλ,z ξ t [ln(γmaxt) + O(1)] for t > γ−1
max . (4.52)

The situation depends on whether Dλ,z ξ > γmax or Dλ,z ξ < γmax. In the former the dephasing is static
(i.e., it happens on a time scale shorter than the flip time of the fastest fluctuators, 1/γmax) and the
first line of Eq. (4.52) applies. This gaussian decay is self-averaging because it is dominated by many
fluctuators with strength v ≈ √

ξ γmax/Dλ,z < ξ < vtyp
max. In the opposite regime Dλ,z ξ < γmax the

dephasing is due to multiple flips of a few fluctuators and the second line of Eq. (4.52) applies. In this
case, the decay is almost exponential and dominated by a small number of fluctuators with strength
v ≈ ξ, which is smaller than vtyp

max only by a logarithmic factor. The decay time thus depends on the
particular configuration of the most coupled fluctuators, which can lead to important sample-to-sample
fluctuations.

To summarize, in the case of a linear coupling to the noise, if a few strongly coupled fluctuators
dominate the dephasing process, we expect a strongly non-Gaussian statistics for the noise generated
by such a set of fluctuators. The decays of the free induction and of the echo signals are expected to
be exponential and the characteristic decay times should show important sample to sample fluctuations.
The decoherence is not self-averaging in the sense that the experimental averaging coming from the data
acquisition protocol (105 measured events for calculating one switching probability) is not equivalent to
the ensemble averaging over all the possible realizations of the qubit environment.

4.2.5 Decoherence during driven evolution

In the presence of a harmonic drive 2ωR0 cos(ωt)σ̂x, the Hamiltonian is

Ĥ = −1
2
~ [ω01σ̂z + δωzσ̂z + δω⊥σ̂⊥ + 2ωR0 cos(ωt)σ̂x] . (4.53)
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Figure 4.6: Decoherence during driven evolution is conveniently represented in the rotating frame by
using the new eigenbasis

{∣∣∣0̃
〉

,
∣∣∣1̃

〉}
of the qubit coupled to the field. Effective rates of relaxation and

dephasing Γ̃1 and Γ̃φ can be defined with respect to this eigenbasis.
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The qubit dynamics is conveniently described in the frame rotating at the driving frequency ω, and a
new eigenbasis

{∣∣∣0̃
〉

,
∣∣∣1̃

〉}
is defined by the total static fictitious field composed of a vertical component

given by the detuning ∆ω = ω01 − ω and an horizontal (x or y) component ωR0. That is, the static part
of the Hamiltonian in the rotating frame reads (see Sec. 3)

Hst = −1
2
~ [∆ωσ̂z + ωR0σ̂x] . (4.54)

The length of the total field is ωR =
√

ω2
R0 + ∆ω2 and it makes an angle η with the z-axis: ∆ω = ωR cos η,

ωR0 = ωR sin η. The evolution of the spin is a rotation around the field at the Rabi precession frequency
ωR. As in the case of free evolution, decoherence during driven evolution involves the phenomena of
relaxation and dephasing: one defines a relaxation time T̃1 and a coherence time T̃2 analogous to T1 and
T2, which correpond to the decay of the longitudinal and of the transversal part of the density matrix
[62] in the new eigenbasis, respectively. First, as a reference point, we present the golden-rule-type results
which are valid if all the noises are short correlated and smooth at frequencies ω = 0, ωR, and ω01 on a
frequency scale Γ̃1, Γ̃2 (self-consistent condition). Analyzing which parts of the fluctuating fields δωz and
δω⊥ are longitudinal and transverse with respect to the total field ωR in the rotating frame, and taking
into account the frequency shifts due to the transformation to the rotating frame one obtain [79]

Γ̃1 = sin2 η Γν +
1 + cos2 η

2
Γ1 , (4.55)

where Γν ≡ πSδωz (ωR) involves the spectral density at the Rabi frequency νR. By studying the decoher-
ence during driven evolution of the qubit, we have thus a way to access the spectral density of the noise of
the environment for frequencies extending from ≈ 1MHz to ≈ 200MHz in our experiment. We have disre-
garded the difference in the noise power Sδω⊥ at frequencies ω01 and ω01±ωR, which allows us to use the
depolarization rate Γ1 from Eq. (4.24). We do, however, distinguish between Γν and Γϕ = πSδωz (ω = 0)
in order to later analyze a noise spectrum singular at ω ≈ 0.

For the dephasing rate we again have the relation

Γ̃2 =
1
2
Γ̃1 + Γ̃ϕ, (4.56)

where
Γ̃ϕ = Γϕ cos2 η +

1
2
Γ1 sin2 η. (4.57)

As a result, we obtain

Γ̃2 =
3− cos2 η

4
Γ1 + Γφ cos2 η +

1
2

Γν sin2 η . (4.58)

The derivation of these expressions is simplified if one notes that due to the fast rotation at ωµw ≈ ω10,
the high-frequency transverse noise Sδω⊥(ω ≈ ω01) is effectively mixed to low frequencies . ωR. In the
rotating frame it effectively reduces to “independent” white noises in both the x and y directions with
amplitudes δω⊥/

√
2 and corresponding noise powers Sδω⊥(ω ≈ ω01)/2. Only the noise along the x axis

(its longitudinal component with factor sin2 η) contributes to Γ̃ϕ (the noise along the y axis is purely
transverse).

Note the limit values of the rates: at zero detuning, cos η = 0 and the expression 4.58 yields Γ̃2 =
3
4Γ1 + 1

2 Γν , Γφ is not relevant for the driven evolution in resonance. Actually, the low frequency noise is
indeed not irrelevant but at first order only; at second order, it induces fluctuations of the Rabi frequency:

ωR =
√

ω2
R0 + ∆ω2 ≈ ωR0 +

∆ω2

2ωR0
.
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Note that if the working point is the optimal one, the noise is thus coupled to the Rabi frequency at
fourth order only. One can estimate the amplitude of the fluctuations of the Rabi frequency: for a typical
∆ω = 2π2MHz corresponding to the minimum resonance line-width, and a Rabi frequency of 100MHz,
the fluctuations of the Rabi frequency is ≈ 20kHz much smaller than Γ̃2. These ωR fluctuations can
dominate Γ̃2 only for very small ωR0 < ∆ω = 2MHz. Otherwise, in the resonant case, the effect of the
very low frequency noise is suppressed and Γ̃2 is given by the Bloch-Redfield theory :Γ̃2 = 3

4Γ1 + 1
2 Γν .

At large detuning compared to the Rabi frequency, cos η = 1, and Γ̃2 = 1
2Γ1 + Γφ: one recovers thus the

decoherence rate Γ2 of the free evolution, because the field is unefficient to drive the qubit transition.
For a noise spectrum singular at ω = 0 (i.e. 1/f noise), and for η 6= π/2, we no longer find an

exponential decay. We consider here only the simple case where the Rabi frequency is high enough to
use the rate Γν and the associated exponential decay. Then one should combine the exponential decay
associated with the rates Γ1 and Γν with the nonexponential one substituting the rate Γϕ. For the decay
of the Rabi oscillations we obtain

fRabi(t) = fz,cos η(t) · exp
(
−3− cos2 η

4
Γ1 t− 1

2
sin2 η tΓν

)
, (4.59)

where fz,cos η(t) is given by one of the decay laws derived in the preceding sections (depending on whether
the coupling is linear or quadratic, and whether the statistics is Gaussian or not) with the noise δωz

substituted by cos η δωz. That is, in the linear case, we have to substitute Dλ,z → cos η Dλ,z, while in
the quadratic case (∂2ω01/∂λ2) → cos η (∂2ω01/∂λ2).

Application to the fidelity of a single qubit operation

In Sect. 3.4.2, we studied the fidelity of a unitary rotation taking into account the possible systematic
errors than can occur during the experimental implementation of the pulse sequence. Here we consider
another source of errors coming from the decoherence during driven evolution. This phenomenon induces
random errors which alters the unitary character of the implemented operation. For evaluating the fidelity
of the practical implementation of this rotation, we will first compare the density matrices of the qubit
state after an ideal Rabi precession during a time t, which is equivalent to a rotation of angle θ = ωRt, and
after its experimental realisation. We consider here only the case η = π/2. Starting form the initial state
α|0̃〉+ β|1̃〉, the density matrix in the basis {|0̃〉, |1̃〉} should ideally evolves during the applied microwave
field, like:

ρtheo =
( |α|2 α∗β exp (−iωRt)

αβ∗ exp (iωRt) |β|2
)

whereas practically the density matrix evolves like

ρexp =

(
1
2 (1 + (2|α|2 − 1)e

−( t
fT1

)
) α∗βe

−( t
fT2

)
e−iωRt

αβ∗e
− t
fT2 eiωRt 1

2 (1 + (2|β|2 − 1)e
− t
fT1 )

)

and relaxes to the equilibrium state:

ρt→∞ =
(

1/2 0
0 1/2

)
.

A fidelity between this two density matrix can defined as [94]

F (ρtheoρexp) = Tr(ρtheoρexp),

and is equal in this case to

F =
1
2
(1− e

− t
fT1 ) + 2|α|2|β|2e−

t
fT2 + (|α|4 + |β|4)e−

t
fT1 .
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In the particular case where the initial state is |0〉 = (|0̃〉 + |1̃〉)/√2, one can calculate the fidelity as a
function of the pulse duration:

F =
1
2
(1 + exp−t/T̃2) ≈ 1− t

T̃2

.

Note that T̃1 is not involved since the state |0〉 is purely transverse in the eigenbasis {|0̃〉, |1̃〉}. As an
example, with a constant time T̃2 ≈ 500ns (see Sect. 4.4), a typical π pulse at a Rabi frequency of 200MHz
takes ≈ 2.5ns and is thus characterized by a fidelity of ≈ 0.99, equivalent to a 1% error.

Apart from considering the fidelity of the rotation for a particular initial state, one can also define on
average a fidelity for the rotation, by averaging over every initial state for a fixed pulse duration:

F [U(θ = ωRt)] =
1
2

+
1
4
e
− t
fT1 +

1
4
e
− t
fT2 ≈ 1− 1

4
(

1

T̃1

+
1

T̃2

)t, (4.60)

for short pulses.

4.3 Experimental characterization of decoherence during free
evolution

In order to characterize decoherence in our quantronium sample and to compare with the theoretical
predictions, we have measured the characteristic decay times of the diagonal (T1) and nondiagonal (T2,
TE) parts of the density matrix of the qubit during its free evolution. The switching probability p was
measured over 25000 − 60000 events, chosen to get a small statistical noise: < 1%, with a repetition
rate in the 10 − 60kHz range slow enough to permit recombination of quasiparticles after switching of
the readout junction. The measurement of one switching probability thus require about 1s, and the
determination of any characteristic quantity like T1 or T2 needs several minutes. These measurements
are thus sensitive to low frequency noise. In addition, as described in chapter 2, the readout is imperfect,
and the shape of the switching curve of the readout junctions as a function of the bias current p(IM ) after
a π pulse (see Fig. 2.19) shows that the fidelity loss increases with p, which leads to a slight asymmetry
of p oscillations in most of the experiments presented here (see, for instance, the lack of signal at the top
of the oscillations on Figs. 4.9 and 4.18 below). This asymmetry limits the accuracy of our decoherence
rate measurements. In order to minimize its effect, we have chosen to use the bottom of the envelopes of
the p oscillations to quantify decoherence.

The decoherence measurements were done at different working points P located along the lines δ = 0
and Ng = 1/2, as mentioned above. We describe now the different experimental protocols that were used,
the results, and their interpretation.

4.3.1 Longitudinal relaxation: time T1.

Relaxation of the longitudinal polarization is inferred from the decay of the switching probability p after
a π pulse which has prepared the qubit in state |1〉. More precisely, a sequence that consists of a π pulse,
a variable delay t, and a readout pulse is repeated to determine p(t). An example of the relaxation curve,
measured at the working point P0, is shown in the inset of Fig. 4.7.

As predicted, the relaxation is exponential, with an absolute discrepancy between p(t) and the fit
being always smaller than 2%. The relaxation time T1, varies with the working point as shown in
Fig. 4.7: T1 is about 0.5 µs in the vicinity of P0 (which is three times shorter than in a previous
experiment [95]) and shows rapid variations away from P0 in the phase direction. Now, it is interesting
to note that in the parameter range explored, the matrix element DNg,⊥ of Eq. (4.18) is approximately
constant and that the matrix element Dδ/2π,⊥ of Eq. (4.17) varies smoothly by a factor of only 2 with
δ. Consequently, the measured variation of T1 reflects quite directly the variation with frequency of the
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Figure 4.7: Experimental T1 values measured at Ng = 1/2 as a function of δ (left panel), and at δ = 0 as a
function of Ng (right panel). The vertical line separating the two panels corresponds to the optimal point
P0 = (Ng = 1/2, δ = 0). The dashed line joining the points is a guide for the eye. The correspondence
between δ, Ng, and ν01 is given by the upper horizontal axis. Inset: Example of T1 measurement. The
switching probability p (dots) is measured as a a function of the delay t between a π pulse and the readout
pulse. The fit by an exponential (full line) leads to T1 (0.5 µs at P0 in this example)
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density of environmental modes available for absorbing one photon ~ω01 from the qubit through the δ
and Ng channels. Noting from Eq. (4.19) that the noise on EJ cannot induce relaxation of the qubit
along the line Ng = 1/2, a natural question arises: can the measured relaxation rates be fully accounted
for by the circuit alone, i.e. by Zg and YR (see Fig. 4.1)? The values of T1 at P0 due to the noise
spectra generated by (4.2),(4.3) are about 1 − 2 and 3 − 6 µs respectively. The combined effect of the
two subcircuits gives thus T1 ∼ 0.8 − 1.6 µs, which is close to the measured value. We conclude that a
significant part of the relaxation is due to the gate circuit. Note however, that estimating the impedances
as seen from the qubit above 14 GHz with an accuracy better than a factor of 2 is difficult, so that we
can’t exclude also a large contribution of microscopic degrees of freedom.

