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À Miss Sarriette, mon épice la plus précieuse
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Abstract

We probe experimentally the properties of Andreev states in superconducting weak links

based on Indium Arsenide (InAs) nanowires. Andreev states are localized fermionic

states that appear at the junction (or weak link) between two superconducting electrodes.

They are at the core of the microscopic description of the Josephson effect. InAs

nanowires implement finite-length weak links characterized by spin-orbit coupling and

electrostatically-tunable conduction properties.

By coupling the weak link to a high quality factor microwave resonator, following the

circuit quantum electrodynamics (cQED) approach, the Andreev states can be efficiently

isolated from external noise, and the resonator frequency readout gives access to their

microscopic occupancies. We model this coupling to achieve optimal sensitivity and to

understand in detail the response of the resonator coupled to the weak link.

We have performed the microwave spectroscopy of Andreev states, and measured their

dependence on the superconducting phase difference. The spectra reveal two effects.

The first one is the lifting of the states’ spin degeneracy due to spin-orbit coupling.

This results in spectroscopic lines characterizing the change of the spin state of a single

quasiparticle in the weak link. The second one is the influence of Coulomb interactions

between quasiparticles, reminiscent of the splitting in singlet and triplet states of two

interacting spin-1/2 electrons. Theoretical modeling of finite-length weak links allows to

account for these effects.

We also characterize the Andreev states by time-resolved measurements. Quantum bits

(qubits) are obtained using either the even-parity ground state and a state where a pair

of quasiparticles is excited; or two odd-parity states with a quasiparticle trapped in

different Andreev states. We have measured the lifetimes and coherence times of these

two types of "Andreev qubits".



Résumé

Nous présentons les résultats d’expériences sondant les propriétés des états d’Andreev

dans des liens faibles supraconducteurs à base de nanofils d’Arséniure d’Indium (InAs).

Les états d’Andreev sont des états fermioniques localisés qui apparaissent à la jonction

(ou lien faible) entre deux électrodes supraconductrices. Ils sont au coeur de la description

microscopique de l’effet Josephson. Les nanofils d’InAs permettent d’obtenir des liens

faibles de longueur finie, caractérisés par un couplage spin-orbite et des propriétés de

conduction ajustables électrostatiquement.

Par la technique d’électrodynamique quantique en circuit (cQED), qui consiste à coupler

le lien faible à un résonateur micro-onde de fort facteur de qualité, les états d’Andreev

peuvent être isolés efficacement du bruit extérieur, et la lecture de la fréquence du

résonateur donne accès à leur occupation microscopique. Nous modélisons ce couplage

pour atteindre une sensibilité optimale et comprendre en détail la réponse du résonateur

couplé au lien faible.

Nous avons mesuré les spectres des états d’Andreev, et leur dépendance en différence

de phase supraconductrice. Ces spectres mettent en évidence deux effets. Le premier

est la levée de la dégénérescence de spin des états du fait du couplage spin-orbite. Cela

se traduit par des lignes spectroscopiques caractérisant le changement de l’état de spin

d’une quasi-particule unique dans le lien faible. Le second est l’influence des interactions

coulombiennes entre quasi-particules, réminiscentes de la séparation entre états singulet

et triplet de deux spins 1/2 en interaction. La modélisation théorique des liens faibles de

longueur finie permet de rendre compte de ces effets.

Nous caractérisons également les états d’Andreev par des mesures temporelles. Des bits

quantiques (qubits) sont obtenus soit en utilisant l’état fondamental pair et celui où une

paire de quasi-particules est excitée ; soit deux états impairs avec une quasi-particule

piégée dans des états d’Andreev différents. Nous avons mesuré les temps de vie et de

cohérence de ces deux types de « qubits d’Andreev ».





Synthèse

Cette thèse de physique s’inscrit dans le domaine des circuits quantiques. La motivation initiale de ce champ

de recherche, dans les années 1980, était d’explorer la possibilité d’une variable macroscopique obéissant aux

lois de la mécanique quantique. En particulier, il s’agissait de savoir si cette dernière, alors jusque-là restreinte

à l’explication des phénomènes fondamentaux à l’œuvre à l’échelle atomique et subatomique, pouvait

également se manifester par des effets visibles à notre échelle, notamment dans des circuits électriques. L’idée

alors était de recourir aux matériaux dits supraconducteurs : ils sont caractérisés par un gap d’énergie dans leur

densité d’états, ce qui confère une protection naturelle contre les fluctuations thermiques et les excitations de

basse énergie de type quasi-particule.

Un des éléments de base des circuits supraconducteurs est la jonction tunnel Josephson, qui consiste en

une fine couche d’un matériau isolant pris en sandwich entre deux électrodes supraconductrices. A tension

nulle, une telle nanostructure a la particularité de pouvoir supporter un courant non-dissipatif déterminé

par un paramètre macroscopique : la différence de phase supraconductrice à travers la jonction. En 1985,

Martinis, Devoret et Clarke ont démontré que cette dernière suivait les lois de la mécanique quantique

de sorte qu’un circuit construit autour d’une jonction Josephson pouvait présenter des niveaux d’énergie

quantifiés [1]. Cette découverte a ouvert la voie à un vaste domaine de recherche exploitant la non-linéarité du

supercourant dans les jonctions Josephson pour concevoir des "atomes artificiels" aux propriétés accordables.

Les jonctions Josephson sont aujourd’hui au cœur de nombreuses technologies visant à utiliser les modes

électromagnétiques d’un circuit supraconducteur pour implémenter des "bits quantiques" (qubits) et y stocker

de l’information [2, 3].

1 Etats d’Andreev : le degré de liberté interne d’une jonction Josephson

Du point de vue fondamental, l’effet Josephson est en fait bien plus riche, et pas une simple spécificité des

jonctions tunnel. Le supercourant qui circule à travers un lien faible entre deux matériaux supraconducteurs

est une conséquence directe et générique de la cohérence de l’état supraconducteur. Le lien faible peut

être une fine couche isolante ou métallique, une constriction ou tout autre type de conducteur cohérent :

indépendamment de la nature spécifique du lien, le supercourant est donné par une fonction périodique de

la différence de phase supraconductrice entre les deux électrodes [4]. Une description microscopique de cet

effet a été donnée en terme d’états électroniques localisés qui se forment dans chaque canal de conduction du

lien faible : les états liés d’Andreev (ABS) [5, 6, 7, 8, 9]. Ces derniers peuvent être perçus comme les modes

électroniques d’un guide d’onde aux parois supraconductrices : ils résultent des réflexions cohérentes que

subissent les électrons du lien faible à chacune de ses deux interfaces et que l’on connaît sous le nom de

réflexions d’Andreev [10, 11, 12]. Bien que cette formulation remonte à près de soixante ans, ce n’est qu’il y a

une dizaine d’années que des preuves directes des états d’Andreev ont été obtenues expérimentalement.

Ils ont depuis été révélés grâce à des techniques variées et dans divers systèmes, allant des nanotubes de

carbone [13] et des contacts atomiques [14, 15, 16] aux nanofils semi-conducteurs [17, 18, 19].

Dans une jonction tunnel, la non-linéarité du supercourant est une manifestation des propriétés de l’état

fondamental de millions d’états d’Andreev agissant collectivement. Alors que la grande majorité des électrons

de conduction participent à la réponse collective bosonique du condensat supraconducteur, chaque état

d’Andreev constitue individuellement un degré de liberté fermionique, capable d’être peuplé par des excitations

électroniques connues sous le nom de quasi-particules de Bogoliubov. Si la jonction tunnel à la base des

qubits supraconducteurs actuels contient une densité d’états bien trop importante pour que ces derniers

puissent être manipulés individuellement, d’autres types de nanostructures, conçues de telle sorte à ce que

le lien faible ne conduise qu’à travers quelques canaux bien transmis, n’accommodent en fait qu’un petit

nombre d’états d’Andreev. Comme illustré en Figure 1, ces derniers sont alors suffisamment bien séparés en

énergie pour devenir adressables à l’aide d’excitations micro-ondes.
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Figure 1: Spectre en énergie des états d’Andreev en fonction de la différence de phase �, pour un lien faible (a) de longueur nulle, (b)

de longueur finie, et (c) de longueur finie en présence d’un couplage spin-orbite (SO). Dans (a,b), toutes les lignes sont dégénérées

en spin. Dans (c), les lignes en gris foncé et gris clair correspondent aux états d’Andreev avec différents pseudo-spins ↑, ↓. Dans l’état

fondamental, tous les niveaux d’énergie négative sont occupés, à la fois les niveaux discrets d’énergie −Δ < � ≤ 0 associés aux états

d’Andreev, ainsi que le continuum d’états aux énergies � < −Δ. Deux types de transitions peuvent se produire : les transitions de paire

(PT), représentées par des flèches rouges et qui créent deux excitations supplémentaires (électron + trou), et les transitions à une seule

quasi-particule (SQPT), en vert, qui consistent à exciter une quasi-particule piégée dans un niveau vers un état de plus haute énergie.

L’intérêt de ces systèmes est que l’occupation microscopique des états d’Andreev détermine une quantité

macroscopique mesurable : le flot du supercourant à travers le lien faible. Ainsi, en couplant un "atome

d’Andreev" à un résonateur micro-onde, il est possible de détecter son état quantique, car l’occupation

microscopique des états modifie la fréquence de résonance du système couplé, qui peut être sondée par

réflectométrie micro-onde. Le rôle du résonateur est double : il permet non seulement de mesurer l’état

du système mais également de l’isoler efficacement du bruit externe. En appliquant un deuxième signal

micro-onde pour exciter des transitions entre états d’Andreev, on peut en balayant sa fréquence remonter au

spectre d’excitations du lien faible. En effet, dès que le signal est résonant, il modifie l’occupation des états, ce

qui se traduit par un décalagemesurable de la fréquence du résonateur. Cette idée est à la base des expériences

dites d’électrodynamique quantique en circuit (cQED) [20]. Elle a été mise en œuvre précédemment dans

le groupe Quantronique pour sonder la réponse micro-onde des états d’Andreev dans la configuration la

plus minimale possible : un contact ponctuel à un atome entre deux électrodes supraconductrices.

Dans un contact atomique, une seule paire d’états d’Andreev se forme dans le gap supraconducteur, à une

énergie −Δ ≤ � ≤ +Δ (cf. Figure 1(a)). En irradiant le lien faible avec des photons micro-ondes résonants,

on peut promouvoir une quasi-particule d’un niveau à l’autre (flèche rouge dans la Figure 1(a)), via une

transition de paire (PT), dénommée ainsi car elle revient à créer deux excitations microscopiques : une de

type "trou" dans le niveau du bas et une seconde de type "électron" dans celui du haut. La détection et

manipulation de ces paires d’excitations a été démontrée pour la première fois dans le groupe Quantronique

dans l’expérience sur les contacts atomiques, donnant lieu à des applications concrètes telles que le "qubit

d’Andreev", dont les propriétés de cohérence ont fait l’objet d’une précédente étude [21]. Dans un lien faible

de longueur finie, plusieurs paires d’états d’Andreev existent et un deuxième type de transition micro-onde

peut avoir lieu : une quasi-particule piégée dans un état peut absorber un photon et être excitée vers un autre

état d’énergie supérieure. Ce processus, auquel on se réfère sous le nom de transition à une quasi-particule
(SQPT), est illustré par une flèche verte dans la Figure 1(b). Comme les états d’Andreev sont en général

dégénérés en spin, l’utilisation de ces transitions pour la manipulation du spin des quasi-particules est

jusque-là restée hors de portée.



2 Observation de la structure fine des états d’Andreev et manipulation
d’un spin unique

Le rôle du spin dans les excitations fermioniques est un sujet de recherche très en vogue dans le domaine

des circuits supraconducteurs hybrides [22, 23, 24] et de la supraconductivité topologique [25, 26, 27, 28].

En 2003, il a été proposé que le spin d’une quasi-particule confinée dans un lien faible possédant un fort

couplage spin-orbite pouvait être utilisé pour implémenter un qubit [29, 30, 31, 32]. En effet, pour des liens

faibles de longueur finie, la combinaison d’une différence de phase supraconductrice, qui brise la symétrie

de renversement du temps, et d’un couplage spin-orbite, qui brise l’invariance par rotation du spin, est

suffisante pour lever la dégénérescence de spin des états d’Andreev, donnant lieu à un supercourant Josephson

dépendant du spin, et ce en l’absence d’un champ magnétique externe [33, 34]. Comme illustré dans la

Figure 1(c), on s’attend alors à avoir quatre transitions à une quasi-particule possibles entre deux doublets

d’Andreev résolus en spin. Deux d’entre elles conservent le spin de la quasi-particule, tandis que les deux

autres le renversent. Réaliser de telles transitions reviendrait donc à manipuler le spin d’une quasi-particule

unique piégée dans le lien faible.

Dans ce contexte, le but de cette thèse était d’adresser le degré de liberté de spin des états d’Andreev et

d’étudier sa physique. Pour ce faire, nous avons conçu une expérience d’électrodynamique quantique basée

sur des liens faibles Josephson définis dans des nanofils d’arséniure d’indium (InAs), connus pour être le
siège d’une forte interaction spin-orbite de type Rashba [35, 36]. Les nanofils utilisés dans cette thèse ont été

fabriqués par croissance épitaxiale à l’Université de Copenhague au sein du Center for Quantum Devices. A

l’issue de leur croissance, ils sont recouverts sous ultravide d’une gaine nanométrique d’aluminium.
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Figure 2: (a) Lien faible Josephson défini dans un nanofil d’InAs/Al en gravant chimiquement la gaine d’aluminium (gris) couvrant le

crystal d’InAs (vert) sur une longueur ! ≈ 370 nm. La différence de phase � est obtenue en intégrant le lien faible dans une boucle

supraconductrice et en balayant l’intensité d’un faible champ magnétique externe à travers celle-ci. Une tension DC est appliquée sur la

grille électrostatiques (doré) pour contrôler les propriétés de conduction du nanofil. Cette grille est également utilisée comme antenne

pour envoyer des impulsions micro-ondes à la fréquence 51 et exciter des transitions entre états d’Andreev. (b) Dispersion en énergie des

états d’Andreev dans un lien faible de longueur finie avec couplage spin-orbite, d’après le modèle analytique de A. Levy Yeyati et de

Sunghun Park. (c) Spectre d’absorption micro-onde mesuré sur le dispositif en (a) montrant une série de quatre lignes spectroscopiques

associées aux transitions à une quasi-particule (vert) entre les deux doublets d’états d’Andreev montrés en (b).



Lorsque le matériau est refroidi à température cryogénique (< 1.2 K), l’aluminium devient supraconducteur

et induit la supraconductivité dans le nanofil par effet de proximité. La particularité de ces nanofils repose sur

l’existence d’un contact épitaxié entre le semi-conducteur et la couche d’aluminium, qui renforce l’effet de

proximité et garantit une bonne supraconductivité induite [37, 38]. Cela fait de ces nanofils une plateforme

idéale pour la réalisation de liens faibles Josephson : en gravant la couche d’aluminium sur une région

donnée, on peut ainsi définir localement une jonction Josephson au sein du nanofil, comme illustré en Figure

2(a). Par ailleurs, ces nanofils étant semi-conducteurs, les propriétés d’une telle jonction peuvent être ajustées

à l’aide d’une grille électrostatique déposée à proximité du nanofil. Celle-ci permet, par effet de champ, de

contrôler le potentiel chimique du semiconducteur et d’atteindre un régime où la conduction dans le lien

faible se produit à travers seulement quelques canaux de forte transparence [39] ; une condition nécessaire

pour sonder la physique d’états d’Andreev individuels.

Cette thèse présente deux résultats majeurs, qui introduisent une physique nouvelle par rapport aux contacts

atomiques étudiés précédemment dans le groupe [40, 21]. Premièrement, l’observation à champ magnétique

nul de la "structure fine" des états d’Andreev, qui résulte de la présence d’un couplage spin-orbite dans le

semi-conducteur. Deuxièmement, la mise en évidence d’interactions Coulombiennes entre quasi-particules

piégées dans différents états d’Andreev, indiquant l’importance d’effets de charge dans l’électrodynamique

d’un lien faible Josephson. Nous démontrons également la manipulation cohérente des états d’Andreev par

des mesures résolues en temps, en recourant à diverses transitions observées dans leurs spectres micro-ondes.

Des qubits sont obtenus en utilisant, soit l’état fondamental et un état où une paire de quasi-particules est

excitée ; soit deux états avec une quasi-particule dans des états d’Andreev différents. Nous avons mesuré les

temps de vie et de cohérence de ces deux types de "qubits d’Andreev".

Pour mettre en évidence la structure fine des états d’Andreev, nous avons réalisé la spectroscopie micro-onde

de nos liens faibles à nanofil d’InAs. Dans la Figure 2(c), nous présentons un spectre micro-onde typique

mesuré sur ce système. Ce spectre présente une série caractéristique de quatre lignes distinctes qui se croisent

lorsque la différence de phase supraconductrice � à travers le lien faible est nulle ou égale à �, et que nous
interprétons comme des transitions à une quasi-particule entre états d’Andreev résolus en spin en l’absence

de champ Zeeman (cf. figure Figure 2(b)). Un modèle analytique simple, supposant un couplage spin-orbite

de type Rashba dans un nanofil à plusieurs bandes de conduction, a été développé par Alfredo Levy Yeyati

et Sunghun Park de l’Université autonome de Madrid. Nous avons montré qu’il permet de rendre compte de

ces lignes et de leur évolution avec un champ magnétique externe, ce qui supporte leur identification à des

transitions à une quasi-particule et confirme le caractère de spin de ces excitations. Nous avons également

développé une théorie générale du couplage d’un résonateur à un système quantique multi-niveaux, en

incorporant les contributions adiabatiques et dispersives au couplage pour rendre compte de l’intensité des

lignes spectroscopiques mesurées. Ces résultats offrent la première démonstration expérimentale que le

degré de liberté de spin d’une jonction Josephson peut être adressé et constituent une première étape vers sa

manipulation cohérente.

Parallèlement à nos travaux, le groupe de Michel Devoret à l’Université de Yale a réalisé des expériences très

similaires sur le même genre de système en recourant à un type de résonateur micro-onde et à un schéma

d’excitation différents. Alors que la plupart de nos résultats repose sur la spectroscopie micro-onde des

transitions possibles entre états d’Andreev, l’équipe de Yale s’est davantage concentrée sur leur manipulation

temporelle [19, 41, 42]. En se basant sur notre compréhension des transitions à une quasi-particule, Hays et al.

ont réalisé le contrôle cohérent du spin d’une quasi-particule unique piégée dans un état d’Andreev [41, 42].