4.3.2 Transverse relaxation: coherence time T2.

T2 measurement from Ramsey fringes

Characterizing decoherence during the free evolution of a qubit can be done directly by measuring the
temporal decay of the average transverse polarization of its effective spin. With a projective readout, this
information can only be obtained by repeating a sequence which consists in preparing first a particular
state with a nonzero transverse polarization, letting the spin evolve freely during a time ∆t, and then
reading one of its transverse components. Starting from state |0〉, the simplest experiment would consist
in applying a π/2 pulse to align the spin along the X axis of the Bloch sphere, and for measurement
projecting it onto X after the desired free evolution. Such an experiment is not possible with the
quantronium, which is projected onto the Z axis at readout. The phase ϕ accumulated during the free
precession has thus to be converted into a polarization along Z, which can be done by applying a second
π/2 pulse. The two π/2 pulses form the so-called Ramsey sequence [95] which gives an oscillation of the
Z polarization with ∆t at the detuning frequency ∆ω/2π. Although choosing ∆ω = 0 gives a simple non
oscillatory signal that decays in principle as {1 + e−Γ1∆t/2Re [fz,R(∆t)]}/2 (see Sect. 4.2), this choice
is inconvenient since any residual detuning would induce a very slow oscillation that could be taken the
wrong way as an intrinsic decay. For that reason, we use here a detuning ∆ω of several tens of MHz,
chosen to be much larger than the decoherence rate. The rotation axis of the spin during the π/2 pulses
makes an angle α = arctan(∆ω/ωR0) with the equatorial plane of the Bloch sphere. The rotation angle
of the so-called π/2 pulses is more exactly π/2(1 + ε), where ε is a small positive or negative correction
due to two effects. First, the pulse duration is optimized at zero detuning, by maximizing the switching
probability of the readout junction immediately after two adjacent π/2 pulses. This duration is then kept
constant for a Ramsey experiment at finite detuning, so that ideally, 0 ≤ ε =

√
1 + tan(α)2 − 1 . 10−2.

Second, the optimization procedure is done with a finite accuracy and ε can be different from this ideal
value. The Ramsey oscillation pR is given by

pR =
1− a

2
[1 + a e−∆t/T1 + (1 + a) e−∆t/2T1 |fz,R(∆t)| cos (∆ω∆t + ζ)], (4.61)

where a = sin2 α − sin ε(1 − sin2 α) and ζ = arctan [sin α (1 + sin ε) / cos ε] are geometrical corrections.
Note that, at large ∆t, the envelope of the oscillations has an amplitude and a saturation value that
depends on ∆ω.

Figure 4.8 shows two typical Ramsey signals measured at the optimal working point P0 with ωR0/2π =
106 MHz and ∆ν = 50 MHz. These two signals differ significantly although they were recorded the
same day with the same experimental protocol: Ng is first tuned so that the central frequency of the
spectroscopic line is minimum and equal 2MHz. The Ramsey fringes are then recorded at a speed of 1
point per second, the longest record (middle frame of Fig. 4.8) taking thus 15 minutes. The relative
nonreproducibility between the two records is typical of what has been observed during several months
of experimentation. It is attributed to the frequency drift induced by the 1/f charge noise. This drift is
partly continuous and partly due to sudden jumps attributed to a few strongly coupled charged TLFs, as
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Figure 4.8: Ramsey signals at the optimal point P0 for ωR0/2π = 106 MHz and ∆ν ≈ 50 MHz, as a
function of the delay ∆t between the two π/2 pulses. Top and middle panels: solid lines are two successive
records showing the partial irreproducibility of the experiment. Dashed lines are a fit of the envelope
of the oscillations in the middle panel (see text) leading to T2 = 300 ns. The dotted line shows for
comparison an exponential decay with the same T2. Bottom panels: zoom windows of the middle panel.
The dots represent now the experimental points whereas the solid line is a fit of the whole oscillation with
∆ω/2π = 50.8 MHz. Arrows point out a few sudden jumps of the phase and amplitude of the oscillation,
attributed to strongly coupled charged TLFs.
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mentioned in Sects. 4.1.2 and 4.2. These sudden jumps are reversible and induce correlated phase and
amplitude jumps of the Ramsey fringes, as shown by the arrows in the bottom panels of Fig. 4.8, but do
not affect the global contrast of the Ramsey signal. On the contrary, the resonance linewidth whose total
acquisition time is about 1 min is affected by these very slow fluctuators. The figure also shows a fit of
the external envelope of the fringes to Eqs. (4.61) and (4.39), valid for a quadratic coupling to a static
charge noise (this choice will be explained in Sect. 4.3.4). The values of T1 and of the sensitivity to noise
Eq. (4.14) being known, the fitting parameters are the amplitude and saturation value of the fringes, and
the variance σ2

λ of the noise. The corresponding effective T2 time is 300± 50 ns for this record, but it is
found to vary in the range 200 − 300 ns (see, for instance, top panel of Fig. 4.11 below) depending on
the ability to set the working point precisely at P0 and on the probability that the system stays at that
point during a full record. Note that taking into account the coupling coefficients to phase and charge
noise, the half width of the resonance line: 1MHz gives a rough estimate of the tuning accuracy at the
optimal point: 0.7% in Ng and 0.4% in δ.

A series of Ramsey oscillations measured at different working points P is shown in Fig. 4.9. The
observed decay law will be discussed in section 4.3.4. Since ω01 and therefore ωR0 (at constant microwave
amplitude) vary with P , the microwave frequency was varied in order to keep ∆ω between 40 and 100
MHz and the pulse duration was varied to maintain the rotation angle close to π/2. Note that the mean
level and the amplitude of the oscillations vary due to these ∆ω changes. A direct comparison between the
Ramsey patterns shows that T2 decreases dramatically when P is moved away from P0. More precisely,
each curve gives a value T2(P ) with an uncertainty of about 30%, which is plotted on Fig. 4.17 below.

T2 measurement with the “detuning pulse” method

Probing decoherence at different working points P with the Ramsey method presented above requires
recalibrating for each P the frequency and duration of the two π/2 pulses. Now, the π/2 pulses and the
free evolution period probing decoherence do not have to be performed at the same working point. It
is thus experimentally more efficient to perform the π/2 rotations always at the optimal point P0 with
fixed optimized microwave pulses, and to move adiabatically to any point P where decoherence is to be
measured, between these pulses. This scheme, which leads also to the coherence time T2(P ), is referred
in the following as the “detuning pulse” method. It has been demonstrated by moving back and forth the
working point from P0 to P with a trapezoidal Ng or δ pulse of duration ∆t2 inserted in the middle of a
Ramsey sequence. The experimental setup is similar to the one used for the rotations around the z axis
in Sect. 3.3. For pulsing the δ parameter, a trapezoidal pulse of duration ∆t2 generated by an arbitrary
waveform generator Agilent 33250 is added to the current bias line with a combiner. The minimum rise
time of this pulse is limited by the bandwidth of the current biasing line to tr = 60ns. For pulsing the
charge parameter Ng, the microwave excitation line is used and due to the broader bandwidth: DC-
20GHz, the rise time of the detuning pulse is here limited only by the rise time of our pulse generator
to a minimum value of tr = 10ns. In this two case, the adiabaticity criterion mentioned in Sect. 3.3 is
satisfied.

Since the qubit frequency is not the same at P than at P0, the switching probability oscillates with ∆t2
at a new detuning frequency ∆ω2(P ) different from ∆ω. These oscillations decay with the characteristic
time T2(P ). This method, which is of course limited to working points P where T2(P ) & tr, has been
used in the ranges |δ| < 0.1 and |Ng − 1/2| < 0.05. Examples of experimental curves are shown on Figs.
4.10 and 4.11.

Each curve leads to a T2(P ) value with a 50% total uncertainty; these are also shown on Fig. 4.17.

T2 measurement from resonance line shape

When the decoherence rate becomes comparable to the Rabi frequency, time domain experiments using
resonant pulses can no longer be performed and one has to operate in the frequency domain. The
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Figure 4.9: Ramsey oscillations as a function of the delay ∆t between the two π/2 pulses, for different
working points located on the lines Ng = 1/2 (left column) and δ = 0 (right column). The Rabi frequency
is ωR0/2π = 162 MHz for all curves. The nominal detunings ∆ν are 50, 53, 50, 50, 40, 100, and 80 MHz
(left, top to bottom) and 35 − 39 MHz (right). Dots are experimental points whereas full lines are
exponentially damped sinusoids fitting the experimental results and leading to the T2 values reported on
Fig. 4.17.
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Figure 4.10: Phase detuning pulse technique for measuring T2. Top: Ramsey signal at the optimal point
P0, with ∆ν ' 50 MHz, when no detuning dc pulse is applied. The dashed line corresponds to an
exponential decay with T2(P0) = 200 ns. Bottom: signal obtained with a delay ∆t = 275 ns between
the two π/2 pulses (corresponding to the dashed vertical line of the upper panel) and with an adiabatic
current pulse maintaining δ/2π = 0.063 during a time ∆t2. The oscillation of the signal with ∆t2 decays
with a characteristic time of about 70 ns (note the different horizontal scales on the two graphs). The
pictograms on the right illustrate the two π/2 microwave pulses and the Ib(t) signal.
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corresponds to the double arrow in the center of the graph. Note the two different vertical scales and the
occasional substructure of resonance lines pointed out by small arrows. Bold lines are fits of the peak
positions leading to EJ = 0.87kB K, EC = 0.66kB K, and d < 13%. Bottom panel: asymmetric lineshape
recorded (dots) at P0 with a microwave power small enough to desaturate the line. The dashed line is the
theory, with a Tϕ that corresponds to that of Fig. 4.8. The solid line is the convolution of this theoretical
line and of a Lorentzian corresponding to a decay time of 600 ns (see text).
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resonance line of the qubit is recorded by applying long microwave pulses (≈ 2µs) and measuring the
switching probability of the readout junction after such pulses.

In the linear response regime, i.e. at low microwave power, the shape of the resonance line is ideally
the Fourier transform of the envelope of the free evolution decay (i.e. the Ramsey signal). Practically,
this is not striclty true due to the different acquisition times of the two methods: Ramsey experiment
and resonance line measurement.

Ideally, one has T2 = k/(πW ) with W the resonance full width at half maximum and k a numerical
coefficient that depends on the line shape: k = 1 for a Lorentzian, k = 1.6 for a Gaussian, etc. In
order to reach the linear regime, the line shape is recorded at different decreasing microwave powers until
the width saturates at the lower value. At that stage, the signal to noise ratio is usually small and the
line shape has to be averaged over a few minutes. A series of resonance lines is shown on Fig. 4.12,
together with their positions as a function of the working point (which leads to EJ and EC as previously
mentioned). The rapid broadening of the line when departing from P0 is clearly visible. Line shapes at
Ng 6= 1/2 are structured with several sub-peaks that are stable only on time scales of a few minutes.
We again attribute this phenomenon to the presence of large individual charged TLF’s. At δ 6= 0, the
lines are smoother but the low signal to noise ratio in the linear regime does not allow a discrimination
between a Lorentzian or a Gaussian shape. We thus calculated a T2(P ) using an intermediate value
k = 1.3 and with an extra 30% uncertainty. These T2’s with typical uncertainty 50% are also shown on
Fig. 4.17. Finally, the line shape at P0 is averaged over 10 min and is shown on Fig. 4.12. Its exact
shape is discussed in Sect. 4.3.4.

4.3.3 Echo time TE

In NMR [62] the spin-echo technique is a standard way to cancel an inhomogeneous broadening of the
spins resonance lines due for instance to the spatial inhomogeneity of the magnetic field [78]. In our case,
there is a single spin (i.e., the quantronium) measured repetitively and the echo technique can compensate
for a drift of the transition frequency during the time needed (about 1 s) for the repeated measurement
to obtain a probability p. The method thus cancels a low-frequency temporal inhomogeneity and leads
to a more intrinsic coherence time TE > T2 independent of the measurement time of p. In practice, the
spin-echo sequence is a modified Ramsey sequence with an extra π pulse placed just in the middle of the
two π/2 pulses. This π rotation around the same axis as that of the π/2 pulses makes the spin trajectory
along the equator longer or shorter depending on whether ν01 increases or decreases (see figure 4.13).
Consequently, the random phases accumulated before and after the π pulse compensate exactly if the
frequency does not change on the time scale of a sequence. The interaction with low frequency modes
the environment can be averaged out coherently via this dynamical decoupling.

In Fig. 4.14, we show a series of echo signals recorded at P0 by sweeping the delay ∆t between the
two π/2 pulses while keeping constant the delay ∆t3 between the π and second π/2 pulses. This protocol
results in an oscillation p(∆t) whose amplitude first decays as the usual Ramsey signal, and has then
a second maximum at ∆t = 2∆t3. Note that at this precise echo time, the value of p is an oscillation
minimum. By taking advantage of the time stability of our pulse sequencer, it was possible to map
directly this minimum of pE by sweeping ∆t while keeping the π pulse precisely in the middle of the
sequence (Hahn echo experiment), as shown in Fig. 4.15.