Dans ce manuscrit, nous démontrons indépendamment la manipulation d’un spin unique, bien que nous

n’ayons pas pu réaliser une lecture single-shot du spin comme cela a été fait à Yale.

3 Interactions Coulombiennes dans les liens faibles à nanofils

Enfin, nous montrons en combinant une approche expérimentale et théorique que certaines caractéristiques

du spectre d’un nanofil ne peuvent être expliquées qu’en supposant l’existence d’une énergie de charge au

sein du lien faible. En particulier, notre analyse montre que du fait du temps de vol non nul des électrons

dans le nanofil, deux quasi-particules dans des états d’Andreev différents peuvent interagir et que leur
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sont surlignées avec le même code couleur qu’en (b,c).

interaction Coulombienne conduit à un splitting des énergies des quatre états possibles de la paire, rappelant

la séparation singulet-triplet de deux spins 1/2 en interaction dans un système à faible couplage spin-orbite.

Cet effet est illustré dans la Figure 3(b,c) où nous représentons en bleu la dépendance en phase des transitions

de paires dites "mixtes", c’est-à-dire impliquant une excitation dans deux doublets d’Andreev différents, et ce

en présence ou non d’une énergie de charge Coulombienne. Un exemple de spectre expérimental décrivant

cette physique est donné en Figure 3(d). Les transitions de paires mixtes, surlignées en bleu, sont regroupées

en un triplet non dégénéré et un singulet à plus haute fréquence. A noter que leur splitting, aisément mis

en évidence par spectroscopie micro-onde, reste un effet faible (∼ 2 �eV) et serait par conséquent difficile à

résoudre au moyen des mesures classiques de transport électrique (DC/audiofréquence), qui offrent une

résolution en énergie plus basse de presque deux ordres de grandeur.

En conclusion, les expériences rapportées dans cette thèse ont permis de mettre en évidence plusieurs

phénomènes nouveaux dans le domaine de la supraconductivité mésoscopique ; une physique traduisant

une compétition complexe entre les degrés de liberté orbital, de spin et de charge d’un électron dans un

lien faible semi-conducteur. Le domaine des circuits quantiques cherche actuellement à exploiter cette

riche physique des semi-conducteurs pour développer des dispositifs hybrides et susciter de nouvelles

applications basées sur leurs propriétés de cohérence quantique. Les liens faibles à nanofils semi-conducteurs

se sont maintenant largement imposés comme nouvelle ressource de base de ces circuits, avec l’idée de tirer

profit de leur degré de liberté fermionique accordable. Dans cette thèse, nous avons montré comment la

spectroscopie micro-onde permettait de sonder les rouages de ces "atomes artificiels", de la même manière

que la spectroscopie UV-visible a permis de comprendre la physique des atomes et des molécules. Nous

envisageons deux expériences futures comme perspectives immédiates à ces travaux. Premièrement, la

spectroscopie des liens faibles à nanofil d’InAs sous fort champ Zeeman, pour sonder la transition vers une

potentielle phase topologique prédite par la théorie [43, 44, 45]. Deuxièmement, la spectroscopie de jonctions

multi-terminales, un système censé simuler la physique des semi-métaux de Weyl [46, 47, 48].





Contents

Remerciements vii

Abstract xvi

Résumé xvii

Synthèse xix

Contents xxv

1 Introduction 1
1.1 The Josephson effect in terms of Andreev bound states . . . . . . . . . . 1

1.2 Quantum information within a single Josephson junction . . . . . . . . . 1

1.2.1 Tunnel junctions vs few-channels weak links . . . . . . . . . . . . 2

1.3 Observation of the ABS fine structure . . . . . . . . . . . . . . . . . . . . 3

1.3.1 ABS in a multi-channel Rashba nanowire . . . . . . . . . . . . . . 4

1.3.2 Trapping a single spin in a superconducting box . . . . . . . . . . 6

1.3.3 General theory for the cQED of phase-biased weak links . . . . . 8

1.4 Evidence of Coulomb interactions in nanowire weak links . . . . . . . . 8

Spin-resolved Andreev Bound States 13

2 Mesoscopic description of the Josephson effect 14
2.1 Andreev reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.1 Electron-to-hole conversion . . . . . . . . . . . . . . . . . . . . . . 14

2.1.2 A phase-coherent process . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 How do ABS arise ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 From short to long junctions . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Breaking ABS spin degeneracy 22
3.1 Foreword on spin-orbit interaction . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Spin-orbit in vacuum . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.2 Spin-orbit in solid-state devices . . . . . . . . . . . . . . . . . . . 23

3.2 ABS in presence of spin-orbit . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.1 1D wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2.2 Quasi-1D wire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.3 Effect of backscattering . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.4 Spin-dependent Fermi velocities . . . . . . . . . . . . . . . . . . . 28

3.3 Implementation with semiconducting nanowires . . . . . . . . . . . . . 29

Probing Andreev levels with cQED 31

4 Modeling the coupling between a resonator and a phase-biased weak link 33
4.1 Resonator shift from an electrical engineer point of view . . . . . . . . . 33

4.1.1 Resonator admittance . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.2 Resonator shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.3 Admittance from susceptibility . . . . . . . . . . . . . . . . . . . 35

4.1.4 Kubo expression for the current-current susceptibility "�� . . . . 37

4.1.5 Application to practical geometries . . . . . . . . . . . . . . . . . 38



4.2 Hamiltonian description of the resonator shift . . . . . . . . . . . . . . . 41

4.2.1 Model for resonator – weak link coupling . . . . . . . . . . . . . 42

4.2.2 Many-body configurations . . . . . . . . . . . . . . . . . . . . . . 45

4.2.3 Resonator shift for finite-length junctions . . . . . . . . . . . . . . 47

5 Designing microwave resonators 51
5.1 Quarter-wave resonators . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Short-circuited �/4 line . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 RLC equivalent circuit near resonance . . . . . . . . . . . . . . . 52

5.1.3 Practical implementations . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Shunted CPW design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Inductive coupling . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 Galvanic coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.2.3 Coupling resonators to a readout transmission line . . . . . . . . 64

5.3 Coplanar stripline design . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.1 Even & odd modes . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.3.2 Equivalent LC circuit . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.3 Design parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Microwave spectroscopy of nanowire weak links 77

6 Observation of the fine structure of Andreev levels 78
6.1 From ABS levels to absorption spectrum . . . . . . . . . . . . . . . . . . 78

6.2 Device & microwave setup . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Experimental evidence of zero-field ABS splitting . . . . . . . . . . . . . 80

6.3.1 Observation of single-particle transitions (� = 0) . . . . . . . . . 81

6.3.2 Fit with theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.3.3 Spin character of ABS (� ≠ 0) . . . . . . . . . . . . . . . . . . . . 85

6.3.4 Absence of intra-doublet transitions . . . . . . . . . . . . . . . . . 86

6.4 Modeling the resonator shift in spectroscopy measurements . . . . . . . 87

6.4.1 Spin-conserving vs. spin-flipping transitions . . . . . . . . . . . . 89

6.4.2 Gate vs flux drive: spin selection rules . . . . . . . . . . . . . . . 89

6.4.3 Weak driving of a multi-level system . . . . . . . . . . . . . . . . 91

6.5 Understanding resonator shifts in nanowire weak links . . . . . . . . . . 91

6.5.1 Two-tone spectra of sample S1 (mutual coupling) . . . . . . . . . 91

6.5.2 Two-tone spectra of sample S2 (galvanic coupling) . . . . . . . . 93

7 Need for a multi-level description of the weak link 97
7.1 Unidentified spectroscopic lines in nanowire spectra . . . . . . . . . . . 97

7.1.1 Long junction regime . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.1.2 Evidence for mixed pair transitions . . . . . . . . . . . . . . . . . 98

7.2 Incorporating multi-channel effects . . . . . . . . . . . . . . . . . . . . . 100

7.2.1 Hint of a second channel . . . . . . . . . . . . . . . . . . . . . . . 100

7.2.2 Tight binding modeling . . . . . . . . . . . . . . . . . . . . . . . . 102

8 ABS in presence of Coulomb interactions 107
8.1 Modeling the effect of Coulomb interactions . . . . . . . . . . . . . . . . 108

8.1.1 Estimations on e-e interactions and their effect . . . . . . . . . . . 108

8.1.2 Exactly solvable four-sites TB model . . . . . . . . . . . . . . . . . 109

8.1.3 Perturbative resolution of the extended TB model . . . . . . . . . 113

8.2 Comparison with experimental data . . . . . . . . . . . . . . . . . . . . . 114

8.3 Thoughts on the model & link with atomic physics . . . . . . . . . . . . 118



Coherent dynamics of Andreev levels in a nanowire weak link 119

9 State readout & time-resolved measurements 120
9.1 State readout from transmission measurements . . . . . . . . . . . . . . 121

9.2 Time evolution of the resonator fields . . . . . . . . . . . . . . . . . . . . 123

9.2.1 Step-like excitation: resonator response . . . . . . . . . . . . . . . 123

9.2.2 Time-resolved readout . . . . . . . . . . . . . . . . . . . . . . . . 126

10 Manipulation of an Andreev pair qubit 130
10.1 Rates & population dynamics . . . . . . . . . . . . . . . . . . . . . . . . 131

10.1.1 Single-shot readout . . . . . . . . . . . . . . . . . . . . . . . . . . 131

10.1.2 Parity-switching rates . . . . . . . . . . . . . . . . . . . . . . . . . 132

10.2 Driven dynamics & coherence . . . . . . . . . . . . . . . . . . . . . . . . 133

10.2.1 Evidencing the excited state . . . . . . . . . . . . . . . . . . . . . 133

10.2.2 Coherent manipulation of the |6〉 → |4〉 transition . . . . . . . . 134

10.2.3 Lifetime of the excited state . . . . . . . . . . . . . . . . . . . . . . 136

10.2.4 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

11 Towards an Andreev spin qubit 148
11.1 Manipulation of a single quasiparticle . . . . . . . . . . . . . . . . . . . . 148

11.1.1 Driving a single quasiparticle . . . . . . . . . . . . . . . . . . . . 148

11.1.2 Relaxation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 150

11.1.3 Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

11.2 Spin states could not be resolved . . . . . . . . . . . . . . . . . . . . . . . 154

Experimental techniques 157

12 Samples fabrication 158
12.1 Resonator fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

12.2 Nanowire weak link fabrication . . . . . . . . . . . . . . . . . . . . . . . 162

12.2.1 InAs-Al core-full shell nanowires . . . . . . . . . . . . . . . . . . 162

12.2.2 Nanowire deposition . . . . . . . . . . . . . . . . . . . . . . . . . 162

12.2.3 Weak link definition process . . . . . . . . . . . . . . . . . . . . . 162

12.2.4 Nanowire gates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

12.2.5 Nanowire contacts . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

13 Low temperature measurements 167
13.1 Sample holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

13.2 Wiring inside the dilution refrigerator . . . . . . . . . . . . . . . . . . . . 169

13.2.1 Cryoconcept
®
fridge . . . . . . . . . . . . . . . . . . . . . . . . . 169

13.2.2 Bluefors
®
fridge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

14 Microwave measurements 171
14.1 Microwave wiring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

14.2 Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

14.3 Time-domain measurements . . . . . . . . . . . . . . . . . . . . . . . . . 174

14.3.1 Generation of pulses . . . . . . . . . . . . . . . . . . . . . . . . . 174

14.3.2 Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

14.4 State pre-selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

15 Data acquisition 176
15.1 QuantroLab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

15.2 Command files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177



16 Conclusions 179
16.1 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

16.2 Future challenges & perspectives . . . . . . . . . . . . . . . . . . . . . . . 180

16.2.1 Spectroscopy under high B field . . . . . . . . . . . . . . . . . . . 180

16.2.2 Microwave spectroscopy of multi-terminal nanowire junctions . . 181

Appendices 183

A Superconductors viewed as information mirrors 184

B Effect of symmetries in spin 1/2 systems 186
B.1 Kramers degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.2 Consequence for the band structures of solids . . . . . . . . . . . . . . . 186

C Tight-binding description of weak links 188

D On the origin of spin-orbit interaction in InAs nanowires 191

E Scattering model for ABS in Rashba nanowires 193
E.1 System description & model Hamiltonian . . . . . . . . . . . . . . . . . . 193

E.1.1 Mapping of the BdG Hamiltonian to a 1D model Hamiltonian . . 195

E.1.2 Linearization of the one-dimensional model Hamiltonian . . . . 196

E.2 Subgap ABS for zero magnetic field . . . . . . . . . . . . . . . . . . . . . 198

E.2.1 Scattering by the potential barrier . . . . . . . . . . . . . . . . . . 199

E.2.2 Boundary matching at G = 0, ! . . . . . . . . . . . . . . . . . . . . 201

E.2.3 Andreev energy spectrum . . . . . . . . . . . . . . . . . . . . . . 201

E.2.4 Double-barrier model . . . . . . . . . . . . . . . . . . . . . . . . . 202

E.3 Subgap ABS for a finite magnetic field . . . . . . . . . . . . . . . . . . . . 202

F Dispersive shift : how quantum ? 204
F.1 Classical derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

F.1.1 Coupling schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

F.1.2 General case : non-zero detuning . . . . . . . . . . . . . . . . . . 205

F.2 Quantum or not ? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

G Admittance/susceptibility formulation of the resonator shift 208
G.1 Short superconducting weak link . . . . . . . . . . . . . . . . . . . . . . 208

G.2 Finite-length weak link with Coulomb interactions . . . . . . . . . . . . 210

H Resonator shift in zero-length weak links 213
H.1 Calculation of the resonator shift . . . . . . . . . . . . . . . . . . . . . . . 213

H.2 Revisiting experiments on atomic contacts . . . . . . . . . . . . . . . . . 217

I Principles of pulse generation & demodulation 224
I.1 Single sideband mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

I.2 Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

J Towards measurements of ABS at high magnetic fields 229

K Gallery of two-tone nanowire spectra 235

Bibliography 263

List of symbols 271



List of Figures

1 Quantronics group picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

1 Dépendance en phase des Etats d’Andreev . . . . . . . . . . . . . . . . . . . xx

2 Observation de transitions micro-ondes entre états d’Andreev résolus en spin xxi

3 Interactions Coulombiennes dans un lien faible à nanofil . . . . . . . . . . . xxiii

1.1 Previous experiments on ABS spectroscopy . . . . . . . . . . . . . . . . . . . 2

1.2 Epitaxially grown InAs/Al nanowires . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Phase dependence of Andreev states . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Observation of SQPT transitions in nanowire weak links . . . . . . . . . . . 6

1.5 Coherent manipulation of a single spin . . . . . . . . . . . . . . . . . . . . . 7

1.6 Coulomb interactions in nanowire weak links . . . . . . . . . . . . . . . . . . 9

1.7 Spectrum showing all kinds of transitions . . . . . . . . . . . . . . . . . . . . 10

2.1 The NS interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Andreev reflection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 ABS in short weak link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 ABS spectrum in a short weak link . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 ABS spectrum in a finite-length weak link . . . . . . . . . . . . . . . . . . . . 20

3.1 ABS in finite-length weak link with SOI . . . . . . . . . . . . . . . . . . . . . 24

3.2 Band-structure with spin-orbit . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Modeling of the weak link-resonator coupling . . . . . . . . . . . . . . . . . 33

4.2 Equivalent admittance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.3 Lumped element model coupled microstrips design . . . . . . . . . . . . . . 38

4.4 ) −Πmodel coupled microstrips design . . . . . . . . . . . . . . . . . . . . 39

4.5 Lumped element model shunted CPW design . . . . . . . . . . . . . . . . . . 40

4.6 ) −Πmodel shunted CPW design . . . . . . . . . . . . . . . . . . . . . . . . 40

4.7 Low-lying many-body states for zero- and finite-length weak links . . . . . . 46

4.8 Resonator shift for finite-length weak links . . . . . . . . . . . . . . . . . . . 49

5.1 Quarter-wave resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Transmission-line topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Equivalent circuit for mutual inductance . . . . . . . . . . . . . . . . . . . . . 55

5.5 Mutual inductance extraction from Sonnet . . . . . . . . . . . . . . . . . . . 56

5.6 Shunted CPW resonator with inductive coupling . . . . . . . . . . . . . . . . 56

5.7 Input impedance inductive design . . . . . . . . . . . . . . . . . . . . . . . . 57

5.8 Current distribution inductive design . . . . . . . . . . . . . . . . . . . . . . 58

5.9 Shunted CPW resonator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.10 sCPW equivalent LC circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.11 Line impedance from CPW design . . . . . . . . . . . . . . . . . . . . . . . . 62

5.12 Quarter-wave resonator model . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.13 sCPW resonator shift vs ℓstub . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.14 � 5A vs �!wl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.15 &ext vs geometrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.16 &ext vs coupler length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.17 Coplanar stripline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



5.18 Even/odd mode coupled microstrips . . . . . . . . . . . . . . . . . . . . . . 69

5.19 /diff and /com vs line geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.20 Even/odd mode impedance from Sonnet . . . . . . . . . . . . . . . . . . . . 73

5.21 Mode impedance vs box size . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.22Microstrip loop inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 From ABS levels to absorption spectrum . . . . . . . . . . . . . . . . . . . . . 78

6.2 Transition energies with ABS . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 SQPT at � = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.5 Multichannel fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.6 Inferring ABS spectrum from SQPT fits . . . . . . . . . . . . . . . . . . . . . 84

6.7 Effect of B-field on ABS spectrum and band structure . . . . . . . . . . . . . 85

6.8 Evolution of the ABS spectrum with magnetic field . . . . . . . . . . . . . . 86

6.9 Estimation of the 6 factor anisotropy . . . . . . . . . . . . . . . . . . . . . . . 86

6.10 Driving types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.12 Evidence of spin selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.13 Transverse symmetry & spin selection rules . . . . . . . . . . . . . . . . . . . 90

6.14 Fit nanowire two-tone spectroscopy (1) . . . . . . . . . . . . . . . . . . . . . . 92

6.15 Fit nanowire two-tone spectroscopy (2) . . . . . . . . . . . . . . . . . . . . . 92

6.16 Other nanowire two-tone spectrum (1) . . . . . . . . . . . . . . . . . . . . . . 93

6.17 Other nanowire two-tone spectrum (2) . . . . . . . . . . . . . . . . . . . . . . 94

6.18 Fit of single-tone spectroscopy (NW) . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 Evidence of mixed pair transitions . . . . . . . . . . . . . . . . . . . . . . . . 98

7.2 Evolution of the low-energy spectrum with +6 . . . . . . . . . . . . . . . . . 99

7.4 Other two-tone spectrum (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.3 Other typical two-tone spectrum (1) . . . . . . . . . . . . . . . . . . . . . . . 100

7.5 Hint of multichannel effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.6 Sketch TB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.7 ABS spectrum vs chemical potential . . . . . . . . . . . . . . . . . . . . . . . 103

7.8 ABS spectrum for a two-channel weak link . . . . . . . . . . . . . . . . . . . 105

8.1 Sketch 4 sites model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

8.2 Transition lines within the four-site model . . . . . . . . . . . . . . . . . . . . 110

8.3 Phase diagrams of the four-sites model . . . . . . . . . . . . . . . . . . . . . 111

8.4 Interactions and spin-orbit in the four-sites model . . . . . . . . . . . . . . . 112

8.5 Gate evolution of mixed pair transitions . . . . . . . . . . . . . . . . . . . . . 114

8.6 Evidencing the mixed PT character of the unidentified lines . . . . . . . . . . 115

8.7 Reproducing mixed transitions with TB model . . . . . . . . . . . . . . . . . 115

8.8 Convergence of the extended TB model . . . . . . . . . . . . . . . . . . . . . 116

8.9 Many-body energies in the extended TB model . . . . . . . . . . . . . . . . . 117

9.1 Two-port complex scattering parameter . . . . . . . . . . . . . . . . . . . . . 121

9.2 Time response to a square pulse . . . . . . . . . . . . . . . . . . . . . . . . . 124

9.4 (21 measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9.5 Optimal duration of fast-load pulse . . . . . . . . . . . . . . . . . . . . . . . 126

9.6 Fast-load pulses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

9.8 �& trajectories with/without pre-pulse (1) . . . . . . . . . . . . . . . . . . . . 128

9.7 Tuning fast-load pulse duration . . . . . . . . . . . . . . . . . . . . . . . . . . 128

9.9 �& trajectories with/without pre-pulse (2) . . . . . . . . . . . . . . . . . . . 129

10.2 Equivalent circuit of the cQED setup with the sCPW design . . . . . . . . . . 130



10.1 cQED setup with the sCPW design . . . . . . . . . . . . . . . . . . . . . . . . 130

10.3 Single-shot readout of |6〉 and |>〉 (no drive) . . . . . . . . . . . . . . . . . . 131

10.4 Dynamics of |6〉 and |>〉 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

10.5 Two-tone spectroscopy of a Pair Qubit . . . . . . . . . . . . . . . . . . . . . . 134

10.6 Rabi oscillations on Andreev pair qubit . . . . . . . . . . . . . . . . . . . . . 135

10.7 Relaxation dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

10.8 |6〉/|>〉 pre-selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

10.9 Ramsey oscillations on Andreev Pair Qubit . . . . . . . . . . . . . . . . . . . 139

10.10Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

10.11Detuned Ramsey measurement on an Andreev Pair Qubit . . . . . . . . . . . 142

10.12Rabi detuned measurement on Andreev Pair Qubit . . . . . . . . . . . . . . 145

10.13Hahn Echo on Andreev Pair Qubit . . . . . . . . . . . . . . . . . . . . . . . . 146

11.1 Two-tone spectrum with SQPTs . . . . . . . . . . . . . . . . . . . . . . . . . . 148

11.2 Rabi detuned measurement on SQPT . . . . . . . . . . . . . . . . . . . . . . 149

11.3 Relaxation and Coherence of a single trapped quasiparticle . . . . . . . . . . 152

11.4 Coherent manipulation of SQPTs and PTs . . . . . . . . . . . . . . . . . . . . 153

11.5 Resonator shift of the lowest-lying many-body states . . . . . . . . . . . . . . 154

12.1 Optical lithography sample S1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

12.2 Optical lithography sample S2 . . . . . . . . . . . . . . . . . . . . . . . . . . 161

12.3 NW deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

12.4 Weak link definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

12.5 micromanipulation station . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

12.6 S1 sample: coupling between the CPW �/4 resonator and the weak link . . . 166

12.7 S2 sample: coupling between the CPW �/4 resonator and weak link . . . . . 166

13.1 Lab with Cryoconcept refrigerator . . . . . . . . . . . . . . . . . . . . . . . . 167

13.2 Lab with BlueFors refrigerator . . . . . . . . . . . . . . . . . . . . . . . . . . 168

13.3 Sample Holder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

14.1 Microwave circuit (setup used for sample S1) . . . . . . . . . . . . . . . . . . 171

14.2 Microwave circuit (setup used for sample S2) . . . . . . . . . . . . . . . . . . 172

14.3 Microwave circuit: figure caption . . . . . . . . . . . . . . . . . . . . . . . . . 172

14.4 Photograph of the microwave circuit . . . . . . . . . . . . . . . . . . . . . . . 173

14.5 Microwave circuit for spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . 173

14.6 State pre-selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

15.1 IDE window (1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

15.2 IDE window (2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

15.3 Front panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

16.1 Spectroscopy of multi-terminal junctions . . . . . . . . . . . . . . . . . . . . 182

B.1 Kramers degeneracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

C.1 Spin-dependent Fermi velocities . . . . . . . . . . . . . . . . . . . . . . . . . 190

E.1 Scattering model schematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

E.2 Scattering model : potential barrier . . . . . . . . . . . . . . . . . . . . . . . . 199

F.1 Inductive coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

F.2 Capacitive coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

F.3 Mixed coupling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



H.1 Resonator shift for a zero-length one-channel junction . . . . . . . . . . . . . 214

H.2 Setup of the atomic contact experiment . . . . . . . . . . . . . . . . . . . . . 217

H.3 Fit of single-tone spectroscopies (AC) . . . . . . . . . . . . . . . . . . . . . . 219

H.4 Two-tone spectrum of a single-atom contact . . . . . . . . . . . . . . . . . . . 220

H.5 Two-tone spectrum of an atomic contact with multiple channels . . . . . . . 222

H.6 Resonator shift in the IQ plane for a 3-channel atomic contact . . . . . . . . . 223

I.1 IQ mixer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

I.2 IQ decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

I.3 Heterodyne detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

J.1 Gradiometric scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

J.2 Sample with gradiometric loops . . . . . . . . . . . . . . . . . . . . . . . . . 230

J.3 Current distribution from 3D-MLSI . . . . . . . . . . . . . . . . . . . . . . . 231

J.4 Mutual inductance vs distance . . . . . . . . . . . . . . . . . . . . . . . . . . 232

J.5 Mutual inductance from 3D-MLSI . . . . . . . . . . . . . . . . . . . . . . . . 233

K.1 Additional spectrum 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

K.2 Additional spectrum 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

K.3 Additional spectrum 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238

K.4 Additional spectrum 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

K.5 Additional spectrum 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

K.6 Additional spectrum 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

K.7 Additional spectrum 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242

K.8 Additional spectrum 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

K.9 Additional spectrum 9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

K.10Additional spectrum 10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

K.11 Additional spectrum 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

K.12Additional spectrum 12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

K.13Additional spectrum 13 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

K.14Additional spectrum 14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

K.15Additional spectrum 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250

K.16Additional spectrum 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

K.17Additional spectrum 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

K.18Additional spectrum 18 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

K.19Additional spectrum 19 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

K.20Additional spectrum 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

K.21Additional spectrum 21 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

K.22Additional spectrum 22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257

K.23Additional spectrum 23 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

K.24Additional spectrum 24 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259

K.25Additional spectrum 25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

K.26Additional spectrum 26 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261



Introduction 1
1.1 The Josephson effect in terms of
Andreev bound states . . . . . . . 1
1.2 Quantum information within a
single Josephson junction . . . . 1
1.3 Observation of the ABS fine
structure . . . . . . . . . . . . . . . . 3
1.4 Evidence of Coulomb interac-
tions in nanowire weak links . . 8

1.1 The Josephson effect in terms of Andreev
bound states

The Josephson supercurrent that flows through a weak link between two

superconductors is a direct and generic manifestation of the coherence of

the many-body superconducting state. The link can be a thin insulating

barrier, a small piece of normal metal, a constriction or any other type

of coherent conductor. Regardless of the link specific nature, the super-

current is a periodic function of the superconducting phase difference

between the two electrodes [4]
[4]: Golubov et al. (2004), ‘The current-

phase relation in Josephson junctions’

. A unifyingmicroscopic description of this

effect has been achieved in terms of the spectrum of discrete quasiparticle

states that form in each conduction channel of the weak link: theAndreev
bound states (ABS) [5, 6, 7, 8, 9]

[5]: Andreev (1966), ‘Electron Spectrum of

the Intermediate State of Superconduc-

tors’

[6]: Kulik (1970), ‘Macroscopic quan-

tization and proximity effect in S-N-S

junctions’

[7]: Beenakker and Houten (1991), ‘Joseph-

son current through a superconducting

quantum point contact shorter than the

coherence length’

[8]: Furusaki and Tsukada (1991), ‘Dc

Josephson effect and Andreev reflection’

[9]: Bagwell (1992), ‘Suppression of the

Josephson current through a narrow,

mesoscopic, semiconductor channel by a

single impurity’

.

ABS are formed from the phase-coherent reflections that quasiparticles

undergo at both ends of a weak link, known as Andreev reflections. They

can be viewed as the electronic modes of a box with superconducting

walls. Their existence therefore results from the general properties of

an NS interface and the topology of the weak link, rather than from

the geometric and material properties of the region where they are

confined, which explains the universality of the Josephson effect. While

the connection between ABS and the Josephson effect was predicted

long ago, it was not until rather recently that direct evidence of these

current-carrying states was obtained. ABS have now been revealed with

various spectroscopy techniques and in various systems, ranging from

carbon nanotubes [13]

[13]: Pillet et al. (2010), ‘Andreev bound

states in supercurrent-carrying carbon

nanotubes revealed’

and atomic contacts [14, 15, 16]

[14]: Bretheau et al. (2013), ‘Exciting

Andreev pairs in a superconducting

atomic contact’

[15]: Bretheau et al. (2013), ‘Supercurrent

Spectroscopy of Andreev States’

[16]: Janvier et al. (2015), ‘Coherent

manipulation of Andreev states in

superconducting atomic contacts’

to semiconducting

nanowires [17, 18, 19]

[17]: Woerkom et al. (2017), ‘Microwave

spectroscopy of spinful Andreev bound

states in ballistic semiconductor Joseph-

son junctions’

[18]: Lee et al. (2013), ‘Spin-resolved

Andreev levels and parity crossings in

hybrid superconductor-semiconductor

nanostructures’

[19]: Hays et al. (2018), ‘Direct Microwave

Measurement of Andreev-Bound-State

Dynamics in a Semiconductor-Nanowire

Josephson Junction’

. A few examples are shown in Figure 1.1.

1.2 Quantum information within a single
Josephson junction

Josephson circuits havewide applications in the field of quantum informa-

tionprocessing [2]

[2]: Devoret and Schoelkopf (2013),

‘Superconducting Circuits for Quantum

Information’

. They are currently at the core ofmost superconducting

qubit technologies being developed, where information is encoded in

bosonic collective electromagnetic modes of the circuits [3]

[3]: Krantz et al. (2019), ‘A quantum

engineer’s guide to superconducting

qubits’

. Compara-

tively, little attention was paid so far to the internal degrees of freedom

of a Josephson junction arising from the microscopic ABS that it hosts,

although such fermionic states could actually be used to store quantum

information within the junction itself. The key point here is that the many-

body occupancy of the ABS determines a macroscopic and measurable

quantity, the supercurrent flowing through the weak link, and therefore

the electrodynamics of the circuit in which the junction is embedded.

This make these microscopic degrees of freedom addressable.
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(a) (b)

(c) (d)

Figure 1.1: Spectroscopy of ABS: (a) in a carbon nanotube (tunnel spectroscopy, from

Ref. [13]); (b) on a InAs/InP core/shell nanowire connected to a superconducting Vanadium

electrode (tunnel spectroscopy as a function of plunger gate voltage and magnetic field,

from Ref. [18]), and on atomic contacts: (c) supercurrent spectroscopy (from Ref. [15]); (d)

microwave spectroscopy (from Ref. [16]).

1.2.1 Tunnel junctions vs few-channels weak links

Most existing superconducting qubits rely on tunnel junctions which,

as a collection of many low-transmitted conduction channels, typically

host millions of ABS. The fact that these ABS hardly detach from the

superconducting gap and show only little phase dispersion precludes

their manipulation in such systems. On the contrary, Josephson weak

links tailored in few-channels conductors are characterized by only a few

ABS, which offers a chance to isolate and manipulate them individually.

Since they may disperse deeply in the superconducting gap when they

arise from well-transmitted channels, they may carry substantially more

supercurrent and are therefore easier to couple to a readout probe. For

the same reason, at least part of the associated excitation spectrum

falls in the SHF (3-30 GHz) frequency range, easily explored using well-

establishedmicrowaves techniques, in particular those of circuit-quantum

electrodynamics (cQED) [20] [20]: Blais et al. (2004), ‘Cavity quantum

electrodynamics for superconducting

electrical circuits’

. For quantum information applications,

nanowire weak links made out of semiconducting materials appear

particularly appealing due to their gate tunability, which allows to reach

conditions where conduction occurs through only a few high-transmitted

channels [39]

[39]: Goffman et al. (2017), ‘Conduction

channels of an InAs-Al nanowire

Josephson weak link’

.

In the present thesis, we investigate the effect of spin and charge on

the physics of Andreev bound states. Our results are based on cQED

experiments which were performed on Josephson weak links tailored

in epitaxially grown InAs/Al core/shell nanowires. In these hybrid

nanostructures, grown in the Center for Quantum Devices, Copenhagen,

by the groups of P. Krogstrup and J. Nygård, the high quality interface

between the InAs core of the nanowire and its aluminium shell (see Figure

1.2(b,c)) induces a "hard" superconducting gap in the semiconductor by

proximity effect [38]

[38]: Chang et al. (2015), ‘Hard gap in

epitaxial semiconductor-superconductor

nanowires’

.
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3 nm

1 µm

(a) (b)

(c)
(d)

Figure 1.2: Josephson weak links tailored in InAs/Al core/shell nanowires. (a) Tilt-view

scanning electron micrograph of an array of epitaxial InAs/Al NWs grown in the [0001],/

direction on an InAs (111)B substrate (adapted from Ref. [37]

[37]: Krogstrup et al. (2015), ‘Epitaxy of

semiconductor-superconductor nano-

wires’

). (b) High-resolution TEM

image from [37] showing that the Al shell forms a perfectly sharp and uniform interface

to the InAs core. (c) Colorized electron micrograph from Ref. [49]

[49]: Vaitiekėnas et al. (2018), ‘Effective

6 Factor of Subgap States in Hybrid

Nanowires’

, showing the ∼ 25 nm

full-shell epitaxial Al (blue) grown on the hexagonal InAs core (green) with diameter

∼ 140 nm. (d) Josephson weak link obtained from such a full-shell nanowire by etching

away the Al over a length 550 nm (sample named S2 in the thesis).

Thismakes these nanowires a suitable platform to implement a Josephson

weak link: by simply etching away the aluminium shell over a small

section of the nanowire, onenaturally defines a SNS junction, as illustrated

in Figure 1.2(d).

In parallel to ourwork, the group ofMichel Devoret at YaleUniversity also

performed experiments on InAs nanowireweak links using a cQED setup.

While we were investigating full-shell nanowires, theirs had aluminium

only on 2 facets of the InAs crystals
1

1: Contrary to our nanowires which

have their six facets covered ("full-shell"

nanowires, see Figure 1.2(c)), two-facets

nanowires allow for additional tuning

since the chemical potential in the leads

and their coupling to theweak linkmay be

tuned by means of supplementary gates,

while in a full-shell nanowire the super-

conducting shell screens any external elec-

trical field.

. They also used another type of

microwave resonator and another excitation scheme. Whereas most of

our results rely on the two-one spectroscopy of weak links, they focused

more on time-domain measurements [19, 41, 42]

[19]: Hays et al. (2018), ‘Direct Microwave

Measurement of Andreev-Bound-State

Dynamics in a Semiconductor-Nanowire

Josephson Junction’

[41]: Hays et al. (2020), ‘Continuous

monitoring of a trapped superconducting

spin’

[42]: Hays et al. (2021), ‘Coherent

manipulation of an Andreev spin qubit’

and detailed analysis of

single-tone spectra [50]

[50]: Fatemi et al. (2021), ‘Microwave

susceptibility observation of interacting

many-body Andreev states’

. Because of the strong proximity between their

work and ours, we will often refer to their experiments.

We present twomain findings. First, the observation at zeromagnetic field

of the “fine structure” of the Andreev states, arising from the presence of

spin-orbit coupling in the semiconductor. Second, spectroscopic signa-

tures of electron-electron interactions between quasiparticles trapped in

different ABS. We also demonstrate time-domain manipulation of ABS,

using various transitions observed in the spectra.

1.3 Observation of the ABS fine structure

The role of spin in fermionic excitations like ABS is a topical issue in the

rapidly growing fields of hybrid superconducting devices [22, 23, 24]

[22]: Michelsen et al. (2008), ‘Manipula-

tion with Andreev states in spin active

mesoscopic Josephson junctions’

[23]: De Franceschi et al. (2010), ‘Hybrid

superconductor-quantum dot devices’

[24]: Linder and Robinson (2015),

‘Superconducting spintronics’

and

of topological superconductivity [25, 26, 27, 28]

[25]: Prada et al. (2017), ‘Measuring

Majorana nonlocality and spin structure

with a quantum dot’

[26]: Zazunov et al. (2017), ‘Josephson

effect in multiterminal topological

junctions’

[27]: Deng et al. (2018), ‘Nonlocality of

Majorana modes in hybrid nanowires’

[28]: Hart et al. (2017), ‘Controlled finite

momentum pairing and spatially varying

order parameter in proximitized HgTe

quantum wells’

. It has been predicted

that for finite-length weak links the combination of a superconducting

phase difference, which breaks time-reversal symmetry, and of spin-orbit

coupling, which breaks spin-rotation symmetry, is enough to lift the spin

degeneracy, giving rise to spin-dependent Josephson supercurrents even
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in the absence of an external magnetic field [29, 33, 30, 31, 34] [29]: Chtchelkatchev and Nazarov

(2003), ‘Andreev Quantum Dots for Spin

Manipulation’

[33]: Béri et al. (2008), ‘Splitting of

Andreev levels in a Josephson junction by

spin-orbit coupling’

[30]: Padurariu and Nazarov (2010),

‘Theoretical proposal for superconducting

spin qubits’

[31]: Reynoso et al. (2012), ‘Spin-orbit-

induced chirality of Andreev states in

Josephson junctions’

[34]: Cayao et al. (2015), ‘SNS junctions in

nanowires with spin-orbit coupling’

. We report

here the first observation of microwave transitions between zero-field

spin-split ABS.