Ideally, at zero detuning, this mapping of pE is expected to increase as [1− e−Γ1∆t/2fz,E(∆t)]/2 (see
Sect. 4.2). In practice, one has once again to take into account geometric corrections due to the finite
detuning, to the finite duration of the π/2 and π pulses, and to the inaccuracy of their rotation angles.
Using the generalized Bloch-Redfield approach, we find
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Figure 4.13: Schematics of the echo protocol. After the first π/2 pulse, the pseudo spin precesses in the
equatorial plane and state |1〉 accumulates a phase φ10(t) with respect to state |0〉. Due to low frequency
fluctuations of the transition frequency, this phase φ10(t) for a fixed t diffuses from one sequence to the
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π pulse, acts like a time reversal, and refocuses the state vectors, obtained after each sequence, at the
same position on the Bloch sphere. This echo sequence gives access to a more intrinsic coherence time
TE which is independent of the data acquisition protocol requiring long time averaging.
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Figure 4.15: Echo signal pE (linked dots) measured at the optimal point P0 by keeping a π pulse precisely
in the middle of the sequence while sweeping the sequence duration ∆t (pictogram). The Rabi frequency
is ωR0/2π = 130 MHz and the detuning ∆ν = 20 MHz. For comparison, the Ramsey signal (oscillating
line) and its envelope (dashed line leading to Tϕ = 450 ns) are also shown. The dotted line is a fit of
pE that leads to the characteristic decay time of fz,E , Tϕ,E =1.3 µs, and that shows that the π/2 pulses
were actually 15% too short whereas the π pulse was correct. The resulting echo time is TE ∼ 600 ns.
Inset: comparison between pE (linked dots) and the echo signal recorded with a fixed π pulse (solid line),
as presented in Fig. 4.14.
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2pE = [1− (a1 + a2e
−Γ1∆t/2 + a3e

−Γ1∆t)]

− e−Γ1∆t/2{(1− a4) fz,E(∆t) + a5Re
[
e−i(∆ω∆t+ξ1)/2fz,R(∆t)

]

+
(
a6e

−Γ1∆t/4 + a7e
−Γ1∆t/4

)
Re

[
e−i(∆ω∆t+ξ2)/2fz,R(

∆t

2
)
]
} , (4.62)

where the ai’s are small geometrical coefficients that depend only on the angle η coming from the detuning
and on the errors in the microwave pulse durations. The latter terms of Eq. (4.62) show that on top
of the expected increase of pE mentioned above, pulse imperfections induce small oscillations of pE at
the frequency ∆ω/4π, which is half the Ramsey frequency, and whose damping is given by the Ramsey
function fz,R rather than by the echo function fz,E .

Experimental curves pE(∆t) recorded at P0, and at different working points, are shown on Figs. 4.15
and 4.16, respectively. A fit using Eq. (4.62) is shown on Fig. 4.15 and leads to TE(P0) ' 550 ns > T2,
which shows that part of the noise occurs at low frequency and is efficiently removed by the echo technique.
Note that a naive exponential fit of the bottom envelope of pE(∆t) would have given about the same TE .
Then, TE(P ) values with a 30% uncertainty are extracted from each curve of Fig. 4.16 and reported on
Fig. 4.17. A quantitative analysis of TE(P ) is given below.

4.3.4 Discussion of coherence times

A summary of all the coherence times (T2, TE) measured during free evolution using the various methods
described above is given on Fig. 4.17. These results are in good agreement with one another and are
comparable with those obtained from in previous work [44]. As expected, T2 is maximum at P0 and decays
by two orders of magnitude for Ng or δ variations of 0.1 Cooper pair or 0.3 phase turn, respectively. This
result clearly validates the concept of the optimal working point. Moreover, while T2 decreases rapidly
when departing from P0, the estimated sensitivity to EJ noise given by Eq. (4.16) either decreases or
stays constant. We thus conclude that EJ noise has a negligible contribution to decoherence in this
device at all working points except possibly at P0. Figure 4.17 also shows that the improvement TE/T2

provided by the echo technique decreases from a factor of about 2 to about 1 when moving away from P0

in the phase direction, and increases from about 2 to about 50 when moving in the charge direction. We
try below to provide a quantitative understanding of the variations of T2(P ) and TE(P ) , using a simple
model for the noise spectra Sλ(ω), for λ = δ/2π and Ng. Then, we discuss the decay of Ramsey fringes,
pR(∆t), and of echo signals, pE(∆t), away from P0. Finally, we discuss what limits coherence at P0.

Noise spectral densities and T2,E(P ) dependences

The fit to theory of the experimental T2(P ) and TE(P ) curves of Fig. 4.17 is performed in the following
way. The dephasing factors fz are computed numerically according to the theoretical expressions of
Sect. 4.2 and multiplied by the relaxation term exp[−∆t/2T1(P )], which is known from the independent
measurements of Fig. 4.3.1; the coherence times correspond to a decay of these products by a factor
exp(−1). As a starting point, the first order contribution of λ noises (considered here as Gaussian) is
computed by numerical integration of Eqs. (4.25) and (4.27), using Eqs. (4.11) and (4.13) for the Dλ,z’s.
Microscopic charge and phase noises being characterized by 1/f spectra at low frequency and noises due
to the driving and readout subcircuits being characterized by white spectra below 10 MHz (see Sect.
4.1.3), the fit is done using for ScNg(ω) and Scδ/2π(ω) linear combinations of 1/f and white spectral
densities. Due to the divergence of the 1/f contributions as ω → 0, an infrared cutoff is introduced in
the integration, ωir = 1/tmeas, where tmeas = 1 s is the measurement time of a single data point in a
Ramsey or echo signal. Note that although this cutoff could be defined more rigorously by taking into
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Figure 4.16: Echo signals pE (∆t) measured (dots) at different working points indicated in each panel,
with a Rabi frequency ωR0/2π = 140 MHz and ∆ν ≈ 50 MHz. Full lines are exponential fits leading to
TE values reported on Fig. 4.17. Note that the amplitude of the signal depends on the working point.
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account the exact measuring protocols [44] this complication is of no benefit here because the computed
coherence times depend only logarithmically on ωir. At this stage, the fit (not shown) captures the T2(P )
dependencies but does not capture the large gain g = TE/T2 observed far from Ng = 1/2. This fact was
expected since the echo technique is inefficient in the presence of high-frequency noise and because the
gain deduced from Eqs. (4.31) and (4.32) in the case of a 1/f noise is g ' √

ln(tmeas/Tϕ)/ ln(2) / 5
over the explored range of T2. Consequently, SNg(ω) has to decrease faster than 1/f above a certain
frequency. A high-frequency sharp cutoff ωc is thus introduced in the spectrum ScNg(ω) as a new fitting
parameter. The new fit (not shown) is then in fair agreement with the data except in the vicinity of
P0 where computed coherence times diverge due to the cancellation of the Dλ,z’s. Therefore, second
order contributions have now to be included at this point using the ∂2ω01/∂λ2’s given by Eqs. (4.12) and
(4.14). For the sake of simplicity, λ2 noises are first treated as Gaussian noises characterized only by
their spectral densities Sλ2 estimated from the autoconvolution of Sλ (see Sect.4.2.3 and equation 4.37).
This approximation leads to dephasing times at P0 correct within a factor better than 2. By this way,
the contribution of δ2 is shown to be completely negligible with respect to that of N2

g . The calculation
is then performed using Eqs (4.39) and (4.44). Finally, the dephasing factors associated with Ng, δ,
and N2

g are multiplied together. This procedure neglects the effect of correlations between λ and λ2,
which are relevant only when both contributions are of same order, namely, in a very narrow range in
the vicinity of P0. Moreover, our results are not affected by correlations between Ng and δ, which would
exist if both noises were to be due to the same underlying mechanism( see Sect 4.1.3), since the coupling
coefficient ∂2ω01/∂Ng∂δ for the cross noise ScNg−δ(ω) is zero along (δ,Ng = 1/2) and (δ = 0, Ng) lines
for symmetry reasons. The final fit shown on Fig. 4.17 leads to

ScNg(ω) = 1.6 10−6/|ω|,

for |ω| < ωc = 2π× 0.4 MHz and to

Scδ/2π(ω) = 0.9× 10−8/|ω|+ 6× 10−16/(rad/s).

First we discuss the charge noise. The amplitude coefficient for the 1/f charge noise is in the range
expected for a background charge noise ScBCN

Ng of microscopic origin (see Sect. 4.1.3). The high-frequency
cutoff ωc, necessary to provide even a qualitative fit, is an important result that had not been anticipated
and that calls for a direct measurement of charge noise in the megahertz range, perhaps using a rf
single-electron-transistor electrometer [96]. The white noise contribution to charge noise due to the gate
impedance Zg, deduced from Eqs. (4.2) and (4.29), provides a very large Tϕ > 1 ms; this is compatible
with our assumption of a high-frequency cutoff. Note that this cutoff is only related to the classical part
of the charge noise and does not preclude the possibility that charge TLFs might absorb energy at high
frequencies, and thus relax the qubit [52, 50, 49].

We now turn to the phase noise. The presence of 1/f phase noise is similar to the unexplained flux
noise found in SQUIDS (see Sect. 4.1.3), although its amplitude corresponds here to a standard deviation
σΦ/Φ0 about ten times larger (spectral density 100 times larger) than that usually reported [69]. The
value of the white phase noise of ∼ 6 × 10−16/(rad/s) is about twice the estimated out-of-equilibrium
noise expected from the AWG, whereas the impedance YR is expected to contribute by less than one
percent to this white spectrum. This white phase noise contribution is responsible for the low efficiency
of echoes at δ 6= 0, Ng = 1/2.

Temporal decays of Ramsey and echo signals

The phase and charge noise spectra mentioned above imply precise shapes for the temporal variations of
Ramsey and echo signals. For δ 6= 0, the dominant contribution to decoherence arises from the first order
contribution of the phase noise Scδ/2π. The numerical integration of Eqs. (4.25) and (4.27) predicts that
the Ramsey function fz,R(∆t) involved in pR should be close to a Gaussian at small |δ| where the 1/f part
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of the δ spectrum dominates the dephasing and should evolve towards an exponential at larger |δ| where
the dephasing time is shorter and the influence of the high frequencies of the white part of the spectrum
dominates. For the echo decay, fz,E(∆t) is expected to be almost exponential at all points, because of the
white noise part of the δ noise. However, the contribution of the relaxation and of the second order noise
at small δ on the first hand, and the contribution of the geometrical corrections included in Eqs. (4.61)
and (4.62) on the second hand, favor exponential variations at short times ∆t < T2,E . Consequently, we
find that the Ramsey signals are expected to decay more or less exponentially, as we observe on the left
panels of Fig. 4.9, where the data were phenomenologically fitted by exponentially damped sinusoids.
The echo variations shown on the left panels of Fig. 4.16 are exponential as expected, and are fitted
accordingly.

For Ng 6= 1/2, the dominant contribution to decoherence has been found to be a first order 1/f charge
noise truncated at 0.4 MHz, which is actually quasistatic according to Sect. 4.1.3, since ωcT2,E ¿ 1.
Consequently, if this noise is really Gaussian, fz,R should be given by Eq. (4.33), i.e., purely Gaussian.
The decay should fit to Eq. (4.61), which includes the relaxation contribution and geometrical errors.
Now, it was found that this equation does not fit the data well, even with unreasonably large geometrical
errors, since the decay is slower than a gaussian one at large time ∆t > T2. Consequently, Fig. 4.9 shows
an empirical fit with exponentials. This mismatch between the simple theory and the experiment might
be attributed to the non Gaussian character of the 1/f charge noise (see Sect. 4.2.4), which is known to
contain large discrete TLF’s as already mentioned and as observed in the line shapes. Depending on the
distribution of these large fluctuators, Eq. (4.51) might be applicable. Our experimental pR’s could be
compatible with a model which includes a dominant TLF inducing an initial Gaussian-like decay at short
times ∆t < T2, and a large collection of further TLF’s responsible for the exponential-like tail of the
decay. In the same way, fz,E is expected to decay as exp[−(∆t/TE)n] with n ≥ 3 if the quasistatic 1/f
noise is Gaussian. The rather exponential character of the measured pE ’s (see the right hand panels of
Fig.4.16) also suggests that the non-Gaussian character of the noise lowers the exponent n, as predicted
by Eq. (4.52). On the other hand, the higher sensitivity of pE to geometrical errors (compared to pR)
also favors an exponential decay.

To summarize, the decay times T2,E are well explained, but the temporal dependence of the functions
fz,E(t) is not fully accounted for, possibly due to the non-Gaussian character of the charge noise.