1.3.1 ABS in a multi-channel Rashba nanowire

The phase dependence of ABS levels arising in a weak link with a single

occupied channel is illustrated in Figure 1.3 in the semiconductor picture
2

2: Different representations are generally

used in the literature todescribe the energy

spectrum of superconductors: the single-

particle picture, the excitation picture and

the semiconductor picture. Depending on

the context and the type of experiment

being discussed, one representation may

be more convenient than the another. For

a detailed comparison of these representa-

tions, see Ref. [40]

[40]: Bretheau (2013), ‘Localized Ex-

citations in Superconducting Atomic

Contacts’, pp. 16-21

.

for three cases of increasing complexity:

(a) For a zero-length junction, there is only one pair of subgap, spin-

degenerate ABS levels 8 = ±1 detaching from the gap edge Δ.

As the superconducting phase difference � across the weak link

is increased, the two levels fall deeper in the gap until � = �,
value for which superconductivity is maximally frustrated. Their

energy difference reaches there its minimum value 2Δ
√

1 − �, with

0 ≤ � ≤ 1 the channel transparency. This picture describes well

weak links with length ! � �, where � is the superconducting

coherence length. For ballistic conduction channels, � = ~E�/Δ,
where E� is the Fermi velocity at the weak link.

(b) For finite-length weak links, without spin-orbit coupling, more

spin-degenerate ABS levels arise in the gap. The parameter� = !/�
determines the number of such ABS pairs: depending on � and

channel transmission �, it is 1+b2�/�c or 2+b2�/�c (bGc is the inte-
ger part of G). For the parameters of Figure 1.3b (� = 1.7, � = 0.97),

the levels are labelled 8 = ±1,±2.

(c) When spin-orbit interaction is present in the weak link, the spin-

degeneracy of the ABS levels can be lifted when � ≠ 0,�, as the
result of a spin-dependent Fermi velocity which leads to different

values of � for the two spin textures [32]
[32]: Park and Levy Yeyati (2017),

‘Andreev spin qubits in multichannel

Rashba nanowires’

. This is depicted in Figure

1.3(c) where the pseudospin of each ABS is encoded in grayscale.

This regime describes well InAs nanowire weak links that are

investigated in this thesis.

Pair vs. single-quasiparticle transitions

In the many-body ground state, the negative-energy levels are occupied

in the single-particle picture. This includes the negative-energy ABS levels

as well as the continuum of states at energies � < −Δ. Each level can

be occupied by 0 or 1 quasiparticle. By irradiating the weak link with

photons at the right energy, one can promote a quasiparticle from the

lower (-1) to the upper (+1) level (red arrows in Figure 1.3), which in the

excitation picture amounts to creating both a hole-like and an electron-like

excitation. This process is therefore referred to as a pair transition (PT).

The ground and excited states involved in such transitions were first

observed in atomic contacts : they give rise to the Andreev level qubit,

which was investigated previously in the Quantronics group [21]

[21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’
.

In finite-length weak links, a second type of parity-conserving transitions

arises: a quasiparticle trapped in one ABS can absorb a photon and be

excited to another one.We refer to this process illustrated by green arrows
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Figure 1.3: Energy spectrum of the Andreev states in the semiconductor picture as a function of the phase difference � between the two

superconducting electrodes, as obtained by solving the BdG equations, for (a) a zero-length weak link, (b) a finite-length weak link, and

(c) a finite-length weak link in presence of spin-orbit coupling. In (a,b), all lines are spin-degenerate. In (c), dark and light gray lines

correspond to Andreev levels with different pseudospins. In the ground state, all levels with negative energy are occupied. Two types

of transitions can occur: pair transitions (PT), leading to two additional excitations, are represented with red arrows crossing the Fermi

energy. Single-quasiparticle transitions (SQPT) are possible when quasiparticles are present in the system. They correspond to atomic-like

transitions between two levels both at either positive or negative energies (green arrows).

in Figure 1.3 as a single-quasiparticle transition (SQPT). When the ABS

are spin-split as a result of the spin-orbit interaction, the spin character of

such excitations becomes relevant. As illustrated in Figure 1.3(c), there can

now be four transitions of this type between a given pair of spin-split ABS

doublets. Two of them conserve the pseudospin of the quasiparticle, while

the two others flip it. Performing such single-quasiparticle transitions

therefore amounts to manipulating a single fermionic spin trapped at the

weak link, which could be used to implement an Andreev spin qubit.

Probing these spin effects requires to engineerweak links in a few-channel

conductor where spin-orbit interaction is at play. In addition to a good

proximity effect, the InAs nanowires mentioned above are known to

host sizeable spin-orbit interactions [35, 36]

[35]: Roulleau et al. (2010), ‘Suppression of

weak antilocalization in InAs nanowires’

[36]: Scherübl et al. (2016), ‘Electrical

tuning of Rashba spin-orbit interaction in

multigated InAs nanowires’

, which makes them good

candidates to implement spin-active junctions. In the present work, we

performed the microwave spectroscopy of such InAs nanowire weak

links by coupling them tomicrowave resonators in a cQED setup. The role

of the microwave resonator is two-fold: it allows to efficiently isolate the

weak link from external noise and to read out its microscopic state. Due

to the coupling with the weak link, the resonator frequency is shifted by

an amount that depends on the many-body occupancy of the ABS states.

Probing its frequency with microwaves then gives direct access to the

weak link state. In particular, the excitation spectrum of the latter can be

obtained by applying an additional microwave tone to drive transitions

between ABS. When resonant, this drive changes the occupancies of the

ABS, which reflects in a shift of the resonator frequency.
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Figure 1.4: (a) Josephson weak link tailored in an InAs/Al core/shell nanowire by etching

away part of the aluminium shell (grey) covering the InAs core (green) over a length

! ≈ 370 nm. A superconducting phase difference � may be applied across the weak link by

embedding the nanowire in a superconducting loop and threading it by a small magnetic

field. A DC voltage applied on a side gate (gold) near the nanowire allows to tune its

conduction properties. The gate is also used as a local antenna on which a microwave tone

at frequency 51 is applied to drive transitions between the ABS hosted by the weak link.

(b) Typical spectrum of spin-split Andreev states and their �-dependence drawn in the

excitation picture. This spectrum can be understood by considering a finite-length weak

link with Rashba-type spin-orbit interaction in a nanowire containing several transverse

subbands. (c) Microwave spectrum of an InAs nanowire weak link showing a bundle of

four lines corresponding to single-quasiparticle transitions (green) between the spin-split

ABS shown in (b). The two outer transitions 1,4 conserve the quasiparticle pseudo-spin

� ∈ {↑, ↓}, while the two inner transitions 2,3 flip it.

This is illustrated in Figure 1.4(c), where we present a typical excitation

spectrum of an InAs nanowire weak link. The superconducting phase

difference � across the weak link is varied by embedding the weak

link in a loop and sweeping an external magnetic field through it. The

spectrum shows generic features with bundles of four lines crossing

when the superconducting phase difference across the weak link is 0

or �. Hence, we interpret these distinctive features as SQPT transitions

between zero-field spin-split Andreev states, as shown in Figure 1.4(b).

A simple analytical model, which takes into account the Rashba spin-

orbit interaction in a nanowire containing several transverse subbands,

explains these features and their evolution with magnetic field. Our

results show that the spin degree of freedom is addressable in Josephson

junctions. They are a first step towards its coherent manipulation.

1.3.2 Trapping a single spin in a superconducting box

Using a similar cQED setup but a different resonator design, the group

of Michel Devoret at Yale University was independently working on

demonstrating such manipulation of an Andreev spin. Following our

understanding of the single-quasiparticle transitions in nanowire spectra,

Hays et al. achieved the coherent manipulation of a single quasiparticle

trapped in the lowest ABS manifold [41, 42]

[41]: Hays et al. (2020), ‘Continuous

monitoring of a trapped superconducting

spin’

[42]: Hays et al. (2021), ‘Coherent

manipulation of an Andreev spin qubit’

.
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Figure 1.5: (a) Microwave spectrum of an InAs nanowire weak link showing of bundle

of SQPTs (dashed green lines) and a series of PTs (dashed blue). 5A ≈ 6.6 GHz denotes

the resonator frequency. (b,c) Rabi flopping of the SQPTs (c) and of one of the PTs (b)

obtained by varying the duration C3 of a square microwave driving pulse of frequency 51.
Measurements were performed at the phase values indicated in (a) by magenta and cyan

bars. (d) Linecuts of (c) at the frequencies of the four SQPT (highlighted with black ticks on

the frequency axis) evidencing different Rabi frequencies between spin-conserving and

spin-flipping SQPTs.

Here, we independently demonstrate such a manipulation of a single

spin, althoughwe could not achieve single-shot readout of the spin aswas

done in [41]. Figure 1.5 illustrates typical time-resolved measurements

that we performed, evidencing coherent oscillations in the mean value

of a demodulated readout pulse obtained by varying the duration of a

driving pulse resonant with a PT (b) or with each of the four lines of

a SQPT bundle (c). Remarkably, when driving at the same power, the

Rabi frequency associated to spin-flipping SQPTs is shown to be ∼ 2.5

times smaller than for spin-conserving transitions, consistent with the

existence of approximate selection rules for the spin
∗
.

∗
In principle, a microwave drive is not expected to induce spin-flipping transitions. This is

because the magnetic field of the drive is too weak to couple to the spin of an electron; as

for the electric field, it only couples to the motional degree of freedom of the electron

and so cannot flip the spin when it is a good quantum number. In the present case,

spin-orbit coupling in the nanowire partly solves this issue since it hybridizes the spin

and spatial character of the electron wavefunction into a so-called pseudospin. However,

it can be shown that a selection rule still forbids spin-flipping transitions : while the

spin-orbit breaks the rotational symmetry along the nanowire axis, there still remains a

transverse mirror symmetry, such that one spin state of each Andreev doublet would be

mirror-symmetric and the other anti-symmetric (see Ref. [42]). Therefore, if the electric

field of the microwave drive points along the nanowire and respects this mirror symmetry,

it cannot flip the spin. Still, in practice, this symmetry may be broken by the presence of

a side gate, and by any non-ideality in the device, which makes this selection rule only

approximate. All inter-doublet spin transitions can therefore be induced, although the

spin-flipping ones remain a bit harder to drive, as evidenced here.
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1.3.3 General theory for the cQED of phase-biased weak
links

While focusing on the understanding of spectroscopy, we evidenced

additional peculiarities in nanowire spectra. First, transitions were ob-

served at frequencies far detuned from that of the resonator. Second,

the response of the resonator appeared to depend on the curvature of

the transition lines. These facts are at odds with the dispersive theory,

which describes the coupling in terms of exchange of photons with the

resonator. To solve this issue, we developed in collaboration with the

group of Alfredo Levy Yeyati, from the CondensedMatter Physics Center

in Madrid, a general theory for the response of a resonator to changes

in the occupancies of a multi-level quantum system coupled to it, as is

the case for ABS systems. We also acknowledge a collaboration with

Leandro Tosi and Andres Reyonoso from Instituo Balseiro in Bariloche,

who contributed to the tight-binding calculations presented in this thesis.

The main result of the collaboration with Madrid is the expression of the

resonator shift due to a single occupied level:

ℎ� 5 (8)A ∝ �′′8 +
∑
9≠8

M 2

8 , 9

(
2

� 9 − �8
− 1

� 9 − �8 − ℎ 5A
− 1

� 9 − �8 + ℎ 5A

)
.

(1.1)

This equation describes the adiabatic and dispersive contributions to the

coupling between an oscillatorwith resonant frequency 5A and a quantum

system with discrete energy spectrum {�8}. When the two systems are

strongly detuned, ℎ 5A � |� 9 − �8 | ∀8 , 9 , the quantum system mainly

shifts the resonator frequency through an effective stiffness, viewed as the

second derivative of its energy levels �′′
8
= %2�8/%@2

with respect to the

coupling parameter @ (usually a phase difference or an offset charge). At

small detuning, when ∃8 , 9 | ℎ 5A ∼ |� 9 −�8 |, the shift is dominated by the

exchange of virtual photons between the two systems, which depends on

the matrix elements of the coupling operator M8�, 9�′ = |〈Φ8 |%�/%@ |Φ9〉|,
with � the Hamiltonian of the quantum system.

1.4 Evidence of Coulomb interactions in
nanowire weak links

Whilemost of the features of nanowireweak link spectra can be explained

by means of a non-interacting theory, we show using a combined experi-

mental and theoretical approach that they contain additional features

that reveal the effect of electron-electron interactions. In particular we

demonstrate that, when a Cooper pair is broken into two quasiparticles

residing on different Andreev levels, their interaction leads to a splitting

of the energies of the four possible many-body states, reminiscent of

singlet-triplet splitting in systems with weak spin-orbit coupling. This is

illustrated in Figure 1.6(b,c) where we show with blue lines "mixed" pair

transitions involving two ABS manifolds with and without interactions,

as computed from aminimal four-sitesmodel whichwill be introduced in

Chapter 8. One of the many spectra showing such mixed pair transitions

is presented in Figure 1.7. Mixed pair transitions, highlighted in blue, are

grouped into a non-degenerate triplet and a singlet at higher energy.
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3

2

1

0

(b) (c)

(a)

Figure 1.6: (a) Andreev spectrum of a typical finite-length weak link with spin orbit

interaction drawn in the excitation picture. Energies are normalized by an effective singlet

pairing intensity ΓB . Colored arrows highlight the possible microwave absorption lines, the

phase dependence of which is depicted in (b,c) without and with the effect of Coulomb

interactions, parametrized by an interaction strength* . Transition lines are classified into

pair (red) and mixed pair (blue) transitions and inter- (solid green) and intra-manifold

(dashed green) single particle transitions. Interactions are observed to split the four mixed

pair transitions.

Even if the interactions are strongly screened in these weak links, mi-

crowave spectroscopy is sensitive enough to reveal their effects, which

would otherwise be difficult to identify by means of conventional trans-

portmeasurements. This illustrates how solid-state devices like Josephson

weak links allow to probe many-body physics at the microscopic scale.

The manuscript is organized as follows. In Chapter 2, starting from the

concept of Andreev reflection and quasiparticles in a superconductor, we

discuss the origin of ABS and review how their energy spectrum depends

on theweak link length and on the presence of back-scattering.We further

investigate in Chapter 3 the effect of spin-orbit interaction, how it arises

in crystalline solids and how it allows for a zero-field spin splitting of the

ABS by giving rise to a spin-dependent Fermi velocity. Using a scattering

approach, we derive the energy spectrum of a finite-length weak link

in presence of spin-orbit interaction when only the lowest band of the

nanowire is occupied.
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Figure 1.7: Spectrum measured on sample S2, with splines to highlight pair transitions

(red), single particle transitions (green) and mixed pair transitions (blue).

The second part, encompassing Chapters 4 and 5, is devoted to the

detection of ABS with the technique of cQED. In Chapter 4, starting from

a general model of the coupling between a resonator and a phase-biased

weak link, we discuss two ways of calculating the resonator shift in terms

of the microscopic occupancies of a multilevel Andreev system. The

derived result is shown to capture well the generic crossover between

adiabatic and dispersive readout of a quantum circuit. First, we relate

the resonator shift to the imaginary part of the weak link’s complex

admittance, which can be expressed in terms of the ABS occupancies

using the Kubo formalism from linear response theory. The second

approach is based on a Hamiltonian description of the coupling. Both

show that the resonator shift scales like the square amplitude of the

zero-point phase fluctuations on theweak link, whichwe seek to optimize

for a good coupling to the detection resonator. Guided by this result, we

describe in Chapter 5, the design of microwave resonators, in particular

quarter-wave coplanar waveguide (CPW) and coplanar stripline (CPS)

resonators.

In a third part, comprising Chapters 6-8, we present our experimental

results on the microwave spectroscopy of nanowire weak links. First, we

demonstrate how the fine structure of ABS is revealed by the observation

of single-quasiparticle transition lines and their magnetic field depen-

dence, and how the frequency of the transitions can be explained with

the scattering model derived in Chapter 3. We then apply the formalism

developed in Chapter 4 to describe other features of themeasured spectra,

in particular the transition lines intensity and the existence of selection

rules associated to the spin, which affect the visibility of some transitions

depending on the type of driving. In addition to the SQPTs, we identify
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in Chapter 7 additional recurring features in our spectra, which evidence

a multichannel situation as well as the presence of Coulomb interactions

in the weak link. In Chapter 8 we introduce a model to incorporate the

effect of such interactions and compare it to the measured spectra.

The fourth part, comprising Chapters 9-11, presents our results on the

coherent dynamics of ABS in nanowire weak links. We start in Chapter 9

by discussing the readout of the weak link many-body state using

time-resolved measurements. In Chapters 10 and 11 respectively, we

demonstrate the manipulation of an Andreev pair qubit and present

preliminary results on the manipulation of an Andreev spin qubit.

The final part, Chapters 12-15, reviews the experimental techniques

used in this thesis, from sample fabrication to low-temperature and

microwave measurements, as well as our setup for data acquisition.

Details on the theoretical models are presented in an Appendix, along

with supplemental microwave data and a discussion on the origin of

spin-orbit in InAs nanowires and a classical derivation of the dispersive

shift of two oscillators.

Some of the results presented in this manuscript are reported in the

following articles:

I [51] Spin-Orbit splitting of Andreev states revealed by microwave spec-

troscopy, L. Tosi, C. Metzger, M. F. Goffman, C. Urbina, H. Pothier,

Sunghun Park, A. Levy Yeyati, J. Nygård, P. Krogstrup, Phys. Rev.

X 9, 011010 (2019), arXiv:1810.0259

I [52] From adiabatic to dispersive readout of quantum circuits, Sunghun

Park, C. Metzger, L. Tosi, M. F. Goffman, C. Urbina, H. Pothier, and

A. Levy Yeyati, Phys. Rev. Lett. 125, 077701 (2020), arXiv:2007.05030

I [53] Circuit-QED with phase-biased Josephson weak links, C. Metzger,

Sunghun Park, L. Tosi, C. Janvier, A. A. Reynoso, M. F. Goffman, C.

Urbina, A. Levy Yeyati, H. Pothier, Phys. Rev. Research 3, 013036
(2021), arXiv:2010.00430

I [54] Signatures of interactions in the Andreev spectrum of nanowire

Josephson junctions, F. J. Matute Cañadas, C. Metzger, Sunghun

Park, L. Tosi, P. Krogstrup, J. Nygård, M. F. Goffman, C. Urbina, H.

Pothier, A. Levy Yeyati, arXiv:2112.05625
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In the following sections, we introduce in a nutshell the concept of

Andreev bound states (ABS), while focusing on the physical picture and

keeping the math input as low as necessary. For a detailed mathematical

derivation of ABS using the scattering formalism, we kindly refer the

reader to Part I of Ref. [40]

[40]: Bretheau (2013), ‘Localized Ex-

citations in Superconducting Atomic

Contacts’, pp. 15-30

. Starting from the mode conversion process

called Andreev reflection (AR) taking place at the interface between a

normal metal and one superconductor, we extend it to the case of a short

weak link between two superconductors and show how it gives rise to the

ABS subgap states. We then introduce gradually different ingredients to

enrich their physics: the finite length of the weak link, the effect of spin

and finally the effect of spin-orbit coupling in the normal region.

2.1 Andreev reflection

2.1.1 Electron-to-hole conversion

+e

-e

qk

𝑥𝑥

+∆

∆(𝑥𝑥)0

𝐸𝐸𝑘𝑘 𝐸𝐸𝑘𝑘 𝐸𝐸𝑘𝑘

𝑥𝑥 = 0 𝑥𝑥 = 𝜉𝜉𝐸𝐸
(𝑆𝑆)

𝑒𝑒

Normal metal Superconductor
𝑘𝑘

𝑘𝑘

∆(𝑥𝑥)

𝑘𝑘𝐹𝐹

𝑘𝑘

Figure 2.1:The normalmetal-superconductor interface is characterized by a spatial variation

of the superconducting order parameter Δ(G) from Δ deep in the superconducting region,

G → +∞ (grey region), to 0 deep in the normal region, G → −∞ (green). As a normal

electron (black dot) moves towards positive G, it converts into a quasiparticle of the

superconductor, with energy �: and charge @: encoded in blue-white-red color-scale.

Let us analyze what happens at the interface between a normal metal

and a superconductor and how a current carried by normal electrons

is converted into a supercurrent of Cooper pairs. For simplicity, we

will describe this problem considering a 1D geometry. The following

argument is inspired by the textbook discussion from Ref. [55] [55]: Schmidt et al. (1997), The Physics of

Superconductors, pp. 167-174

and will

only require knowledge of the expression for the energy of quasiparticles

in a superconductor. The normal metal-to-superconductor transition is

characterized by an order parameter corresponding to the energy gap

Δ(G) of the superconductor, which has its maximum Δ(G → +∞) = Δ
deep inside the superconducting region (depicted in grey in Figure 2.1)
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and is zero deep inside the normal region depicted in green, Δ(G →
−∞) = 0. This transition region where the order parameter varies from 0

to Δ constitutes the NS interface so to speak.

We want to examine what happens to an electron in the normal region

when it encounters such NS interface. We can write the kinetic energy

of the incoming electron as &: = ~2:2/(2<) − �, with : its momentum

in the G-direction, < its effective mass and � = ~2:2

�
/(2<) the chem-

ical potential. Importantly, let us assume that its energy &: is smaller

than Δ, so that no state is available with such an energy in the bulk

superconductor. As illustrated in Figure 2.1, at some point when ap-

proaching the superconducting domain, this normal electron reaches a

place where superconducting correlations already exist but to a small

amount, Δ(G) � Δ. At this moment, it converts into an electron-like

quasiparticle of the superconductor, filling the appropriate :-state in

momentum space (positive/right branch of the spectrum), correspond-

ing to its energy �: =
√
&2

:
+ Δ(G)2. Its charge gets also dressed by the

superconducting correlations, evolving from −4 to @: = (−4)&:/�: .

Δ = Δ 𝑒𝑒𝑖𝑖𝑖𝑖

µ

E

−∆

+∆

𝑘𝑘𝑥𝑥𝑘𝑘𝐹𝐹−𝑘𝑘𝐹𝐹

𝑥𝑥
𝑦𝑦

e1

e2

h2

Normal metal Superconductor(a)

(b)

Figure 2.2: (a) Andreev reflection viewed as a scattering problem at the interface between a

normal metal (green) and a superconductor (grey), characterized by an order parameter Δ.

(b) Energy dispersion �(:G) of a normal electron in a 1D metal (thick green curve). Density

of states in the superconductor is sketched in grey on the right. A normal electron 41 with

excitation energy & < Δ above the chemical potential � is propagating with momentum

:1 = :� + �: in the G-direction towards the superconductor. To form a Cooper pair, it pairs

with another electron 42 with energy −& and momentum :2 = −:� + �:, leaving a hole ℎ2

behind, whose energy dispersion is shown in thin green lines. It is drawn at the negative

momentum and energy of the missing electron 42. For simplicity, spin indices are omitted

for now.

Then, as the quasiparticle moves closer to the superconductor, it reaches

another point with a larger value of the gap and consequently evolves

in momentum space to another :-state closer to :� , which results in an

increase of the quasiparticle charge @: . Finally, when approaching further,

its momentum is decreased exactly to :� and the quasiparticle excitation

is left with zero group velocity and zero charge. This happens when it

reaches G = �(()
�

, where its energy is equal to the local value of the gap

(we shall derive heuristically the value of �(()
�

in the next section). At this
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1: Provided that a Fermi momentum mis-

match exists at the interface, which is

the case when the normal region may

be doped, part of the momentum & is

thereby transferred to the interface and

the other part to the condensate resulting

into a supercurrent consistent with total

charge conservation.

point, the quasiparticle is reflected back from the interface, moving to

the left branch of the energy spectrum corresponding to holes. In this

branch, the group velocity is negative and the charge @:<:� positive. But

a positive charge propagating to the left is equivalent to a negative charge

propagating to the right. Therefore, this whole process of conversion

from electron-like excitation to hole-like excitation gives effectively rise

to a charge transfer from the normal metal to the superconductor.

Actually, as it approaches the superconductor, the quasiparticle charge

decreases by being gradually transferred to the superconducting conden-

sate. This means physically that the quasi-electron finds itself a partner

to pair up with and enter the condensate as a Cooper pair, while the

resulting hole goes backwards to the normal metal. This mode conver-

sion process from electron to hole is known in the literature as Andreev
reflection (contrasting with the conventional specular reflection) and

was independently discovered by Andreev in 1964 [10]

[10]: Andreev (1964), ‘The Thermal

Conductivity of the Intermediate State in

Superconductors’

and by de Gennes

and Saint-James in 1963-64 [11, 12]

[11]: Gennes and Saint-James (1963),

‘Elementary excitations in the vicinity of

a normal metal-superconducting metal

contact’

[12]: Saint-James (1964), ‘Excitations

élémentaires au voisinage de la surface

de séparation d’un métal normal et d’un

métal supraconducteur’

. It is further illustrated in Figure 2.2.

Now with some math...

If Δ � �, one can approximate linearly the electronic dispersion around

�, �(:) ≈ �+~E�(:− :�), with :� the Fermimomentum and E� = ~:�/<
the Fermi velocity, which allows to rewrite the electron excitation energy

as & = ~E�(: − :�).

We can now formalize Andreev reflection as following, keeping with the

notations from Figure 2.2: a Landau quasiparticle 41 from the normal

metal, with momentum :1 = :� + �:1, spin ↑ and excitation energy

&1 = ~E��:1, pairs up with another quasiparticle 42 with momentum

:2 = −:� + �:2, spin ↓ and excitation energy &2 = −~E��:2. It does so in

order to build a Cooper pair and as such, it leaves a hole behind. To enter

the condensate at the pair chemical potential 2�, it requires &1 = −&2 = &,
which imposes �:2 = �:1 = �: = &/(~E�). In the excitation picture, this

missing quasi-electron in the spin-↓ band can equivalently be seen as a

hole-like excitation ℎ2 with energy −&2 = +&1 propagating backwards

with momentum −:2 = :� − �:, group velocity E2 = −E� , and spin ↑
(a missing spin ↓). This is illustrated in Figure 2.2, where the energy

dispersion of the hole ℎ2 is depicted by the thin green line.

Andreev reflection therefore appears as the scattering of an electron-

like excitation with charge −4, momentum :� + �: and velocity E�
into a hole-like excitation with charge +4, momentum :� − �: and

velocity −E� . This electron-to-hole conversion process hence conserves

energy and spin but not charge, and momentum is only approximately

conserved −:2 ≈ :1 ≈ :� . The charge excess −24 and the momentum

& = 2�: are actually transferred to the superconducting condensate
1
:

the two quasi-electrons with opposite spins enter the superconductor

to create a Cooper pair with non-zero pair momentum &, which joins

the condensate. The electron-hole pair of excitations gives rise to a

current density −4E� + 4(−E�) = −24E� , i.e. twice the current of the

incoming electron, which corresponds to the supercurrent carried by the

transmitted Cooper pair with charge −24.
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2.1.2 A phase-coherent process

During the reflection, the phases of the incoming electron and the re-

flected hole remain correlated,meaning thatAndreev reflection is actually

a phase-coherent process. We just showed that during the conversion,

the electron and hole amplitudes penetrate into the superconductor over

a length scale �(()& , which depends on the energy &: of the incoming elec-

tron. This propagation is therefore associated with an energy-dependent

dynamical phase !(&), associated to the Andreev reflection. We will

need this phase in the next section to understand how Andreev states

arise. Without going into much math, we can retrieve simply the ex-

pression of !(&)with the following reasoning, based on expressing the

energy-dependent momentum of a quasi-electron (:4 ) and quasi-hole

(:ℎ) excitation. Starting from &: =
~2(:2−:2

�
)

2< = �( :2

:2

�

− 1) and using that

�: =
√
&2

:
+ Δ2

, we can rewrite the quasiparticlemomentum as a function

of its energy � :

:4 ,ℎ(�) = :�
(
1 + �4 ,ℎ sgn(�)

�2 − Δ2

�

)
1/2
, (2.1)

where �4 ,ℎ = ±1 stands for the choice of electron (+1) or hole (-1). This

shows that as long as |� | > Δ, :4 ,ℎ ∈ ℝ and we are dealing only

with propagating states. If |� | < Δ, :4 ,ℎ ∈ ℂ and we have

√
�2 − Δ2 =

8sgn(�)
√
Δ2 − �2

. When Δ � �, we can Taylor expand Eq. (2.1) to first

order (Andreev approximation), and obtain:

:4 ,ℎ(�) = :� + 8�4 ,ℎ�(�) with �(�) = :�
√
Δ2 − �2

2�
� :� . (2.2)

Therefore, the wave vector :4 ,ℎ is complex, which means that the asso-

ciated wavefunction is evanescent in the superconductor over a length

scale �(�)−1 � :−1

�
, which corresponds precisely to the quantity �(()

�

introduced before:

�(()
�
=

~E�√
Δ2 − �2

. (2.3)

From this we can deduce the time needed for the Cooper pair to enter the

condensate, �(()
�
= �(()

�
/E� . This time also determines the delay between

the maximum of the incoming electron wave packet and the maximum of

the reflected hole wave packet. By treating asymptotically the conversion

from electron to hole as a scattering problem and using the method of

stationary phase, one can express it as �(()
�
= ~%�!(&). Using Eq. (2.3) for

�(()
�

and the useful trigonometric identity arccos
′ (G) = −1/

√
1 − G2

, we

finally deduce the expression for the energy-dependent phase acquired

over an Andreev reflection
∗
:

!(�) = − arccos (�/|Δ|). (2.4)

∗
Another way to guess the expression for �(()

�
is to invoke the energy-time formulation of

the Heisenberg principle, � ∼ ~/Δ�, which can be interpreted (amongst other) as the time

frame � needed for two particles in interaction to exchange an energy quantity Δ�. As the

electron is converted into a hole, its energy is changed by an amount Δ� ∼ |& | =
√
Δ2 − �2

for subgap states |� | < Δ, from which we recover Eq. (2.3).
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2: Such a superconducting phase differ-

ence can be applied in practice by embed-

ding the junction in a superconducting

loop and threading it with a magnetic

flux, see Chapter 4.

𝑥𝑥
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Figure 2.3: Andreev bound states (ABS) in a short weak link between two superconductors.

(a) A Josephson weak link is formed by sandwiching a piece of normal coherent conductor

(green) between two superconducting electrodes (grey). A difference � of superconducting

phases is applied between the two electrodes. The normal region is assumed to be short, i.e.

to have a length ! � �, with � the superconducting coherence length of the electrodes.

Local impurities, depicted as a blue star, may limit the junction transparency to a finite

value 0 ≤ � ≤ 1. (b) Energy dispersion �(:G) of a 1D electron (black disk) moving in

the G-direction and retro-reflected as a hole (black circle) when undergoing an Andreev

reflection (AR) on the right interface. The Fermi sea in the normal region is denoted in

light grey. Density of states in the superconductors is sketched in darker shades of grey

on the left and right hand sides, evidencing the existence of an energy gap 2Δ. (c) ABS

emerge as closed orbits of right-moving (full line) and left-moving (dashed line) electrons

confined in the normal region by Andreev reflection (AR). Back-scattering happening with

a probability 1 − � connect right and left movers.

The superconducting order parameter is not only characterized by an

amplitude |Δ|, but also by a macroscopic phase ", such that Δ = |Δ|4 8".
This phase is also picked by the quasi-electron as it penetrates the

superconductor. Therefore, the phase difference between an incoming

electron and a reflected hole can be written !(�) − ". Conversely, it is
!(�) + " between an incoming hole and a reflected electron. We have

now everything at hand to understand the emergence of ABS.

2.2 How do ABS arise ?

Figure 2.1 illustrates how the spatial variations of the order parameter

Δ(G) act as a barrier of potential for an incoming electron. By putting two

such barriers on either side of a piece of normal coherent conductor, one

can expect to confine the electronic fluid and give rise to bound states,

similarly to a particle-in-box problem. Let us now discuss this more

formally. We consider the geometry described in Figure 2.3(a), where a

piece of normal conductor (green) is connected on either sides to two

superconducting electrodes (grey), thus forming a Josephson weak link.

We assume that both left (!) and right (') electrodes have a different

superconducting phase −�/2 and +�/2 2
. As discussed in Section 2.1.2,

this means that the phase difference between an incoming electron and

the reflected hole at the right interface will be !' = − arccos (�/Δ) − �/2,
with � < Δ the excitation energy of the right-moving electron.
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Figure 2.4: Energy spectrum ��(�) of An-

dreev states in a short Josephson weak

link as a function of the superconducting

phase difference � in the single-particle

picture. Thin lines correspond to a junction

transparency � = 1 (full line is for right-

moving electrons, dashed line for left-

moving electrons). Thick lines describe

the case � = 0.9.

To begin with, let us assume for simplicity that the length ! of the normal

region is small enough for the dynamic phase developed by the electron

during its propagation on the length ! to be negligible (as we shall see,

this amounts to assuming that ! � �, with � = ~E�/! and E� the Fermi

velocity in theweak link). As illustrated in Figure 2.3(b), the reflected hole

will then undergo a second Andreev reflection on the left interface and

be converted back into a right-moving electron, which corresponds to

removing one Cooper pair from the left electrode
3

3: Notice that we simplified a bit the pic-

ture compared to Figure 2.2. For the pur-

pose of easier notationswe represented the

reflected hole in Figure 2.3(b) as the miss-

ing left-moving electron ; this shortcut of

notation may be confusing since it gives

a wrong picture where the hole has op-

posite energy and momentum compared

to the incoming electron, while it has in-

deed same spin, energy and (almost) same

momentum as we argued in Section 2.1.1.

. The phase difference

acquired over this second reflection is !! = − arccos (�/Δ) − �/2 = !'.
Similarly, if considering initially a left-moving electron, the two phases

acquired after each reflection would be !! = !' = − arccos (�/Δ) + �/2.
Now, if this total phase !! +!' acquired over a round-trip in the normal

metal (see Figure 2.3(c)) is a multiple of 2�, a stationary mode similar

to Fabry-Pérot resonances in an optical cavity can develop, giving rise

to electronic bound states in the weak link. The energy of such state is

given by the resonant condition:

±� − 2 arccos (��/Δ) ≡ 0 [2�] ⇒ & =
��

Δ
= ± cos (�/2) < Δ, (2.5)

where the + sign (resp. − sign) corresponds to right-moving (resp. left-

moving) electrons. These states, which are characterized by a subgap

energy & < 1, are known in the literature as Andreev bound states
(ABS). They correspond to a coherent superposition of electron- and

hole-like excitations, which are spatially confined at the junction between

the two superconductors and can be interpreted as a localized Cooper

pair trapped at the junction. Figure 2.3(b) illustrates that over a round-

trip of the incoming electron in the weak link, one Cooper pair has

been effectively transmitted from the left superconducting electrode

to the right one, therefore contributing to a positive superconducting

current
†
. Therefore, although being localized at the junction, Andreev

states actually mediate the supercurrent flow and can be viewed as the

microscopic mechanism of the Josephson effect [6, 7, 8, 9]

[6]: Kulik (1970), ‘Macroscopic quan-

tization and proximity effect in S-N-S

junctions’

[7]: Beenakker and Houten (1991), ‘Joseph-

son current through a superconducting

quantum point contact shorter than the

coherence length’

[8]: Furusaki and Tsukada (1991), ‘Dc

Josephson effect and Andreev reflection’

[9]: Bagwell (1992), ‘Suppression of the

Josephson current through a narrow,

mesoscopic, semiconductor channel by a

single impurity’

.

In a real device, the weak link transparency is necessarily limited, ei-

ther due to the presence of impurities in the normal region which are

responsible for some back-scattering, or from a likely Fermi momentum

mismatch between the normal and superconducting region acting as an

effective barrier at each interface [56]

[56]: Prada et al. (2020), ‘From An-

dreev to Majorana bound states in

hybrid superconductor-semiconductor

nanowires’

. Equation (2.5) can be generalized

to the case of transmission � smaller than 1 as follows:

& = ±
√

1 − � sin
2 (�/2), (2.6)

with & = ��/Δ the reduced ABS energy. The effect of back-scattering is to

couple the right (thin full line) and the left (thin dashed line) branches of

the spectrum,which opens a gap around � = �, as illustrated in Figure 2.4.