Decoherence at the optimal point P0

Knowing from the fitting procedure that the phase noise gives a negligible contribution to decoherence at
P0, the following question arises: Can the quasistatic 1/f charge noise explain quantitatively the Ramsey
decay shape at P0? To answer this question, we plot on Fig. 4.8 the theoretical decay exp [−∆t/2T1]
{1 + [7.3 (∆t/Tϕ)]2}−1/4 where the second term is a simple rewriting of Eq. (4.39), with Tϕ = 620 ns
calculated from the fitted noise spectrum ScNg(ω). This curve is seen to be in good agreement with
the envelope of the best experimental pR(∆t) records. Whereas it is close to an exponential at ∆t . T2,
it predicts a significantly larger signal at long times, as observed. These results suggest that coherence
at the optimal working point P0 is limited by second order microscopic static charge noise. Do the data
in the frequency domain also support this conclusion? First, we observe on Fig. 4.12 that the resonance
line at P0 is asymmetric, which is a key feature of decoherence due to a second order noise at an optimal
point. The line has indeed a tail on its higher-frequency side because Ng noise can only increase ν01,
which is minimum at P0. More precisely, the intrinsic theoretical line shape, i.e., the Fourier transform
of Eq. (4.39), is nonzero only at ∆ν = ν − ν01 ≥ 0, is proportional to ∆ν−1/2 exp(−2π∆νTϕ/7.3) and
is to be convolved with the Lorentzian line shape due to relaxation. A subtle point already mentioned
for 1/f noise is that decoherence data are actually dependent on the exact experimental protocol used
to average them. In particular, Tϕ depends on the averaging time through the infrared cutoff introduced
in the calculation of σNg [see Eq. (4.39)]. The 1 Hz cutoff used for interpreting pR is no longer relevant
for interpreting the line shape, which was averaged over several records of 10 min each, with a precise
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tuning of Ng before each record. The corresponding cutoff is of order of 1/(600 s) and the new Tϕ value
analogous to the 620 ns used in the time domain is now 415 ns. Figure 4.12 shows the corresponding
theoretical line shape, which takes into account this Tϕ and T1. This line is significantly narrower than the
experimental one. This mismatch cannot be reduced by changing Tϕ (i.e., the infrared cutoff or the noise
amplitude) since the line would be broadened only on its right side. Once more, this discrepancy might
be attributed to the non Gaussian character of charge noise. To quantify the mismatch, we empirically fit
the experimental line to the theoretical one convoluted with an additional Lorentzian. The width of this
Lorentzian leading to the best fit corresponds to a characteristic decay time of 600 ns. This characteristic
time can be used to place an upper bound for the EJ noise, which is possibly the second source of
decoherence at the optimal working point. Indeed, attributing part of the additional contribution to
this noise, assuming ScδEJ/EJ

= A/|ω|, and applying Eq. (4.25) with the same infrared cutoff as above,
leads to A < (3 ×10−6)2, a value to be compared to the (0.5 ×10−6)2 mentioned in Sect. 4.1.3. In
conclusion, decoherence at P0 is well explained by microscopic charge noise at second order, the EJ noise
contributing at most for 40% and probably much less. Finally, we point out that pure dephasing is
efficiently suppressed at P0 with the echo technique, due to the ultraviolet cutoff of ScNg(ω). Indeed,
the measured TE = 550 ns corresponds to a dephasing time Tϕ,E = 1.3 µs, partially hidden here by the
short T1 of the sample. A summary of these results is provided in Table I.

4.4 Decoherence during driven evolution

In the presence of a microwave driving voltage, the quantronium dynamics is best described in the rotating
frame, as already mentioned in Sect. 4.2.5. Due to decoherence, the precession of the effective spin is
progressively dephased after a characteristic coherence time T̃2 and, after some time T̃1, the spin is almost
depolarized because ~ωR ¿ kT (T = 20mK corresponds to about 500MHz) in our experiment. In this
section, we will describe the measurements of T̃2 and T̃1 at the optimal point P0. We will compare them
to the results of Sect. 4.2.5 and see if they can be understood from the noise spectra introduced in the
preceding section.

4.4.1 Coherence time T̃2 determined from Rabi oscillations

The coherence time during driven evolution is directly obtained from the decay of Rabi oscillations
since the ground state |0〉 = (

∣∣∣0̃
〉

+
∣∣∣1̃

〉
)/
√

2 is a coherent superposition of the eigenstates under driven
evolution. A series of Rabi experiments performed at the optimal point P0 on resonance (∆ω = 0) is
shown in Fig. 4.18. These decays can be fitted with exponentially damped sinusoids oscillating at ωR0,
whose corresponding decay times T̃2 are reported in Fig. 4.19 as a function of the Rabi frequency ωR0/2π,
in the range 1− 100 MHz.

The decay time T̃2 is found to be almost constant at 480 ns under these conditions and gives access to
Tν = Γ−1

ν = 1.5±0.5 µs using the equation Γ̃2 = 3Γ1/4+Γν/2. Then, one deduces from Γν ≡ πScδωz (ωR0)
that Scδωz (ω) is, at P0, constant at about (1.5− 3) × 105 rad/s for every ω in the 1 − 100 MHz range.
Being obtained at the optimal point, the latter value should be explained either by the first order noise
of EJ or by second order noises N2

g and δ2. The EJ noise, being of the 1/f type, cannot explain the
constant Scδωz (ω). Then, assuming that the classical noise on Ng is negligible at all frequencies above
the low-frequency cutoff of 0.4 MHz found in the previous section, the autoconvolution of ScNg(ω) has a
negligible weight in the frequency range considered here and Scδωz (ω) can only be due the δ2 noise, whose
spectral density is essentially given by the autoconvolution of the white δ noise introduced previously.
Using a high-frequency cutoff much higher than 100 MHz indeed leads to a constant Scδωz (ω) as observed.
Nevertheless, we have not found a plausible phase noise spectrum Sc(δ/2π)(ω) that could account for the
measured value of Scδωz (ω) using Eq. (4.12).
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Figure 4.18: Decay of the Rabi signals at the optimal point P0 for different Rabi frequencies νR0 = ωR0/2π.
The experimental data (oscillating solid lines) are fitted by exponentially damped sinusoids (doted lines
in the top panels), while their lower envelopes are fitted by exponentials (monotonous solid lines) leading
to the T̃2 values reported in Fig. 4.19.
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Figure 4.19: Characteristic decay times T̃2 of the Rabi oscillations at the optimal point P0, as a function
of the Rabi frequency νR0 (left panel) at zero detuning ∆ν, and as a function of ∆ν (right panel) at
νR0 = 15.4 MHz (dotted vertical line). T̃2(νR0, ∆ν = 0) turns out to be a constant of order 0.48µs
(left solid line). The difference with (4/3)T1 leads to an estimate for Tν = 1/Γν . The right solid line
corresponds to Eq. 4.58 plotted using the experimentally determined values of Tϕ, T1, and Tν .
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In order to test the Γ̃2(η) dependence with the frequency detuning, predicted by Eq. (4.58), a series
of Rabi precession experiments was also performed at P0 as a function of the detuning ∆ω, using a
fixed microwave power corresponding to a Rabi frequency of ωR0/2π = 15.4 MHz on resonance. The
experimental data are presented in Fig. 4.19 together with the expression of Γ̃2 given by Eq. (4.58),
plotted using the T1, Tϕ, and Tν values determined previously. As the frequency detuning ∆ω increases,
T̃2 decreases from 480ns to the value T2 ≈ 250ns as predicted, the out of resonance microwave field is less
and less efficient and one recovers progressively the free evolution case on a frequency scale which is the
Rabi frequency ωR0.

4.4.2 Relaxation time T̃1 determined from spin-locking experiments

The relaxation time T̃1 can be obtained using the spin-locking technique developed in NMR. After having
prepared the fictitious spin along an axis in the equatorial plane of the Bloch sphere, the effective field
is then oriented parallel or antiparallel to the spin. Experimentally, the spin is prepared along the Y
axis using a resonant (∆ω = 0) π/2 pulse around the X axis. A microwave gate voltage with a phase
shifted by ±π/2 is then applied so that the driving field is parallel (or antiparallel) to the prepared spin
state, which becomes either

∣∣∣0̃
〉

or
∣∣∣1̃

〉
, respectively. The polarization along the prepared direction then

decays exponentially with a decay time T̃1 called in NMR the relaxation time in the rotating frame [62].
A second π/2 or a 3π/2 pulse is then applied around the X axis after a variable delay in order to measure
the remaining polarization in the rotating frame. This decay measured with a locking microwave field
of ωR0/2π = 24 MHz is shown in Fig. 4.20, together with the envelope of a Ramsey signal measured at
∆ω/2π = 8 MHz and a relaxation signal recorded during free evolution.
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Figure 4.20: Spin locking signals (oscillatory lines) obtained at the optimal point P0, using a detuning
∆ν = 8 MHz, a locking microwave power corresponding to 24 MHz, and a final microwave pulse of π/2
(top) or 3π/2 (bottom). The bold solid lines are exponential fits corresponding to T̃1 v 580 ns. For
comparison, the Ramsey envelope (dotted line with T2 v 250 ns) and the longitudinal relaxation (dashed
line with T1 v 450 ns) are shown.
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The evolution of the spin-locking signals toward equilibrium follows an exponential law with T̃1 =
550±50 ns, irrespective of whether the spin is parallel or antiparallel to the locking field. This is because
the energy splitting ~ωR0 of the levels

∣∣∣0̃
〉

and
∣∣∣1̃

〉
in the rotating frame is small, ~ωR0 ¿ kBT . Using

Eq. (4.55) Γ̃1 = Γν + 1
2Γ1, one obtains again Tν = 1.5 ± 0.5 µs, in agreement with the analysis of Rabi

oscillations.

4.5 Decoherence mechanisms in the quantronium: perspectives,
and conclusions

4.5.1 Summary of decoherence mechanisms in the quantronium

We have characterized decoherence in the quantronium circuit, using techniques adapted from NMR. We
have presented a general framework that describes these experiments. As expected, we have found that
quantum coherence of the quantronium is maximum at the so-called optimal point P0, where the decay
laws of the transverse polarization can be significantly non-exponential, particularly in the presence
of 1/f noise. Similar and complementary analyses of decoherence have now been performed in other
Josephson qubits [52, 77, 97]. The noise spectra that characterize the sources was also derived leading
to decoherence of the quantronium, at and away from P0. We have shown that coherence is mainly
limited by dephasing due to slow charge and phase noises of microscopic origin and that relaxation also
contributes to decoherence.

An important feature of our analysis is the introduction of a high-frequency cutoff at about 0.5 MHz
for the classical part of the charge noise spectrum. Finally, it was shown that in our qubit with EJ ∼ EC ,
second order charge noise is dominant at P0.

Although this semi-empirical approach obviously could not provide any definite clues about the exact
nature of the microscopic defects responsible for the noise spectra invoked to explain decoherence, the
subject is very important and deserves further studies. To improve our understanding, more refined
models could be built including a finite set of strongly coupled slow TLFs, with a close-to-continuous
background of weakly coupled ones, including the non-Gaussian nature of their noise (see Refs. [88, 91]).

Finally, one should point out that some of the NMR methods that we have used to characterize
decoherence in our circuit provide tools for improving coherence in a qubit. The interest of maintaining
quantum coherence with these methods is now discussed, and how far the qubit is from meeting the
requirements for quantum computing.

4.5.2 Does driving the qubit enhance coherence?

The observation that T̃2 > T2 suggests that the coherence is improved by driving the qubit. But what are
the reason and the meaning of this observation? The improvement is actually due to the low frequency
character of the dominant dephasing noise sources. Indeed, the low frequency fluctuations ∆ω are not
effective when the Rabi frequency is large enough, because the eigenstates

∣∣∣0̃
〉

and
∣∣∣1̃

〉
follow adiabatically

the fluctuations of the effective driving field.
When a coherent superposition of these eigenstates is prepared, and a locking field applied afterward,

the initial state is frozen with coherence time T̃2 > T2 and mixing time T̃1 > T1. Consider now that a
coherent superposition of the two eigenstates in the rotating frame, α

∣∣∣0̃
〉

+β
∣∣∣1̃

〉
, has been prepared and

that a Rabi field is applied. The superposition then evolves at the Rabi frequency, and the initial state is
retrieved periodically (every Rabi period) with a coherence time T̃2 > T2. By encoding the qubit in the
basis

(∣∣∣0̃
〉

,
∣∣∣1̃

〉)
, quantum coherence is thus maintained during a longer time than for free evolution.
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Although these results demonstrate that a qubit state can be stored during a longer time by driving it,
it is clear that the qubit cannot be used at will during this driven evolution.

The echo technique can also be regarded as a “soft” driving of the qubit aiming at reducing decoher-
ence. As shown in Sect. 4.3.3, it indeed removes the effect of the low-frequency fluctuations of ∆ω. It
can be figured as a time-reversal operation that compensates frequency changes that are almost static
over the duration of the pulse sequence. This error cancellation method is in fact more general, and the
repeated application of π pulses can compensate for frequency fluctuations over longer durations. This
so-called bang-bang technique in NMR [98] could be used for qubits provided that the coherence loss due
to the pulses is small enough [86]. However, like in the case of the continuous driving, the qubit cannot
be used for computation during this sequence.

4.5.3 Coherence and quantum computing

How far we are from meeting the requirements for quantum computing? Although the simple methods
mentioned above could help in reducing decoherence, quantum error correction is mandatory for quantum
computing. As discussed in the introduction, quantum error correction requires error rates smaller than
about 10−4 for each logic gate. Presently, the gate error rate in superconducting qubits is about a few
percent for single qubit gates in the quantronium, and would be significantly more for the two qubit gate
protocols envisioned nowadays [37, 38, 99]. An improvement of quantum coherence by about three orders
of magnitude would thus be required before quantum error correction is possible in quantronium circuits.
We think that the mere extrapolation of the present work on superconducting qubits is insufficient to reach
this goal, and that new concepts for preserving quantum coherence are needed. Qubit implementation in
decoherence free subspaces might provide a solution to this formidable challenge [100].
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Chapter 5

Towards a Non Demolition
measurement of the quantronium

After the successful operation of the quantronium, it appeared that implementing a Quantum Non De-
molition (QND) measurement of the quantum state of the qubit would be an important goal. Such a
QND measurement is an ideal projective measurement that leaves the qubit state after the readout on
states |0〉 or |1〉 according to their probability amplitudes in the state before readout(see fig. 5.1).

A non destructive measurement should improve the fidelity by avoiding relaxation or excitation during
readout. This would be useful for probing quantum correlations between coupled qubits and in particular,
Bell inequalities for mesoscopic systems. On the other hand, the readout could be repeated, which would
further improve the readout fidelity.