At � = �, which corresponds to the phase value where superconductivity

is maximally frustrated, the ABS energy is minimal and equals Δ
√

1 − �.
Because of the symmetry of the spectrum around zero energy, we will

represent from now on only its positive part (excitation picture).

†
At equilibrium, and in the absence of a macroscopic supercurrent, this left-to-right current

is exactly canceled by the inverse process where a Cooper pair enters the normal metal

through the right electrode and converts a right-moving hole into a left-moving electron.
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𝜆𝜆=0.8 𝜆𝜆=2.5𝜆𝜆 = 𝐿𝐿/𝜉𝜉 ≪ 1
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Figure 2.5: Effect of the finite length ! of the normal region on the ABS spectrum. The

positive spectrum (excitation picture) is shown for three different values,� = 0 (left),� = 0.8
(middle) and � = 2.5 (right). Thin lines give the energy dispersion of the right-moving

(full) and left-moving (dashed) electrons for the � = 1 limit of perfect junction transparency.

Thick lines correspond to � = 0.9.

2.3 From short to long junctions

Let us now investigate how the finite length ! of the normal region

affects the previous picture. In Section 2.1.1, we wrote the wave-vector of

the right-moving electron as :1 = :� + �/(~E�), and of the missing left-

moving electron as :2 = −:�+�/(~E�). The dynamical phase acquired by

these two charge carriers over a round-trip in the normal region can then

be expressed as :1!+ :2! = 2�!/(~E�) = 2�&, with & = �/Δ the reduced

energy and � = !/(~E�/Δ). The parameter � can be rewritten as !/�,
where � = ~E�/Δ has the form of a (ballistic) superconducting coherence

for a material with Fermi velocity E� and gap Δ, but here, E� is the

Fermi velocity in the weak link and Δ is the gap in the superconducting

electrodes. The resonant condition from Eq. (2.5) therefore generalizes to

±� − 2 arccos (&) + 2�& ≡ 0 [2�]. (2.7)

There is no analytical solution to Eq. (2.7), however we may get approx-

imate solutions in the limit & � 1 or � � 1. Restricting to � ∈ [0, 2�],
Eq. (2.7) may be rewritten:

& = ± cos

(
�& ± �

2

)
= ± cos (�&) cos

( �
2

)
∓ sin (�&) sin

( �
2

)
��1≈ ± cos

( �
2

)
∓ �& sin

( �
2

)
, (2.8)

from which we deduce

&
��1≈ ± cos (�/2)

1 + � sin (�/2) with� =
!

�
=
!Δ

~E�
(2.9)

In the �→ 0 limit, we recover the result Eq. (2.5) for a short weak link in

absence of backscattering: & = ± cos (�/2). To get the exact solution for a

finite length weak link, we can solve numerically Eq. (2.7). The associated

solutions are plotted in thin lines in Figure 2.5 for three illustrative

values of � (solid lines are for right-moving electrons, dashed lines for

left-moving ones).
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It shows how, as the length ! of the normal region is increased, more

and more ABS levels are fit in the superconducting gap Δ. By analyzing

Eq. 2.7, on finds that the number of ABS at positive energy is 1 + b2�/�c
or 2 + b2�/�c (bGc is the integer part of G), depending on �. In addition,

we can investigate the effect of backscattering in the finite-length weak

link [9]

[9]: Bagwell (1992), ‘Suppression of the

Josephson current through a narrow,

mesoscopic, semiconductor channel by a

single impurity’

. We observe that it opens additional gaps at � = 0, � and 2�,
where the left and right branches of the spectrum mix, depending on the

value of �.

So far in the analysis we neglected the effect of spin. Since the energy

dispersion of spin ↑ and spin ↓ electrons illustrated in Figure 2.5 is

degenerate, both species have the same Fermi velocity E� and follow

the same resonant condition given in Eq. (2.7). Consequently, we expect

the ABS spectrum shown in Figure 2.5 to be also spin-degenerate. In

Appendix A, we put forward a connection existing between Andreev

reflection and quantum information, suggesting that Josephson weak

links could be seen as confining structures for spin information, and

therefore a suitable platform to implement a spin quantumdot. This leads

to the following question: is there a way to lift the inherent spin degeneracy

of ABSs and build a spin-active weak link where the spin degree of freedom of

the electronic states would matter ? This question, which has already been

extensively investigated in the literature [29, 33, 30]

[29]: Chtchelkatchev and Nazarov

(2003), ‘Andreev Quantum Dots for Spin

Manipulation’

[33]: Béri et al. (2008), ‘Splitting of

Andreev levels in a Josephson junction by

spin-orbit coupling’

[30]: Padurariu and Nazarov (2010),

‘Theoretical proposal for superconducting

spin qubits’

, will be the focus of

the next chapter.
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As we have shown in the previous chapter, ABSs are formed from the

coherent Andreev reflections that quasiparticles undergo at both ends of

the weak link. Quasiparticles acquire a phase at each of these Andreev

reflections an also while propagating along the weak link. To lift the

inherent spin degeneracy of ABSs, it is necessary that spin ↑ and spin ↓
quasiparticles acquire different phases over a round trip in the weak link,

which means that they must have a spin-dependent Fermi velocity. This

may be achieved by means of a possible spin-orbit interaction (SOI) in the

weak link, the effect of which on the Josephson current has been a long

subject of investigation [57, 58, 59, 60]

[57]: Bezuglyi et al. (2002), ‘Combined

effect of Zeeman splitting and spin-orbit

interaction on the Josephson current

in a superconductor–two-dimensional

electron gas–superconductor structure’

[58]: Krive et al. (2004), ‘Charge and spin

effects in mesoscopic Josephson junctions

(Review)’

[59]: Dimitrova and Feigel’man (2006),

‘Two-dimensional S-N-S junction with

Rashba spin-orbit coupling’

[60]: Dell’Anna et al. (2007), ‘Josephson

current through a quantum dot with

spin-orbit coupling’

. Similarly to the case of atomic

spectra where the fine structure arises from interaction between the spin

and orbital degrees of freedom of electrons, we show here how the ABS

spectrum is modified in the presence of SOI in the weak link.

3.1 Foreword on spin-orbit interaction

3.1.1 Spin-orbit in vacuum

When a charged particle moves in an electric field
®�, it experiences an

effective magnetic field that couples to its spin through the Zeeman effect.

The corresponding Hamiltonian is usually written as:

�($ = ®
 · (®� × ®:), (3.1)

where
®: is the electron wavevector, ®� the vector of Pauli matrices in spin

space and ®
 the spin-orbit coupling, which determines the strength of

the interaction between the spin and the momentum of the electron.

This expression can be easily recovered from the following argument,

writing the effective magnetic field
∗
in SI units as

®� = −(®E × ®�)/22
with ®E

the electron velocity and 2 the speed of light. The Zeeman Hamiltonian

describing the coupling of the electron spin with the magnetic field then

writes � = −®� · ®�, where ®� = −6�� ®�/2 is the magnetic moment of

the electron with �� the Bohr magneton, 6 the electron gyromagnetic

ratio, and ®� the Pauli matrix vector. Rewriting the electron velocity ®E
in terms of its momentum

®: = <®E/~, we recover Eq. (3.1) from the

Zeeman Hamiltonian with ®
 = −6��~ ®�/(2<22). Although this rough

derivation gives the correct analytical form for the spin-orbit Hamiltonian,

it predicts a wrong prefactor by many orders of magnitude. In solids,

instead of scaling like the Dirac gap <22
, which is of the order of MeV,

∗
True in the non-relativistic limit E � 2. This result comes from the Joules-Bernoulli

equations describing the transformation of E and B fields between two inertial frames.

The magnetic field
®�′ in a frame moving at the velocity ®E can be expressed in terms of

the
®�, ®� fields in the rest frame as

®�′ = �
(
®� − ®E×®�

22

)
− (� − 1)( ®� · Ê)Ê with Ê = ®E/||®E | | and

� = 1/
√

1 − E2/22
the Lorentz factor from special relativity.
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the denominator of ®
 contains a combination of splittings in the energy

bands of the crystal, which are rather in the eV range.

3.1.2 Spin-orbit in solid-state devices

There are generally two ways in which an electric field can arise in

a nanostructure. On the one hand, the crystal itself can develop an

intrinsic electric field when its unit cell lacks an inversion center. This

is generally known as bulk inversion asymmetry, which gives rise to a

Dresselhaus kind of spin-orbit coupling. On the other hand, an electric

field may arise when the lack of inversion symmetry is due to an external

potential, which can be due to crystal surfaces, spatial inhomogeneities,

or voltages from external metallic gates. This case is generally referred

to as a structural inversion asymmetry and corresponds to the Rashba

spin-orbit interaction.

In the most general case, the spin-orbit Hamiltonian assumes the form

�($ = ®Ω(®:) · ®�, with
®Ω(®:) the spin-orbit field. Since time-reversal

reverts both spin and momentum, time-reversal symmetry requires that

®Ω(®:) = − ®Ω(−®:), which imposes the spin-orbit field to be an odd function

of momentum
®: [61] [61]: Dresselhaus (1955), ‘Spin-Orbit Cou-

pling Effects in Zinc Blende Structures’

. This is indeed the case in the Hamiltonian of

Eq. (3.1), which contains only linear terms in
®:. Time-reversal symmetry

actually imposes stringent constraints on the energy spectrum of a spin

1/2 system, whichwe are now going to briefly review before investigating

quantitatively the effect of linear SOI on the ABS spectrum.

3.2 ABS in presence of spin-orbit

In Appendix B, we show with symmetry arguments that SOI can split

the Andreev levels, but that the Andreev spectrum must be mirror-

symmetric around the two time-reversal invariant phases � = 0,�, where

the doublets of ↑, ↓ states must cross.

We consider a normal wire infinitely long in the Ĝ direction. Assuming

that the electric field due to the bulk or structural asymmetry is in the Î

direction, the Hamiltonian of the normal region can be written:

� = �0 + �($ =
~2 ®:2

2<∗
+*(H) − 
Î · (®: × ®�), (3.2)

with <∗ the effective mass of the electron in the solid and *(H) the
confining potential in the transverse direction.

3.2.1 1D wire

In a first step we consider a purely one-dimensional wire, and are left

with:

�1� =
~2:2

G

2<∗
−
:G�H =

~2(:G − :
�H)2

2<∗
−<

∗
2

2~2

with :
 =
<∗


~2

, (3.3)
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Figure 3.1: Same as in Figure 2.3 but including SOI in the normal region. (a) Schematic of a weak link of length !, with a single scatterer

(blue star) with transmission �. (b) Dispersion relation for a purely one-dimensional weak link in the presence of SOI (green solid lines,

labels ↑↓ indicate spin in y-direction). Density of states of superconducting electrodes is sketched at both ends of the wire. (c) Andreev

reflections (AR) at the superconductors couples electrons (full circles) with holes (open circles) of opposite spins and velocities, leading to

the formation of ABS. Blue arrows indicate reflections due to a scatterer. (d) Energy of ABS (excitation picture). Thin lines in (d) and (g):

� = 1, ABS formed from right-moving electrons and left-moving holes (solid) or the opposite (dashed). Backscattering (� ≠ 1) leads to

opening of gaps at the crossings highlighted with blue circles in (d). Resulting spin-degenerate Andreev levels are shown with thick solid

lines. (e-g) Effect of SOI in the presence of two transverse subbands, only the lowest one being occupied. (e) Grey solid lines labelled 1↑↓ and
2↑↓ are dispersion relations for uncoupled subbands. SOI couples states of different subbands and opposite spins, leading to hybridized

bands (green solid lines) with energy-dependent spin textures. Fermi level � is such that only the lowest energy bands <1 and <2 are

occupied. AR couples for example a fast electron from <2 to a fast hole (in black), and a slow electron from <1 to a slow hole (in red). (f)

Construction of ABS: black and red loops are characterized by different absolute velocities. Spins pointing in different directions symbolize

spin textures of the bands. Thin red and black lines, solid and dashed in (f,g): ABS at � = 1, associated with different spin textures. Thick

black lines in (g): ABS when crossings highlighted with blue circles are avoided due to backscattering (parameters used in the figure:

�1 = 0.8, �2 = 2.0, � = 0.8 and GA = 0).
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which describes two energy parabolas shifted around :G = 0 by an

amount :
 linear in the spin-orbit strength 
. Since the effective magnetic

field causing the SOI is directed along Ĥ, spin polarization occurs along

this direction. For spin ↑ electrons, �H = +1, corresponding to the right-

shifted parabola. The left-shifted one corresponds to spin ↓ electrons
with �H = −1. Therefore, as shown by the green lines in Figure 3.1(b),

SOI splits the parabolic dispersion relation according to the electron

spin direction [62] [62]: Bychkov and Rashba (1984),

‘Oscillatory effects and the magnetic

susceptibility of carriers in inversion

layers’

. We recover the result from Figure B.1(b) that we had

intuited qualitatively reasoning in terms of the system’s symmetries.

Now, as shown in Figure 3.1(c), Andreev reflections (AR) at the super-

conductors couples electrons (full circles) with holes (open circles) of

opposite spins and velocities. When the transmission probability across

the wire is perfect (� = 1), ABS arise when the total accumulated phase

along closed paths that involve twoAR and the propagation of an electron

and a hole in opposite directions is a multiple of 2� [5, 6] [5]: Andreev (1966), ‘Electron Spectrum of

the Intermediate State of Superconduc-

tors’

[6]: Kulik (1970), ‘Macroscopic quan-

tization and proximity effect in S-N-S

junctions’

. Figure 3.1(d)

shows, in the excitation representation, the energy of the resulting ABS

as a function of � for a finite length � = 0.8. ABS built with right- (left-)

moving electrons are shown with thin solid (dashed) lines in Figure

3.1(d). Backscattering in the weak link (� ≠ 1), due either to impurities

or to the spatial variation of the electrostatic potential along the wire,

couples electrons (as well as holes) of the same spin travelling in opposite

directions, leading to avoided crossings at the points indicated by the

open blue circles in Figure 3.1(d). Given that both spin species still have

the same Fermi velocity, they acquire the same phase over a round-trip in

the weak link, :
1↑+ :2↓ = :1↓+ :2↑. Consequently, the resonant condition

to form bound states is the same for both, and is still described by Eq. (2.7):

one obtains, for this value of �, one or two distinct ABS (thick solid lines)

that remain spin-degenerate, as illustrated in Figure 3.1(d).

3.2.2 Quasi-1D wire

If we now consider that the nanowire has a finite size, in the transverse

directions Ĥ and Î, new terms appear in the normal region Hamiltonian:

�2� =
~2

2<∗
(:2

G + :2

H + :2

I) +*(H, I) − 
(:G�H − :H�G). (3.4)

Assuming a harmonic confinement*(H, I) = <$2

0
(H2 + I2) in the trans-

verse section, :H and :I become quantized. We recognize in ~2(:2

H +
:2

I)/(2<∗) +*(H, I) a 2D harmonic oscillator which can be solved exactly

as ~$0= with = ∈ ℕ∗ and $0 = ~/(<∗(,/2)2) involving the effective

nanowire diameter, . We are then left with:

�2� =
~2(:G − :
�H)2

2<∗
+ 
:H�G + =~$0 −

<∗
2

2~2

, (3.5)

the last two terms being only energy offsets. As illustrated in gray curves

in Figure 3.1(e), the energydispersion nowconsists in a series of transverse

bands shifted in energy by �⊥= = =~$0 with = ∈ ℕ∗, while each band is

itself spin-split in two :G-shifted subbands. As for the remaining spin-

orbit term 
:H�G , it couples different transverse sub-bands with different

spin, which has the effect to lift the degeneracies at their crossing points.

As a result, the sub-bands become non-parabolic, as shown in green

curves in Figure 3.1(e). Because of this subband mixing, spin is no longer
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a conserved quantity and an energy-dependent spin texture arises along

each subband. However, it is still possible to assign a pseudospin index

� ∈ {↓, ↑} for each subband.

We focus on a situation in which only the two lowest subbands (labelled

m1 and m2 in Figure 3.1(e)) are occupied. One can derive the following

expression for their energy dispersion [32] [32]: Park and Levy Yeyati (2017),

‘Andreev spin qubits in multichannel

Rashba nanowires’

:

�B(:G) =
~2:2

G

2<∗
+
�⊥

1
+ �⊥

2

2

−

√(
�⊥

1
− �⊥

2

2

− B
:G
)2

+ �2 , (3.6)

where B = −1 corresponds to <1 (pseudospin � =↑) and B = +1 to <2

(pseudospin � =↓), andwhere � =
√

2
/, is the strength of the subband

mixing due to the SOI. Linearizing around the chemical potential �, we

obtain the Fermi velocity associated to both modes 9 = 1, 2:

E�9 =
~:�9
<∗
+ (−1)9



(
�⊥

1
/2 − (−1)9
:�9

)
~
√(
�⊥

1
/2 − (−1)9
:�9

)
2 + �2

, (3.7)

where :�9 are the Fermi wave vectors satisfying �B(:�9) = �. If there
is no subband mixing, i.e. � = 0, (gray parabolas in Figure 3.1(e)),

Eqs. (3.6) and (3.7) show that :�1 − :�2 = 2<∗
/~2 = 2:
 and E1 − E2 =

(:�1 − :�2)~/<∗ − 2
/~ = 0, indicating that the Fermi velocities are

the same. Importantly, when � ≠ 0, Eq. (3.7) shows that we have now

two modes which are characterized by different Fermi velocities. In

the absence of particle backscattering, the phase accumulated in the

Andreev reflection processes at G = −!/2 and G = !/2, as illustrated
in Figure 3.1(f), leads to the following transcendental equation for the

energy & = ��/Δ as a function of � [32] [32]: Park and Levy Yeyati (2017),

‘Andreev spin qubits in multichannel

Rashba nanowires’

:

sin (&�1 − B�/2 − arccos &) sin (&�2 + B�/2 − arccos &) = 0, (3.8)

where � 9=1,2 = !/�9 with �9 = ~E�9/Δ, the (ballistic) superconducting

coherence length associated to both modes with Fermi E�9 . It can be

viewed as a two-mode generalization of Eq. (2.7). The two zeros of this

equation are given by:

±B� − 2 arccos & + 2&�1 = 0 mod 2� (3.9)

These two families of ballistic ABSs, built from states with different spin

textures, are represented by red and black thin lines in Figure 3.1(f,g).