The qubit state can also be re-used after readout which could be interesting for certain types of
quantum algorithms, although a QND measurement is not indispensable for Quantum computing [64].
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Figure 5.1: During a ideal QND measurement, the qubit state is projected on its eigenstates with prob-
abilities given by |α|2 and |β|2. In practice, relaxation or excitation during the readout can corrupt the
result of the projection. Note that a QND measurement is not necessary single shot.
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5.1 Readout strategies

5.1.1 Drawbacks of the switching readout

In chapters 3 and 4, the switching to the voltage state of an hysteretic Josephson junction was used for
reading out the qubit state (see Sec. 2.3). This method has also been used by other groups [101, 40, 61]
but suffers from several drawbacks as pointed out in Sect. 2.4.6. A first drawback is the absence of
signal at the optimal working point. Indeed the signal corresponds to a first derivative ∂ω01/∂λ with
λ an external parameter, and cancels at the optimal working point since it is a stationary point. This
absence of signal is related to the decoupling with the noise on λ. As a consequence, one needs to go
away from P0 to get a detectable signal. During the adiabatic displacement of the working point, the
transition frequency is divided roughly by a factor 2, and the qubit can cross spurious resonances of the
environment, and thus loose polarization. A readout setup allowing to stay at the optimal working point
or at least at its vicinity would thus be of great interest.

The second drawback is the switching of the readout junction itself. During this process the phase
δ across the readout junction stays no longer around an average value which controls the Hamiltonian
of the qubit but acquires a dynamical dissipative behavior. This modifies drastically the Hamiltonian
which becomes time dependent. For this reason, the readout is not QND. In addition the quasiparticles
generated limit the maximum repetition rate to a value of ≈ 50kHz leading to long acquisition times of
about ≈ 1s per data point, and could spoil other nearby qubits.

5.1.2 New dispersive strategies

The manipulation of the quantronium and soon after of the flux-qubit at an optimal point, raised the
problem of how to further improve this strategy. In particular, could it be possible to perform the
readout without moving away from the optimal working point? A new readout strategy, now being
developed by several groups ([102, 47, 103, 104]), permits to stay in the vicinity of the optimal working
point. It is based on a purely dispersive measurement of the qubit. The idea for staying in the vicinity
of the optimal working point during the readout is to measure the susceptibility of the qubit, i.e. the
second derivative of the energy with respect to an external parameter. For instance, the Cooper pair box
capacitance [104, 102]:

1
Ck

=
1

(2e)2
∂2Ek

∂Ng
2 =

1
2e

∂Vk

∂Ng
,

where Ng is a gate voltage, and Vk = 〈k|V̂ |k〉, V̂ being the voltage operator of the qubit island, can be
measured. The inductance of a flux or of a charge-phase qubit

1
Lk

=
1
ϕ2

0

∂2Ek

∂δ2
=

1
ϕ0

∂Ik

∂δ
,

where Ik = 〈k|Î|k〉, Î being the current operator of the qubit, can also be mesured [47]. In these schemes,
the qubit is coupled to a tank circuit (Nb coplanar cavity [105], discrete LC circuit [103], or shunted
Josephson junction [47]) whose resonance is affected by the state dependent susceptibility of the qubit.
The frequency resonance of the tank circuit is chosen far below the transition frequency of the qubit, in
order to achieve a dispersive measurement of the qubit susceptibility. This measurement is performed
with a small enough probing signal in order to avoid quasi-particles generation and on-chip dissipation.
During the measurement, the transition frequency of the qubit explores a smaller frequency range than
for the DC switching setup, but this frequency scan is performed several times rather than once. Whereas
with the former switching readout method, a large level signal was measured using room temperature
amplifiers, here low noise cryogenic amplifiers are required in order to measure the response of the tank
circuit.
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5.2 The Josephson bifurcation amplifier

For reading out the state of the quantronium, we use the setup invented at Yale University by Michel
Devoret’s group and called the Josephson bifurcation amplifier (JBA), which is based on the dynamics
of a Josephson junction excited by a nearly resonant microwave signal [46, 47]. Its purpose is to use the
readout junction of the quantronium as a tank circuit for measuring the effective state dependent LQk

inductance of the split Cooper pair box.

5.2.1 Principle of the qubit state discrimination

The dynamics of the resonator formed by the readout junction indeed depends on the qubit state because
its dynamics is affected by the state dependent qubit inductance LQk

connected in parallel (see figure
5.2).

At low microwave power, the behavior of the Josephson junction shunted by its on-chip capacitor
is the one of an LC oscillator, the inductance being the one of the junction: L = ϕ0/Ic. Although a
direct measurement of the state dependent resonance could be envisioned, the frequency change between
state 0 and 1 is too small to achieve readout in a time smaller than the relaxation time. Indeed, the
sensitivity of a cryogenic microwave amplifier does not allow a fast measurement (≈ 100ns) of the very
small (≈ −115dBm ∼ 1µV on 50Ω) signal required for the linear regime of the oscillator.

The bifurcation phenomenon, explained below, permits to work with higher signal level compatible
with our amplifiers and gives the sensitivity required.

Indeed, when increasing the driving microwave power, the non-linear regime of the Josephson junction
resonance is explored, and, at large enough driving power, the readout junction undergoes a dynamical
transition to an oscillation state with a larger amplitude and a different phase. This bifurcation phe-
nomenon is identical to the transition of the well known Duffing anharmonic oscillator [48] in classical
mechanics. The two oscillation states for the phase of the junction in the Josephson potential can coexist.
The switching from one dynamical state to the other permits to discriminate between the qubit states
because it is extremely sensitive to the different parameters and in particular to the effective inductance
of the readout junction. It provides a sensitive amplifier suitable single shot readout.

Fig. 5.2 shows the setup of this Josephson bifurcation amplifier. The reflected signal is separated from
the input signal by a directional coupler. Since no other dissipation sources are present, the reflected
voltage Ur has the same amplitude as the incident voltage Ui. Due to the output impedance of the
generator and to the input impedance of the amplifier, the incident microwave voltage is equal to half
the voltage U of the generator. One has thus

V = Ui + Ur =
U

2
+ Ur. (5.1)

The information about the oscillator {L,C} is carried by the phase of oscillation of Ur, related to
the one of V . Depending on the two possible oscillation states of the JBA, two different phases for the
reflected microwave pulses are possible.

We analyze in the next paragraph the zero temperature dynamics of the readout junction under an
AC drive.

5.2.2 Dynamics of the JBA at zero temperature

The problem of an AC driven Josephson junction has been extensively studied theoretically by M.
Dyckman [106, 107, 108], and both experimentally and theoretically by M. Devoret’s group at Yale
University [46, 47]. The next paragraphs, largely inspired from P. Ribero and F. Nguyen internship
reports [109, 110], summarize the most important results relevant to this work.
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Figure 5.2: Principle of the AC readout of the quantronium with a JBA. The qubit has a state dependent
inductive behavior that affects the plasma resonance of the anharmonic resonator formed by the readout
junction in parallel with an on-chip capacitor. At large driving amplitude, this resonator undergoes
a bifurcation between two oscillation states in the Josephson potential which is sensitive to the qubit
state. The signature of this bifurcation and thus the qubit state is encoded in the phase of the reflected
microwave Ur.

Equation of motion for the superconducting phase of a driven junction

Using the constitutive relations of the Josephson junction, of the capacitance and the Kirchoff’s laws,
one gets the equation of evolution of the phase δ across the readout junction:

Z0Cϕ0∂
2
t δ + ϕ0∂tδ + Z0I0 sin (δ) = udc +

U

2
cos(ωdt), (5.2)

where Z0 = 50Ω is the characteristic impedance of the microwave line, and ωd is the frequency of the
driving signal. Introducing the dimensionless variables

α = ϕ0ωp

Z0I0

η = U
2Z0I0

u = udc

Z0I0

ω = ωd

ωp
ωpt = τ,

where ωp =
√

I0/ϕ0C is the plasma frequency of the readout junction, one obtains the reduced equation
of evolution

∂2
τ δ + α∂τδ + sin(δ) = u + η cos(ωτ). (5.3)

This equation shows that the system is the analog of a unit mass particle in a tilted cosine potential
well V (δ) = −uδ− cos (δ) subject to a viscous friction force −α∂τδ, and to an ac driving force η cos(ωτ).
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Monochromatic approximation

The monochromatic approximation consists in developing the solution δ(τ) of Eq. 5.3 in Fourier series,
keeping only the fundamental term oscillating at the driving frequency and neglecting all the contributions
from other multiples or sub-multiples of the excitation frequency. One thus looks for a solution of Eq. 5.3
in the form

δ(τ) = δ0 + ∆ cos(ωτ + φ). (5.4)

This approximation gives analytical relations between the amplitude of oscillation ∆ of the supercon-
ducting phase δ, the phase φ of the oscillations and the driving amplitude η.

Using the following Bessel decomposition,

sin [∆ cos(ωτ + φ] = J0(∆) + 2
∞∑

k=0

(−1)kJ2k(∆) cos [2k(ωτ + φ)] (5.5)

cos [∆ cos(ωτ + φ)] = 2
∞∑

k=0

(−1)kJ2k+1(∆) cos [(2k + 1)(ωτ + φ)] , (5.6)

where Jk, with k = 0, 1, ..., are Bessel function of the first kind, and keeping only the oscillating terms at
ω, Eq. 5.3 can be rewritten as [111]

∂2
τ δ + α∂τδ + sin(δ0)J0(∆) + cos(δ0)

2J1(∆)
∆

δ = u + η cos(ωτ). (5.7)

This linearized equation is the starting point for the analysis of the dynamics.

Analytical determination of the stationary solutions

The stationnary solutions of Eq. 5.7 are given by the system

sin(δ0) =
u

J0(∆)
(5.8)

−∆ω2 + cos(δ0)2J1(∆) = cos (φ) η (5.9)
−α∆ω = sin (φ) η. (5.10)

Combining these equations, a self-consistent equation system for the oscillation amplitude ∆ and the
phase φ is obtained:





∆2
[(−ω2 + Ω2

)2 + α2ω2
]

= η2

φ = arctan
(

αω
Ω2−ω2

) (5.11)

with

Ω2 =
2J1(∆)

∆
cos(δ0). (5.12)

Note that Ω is an effective resonance frequency of the junction in the absence of driving that depends on
the amplitude of oscillation ∆.

A qualitative and noticeable effect of the non-linearity is that Eq. 5.11 can have more than one solution
at large driving amplitude η, as shown on Fig. 5.3.

One notices that below a certain excitation frequency, there is one solution in the domain (A) and
three solutions in the domain (B). As demonstrated in the next section, in domain (B), the solutions
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Figure 5.3: Amplitude of oscillation ∆ of the stationary solutions as a function of the driving force η
and for different reduced driving frequencies (ω = 0.94, 0.935, 0.92, 0.9), given by Eq. 5.11 with α =
1/Q ≈ 1/14. Below a critical frequency ωc, the ∆ curve is multivalued and several solutions are possible.
In region B, there exist two stable stationary solutions, which leads to an hysteretic character of the
dynamics of the oscillator. Depending on its history, the oscillator can bifurcate at η↑ from the lower
branch to the upper one, or at η↓ from the upper branch to the lower one.



5.2. The Josephson bifurcation amplifier 133

{∆1, φ1} of lower amplitude and {∆2, φ2} of higher amplitude are stable, whereas the third one {∆3, φ3}
is unstable. By extension, the notation ∆1 = ∆2 = ∆3 = ∆ and φ1 = φ2 = φ3 = φ in domain (A) is
adopted.
For a given ω, the smaller and larger driving amplitudes leading to exactly two solutions are called the
smaller and larger bifurcation driving amplitudes η↓ and η↑, respectively. Note that for both dynamical
states, the phase δ stays confined in one well of the Josephson potential.

5.2.3 Solution stability and dynamics in the quadrature phase-space

The monochromatic solutions of Eq. 5.3 can also be represented in the frame rotating at ω, i.e. in the
space of the in-phase and quadrature components of δ: {p, q} = {∆sin(φ), ∆cos(φ)}. This phase space
gives a better visualization of the dynamics than the space {δ, dδ/dt} since {p, q} are slow variables.

Within this frame, we have

δ(τ) = ∆ cos (ωt + φ) = cos(ωτ)q − sin(ωτ)p
δ̇(τ) ≈ −ω [q sin(ωτ) + p cos(ωτ)]

δ̈ = −ω2δ − 2ω [q̇ sin ωτ + cos(ωτ)ṗ] . (5.13)
(5.14)

Developing the potential in Bessel functions and retaining only terms at the driving frequency, Eq. 5.3
writes:

q̇ = F1(p, q) =
∂h

∂p
− α

2
q (5.15)

ṗ = F2(p, q) = −∂h

∂q
− α

2
p (5.16)

where:
h(p, q) =

ω

4
(p2 + q2) +

1
ω

J0(
√

p(t)2 + q(t)2) +
η

2ω
p. (5.17)

The zeros of the effective velocity field: ~v = {ṗ, q̇} give the stationary solutions (see Fig. 5.4). Note that
the speed field is also zero at a third extremum which is the dynamical saddle point.

The stability of a stationary solutions xstat = {pstat, qstat} is characterized by studying the charac-
teristics of transient solutions in the vicinity of a stationary solution. This is achieved by linearizing the
system 5.15 in the vicinity of xstat and studying the eigensystem of the Jacobian matrix J given by:

J({pstat, qstat}) =
[ ∂F1

∂p
∂F1
∂q

∂F2
∂p

∂F2
∂q

]
(5.18)

The stability is given by the real part of the eigenvalues λ of J . The stationary solution is unstable
for Re{λ} > 0; in this case there exist transient perturbations around this stationary solution that
diverge exponentially. On the contrary, the stationary solution is stable (and called ”attractor”) for
Re{λ} < 0. In this case any transient regime coming from a small perturbation around the stationary
solution is exponentially damped: if Im{λ} = 0, the system converges exponentially to the attractor ,
and if Im{λ} 6= 0, the system is spiraling to the attractor. In both cases, the characteristic damping time
is given by 1/ωpRe(λ).