Approximate solutions are

& 9(�) =
± cos �/2

1 + � 9 sin �/2 (3.10)

for �& 9 � 1, and

& 9(�) =
(2: + 1)� ± B�

2(1 + � 9)
, (3.11)

with : ∈ ℤ, for & � 1. This last expression accounts well for the quasi

linear dispersion of the Andreev energy (except close to the gap energy)

when � departs from 0.
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1: Actually, because spin is no longer a

good quantum number in presence of SOI,

forward scattering should in principle also

be allowed, although it is not treated here

for simplicity. Including other scattering

terms would certainly cause additional

repulsion between levels, but it is not ex-

pected to modify the overall picture.

3.2.3 Effect of backscattering

To model backscattering in the normal region, we add a point-like

impurity at the position G0 with −!/2 ≤ G0 ≤ !/2, described in the

Hamiltonian by a potential barrier *0�(G − G0). Accounting for this

extra boundary condition, one can derive the following transcendental

equation for the ABSs energy [32, 51]

[32]: Park and Levy Yeyati (2017),

‘Andreev spin qubits in multichannel

Rashba nanowires’

[51]: Tosi et al. (2019), ‘Spin-Orbit Splitting

of Andreev States Revealed by Microwave

Spectroscopy’:

ABS energies in a finite-length weak link with SOI

� cos

[
(�1 − �2)& ∓ �

]
+ (1 − �) cos

[
(�1 + �2)&GA

]
=

cos

[
2 arccos (&) − (�1 + �2)&

]
, (3.12)

where GA = 2G0/! ∈ [−1, 1] indexes the impurity position and 0 ≤ � ≤ 1

is the transmission probability at the impurity. The detailed derivation

of this equation is provided in Appendix E. As before, introducing a

finite backscattering probability 1− � > 0 couples left and right-movers,
1

leading to avoided crossings at the points indicated by the open blue

circles in Figure 3.1(e). The resulting ABSs group in manifolds of spin-

split states, represented in thick black lines. Remarkably, this splitting

takes place in the absence of any Zeeman field. A finite magnetic field

would however be needed to lift the residual Kramers degeneracies at

� = 0 and �, which hold as long as time-reversal symmetry is preserved

(see Appendix B). When �1 = �2 = �, Eq. (3.12) can be expanded up to

second order in &:

(2 − � + � cos �) −
[
2 + 4� + 2�2 + 2G2

A�
2(1 − �)

]
&2 = 0, (3.13)

fromwhichwe obtain an approximate expression of �� , valid near � = �,
and for not-too-small transmissions:

��(�) ≈ Δeff

√
1 − � sin

2 (�/2) (3.14)

with Δeff =
Δ√

(1 + �)2 + (GA�
√

1 − �)2
1−��1≈ Δ

1 + � . (3.15)

It turns out that this expression also accounts correctly for the dependence

near � = � of the average of the two solutions ��1 and ��2 of Eq. (3.12)

when �1 ≠ �2. One then takes � = (�1 + �2)/2. Equation (3.14) shows

that at low energy and close to � = �, the energy of the lowest-in-

energy pair transition behaves like that of a zero-length weak link with

a reduced superconducting gap Δeff. This approximate result is used at

many instances in the following.

Another model was investigated assuming a more physical situation

where backscattering takes place at the left (G = −!/2) and right (G = !/2)
edges of the wire. It results in another transcendental equation for the

ABS energies, with a slightly more cumbersome expression (see Eq. (A.13)

in Ref. [51] [51]: Tosi et al. (2019), ‘Spin-Orbit Splitting

of Andreev States Revealed by Microwave

Spectroscopy’

or Eq. (E.49) in Appendix E), but with the same number of

parameters: two transparencies �! , �' associated to the left and right

barriers, instead of one transparency � and the position GA for the single-
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Figure 3.2: Spin-dependent Fermi velocities for the two lowest transverse modes, as obtained from a discrete tight-binding description of

the normal region. Left plot: Energy dispersion �=�/Δ as a function of the electron momentum : (normalized by the unit cell size 0), when

2D-spin orbit (
G ≠ 0, 
H ≠ 0) is taken into account. The curves were computed from Eq. (C.2), see Appendix C for the parameters. The

bands for (
G ≠ 0, 
H = 0) are shown in dotted lines to highlight the hybridization points. Middle plot: Inverse Fermi velocities (horizontal

axis) �=� = !/�=� = !Δ/~E=� ∝ 1/E=� for each subband =� as a function of the band energy �=�/Δ (vertical axis). Right plot: difference of

normalized inverse Fermi velocities ��= = �=,↓ − �=,↑ as a function of energy �=�/Δ, showing a maximum at the bands hybridization

points.

barrier model presented above. Both models predict similar dispersions

for the spin-split ABSs and can fit the data equally well, as we will show

in Chapter 6.

3.2.4 Spin-dependent Fermi velocities

In the following, we generalize to the situation where the second trans-

verse band may also be occupied. For this purpose, we relabel the model

parameters with the subscripts =�, where = = 1, 2 is the band number

and � ∈ {↓, ↑} is the pseudospin index associated to each subband.

We have just shown that when it comes to ABSs, the figure of merit is

not the Fermi velocity E=� of the subband = with pseudospin �, but
the dimensionless ratio �=B = !

�=�
with �=� = ~E=�/Δ, which gives the

number of ABS in the window [−Δ,Δ] around �. More precisely, the

number of ABS in the gap equals 1 + b2�/�c or 2 + b2�/�c, depending
on � and �. Also, the quantity ��= = �=↓ − �=,↑ directly determines the

spin splitting of the Andreev states.

In Figure 3.2, we plot as a function of the band energy �=� both �=�,
for each of the four subbands =�, and ��= for the two transverse bands

in the presence of SOI. These quantities were obtained using a two-

channel tight-binding (TB) description of the normal region, as further

detailed in Appendix C. We will make use later of this TB description in

Chapter 7, which provides a simple way to extend the previous theory to

the case of a multimode weak link (not tractable analytically!) and to add

extra ingredients in the normal region like scattering barriers, on-site

Coulomb repulsion, etc. Note that in this discrete model, the bands in

absence of SOI are given by shifted cosine arches. In the continuum

limit, we would recover the parabolic bands described in the previous

section. As evidenced with horizontal dashed lines in Figure 3.2, ��=
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exhibits a maximum close to the band bottom, at the hybridization points

where the band mixing from SOI is the largest. Therefore, to get sizeable

spin splitting for the ABSs, one should operate in a situation where

the chemical potential � lies close to the bottom of a transverse band,

where ��= gets a finite appreciable value. As � increases, the subband

hybridization drops and ��→ 0. 2

2: Until�gets close to the topof a subband

where �� departs again from 0. However,

the latter is shown for illustrative purposes

only, because in practice the chemical po-

tential never reaches the ionization energy

associated to the top of the bands.

3.3 Implementation with semiconducting
nanowires

In the previous sections, we have shown how a linear SOI is able to lift

the ABS spin degeneracy except at a few phase values � = 0,�, which are

protected by time reversal symmetry. Now, can such a linear SOI take place

in solids and is the Hamiltonian in Eq. (3.1) a good approximation for it ?

As discussed in Section 3.1, the spin-orbit field in crystals
®Ω(®:) can be

shown to generically contain both linear and cubic powers of
®:, which

can contribute to different extent depending on the crystalline structure

of the solid. Nanostructures made from III-V semiconductor materials

appear as interesting systems to explore spin physics as they benefit for

free from a Dresselhaus SOI due to the inherent inversion asymmetry

of their crystal unit cell. Growing semiconducting nanowires out of

these materials offers even further appeal as the quantum confinement

generated by their typical small transverse dimensions may allow for

an extra Rashba contribution to the overall SOI, which can be further

tuned by applying external electric field using close-by metallic gates. By

controlling their growth conditions, these materials can typically crystal-

lize in the zincblende (ZB) or wurtzite (WZ) phases. In ZB nanowires,

bulk effects are expected to be negligible since they are only cubic in

momentum [63] [63]: Campos et al. (2018), ‘Spin-orbit

coupling effects in zinc-blende InSb and

wurtzite InAs nanowires’

. On the other hand, WZ crystals are known to exhibit

linear SOI already in the bulk, which is well described by a Hamiltonian

of the from from Eq. (3.1).

As a major breakthrough in material science, Krogstrup et al. demon-

strated in 2015 the growth by molecular beam epitaxy of semiconducting

nanowires made from an InAs core in the WZ phase covered by a thin

aluminium shell [37]

[37]: Krogstrup et al. (2015), ‘Epitaxy

of semiconductor-superconductor

nano-wires’

. The uniform and perfectly sharp interface of alu-

minium to the InAs core was shown to induce a “hard” superconducting

gap in the semiconductor by proximity effect [38]

[38]: Chang et al. (2015), ‘Hard gap in

epitaxial semiconductor-superconductor

nanowires’

, making such nanowires

attractive systems to implement Josephson weak links. The presence of

linear SOI was confirmed in such InAs nanowires by measuring the weak

antilocalization effect [36]

[36]: Scherübl et al. (2016), ‘Electrical

tuning of Rashba spin-orbit interaction in

multigated InAs nanowires’

. These two reasons make InAs nanowires good

candidates to explore the spin physics of Andreev states.

Quite remarkably, although many experimental results are consistent

with the presence of significant SOI in these nanowires, its exact origin still

appears (partially) unclear. Indeed, the intrinsic SOI due to bulk effects

is known to depend strongly on the crystal directions and interestingly

in the usual nanowires grown along the [0001] direction, it vanishes by

symmetry for each individual transverse mode in the wires, as discussed

inAppendixD. Therefore, thiswouldpoint towards an extrinsic structural

inversion asymmetry as being the main source of the linear Rashba SOI

measured experimentally.
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In the previous part, we described how ABS generally arise in weak links

between two superconductors and discussed how the spin degeneracy of

ABS can be lifted in weak links where spin-orbit coupling is present. In

this second part, we review how the Andreev spectrum of such systems

is measured using the techniques of circuit quantum electrodynamics

(cQED). This detection technique consists in coupling the phase-biased

weak link to a microwave resonator. The coupling arises through current

fluctuations in the resonator, which induce phase fluctuations across the

weak link. In Chapter 4, we develop a general theory to describe the

resonator-weak link coupling and derive an expression for the resonator

frequency shift as a function of the microscopic occupancies of the ABS

levels. These results guide the design of microwave resonators, which is

the object of Chapter 5.
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In cQED, the coupling of a weak link to a microwave resonator shifts

the frequency of the latter. If the coupling is small enough, then the

presence of the weak link does not affect the structure of the resonator

mode and can be treated as a perturbation. In the following I will discuss

two ways of calculating this shift in terms of the microscopic occupancies

of ABS. The first one follows the treatment done by Kurilovich et al.

[64] [64]: Kurilovich et al. (2021), ‘Microwave

response of an Andreev bound state’

. The weak link is considered as a circuit element characterized by

a complex admittance. We will see that the resonator shift due to the

weak link will be directly proportional to the imaginary part of the weak

link admittance. By using linear response theory, the admittance of the

weak link, hence the frequency shift of the resonator, are expressed in

terms of the occupancies of ABS. The second approach is a Hamiltonian-

based description of the resonator coupled to the weak link, which we

developed in Refs. [52, 53]

[52]: Park et al. (2020), ‘From Adiabatic to

Dispersive Readout of Quantum Circuits’

[53]: Metzger et al. (2021), ‘Circuit-QED

with phase-biased Josephson weak links’.

4.1 Resonator shift from an electrical engineer
point of view

4.1.1 Resonator admittance

Following the treatment of Ref. [64]

[64]: Kurilovich et al. (2021), ‘Microwave

response of an Andreev bound state’

, let us treat the weak link as a two-

port black box coupled in parallel to a microwave resonator described

by its admittance matrix .res

8 9
[$], where 8 , 9 ∈ !, ' label the two ports of

the weak link (see Figure 4.1). The admittance matrix relates the currents

flowing in the resonator to the voltages at nodes L and R,

�8($) =
∑
9=!,'

.A4B89 [$]+9(F). (4.1)

For simplicity, let us assume that the resonator is lossless and reciprocal
∗

(the latter is always true for R,L,C circuits). In this case, .res
is a purely

imaginary matrix [65]

[65]: M.Pozar (2011), Microwave Engineer-

ing, 4rd Ed

. The condition for a parallel resonance that the

imaginary part of the circuit admittance goes to zero, then translates into

the more general condition of zero admittance. In other words, the bare

frequency of a lossless resonator, i.e. in the absence of the weak link, can

be determined by the frequency at which the equivalent admittance of

the resonator goes to zero. The latter, which we denote .∗, is defined as

the admittance seen from one port when the other is open. To compute.∗

in terms of the admittance matrix’s components .8 9 , consider the circuit

∗
If a network is lossless, the net real power delivered to it must be zero: % = Re(+) �∗) =
1

2
(+) �∗++∗) �) = 1

2
(+∗) �+�∗)+) = +∗)

(
.+.∗)

2

)
+ = 0. Since+ is external to the network

and can therefore be chosen arbitrarily, . + .∗) must be zero for a lossless network, i.e. .

is anti-Hermitian:. = −.†. If moreover the network is reciprocal (. = .) ), then. = −.∗
i.e. Re(.) = 0.
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Figure 4.2: From two-ports admittance

matrix .8 9 to equivalent admittance .∗.
Note that we have defined.∗ as the admit-

tance seen from one port when no current

flows at the other.

" .∗
11
=

�
1

+
1

���
�
2
→0

≠
�
1

+
1

���
+

2
→0

= .11

1: In the general case, for a parallel (=cur-

rent) type of resonance, the resonator

impedance equals its resistance / = '

and the total current is minimal. Here be-

cause we assumed initially that ' = 0 (no

photon loss in the resonator), this means

that we have � = 0 at resonance, therefore

det. = 0.

depicted in Figure 4.2. Applying Eq. (4.1) gives{
�1 = .11+1 + .12'2�2

�2 = .21+1 + .22'2�2
⇒ �2 =

.21

1 − .22'2

+1 ,

from which we get, by definition of .∗:

.∗ ≡ �1

+1

���
'2→∞

= .11 + .12'2

�2

+1

���
'2→∞

= .11 +
'2.21

1 − .22'2

���
'2→∞

.12

= .11 −
.12.21

.22

.

The condition .∗ = 0 then amounts to .11.22 − .12.21 = 0 i.e. det . = 0.

Therefore, the bare frequency $0 of the resonator can be found as the

solution of the characteristic equation:

det.res

8 9 [$0] = 0. (4.2)

This implies that the admittance matrix .res
has zero as an eigenvalue,

that is to say there exists a non-trivial voltage mode +res, such that

.res+res = 0, i.e. �res
8
[$0] =

∑
9=!,' .

res

8 9
[$0]+res, 9 = 0 from Eq. (4.1), and

we are indeed looking at a current (parallel) type of resonance
1
.

4.1.2 Resonator shift

Let us now investigate the resonance frequency $′
0
of the coupled system.

Since the weak link and resonator are connected in parallel (see Figure

4.1), the total admittance of the coupled system is given by the sum

of their two contributions .tot = .res + .wl
. The resonance condition

obtained from Eq. (4.2) therefore changes to det(.res

8 9
[$′

0
] +.wl

8 9
[$′

0
]) = 0.

For a weakly coupled system, we expect the resonator frequency to be

shifted by only a small amount |�$ | � $0, such that $′
0
= $0 + �$. The

structure of the mode +res, 9 is then given by∑
8 , 9=!,'

+)
res,8

(
.res

8 9 [$0 + �$] + .wl

8 9 [$0 + �$]
)
+res, 9 = 0.

Expanding this equation tofirst order in �$ andusing that+)
res
.res[$0]+res =

0 by definition of $0, one is left with:∑
8 , 9=!,'

(
+)
res,8�$(.

res

8 9 )
′[$0]+res, 9 ++)

res,8.
wl

8 9 [$0]+res, 9

)
= 0.

from which we deduce:
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2: For an anti-Hermitian operator A:

G†�G = −G†�†G = −(�G)†G = −G†(�G)
⇒ Re(G†�G) = 0.

3: � and & refer here to the current flow-

ing through the weak link region and

to its charge, not to the in-phase and in-

quadrature components of a modulated

signal.

Resonator frequency shift due to the weak link

�$ = −
∑
8 , 9=!,' +

)
res,8

.wl

8 9
[$0]+res, 9∑

9=!,' +
)
res,8
(.res

8 9
)′[$0]+res, 9

. (4.3)

Note that because the resonator is assumed lossless, its admittance

matrix is anti-Hermitian, which implies that Re(+)
res
.res+res) = 0

2

and therefore also Re(+)
res
(.res)′+res) = 0. Consequently, Im(.wl) has

to be non-zero to give a real frequency shift �$. We obtain here a

general result: the resonator shift is proportional to the imaginary part

of the weak link admittance, and the magnitude of the shift scales like(∑
+)
res
(.res)′[$0]+res

)−1

, which depends on the resonator geometry,

encoded in its admittance matrix, and on the voltage structure+res of the

resonator mode used to probe the weak link.

4.1.3 Admittance from susceptibility

One can compute the admittance of the weak link .wl

8 9
using linear

response theory. The weak link is sensitive to two external parameters:

the appliedmagnetic flux )which tunes the phase difference ! across the

weak link and the gate voltage+6 which affects the charge in the junction

region. The response of the weak link to weak external drives �+6(C)
and �)(C) = !0�!(C) (where !0 = ~/24 is the reduced flux quantum)

is captured by its response function to the external biases ", which has

the form of a susceptibility. Given the finite length of a nanowire weak

link, a non-zero charge can develop in the junction region. Consequently,

to capture properly the electrodynamic response of the weak link, its

response function must have the structure of a 2x2 matrix, i.e. both

the current � through the weak link and the charge & on it have to be

considered, because both quantities respond to the phase and gate biases.

The relation between the external parameters {), +6} and the internal

variables {� , &} is given by the response function "�� through:(
�&($)
��($)

)
= "[$]

(
�+6($)
�)($)

)
, " =

(
"&& "&�
"�& "��

)
, (4.4)

where �& and �� describe the deviations of the mean charge and current

from their stationary values.

To relate the admittance of the weak link .wl

8 9
(with 8 , 9 ∈ !, ') to its

response function to the external biases "�� (where �, � ∈ � , &)
3
,

one needs to express {�), �+6} and {�&, ��} in terms of {+! , +'} and
{�! , �'}, respectively the potentials of the left/right resonator leads and

the current flowing through them. According to the conventions used in

Figure 4.1, one has:
%C&̂ = −(�̂' + �̂!)

�̂ =
�̂' − �̂!