Depending on the parameters (ω, α, η) these different situations can occur. Typically, for small driv-
ing amplitudes, a single attractor exists. As the driving amplitude increases, a pair of stable-unstable
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Figure 5.4: Amplitude of the speed field ‖~v‖ =
√

ṗ2 + q̇2 (increasing from black to white) in the {p, q}
phase space for α = 0.07, ω = 0.91 and η = 0.02 (left panel), η = 0.09 (midle panel) and η = 0.12 (right
panel). The stationary solutions are represented by black dots and the separatrix by a black line (middle
graph). Courtesy of P.Ribero.

solutions is created. At the bifurcation points the unstable solution and one of the stable solutions are
identical which means that one of the eigenvalues of J is zero. The amplitude ∆ of oscillation at the
bifurcation points are thus given by

det(J) = ω2α2 +
(

ω2 − 2J1(∆)
∆

)2

+ J2(∆)
(

ω2 − 2J1(∆)
∆

)
= 0 (5.19)

The driving amplitude η↓ and η↑, for which the bifurcation occurs are computed from ∆ using Eq.
5.11 and shown on Fig. 5.5 . A comparison with the result of the Dykman approach [108] which considers
a quartic potential instead of a cosine one, is also shown.

In the {η, ω} space the bifurcation points B↓ = {η↓, ω} and B↑ = {η↑, ω} generate two lines (see
Fig.5.5) ending at a critical point C {ηc, ωc} that corresponds to a triply degenerated solution. This
point is completely determined by the quality factor Q, and can be calculated in the Dykman framework
(quartic approximation of the cosine potential) : the reduced frequency of the point C is ωc = 1−√3/2/Q.

It is interesting to note that the damping time of the transient regime depends both on the quality
factor (like for a harmonic oscillator) and on the detuning ω = ωd/ωp. This is an effect of the non-linearity
of the Josephson potential. When the working point comes closer to the critical point C, the damping
time of the transient regime diverges.

On Fig. 5.5, the two bifurcation lines delimit two regions (A) and (B) where one or three dynamic
solutions exist respectively.

In region (B) (2 stable and 1 unstable solutions) one can define in the {p, q} phase space, the two
regions corresponding to initial conditions {q(0), p(0)} evolving towards one of the two stable solutions.
The separatrix is then defined as the boundary between these two regions. Note that the unstable solution
is located on the separatrix.
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Figure 5.5: Bifurcation lines calculated from Eq. 5.19 (solid line) or from Dykman’s formalism (dashed
line) with a qulaity factor of 14. The error introduced on η↑ by the cubic approximation is 4% maximum
in the range plotted here. The bifurcation lines (η↑, η↓) divide the plane {η, ω} in two regions. In region
A, the dynamics of the system has a single solution. In region B, it has three solutions: two stable and one
unstable. The two bifurcation lines end at a spinode point C, which corresponds to a triply degenerate
solution.
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Effect of a parasitic inductance

The effect of a parasitic inductance between the 50Ω line and the JBA is now considered. As we’ll see in
section 5.3, such a parasitic inductance was always present in the experiment and affects the location of
the bifurcation points. However, the stationary solutions and the bifurcation points can still be calculated
analytically.

I0 V=U
r
+U

i
δ U

i
= U/2

U
r

50 Ω
I
J

C

L

U

Figure 5.6: Readout circuit with a parasitic series inductance from the 50Ω transmission line to the JBA.

Within the monochromatic approximation, Eq. 5.3 is now replaced by

αβ∂3
τ δ + ∂2

τ δ + α [1 + β(J0(∆) + J2(∆))] ∂τδ +
2J1(∆)

∆
δ = η cos(ωτ) (5.20)

where β = L/LJ , and the stationary solutions are the roots of the system





η2 =
(

2J1(∆)
∆ − ω2

)2

∆2 + α2Ω2
(
1 + β(J0(∆) + J2(∆))− ω2β

)2 ∆2

φ = αω(1+β(J0(∆)+J2(∆))−ω2β)
2J1(∆)/∆−ω2

(5.21)

This system differs from system 5.11 in the sense that the effective friction depends now on the
oscillation amplitude ∆. Following the same method as in section 2.2, we derive from the Jacobian of the
system an equation for the driving amplitude at the bifurcation points. On Fig. 5.7, the two cases, with
and without parasitic inductance are compared. One can notice that for typical experimental β values
(β ≈ 10 for sample B), the effect of the parasitic inductance is quantitatively important: it shifts ωc by
several percent.

5.2.4 Theory at finite temperature

Up to now, we have only studied the deterministic dynamics of the JBA at zero temperature. However,
the JBA is connected to a 50Ω environment thermalized at the base temperature of the cryostat.

This 50 Ω environment produces a thermal voltage noise that induces fluctuations of the phase δ.
When δ oscillates in mode (1) in domain (B) at a point P0 = {η, Ω} close to the bifurcation line B↓,
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Figure 5.7: Bifurcation lines with parasitic inductance (full line, β = 10) and without (dashed line). The
spinode point C is moved to higher frequencies by the presence of the parasitic inductance.
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these thermal fluctuations can activate the dynamical switching from the oscillation mode (1) to the
oscillation mode (2). This switching phenomenon is a stochastic process characterized by a transition
rate Γ that depends on temperature and on the distance between P0 and B↓. The aim of this paragraph is
to calculate Γ. We first write the stochastic differential equations of motion of the phase δ and derive then
the corresponding Fokker-Planck equation that describes the time evolution of the probability distribution
of {∆, φ}, both approach being suitable for numerical calculations. Then, we introduce the Dykman’s
approximation which give analytical results for the rate Γ.

Langevin equation for the superconducting phase

The thermal noise is taken into account by adding a Johnson current noise source iR(t) in parallel with
the 50 Ω impedance of the environment of the JBA. This source obeys the fluctuation-dissipation theorem

< iR(t) > = 0 (5.22)

< iR(t)iR(t′) > =
2kBT

R
δ(t− t′). (5.23)

and equation 5.2 is transformed into the Langevin equation

Z0Cφ0∂
2
t δ + φ0∂tδ + Z0I0 sin(δ) = U cos(ωt) + Z0iR(t), (5.24)

or in reduced units into
∂2

τ δ + α∂τδ + sin(δ) = η cos(Ωτ) + ξ(τ), (5.25)

where < ξ(τ)ξ(τ ′) >= 2θδ(τ − τ ′) and θ = kBTωp/(RI2
0 ) is the reduce temperature. As previously, we

describe the motion using the quadratures {p, q}. The passage to the slow varying variables p and q can
be seen as an average of the dynamics within a period of the driving force:

ξP (τ) =
1
ω

τ+ π
ω∫

τ− π
ω

cos (ωτ ′)ξ(τ ′)
dτ ′
2π
ω

(5.26)

ξQ(τ) = − 1
ω

τ+ π
ω∫

τ− π
ω

sin (ωτ ′)ξ(τ ′)
dτ ′
2π
ω

. (5.27)

By performing this averaging within the monochromatic approximation (as in Eq. 5.15), the quadra-
ture components ξP (τ), ξQ(τ) appear in the Langevin Equation

q̇(τ) =
∂h

∂p
(τ)− α

2
q(τ) + ξQ(τ) (5.28)

ṗ(τ) = −∂h

∂q
(τ)− α

2
p(τ) + ξP (τ). (5.29)

For large times compared with the period 2π
ω , the random forces {ξQ, ξP } can be treated as two indepen-

dent white noise distributions:

〈ξP (τ)〉 = 〈ξQ(τ)〉 = 〈ξP (τ)ξQ(τ ′)〉 = 0 (5.30)

〈ξP (τ)ξP (τ ′)〉 = 〈ξQ(τ)ξQ(τ ′)〉 =
θ

ω2
δ(τ − τ ′). (5.31)
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Probability distribution of the solutions: the Fokker-Planck equation

The Langevin approach gives an intuitive picture of the effect of the fluctuations but it can be useful to
formulate the problem in the Fokker-Planck framework. The Fokker-Planck equation is a deterministic
differential equation for the evolution of the density of probability ρ(p, q, τ) for the system to be at the
point (p, q) at time τ given an initial distribution ρ(p, q, 0). This probability is obtained by considering
different particular realizations of the same physical system, i.e. different realizations of the noise. The
Fokker-Planck equation has a one to one correspondence with the Langevin equation and can be deduced
from it by multiple methods (see for instance [112]). The potential term gives a deterministic contribution
and the stochastic noise gives rise to a diffusion term whose coefficient is related to the correlation function
of the noise.

The dynamics is then a competition between the deterministic term, which favor the localization of
the probability around the stable solutions, and the diffusion that spreads the probability:

∂ρ(p, q, τ)
∂τ

= −~∇. (~v(p, q)ρ(p, q, τ)) +
θ

2ω2
∇2ρ(p, q, τ) (5.32)

where ~v = (ṗ, q̇).

Transition Rates between stable solutions

We assume the system to be in region (B) where two stable stationary solutions exist. At zero temper-
ature, any non-stationnary solution converges to one of the attractors depending on which side of the
separatrix the initial conditions are. For small but finite T, one expects trajectories to fluctuate around
the attractors which gives the possibility of passing from the basin of attraction (1) to the bassin of
attraction (2).

The transition rate from one attractor to the other can be calculated within the Langevin formalism by
numerically integrating Eq. (5.28) several times with different initial conditions {p(0), q(0)} and different
realizations of the noise [110].

An equivalent result can be obtain by solving numerically the Fokker-Planck equation 5.32 [109].
However, as we would like analytical formulas for the transition rate, we now look at the results

obtained in Dykman’s framework, which consists in considering only the most probable path from one
attractor to the other in the phase space.

5.2.5 Dykman’s approach of the bifurcation

Dykman’s results [108], reported here, are valid for the case of the non-linear Duffing oscillator (i.e. with
a quartic potential). The analytical calculation of Dykman consists in expanding the Jacobian(5.18) at
first order in η− η↑, and in recasting the problem in a one-dimensional Fokker-Planck equation along the
direction of the most probable path of escape. This framework leads thus to a saddle approximation in
the metapotential defined by the velocity field.

Expression of the bifurcation rate

Using Kramer’s method for solving this one-dimentionnal equation, Dykman obtains the transition rate
between the two attractors.

Γ =
ωA

2π
exp− ∆U

kBT
,

where ∆U is the barrier height along the most probable path and ωA is the oscillation frequency
around the attractor and along the escape path. These two quantities are given by
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∆U

Ej
=

64
9
√

3
ω3(1− ω)

[
1−

(
η

η↑

)2
]3/2

(5.33)

ωA

ωp
=

4
3
√

3
Q(1− ω)

[
1−

(
η

η↑

)2
]1/2

(5.34)

where Ej is the Josephson energy of the junction.
One notice that for a fixed driving frequency, the expression of the rate is formally identical to the

switching rate of a DC current biased junction. The critical current in the DC case is replaced here by
the bifurcation current Ib = η↑Ic, and the plasma oscillation frequency in the well of the tilted potential
is replaced by the frequency of the small oscillations ωA in the metapotential.

The bifurcation probability during a microwave driving pulse of duration τ is given by

Pb = 1− e−Γτ ,

and is plotted on figure 5.8 as a function of ω for parameters close to those used in our experiment. We
define ω50%(η) by the equation Pb(ω50%, η) = 0.5.
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Figure 5.8: Sensitivity of the JBA in Dykman’s framework. The parameters are set to η = 0.12, kBT/Ej =
0.0025 ( which corresponds to T = 50mK for a 1µA critical current junction) and Ej = 0.87, Ec = 0.655
(sample A). The reduced driving frequency here is ω = ωd/ω0

p where ω0
p stands for the plasma frequency

of the JBA when the qubit is in state 0. Full line: theoretical bifurcation probability for the ground state
of the qubit and as a function of ω. The inverse of the maximum slope give the frequency sensitivity
which corresponds to 0.33% of the plasma frequency. Dashed line: expected bifurcation probability curve
for state |1〉.

Sensitivity of the JBA to a parallel inductance

For evaluating the sensitivity to the qubit inductance, one notice that ∆U is only a function of the
reduced frequency of driving ω and of the reduced microwave driving amplitude η. Thus, at η = cst and
ωd = cst, the only effect of the qubit to the bifurcation rate appears by the change of ωp and thus ω.
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The inverse of the slope of the Pb(ω) curve at ω50% defines the frequency sensitivity of the bifurcation
and can be calculated for different points (η, ω50%(η)). It is found to be weakly dependant on η or
equivalently on ω50%(η). There is thus no optimal driving frequency for operating the JBA as far as the
sensitivity of the device itself to the qubit state is concerned. However, we’ll see in the experimental
section that experimental constrains impose the choice of the driving frequency.

For the parameters considered: kBT/Ej = 0.0025 (which corresponds to T = 50mK with a 1µA
critical current junction), and η = 0.12, the frequency sensitivity is equal to

∆ωp

ωp
≈ 0.33%,

Noting that
∆ωp

ωp
=

∆LJBA

2LJBA
=

LJBA

2
1
L‖

,

where L‖ is the parallel inductance added to the JBA, and LJBA = ϕ0/Ic, the frequency sensitivity
can be recasted into a parallel inductance sensitivity

∆(
1
L‖

) =
∆ωp

ωp

2
LJBA

≈ 16(µH)−1,

with LJBA = 0.39nH, corresponding to a junction with a 1µA critical current.
We now consider the case of a quantronium connected in parallel with the JBA. For the sample A of

this thesis (Ej = 0.87K ± 1% and Ec = 0.655K ± 1%) we have L1
Q = −990nH ±10nH and L0

Q = 50nH
±0.5nH, which leads to a relative change of 1/L‖ ≈ 21(µH)−1, which is above the sensitivity of the JBA.
The expected bifurcation curve for both states 0 and 1 are plotted on Fig. 5.8. The maximum contrast
between the two bifurcation curves is ≈ 90% for the set of parameters considered.

For a given sample, the sensitivity of the JBA to a plasma frequency change is only given by the
temperature, and gets better as T decreases like for any thermally activated phenomenon.

An interesting questions then arises: what happens at sufficiently low temperatures compared to the
plasma frequency of the JBA (1.5GHz for the sample B, equivalent to 60mK), what are the caracteritics
of the quantum regime of the bifurcation.

5.3 Experimental characterization of the JBA

First, I would like to thank M.Devoret, I.Siddiqi and F.Pierre for advices and informations which were
extremelly useful for building up this experiment, and for providing me with the sample whose results
are reported here (sample B).

Experimental Setup

For characterizing the JBA and measuring the quantronium state we have used the experimental setup
described on Fig. 5.9. This setup is similar to the one used at Yale by M. Devoret’s group and in Ref. [113]
and has the additional possibility to perform both AC switching and DC switching experiments on the
same sample using a bias tee.

The plasma frequency of the sample was lowered in the 1 − 2GHz bandwidth by adding an on chip
capacitor ≈ 30pF in parallel to the junction. In this bandwidth, low noise cryogenic amplifiers are
available, with the appropriate circulators. It is also easier to control the macroscopic electromagnetic
environment in this frequency range than at higher frequencies, and in addition, thermal population of
the resonator is still negligible (~ωp/kBT ≈ 3).
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For generating and demodulating the microwave pulses, the output of a microwave generator (Anritsu
MG3692) is split in two channels. One of the channels is used for the homodyne detection of the reflected
signal on the JBA. The other one is mixed into Minicircuit ZEM-4300MH mixers (similar mixing setup
than in section 3.3) with trapezoidal pulses coming from an arbitrary waveform generator (Agilent 33250).
The obtained microwave pulses are then sent to the microwave excitation line which is strongly attenuated
in order to use the full dynamic range of the microwave generator, and thus increase the signal to noise
ratio at the level of the sample. At 20mK, this line is coupled to the main line connected to the sample
with a directionnal coupler (-16dB coupling).

This main line is strongly filtered to get a working bandwidth of 1.2 − 1.8GHz, and thus avoid any
spurious noise that could excite the qubit. A bias tee provides a DC coupling to the sample suitable
for achieving DC switching experiments (see chapter 2). A microwave excitation pulse incident on the
sample is completely reflected on the JBA due to the absence of dissipation. The reflected pulse goes
first through two circulators at 20mK. The circulators are non-symmetrical components: they permit the
signal to go from the sample to the amplifier but any noise going through the reverse path is absorbed
in a 50Ω load. These circulators are equivalent to Faraday rotators in optics. The thermalized noise
generated by this 50Ω resistor is emitted to the sample, and constitute the noise source of the Langevin
equation in Eq. 5.24. As they use magnetic material, a proper magnetic shielding is required in order to
limit much as possible parasitic magnetic fields on the quantronium circuit.

The reflected signal on the sample is then amplified in a cryogenic amplifier (Quinstar L-1.5-30H)
having a very low noise temperature: TN = 2.4K at 1.5GHz. A third circulator complete the total
isolation of the line to 60dB which strongly attenuate the room temperature noise in the bandwidth
1− 2GHz.

A second stage of amplification is required and provided by an amplifier (Miteq AFS4-01200160-15-
15P-6) placed at room temperature. A 6dB attenuator placed between the two amplifiers suppresses
the effect of any spurious standing wave due to possible impedance mismatch. The amplified signal goes
through a bandpass filter K&L (5BT-1000/2000) centered at a tunable frequency and having a bandwidth
of about 100MHz in order to suppress the main part of the noise generated by the amplifier and which
could saturate the demodulation card. This demodulation card (Analog Device AD8346) provides the
in-phase and quadrature components of the reflected microwave with respect to the carrier reference.

Characterization of the JBA under continuous microwave excitation

The sample considered in the following was fabricated at Yale University by F.Pierre and has the following
parameters: L0 ' 0.39nH, C = 32pF and Q ' 14. The first experiment performed was to characterize
the bifurcation of the JBA under a continuous microwave excitation with the qubit in its ground state
(see Fig. 5.10).

For this purpose, a CW signal is applied to the sample, and the phase of the reflected signal is
measured as a function of the frequency, either with the demodulation card or with a network analyser
(Anritsu 37247B).

At low driving amplitude we can observe the plasma resonance of the readout circuit and the associated
phase shift (see figure 5.10). When increasing the microwave power, the phase shift of the plasma
resonance gets steeper and steeper, as the superconducting phase starts to explore the nonlinear region
of the Josephson potential. The bifurcation occurs above a certain microwave amplitude where the phase
of the reflected signal jumps suddenly at a frequency which depends on the driving amplitude.

The theory does not fit the data. First the total phase shift when crossing the plasma resonance is
not 360◦ as expected for an LC oscillator, because of parasitic reflections due to impedance mismatches
on the measuring microwave line. Second, it appeared that the critical point C was higher in frequency
than the theory predicts: ωc ≈ 0.965 instead of ≈ 0.94. We attribute this discrepancy to a parasitic
inductance between the 50Ω line and the JBA.
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Figure 5.9: Experimental setup. The quantronium circuit (bottom left) is coupled through a bias tee to
a DC switching measuring setup (left) and to an AC measuring setup (right). The AC measuring setup
has a strongly attenuated microwave excitation line (middle), which is coupled to the return line with a
directional coupler. The probing pulses come from a continuous microwave source mixed with trapezoidal
pulses. The return line has several circulators which prevents the room temperature noise and the input
amplifier noise to go down the line. A tunable filter suppress the noise outside the bandwidth of interest
before an homodyne detection gives the I −Q components of the reflected microwave pulses.



144 Chapter 5. Towards a Non Demolition measurement of the quantronium

1.2 1.3 1.4 1.5 1.6

-200

-150

-100

-50

0

50

100

 

 

  
R
e
fl
e
c
te
d
p
h
a
s
e
 (
°)

Frequency (GHz)

Figure 5.10: Reflected microwave phase as a function of the driving frequency and for different microwave
powers (from −35dBm to −15dBm at the output of the generator, which corresponds to ≈ −105dBm to
≈ −85dBm at the sample level, taking into account the attenuation along the line). At low microwave
power, one can observe the phase shift associated with the plasma resonance (right most curve). When
the microwave power is increased, the phase shift gets steeper and steeper, and at a certain microwave
amplitude related to the critical excitation amplitude η↑ introduced in section 5.10, one observe discrete
phase jumps. The parameters of this sample (sample B) are L0 ' 0.39nH, C = 32pF and Q ' 14,
measured by fitting the reflected phase curve at low microwave driving amplitude.
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Parasitic inductance

In the experimental implementation of the JBA, it is difficult to avoid a series inductance L between
the 50 Ω line and the readout circuit (see Fig. 5.6). Indeed, in our setup, the chip was connected to the
measuring line through a few millimeter-long metallic wires with an inductance of order 1nH/mm. Using
the theoretical formula of section 5.2.3, it is possible to explain the experimental data at least in the
vicinity of the critical point. Fig. 5.11 shows the best fit which leads to L ' 4nH, or equivalently β ' 10.
This fit is not quantitative at large driving amplitude possibly due to another spurious inductance in
series with the capacitance C.
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Figure 5.11: Measured reflected phase and comparison with theory: without parasitic inductance (white
line or red) and with parasitic inductance (black).

These first measurements raise the problem of implementing better controlled environment for Joseph-
son elements, in the frequency range of several GHz. It raises also the problem of achieving proper
reflectometry measurements in the microwave range. All our preliminary work on the JBA is limited
to a qualitative agreement with the theory, most probably because of parasitic microwave elements in
the circuit. In the next experiments, dedicated microwave circuit boards and connectors will be used, in
order to improve this reflectometry measurement.

Pulsed measurements

After having characterized the JBA in a CW excitation mode, we discuss now the pulsed mode.
As we want to use this anharmonic oscillator under stationary conditions the readout time needs to

be longer than the characteristic transient decay time of the readout junction oscillator. In the linear
regime, this time is given by the quality factor of the oscillations Ttrans = Q/ωp ≈ 10ns. The quality
factor has thus to be low enough for a fast readout. On the other hand, the final goal being to readout a
quantum bit, the readout time has to be much smaller than the relaxation time of the qubit T1 which is
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expected to be in the µs range. As a consequence, we will study the bifurcation probability of the JBA
during microwave excitation pulses of duration around ≈ 100ns.

These readout pulses, shown on Fig. 5.13 are constituted of two parts. The first part aims at inducing
or not the bifurcation from attractor (1) to attractor (2) whereas the second part is a sustain using
the hysteresis for maintaining the dynamics on the same state during the averaging of the demodulator
output (”latching” mode).

bifurcation

NO bifurcation

Threshold

Figure 5.12: Oscillogram of one quadrature in persistent mode with a time base of 50ns per division. The
microwave pulse used is shown on Fig. 5.13. It extends from the 2nd to the 7th division. The bifurcation
occurs or not between the 3rd and the 5th division. The threshold of a counter is tuned in order to detect
the jump of the quadrature.

We have first measured the bifurcation probability of the JBA, as a function of the microwave ampli-
tude and for fixed frequency and temperature (see Fig. 5.13). The histograms of the reflected microwave
phase are also plotted on Fig. 5.13.

The temperature study of the bifurcation phenomenon is similar to the one of the DC switching of a
Josephson junction and is described on Fig. 5.14. However, it was not possible to get a quantitative agree-
ment with the Dykman framework. We attribute this discrepancy to the parasitic microwave elements
already mentioned.
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Figure 5.13: Left: bifurcation probability of the JBA as a function of the microwave power for a fixed
frequency. Right: histograms of the reflected phase for 0% bifurcation rate (triangles), 50% bifurcation
rate (circles) and 100% bifurcation rate (squares). Each data point corresponds to an average of both
quadratures over the last 50ns of the probing pulse. The width of these histograms is determined both
by the noise characteristics of the amplification setup and by the averaging process. The frequency is
1.42GHz and the temperature is ≈ 25mK. Inset: envelope of the microwave probing pulse.
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Figure 5.14: Temperature study of the bifurcation phenomenon. As the temperature decreases, the mean
microwave amplitude required for 50% bifurcation probability increases, and the slope of the bifurcation
curve increases, as expected. However, there is no quantitative agreement with Dykman’s theory.



5.4. Measurement of the qubit with a JBA 149

5.4 Measurement of the qubit with a JBA

Despite it was not possible to explain quantitatively the behavior of the JBA, we can use this detector
for measuring the quantum state of the quantronium. The first advantage compared to the DC switching
method is that the repetition rate is higher ≈ 1MHz leading to faster data acquisition rates.

By applying long microwave excitation pulses on the qubit gate, the resonance line was found at
8.205GHz for the sample B. The dependance of the transition frequency with Ng and δ allows one to
determine the parameters Ej = 0.397K ± 1% and Ec = 1.12K ± 1% for sample B, and to obtain the
expected effective inductances of the qubit for state 0 and 1:

1
Li

Q

=
1
ϕ2

0

∂2Ei

∂δ2
,

L1
Q ≈ −200nH and L0

Q ≈ +150nH at Ng = 1/2.

Fidelity of the bifurcation readout

The bifurcation probability curves were measured for the two qubit states 0 and 1, as a function of the
microwave amplitude. The experimental results are plotted on Fig. 5.15. The maximum contrast between
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Figure 5.15: Bifurcation probability curves of the JBA for the ground state (squares) of the quantronium
and after a π pulse (circles), for a microwave readout frequency of 1.43GHz. The maximum contrast is
≈ 50%.

state 1 and 0 is ≈ 50%.
The linewidth of the resonance line is sufficiently small (≈ 2.5MHz) to permit time resolved experi-

ments.
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Rabi oscillations

The results of a Rabi experiment (see section 3.1.2) are plotted on Fig. 5.16.

0 20 40 60 80 100 120 140

0.2

0.3

0.4

0.5

0.6

0.7

 

 

Microwave pulse duration (ns)

B
if
u
rc
a
ti
o
n
 p
ro
b
a
b
ili
ty

Figure 5.16: Rabi oscillations of the quantum state of the quantronium, measured with the JBA. The
maximum contrast is ≈ 50%.

One can notice the decrease of the contrast of the Rabi oscillations as the duration of the microwave
pulse increases. This phenomenon is related to the decoherence during driven evolution as discussed in
section 4.2.5.

Coherence time measurements

The Ramsey and Echo times (see section 4.3) were measured on the sample B (see Fig. 5.17). The fitted
decays give the values of T2 ≈ 140ns and Techo ≈ 300ns. These characteristic times are of the same order
of magnitude than for previous samples.

Back-action of the readout on the qubit

During the readout, the phase δ across the qubit oscillates at ωd on a range of about 2 rad before the
bifurcation and ≈ 3 rad after the bifurcation. As a consequence, the transition frequency of the qubit is
modulated at ωd between ν01 = 8.3GHz and ≈ 7GHz. The qubit frequency does not explore a frequency
range as large as in the case of the DC switching, but the modulation lasts during ≈ 100ns. The possibility
of level crossings with spurious resonance is then also possible, which could induce relaxation of the qubit
state, and explain partially the limited visibility of the readout.
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Figure 5.17: Left: Ramsey experiment. Right: echo experiment. The coherence times T2 and Techo are
measured by fitting the decay of the Ramsey fringes and of the echo signal respectively (see section 4.3).
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5.4.1 Characterization of the QND behavior of the readout

Excitation and relaxation induced by the readout not only corrupt the measurement response but also
introduce projection errors on the final qubit state after the measurement is completed. In order to
evaluate the error made during the projection, we define the QND fraction q1 (resp. q0) for state |1〉
(resp. |0〉) as the probability for the qubit to stay in state |1〉 (resp. |0〉) after the measurement knowing
that it was in the same state before. For determining these QND fractions, we have achieved a two
readout pulse experiment. The qubit is prepared in state |1〉 (resp. |0〉), by applying a π pulse (resp. no
π pulse), and the bifurcation probability of the JBA is measured during two adjacent probing pulses A
and B (see Fig. 5.18).

The difficulty for evaluating the QND fraction comes from the finite sensitivity of the readout which
induces errors on the measurement results. In order to extract the QND fraction of the measurement,
we have used a simple model which involves the 8 probabilities

PA(|i〉, r, |f〉)
for getting the result r (r = 0 or 1) during pulse A, starting from state |i〉 before pulse A and letting the
qubit in state |f〉 after pulse A. These probabilities are related to the measured bifurcation probabilities
PA(|i〉, 1) during the readout pulse (A), the qubit being prepared in state |i〉 before pulse (A), and to
PB(|i〉, 1) the probability of bifurcation during pulse B knowing that the qubit was prepared in state |i〉
before pulse A:

PA(|i〉, 1) = PA(|i〉, 1, |0〉) + PA(|i〉, 1, |1〉) (5.35)
= 17.5± 1%(i = 0) (5.36)
= 61± 1%(i=1), (5.37)

(5.38)

PB(|i〉, 1) = (PA(|i〉, 1, |1〉) + PA(|i〉, 0, |1〉))pB(|1〉, 1) (5.39)
+(PA(|i〉, 1, |0〉) + PA(|i〉, 0, |0〉))pB(|0〉, 1) (5.40)

= 13± 1%(i = 0) (5.41)
= 28± 1%(i = 1), (5.42)

(5.43)

where pB(|i〉, 1) is the probability of bifurcation during the readout pulse B when the qubit is prepared
in state |i〉 before pulse B .

Ideally, pB(|0〉, 1) and pB(|1〉, 1) should be equal to PA(|0〉, 1) and PA(|1〉, 1) respectively, if the two
pulses had the same microwave amplitude. In practice the amplitude of the second pulse is slightly lower
because of a parasitic interaction between very close pulses in the mixing setup.

We observe indeed experimentally that PB(|0〉, 1) < PA(|0〉, 1). We assume that this discrepancy is
only due to the reduction of the microwave amplitude and that no excitation occurs during readout pulse
A. One thus obtains

pB(|0〉, 1) = PB(|0〉, 1) = 13± 1%.

We calculate then the value of pB(|1〉, 1) from the probability shift ∆p = pB(|0〉, 1) − PA(|0〉, 1) =
−4.1%, which gives

pB(|1〉, 1) = PA(|1〉, 1) + ∆p = 57± 1%.

One can notice that this probability shift corresponds to a microwave power reduction of ≈ 0.02dB (0.2%
in amplitude - see Fig. 5.15).
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Figure 5.18: Measurement of the QND fraction of the quantronium read out with the JBA. Top panel:
the qubit is prepared in state 1 (resp. 0) by applying a π pulse (resp. no π pulse) on the qubit gate. Then
two adjacent probing pulses A and B are applied. The two successive demodulator voltages are averaged
during the last 100ns of the sustain part of the pulses. Middle panels: corresponding histograms for each
readout pulse. A properly tuned threshold (dashed vertical line) leads to the boolean responses of the
readout. Bottom panel: corresponding 8 probabilities of getting two successive responses (rA, rB).
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Then, one obtains two more equations by considering the probabilities of the system to bifurcate
during both pulses A and B, PA,B(|i〉, 1, 1), which are related to the P (|i〉, r, |f〉) probabilities by

PA,B(|i〉, 1, 1) = P (|i〉, 1, |0〉) pB(|0〉, 1) + P (|i〉, 1, |1〉) pB(|1〉, 1) (5.44)
= 3.5± 1% (i = 0) (5.45)
= 19± 1% (i = 1). (5.46)

(5.47)

The last two equations come from the normalization of the P (|i〉, r, |f〉). By inverting the linear
system obtained, one gets the QND fraction of each state:

q1 = PA(|1〉, 0, |1〉) + PA(|1〉, 1, |1〉) = 34± 2% (5.48)
q0 = PA(|0〉, 0, |0〉) + PA(|0〉, 1, |0〉) = 100 + 0− 2% (5.49)

(5.50)

Note that the q0 result is consistent with the assumption made about the absence of excitation by a
readout pulse. Fig. 5.19 summarizes a single measurement.
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Figure 5.19: Calculated QND fraction of the readout and probabilities P (|i〉, r, |f〉) by assuming that the
readout does not induce excitation of the qubit state.
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Finally, one can also calculate a QND fraction corrected from the relaxation that would occur during
the time of the first pulse if it was not applied. As the relaxation time is 1.3µs and the duration of the
probing microwave pulse is 300ns, the expected loss is 1 − exp (−t/T1) = 0.20. The QND fraction for
state 1 corrected from this relaxation is thus 43± 1%. This value has therefore to be taken with caution
since there is no proof that relaxation during free evolution adds independently to the relaxation induced
by the readout alone.

5.5 Conclusion

A new dispersive measurement of the quantronium has been implemented. This setup uses the readout
junction of the quantronium as a tank circuit whose dynamics is affected by the effective inductance of
the qubit. At large driving amplitude, the bifurcation phenomenon provides a sensitive detection scheme
of the qubit state which is sufficient to perform simple manipulation of the quantum state of the qubit.
This readout scheme has several advantages compared to the DC switching one used in chapter 2,3, and
4. First, the absence of on-chip dissipation permits higher repetition rates. Second, this method keeps
the qubit in the vicinity of the optimal working point, preserving it from possible sources of relaxation.
Finally, this setup is partially QND: we have measured a QND fraction q1 = 32±2% for state |1〉 assuming
q0 = 100 for state |0〉. The perspectives are now to improve the microwave environment of the sample,
in order to perform properly microwave reflectometry measurements. The use of microwave dedicated
substrates and connectors will suppress the parasitic inductance previously discussed. A better controlled
microwave environment of the sample should then lead to a quantitative understanding of the JBA. An
increase of the filtering and attenuation of the microwave excitation line should permit to observe and
characterize the crossover from the classical to the quantum regime of this non-linear oscillator.
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Chapter 6

Conclusions and perspectives

During this thesis, the quantum state of a superconducting bit has been coherently manipulated, demon-
strating that any rotation on the Bloch sphere can be achieved. In addition the use of composite pulse
techniques, developed from procedures in NMR, has permitted a decrease in the sensitivity of an operation
to systematic errors and to slow errors and has thus increased the rotation accuracy.

The phenomenon of decoherence was fully characterized during both driven and free evolution of
the qubit. During the free evolution the concept of the optimal working point was validated. It was
demonstrated that the low frequency charge noise, probably of microscopic origin, was the dominant
source of dephasing for this mixed charge phase qubit and the possibly non-gaussian behavior of this
charge noise was put into light. In order to improve the phase coherence one could increase the ratio
Ej/Ec by increasing the size of the Josephson junctions or by adding in parallel to the junctions a
capacitor. Further research on the material properties will also give information about the source of this
charge noise and its location (substrate, aluminum oxide, ...).

The study of relaxation did not provide a definite conclusion as to whether it is the microscopic or
macroscopic nature of the electromagnetic environment that is responsible for it. However, observation of
non-reproducible level crossings, indicates that the microscopic environment could contribute significantly
to relaxation for particular working points. A special care must then be taken during the fabrication
process in order to minimize the probability of defects that are probably involved in these level crossings,
and which are similar to the ones observed at Martinis’ group [50, 49]. On the other hand, a better
control of the macroscopic electromagnetic environment could be relatively easily achieved by the use
of superconducting cavities, which decouples the qubit from the measuring and biasing lines outside the
resonances frequencies [105, 102]. It has also become clear that the impact of the parasitic junction due
to the shadow evaporation process needs to be better understood [114].

The study of decoherence during the driven evolution of the qubit demonstrated that this phenomenon
was responsible for random errors which diminish the accuracy of any operation. The accuracy of the
manipulation has been estimated for a π pulse to be ≈ 1%, which, compared to the most optimistic value
needed for operating quantum error correcting codes (≈ 10−4), is far from being sufficient. The coherence
time needs to be increased at least by two orders of magnitude.

The evaluation of the precision of a rotation is presently limited by the readout fidelity. Indeed, the
first readout setup which used the macroscopic quantum tunneling of a Josephson junction suffered from
several drawbacks: first, an extra relaxation appeared during the readout process and, second a new
phenomenon consisting of Landau-Zener crossing during the tunneling of the superconducting phase,
modifies drastically the tunneling rate of the readout junction for a particular range of parameters.
It appears that the adiabatic hypothesis which decouples the dynamics of the qubit and the readout
junction and which underlies all predictions of discrimination power is not valid. One has to consider the
full dynamics of the coupled system qubit and readout junction. In this formalism it is no longer clear
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what the observable which is measured during readout actually is, and only switching curves for the two
states of the qubit can be predicted. Further investigation is required to understand more deeply this
phenomenon.

In order to improve the readout fidelity a new readout based on microwave reflectometry was developed
during this thesis. Following an idea of M. Devoret it uses a bifurcation phenomenon and allows for non
dissipative readout of the qubit state. However, the results obtained were disappointing regarding the
fidelity and indicated again that a better control of the microwave environment is required in order to
avoid spurious relaxation of the qubit during readout. However, results obtained at Delft with a similar
setup are promising [115]. The non-demolition behavior of this new readout has been measured and
indicates that the relaxation of state one is induced by the measurement with a probability of 33%
whereas state zero is not modified by the measurement. This relaxation process might be avoided by
applying a gate modulation during the readout in order to keep the transition frequency of the qubit at
a constant value.

The medium-term project now is to operate a two-qubit gate and demonstrate the violation of Bell
inequalities [116, 117, 118, 119]. Apart from the interest to implement 2 qubit algorithms, such an
experiment would be the first direct proof of entanglement in a solid state system. The main issue
to be solved is to operate two qubits, both simultaneously on resonance and tuned to their optimal
working points. This is at first sight not possible because of the lack of control of fabrication parameters.
However, even if the two qubits are off resonance, it is possible to bring them on resonance in the
rotating frame [120], which allows for an efficient and flexible coupling of the two qubits. This technique,
inspired here also from NMR is very promising. Another technique, which has also the advantage to be
a switchable coupling, employs a parametric modulation of the coupling [121] and could also be used.

Finally, the property of 2e periodicity of the quantronium could be used to construct a current to
frequency converter and thus provide a metrological current standard. By using Bloch oscillations of the
superconducting phase of the island this technique could allow for frequencies of several hundreds of MHz,
which is much higher than present day current electron pumps. The resulting currents are higher and the
usefulness of such devices would be much improved. Preliminary experiments [122] have demonstrated
the viability of this approach for frequencies of a few MHz. A high impedance current source needs still
to be implemented.



Bibliography

[1] D. Deutsch. Quantum theory, the Church−Turing principle and the universal quantum computer.
Proc.R.Soc.Lond.A, 400:97–117, (1985).

[2] P. Shor. Polynomial-time algorithm for prime factorization and discrete logarithms on a quantum
computer. SIAM J.Comp., 26(5):1484–1509, (1997).

[3] D. Dieks. Communication by EPR devices. Phys.Rev.A, 92(6):271–272, (1982).

[4] L. K. Grover. Quantum mechanic helps for searching for a needle in a haystack. Phys.Rev.Lett.,
79(2):325, (1997).

[5] C. H. Bennett and S. J. Wiesner. Communication via one- and two-particle operators on Einstein-
Podolsky-Rosen states. Phys.Rev.Lett., 69:2881–2884, (1992).
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[28] W. Hänsel, P. Hommelhoff, T. W. Hänsch, and J. Reichel. Bose−Einstein condensation on a
microelectronic chip. Nature, 413:498–501, (2001).

[29] D. Loss and D. P. DiVincenzo. Quantum computation with quantum dots. Phys.Rev.A, 57:120–126,
(1998).

[30] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, L. M. K. Vandersypen, and
L. P. Kouwenhoven. Single-shot read-out of an individual electron spin in a quantum dot. Nature,
430:431–435, (2004).

[31] A. C. Johnson, J. R. Petta, J. M. Taylor, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson,
and A. C. Gossard. Triplet Singlet spin relaxation via nuclei in a double quantum dot. Nature,
435:925–928, (2005).



[32] A. Bertoni, P. Bordone, R. Brunetti, C. Jacoboni, and S. Reggiani. Quantum logic gates based on
coherent electron transport in quantum wires. Phys.Rev.Lett., 84:5912–5915, (2000).

[33] R. Ionicioiu, G. Amaratunga, and F. Udrea. Quantum computation with ballistic electrons.
Int.J.Mod.Phys., B15:125, (2001).

[34] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama. Coherent manipulation of
electronic states in a double quantum dot. Phys.Rev.Lett., 91(226804), (2003).
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