2

⇒
(
�&($)
��($)

)
=

(
−(�'($) + �!($))/8$
(�'($) − �!($))/2

)
.
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5: These equations are valid only for

�6 � �! , �' . The more general case of

arbitrary ratio between the capacitances

to the gate/leads has been described by

Kurilovich et al. [64].

Now, to relate the external biases to the lead voltages, one has to make

some assumptions on the setup. Let us suppose here that the capacitance

�6 between the weak link and the gate is much larger than the capaci-

tances �! , �' coupling the weak link to the superconducting leads. This

assumption can be motivated if the gate is located close enough to the

weak link and if the weak link is in the dot regime, meaning weakly

coupled to the superconducting leads
4

4: Note that this is likely not to be the

case in our experiment. However, this as-

sumption remains a convenient limit as

it simplifies greatly the general form of

the results. So let us first go ahead with

it and then, once the results are derived,

mention how they are affected when a fi-

nite capacitance to the leads is taken into

account.

. If neglecting also the weak link

capacitance to ground (reasonable because the grounded parts of the

circuit are far from the weak link), then the voltage +6(C) supplied to the

gate simply translates into a voltage −+6(C) applied simultaneously on

both leads ! and ', so that:
�)($) = +! −+'

8$

�+6($) = −
+!($) ++'($)

2

.

Substituting into Eq. (4.4), one obtains:(
−(�'($) + �!($))/8$
(�'($) − �!($))/2

)
=

(
"&& "&�
"�& "��

) (
−(+!($) ++'($))/2
(+!($) −+'($))/8$

)
.

Then, solving for {�! , �'} as a function of {+! , +'}, one obtains after

identification with Eq. (4.1) the following set of equations relating the

admittance matrix of the weak link to its response function
5
:

.wl

!! = −
"��
8$
+ 8$

4

"&& +
1

2

("�& − "&�)

.wl

!' = +
"��
8$
+ 8$

4

"&& +
1

2

("�& + "&�)

.wl

'! = +
"��
8$
+ 8$

4

"&& −
1

2

("�& + "&�)

.wl

'' = −
"��
8$
+ 8$

4

"&& −
1

2

("�& − "&�).

(4.5)

Because each component of the admittance matrix is a linear combination

of the diagonal and non-diagonal elements of the response function,

it shows that in general the resonator frequency shift reflects both the

current and charge response of the weak link.

Now, because the numerator of Eq. (4.3) depends on the structure of the

mode (i.e. on the voltage on both leads), an important consequence of

these equations appears: by choosing an adequate geometry/symmetry

for the resonator, it is possible to probe particular components of the

response function of the weak link. In particular, if the resonator shows

a left/right symmetry with respect to ground and +res,! = +res,' = +0,

then:

+)
res
.wl[$0]+res

+2

0

= 8$0"&&[$0] ∝ "&& . (4.6)

On the other hand, if the resonator has a left/right antisymmetry and

+res,! = −+res,' = +0, then:

+)
res
.wl[$0]+res

+2

0

=
48"��[$0]

$0

∝ "�� . (4.7)
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Importantly, this means that by probing the weak link either through a

common mode of the resonator or through a differential mode, one can

measure either the charge or the current response of the weak link. In the

more general case where the capacitances �! and �' between the weak

link and the superconducting leads are taken into account [64] [64]: Kurilovich et al. (2021), ‘Microwave

response of an Andreev bound state’

, which

better describes the system studied in this thesis, one can show that for a

common mode of the resonator:

+)
res
.wl+res

+2

0

=

(
�6

�6 + �! + �'

)
2

8$0"&& ,

which is still proportional to the charge response "&& . However, when

probing the weak link through a differential mode of the resonator, one

is no longer measuring purely the current response:

+)
res
.wl+res

+2

0

=
48

$0

"�� − 2

�! − �'
�6 + �! + �'

("�&−"&�) +
(

�! − �'
�6 + �! + �'

)
2

8$0"&&

except if�!−�' � �6+�!+�' inwhich case one recovers approximately

Eq. (4.7). Thiswill be the case for any left/right asymmetry in the coupling

between the probe (resonator) and the weak link.

4.1.4 Kubo expression for the current-current
susceptibility "��

Trif et al. [66] [66]: Trif et al. (2018), ‘Dynamic current

susceptibility as a probe of Majorana

bound states in nanowire-based Joseph-

son junctions’

used the Kubo formula from linear response theory to

derive a general expression for the finite frequency current response

(susceptibility) of a nanowire junction
6

6: In this section, we omit the subscript ��

and note " = "�� .

"(), $) = 8$.(), $), where

.(), $) is the junction admittance (see also Refs. [67]

[67]: Trivedi and Browne (1988), ‘Meso-

scopic ring in a magnetic field’

and [68]

[68]: Dassonneville (2014), ‘Dynamics

of Andeev states in a normal metal-

superconductor ring’

for the use

of this approach on mesoscopic rings). By describing the junction in the

Bogoliubov-de Gennes framework (see 4.20), the response function
7

7: See Eqs. (29-32) in the suppl. material

of Ref. [66]

can

be decomposed into three parts, the Josephson ("�), the diagonal ("�)
and the non-diagonal ("#� or Kubo) contributions :

"(), $) =
%��
%)︸︷︷︸
"�

+
∑
=

$
$ + 8�==

(%&=
%)

)
2 % 5=
%&=︸                          ︷︷                          ︸

"�

− ~$
∑
=≠<

|〈< | �̂ |=〉|2
&= − &<

5= − 5<
&= − &< − ~$ − 8~�=<︸                                                ︷︷                                                ︸
"#�

,

(4.8)

with ��()) = −
∑
= 5=

%&=
%) being the supercurrent flowing for the static

flux ), the coefficient 5= being the occupancy number of the single-

particle state &= , �̂ = −%�̂F;/%) the current operator and �=< , the =<
component of the relaxation tensor

†
. From this expression, one can

rewrite "(), $) = ∑
= "(=)(), $) to identify the contribution from one

Andreev level =:

"(=) = "(=)
�
+ "(=)

�
+

∑
<≠=

"(=<)
#�

, (4.9)

where "(=)
�
= − 5= %2&=

%)2
, "(=)

�
= $

$+8��

(
%&=
%)

)
2 % 5=
%&=

.

†
Its diagonal elements �== describe the relaxation of the populations 5= due to inelastic

scattering arising from electron-phonon or electron-electron collisions. Non-diagonal

elements �=< capture the relaxation of the coherences due to transitions between levels.
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Figure 4.3: Lumped elementmodel for the

coupled microstrips design, showing the

resonator circuit (orange), the probe lines

(dark grey), the weak link loop (light blue)

as well as the two external parameters

(black): the flux ) and the gate voltage+6 .

Neglecting the inter-level relaxation rates �=< → 0 and writing 5=< =

5= − 5< and &=< = &= − &< for ease of reading, the non-diagonal part,

which accounts for transitions between Andreev levels, reads:

"(=)
#�

= −~$
∑
<≠=

|〈< | �̂ |=〉|2
&=<

5=<

&=< − ~$
− ~$

∑
=≠<

|〈= | �̂ |<〉|2
&<=

5<=

&<= − ~$

=
∑
<≠=

[ |〈< | �̂ |=〉|2
&=<

−~$ 5=<
&=< − ~$

+ |〈< | �̂ |=〉|
2

&=<

~$ 5=<
&=< + ~$

]
=

∑
<≠=

|〈< | �̂ |=〉|2 5=<
[ (��&=< − ~$) −��&=<

&=<(&=< − ~$)
+ (�

�&=< + ~$) −��&=<
&=<(&=< + ~$)

]
=

∑
<≠=

|〈< | �̂ |=〉|2 5=<
(

2

&=<
− 1

&=< − ~$
− 1

&=< + ~$
)
.

Isolating the contributionwhere level = is occupied and the others are not,

i.e. 5= = 1, 5< = 0, one has "(=)
�
= 0. Using that %) = !0%�, �̂ = − 1

!0

%�̂F;
%� ,

we are left with the following expression for the current susceptibility, to

which the resonator shift due to level = being occupied is proportional:

"=($) = −
1

!2

0

%2&=
%�2

+
∑
<≠=

|〈< |�̂′
F;
|=〉|2

!2

0

(
2

&=<
− 1

&=< − ~$
− 1

&=< + ~$
)
.

(4.10)

4.1.5 Application to practical geometries

The easiest way to implement those considerations is to resort to a circuit

design with two coupled microstrip lines for the resonator, like the one

used by Hays et al. [69]. Indeed, for a configuration with two conductors

and ground, any signal can be decomposed into a differential (odd) and

a common (even) mode component. Both modes can be addressed inde-

pendently because they have in general different boundary conditions,

and also different characteristic impedances and mode velocities and as a

result will resonate at different frequencies. A detailed description of this

coplanar stripline implementation will be given later in Section 5.3.

Coupled microstrips design

To estimate the resonator shift for such a design, let us consider a simple

lumped element analogue of the coupled microstrips, as depicted in

Figure 4.3. The admittancematrix of the resonator can be computed easily

knowing the admittance-to-ground of the left/right nodes H! , H' and

the equivalent admittance connecting them H!'. Those can be identified

from an equivalent circuit after a ) −Π transformation (see Figure 4.4):

.res =

(
H! + H!' −H!'
−H!' H' + H!'

)
,


H! = H' =

1

8!$ + 1

8�$

+ 1

8ℓ$ + 2

8$�6A

H!' =
1

2ℓ 8$ − ℓ 2�6A 8$3

.

Solving the characteristic equation (4.2), one obtains the following fre-
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Figure 4.4: ) − Π transformation for ad-

mittance matrix extraction.

8: The nanowire weak link can also be

inductively coupled to the resonator, in

which case the same description applies

by just replacing the shared inductance

ℓ by the mutual inductance " between

the resonator short-circuit and the loop

in which the weak link is embedded for

the phase bias. This equivalence will be

detailed later in Figure 5.4.

quencies for the odd and even resonator modes:

$odd =
1√

�(! + ℓ )
, $even =

√
�6A + 2�

�6A�(! + ℓ )
. (4.11)

Indeed, when probing the resonator with a differential drive, i.e.+res,! =

−+res,' = +0, the voltage across the ground capacitor �6A is zero and we

are left with the frequency of two parallel (! + ℓ )//� resonators, i.e. of

a (! + ℓ )/2 // 2� resonator, therefore resonating at the frequency $odd.

Let us now apply Eq. (4.3) to compute the resonator shift of such a circuit.

After some math, one obtains:

+)
res
(.res)′[$odd]+res

+2

0

=
48�(! + ℓ )2

ℓ 2

.

Then, using Eq. (4.7):

Odd mode shift

�$
$odd

=
ℓ 2

! + ℓ "��
!�ℓ≈ ℓ 2

!
"�� . (4.12)

As expected, the relative shift is proportional to the coupling factor ℓ/!
(which is the ratio of the shared inductance between resonator/weak link

to the total resonator inductance) and to the current-current response "��
of the weak link (because of the differential probe).

Similarly, for the even mode:

+)
res
(.res)′[$even]+res

+2

0

=
48�6A�(�6A + 2�)(! + ℓ )2

(�6Aℓ − 2�!)2 .

Even mode shift

�$
$even

=
(�6Aℓ − 2�!)2

4��6A(�6A + 2�)(! + ℓ )2 "&&
�6A��
≈
!�ℓ

1

4�

(
ℓ

!

)
2

"&& . (4.13)

Shunted CPW design

In this thesis, we used quarter-wave coplanar waveguide (CPW) res-

onators. They consist in a short-circuited transmission line of length �/4,
which can be modeled at resonance by a parallel LC circuit (see Figure

4.5). In a galvanic coupling scheme
8
, the nanowire weak link can be

simply put across the gap of the CPW, acting as a shunt-inductance to

ground for the CPWmode.

Now, because the weak link is grounded on one side, it is no longer

excited purely in charge or in current, as described by Eqs. (4.6)-(4.7),

and its response is a linear combination of both the diagonal "�� , "&& and

non-diagonal "�& , "&� response functions. By construction, +res =

(
+0

0

)
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Figure 4.5: Lumped element model for

the shunted CPW design, showing the

resonator circuit (orange), the probe lines

(dark grey),the weak link loop (light blue)

as well as the two external biases (black):

the flux ) and the gate voltage +6 .

L

C

𝜀 → 0

𝒚𝑳𝑹

𝒚𝑳 𝒚𝑹

l
𝑉𝐿 𝑉𝑅
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Figure 4.6: ) −Πmodel of the resonator

for the shunted CPW design. The right

node is normally grounded. To compute

the shift without any divergence in the

admittances, a small inductance & is added
and the limit &→ 0 is taken at the end.

and so:

+)
res
.wl[$0]+res

+2

0

= −"��
8$
+ 8$

4

"&& +
1

2

("�& − "&8) = .!!. (4.14)

Again, by identifying the admittance-to-ground H! , H' of the left/right

nodes and the admittance H!' coupling them (see equivalent circuit

Figure 4.6), one can easily write the admittance matrix of the resonator:

.res =

(
H! + H!' −H!'
−H!' H' + H!'

)
,


H! =

1

8!$ + 1

8�$

, H' =
1

8&$

H!' =
1

8ℓ$
.

Solving the characteristic equation det(.res) = 0, one obtains the follow-

ing expression for the resonance frequency, as expected for a LC circuit:

$0 =
1√

�(! + ℓ + &)
&→0→
!�ℓ

1√
!�

. (4.15)

The inverse coupling factor is then:

+)
res
(.res)′[$0]+res

+2

0

=
8�(! + ℓ + &)(2ℓ (! + ℓ ) + 3ℓ & + &2)

ℓ (ℓ + &)2

&→0→ 28�
(! + ℓ )2
ℓ 2

!�ℓ→ 28�

(
!

ℓ

)
2

, (4.16)

and the resonator shift using Eqs. (4.3) and (4.14):

�$
$0

=
1

28�$0

(
ℓ

! + ℓ

)
2
(
− "��
8$0

+ 8$0

4

"&& + 8Im("�&)
)

=
ℓ 2

2(! + ℓ )

(
"�� +

$2

0

4

"&& + $0Im("�&)
)

!�ℓ→ ℓ 2

2!
"�� +

ℓ 2

8�!2

"&& +
ℓ 2

2

√
�!3/2

Im("�&). (4.17)

For a mirror-symmetric weak link, it is known [64] [64]: Kurilovich et al. (2021), ‘Microwave

response of an Andreev bound state’

that for any ! and+6 ,

Im("�&) = 0 and we are left with a linear combination of the diagonal

responses only:
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Resonator shift (Shunted CPW design)

�$
$0

!�ℓ
=

1

2

(
ℓ 2

!
"�� +

1

4�

(
ℓ

!

)
2

"&&

)
=

1

2

(
�$
$odd

+ �$
$even

)
. (4.18)

I The factor 1/2 in the result comes from the fact that in this geometry

the shared and total inductances are ℓ , !while they were effectively

2ℓ and 2! in the coupled microstrip design (Figure 4.3):
1

2

(2ℓ )2
2! = ℓ 2

! .

I Using Eq. (4.5), the relative shift can be rewritten in a more general

form:

�$
$0

=
ℓ 2

2!
$0 Im(.wl

!! [$0]). (4.19)

I Im(.wl

!!
[$0]) can be seen as the effective inductance of the weak

link at the resonator frequency: .wl

!!
= 1

9!wl$0

, which allows to

recover the expected classical result:
�$
$0

= − 1

2

�!
! with �! = − ℓ 2

!wl

.

�! is the change of resonator inductance when !wl is connected

in parallel to a fraction ℓ/! of the total resonator inductance:

!→ ! − ℓ + (ℓ//!wl) = ! + �!.
I The assumption of a mirror-symmetric weak link can be no longer

valid for non-fullshell nanowire weak links, for which the nanowire

is only covered on 2 or 3 facets by superconducting aluminium.

Lateral back gates can then be used to tune the chemical potential

in the superconducting leads and this may also affect the height of

the barriers at the left/right interfaces and so modify the coupling

to the leads Γ! ≠ Γ'. This can break the mirror symmetry and

eventually allow for Im("�&) ≠ 0.

4.2 Hamiltonian description of the resonator
shift

In the previous section, we reviewed how, using an electrical engineer

approach, the resonator frequency shift can be related to the imaginary

part of the weak link admittance, and how this admittance can be calcu-

lated. Here, we follow an alternative approach: we introduce a quantum

description of both the weak link and the resonator as well as of their

coupling. Starting from the microscopic Bogoliubov–de Gennes (BdG)

equations for a weak link of arbitrary length, we derive the expression

for the resonator shift as a function of the microscopic occupancy of

individual Andreev levels. This second derivation, which yields the same

final expression for the resonator shift, highlights how the latter scales

with the strength of the phase fluctuations of the resonator and has the

benefit of being more compact and straightforward. It also provides a

general framework that can be applied to compute the frequency shift of a

resonator weakly coupled to any generic quantum circuit, not necessarily

to an ABS system and also whatever the coupling scheme.
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11: For an inductive coupling scheme, re-

place ℓ by ", the mutual inductance be-

tween the resonator short-circuit and the

weak link loop.

12: As will be explained in Chapter 6, ex-

panding up to second order was necessary

to be able to understand the measured

signal in our spectroscopy data, namely

the change of sign in the line intensities

of single particle transitions far from the

resonator.

4.2.1 Model for resonator – weak link coupling

Assuming that themicrowave resonator is characterized by a single mode

of frequency $A , it can be described by the Hamiltonian �̂A = ~$A 0†0,
where we have introduced the photon annihilation (creation) operators

0 (0†). Let us denote by �̂F;(�) the Hamiltonian of the weak link. For

simplicity, we do not address the �−dependence of �̂F; . As for the weak

link, its Hamiltonian can be written in the form

�̂F;(�) =
1

2

∫
3G Ψ̂†(G)HF;(�)Ψ̂(G), (4.20)

where Ψ̂(G) =
(
#↑(G),#↓(G),#†↓(G),−#

†
↑(G)

))
is the Nambu bispinor

field operator and G is the position along the weak link. We denote

by |)8�〉 the eigenstates of the Bogoliubov-de Gennes (BdG) equation

HF;(�)|)8�〉 = �8� |)8�〉, which correspond to Andreev states when

|�8� | < Δ, where Δ is the superconducting gap in the leads. In this

notation the subscript 8� refers to the level 8 with spin � and levels

labeled with positive 8 are above the Fermi level.
9

9: Due to the electron-hole symmetry im-

plicit in the BdG formalism, each state 8�
is associated to a state with opposite spin

at opposite energy −8�̄. Notice that when

spin-orbit interaction is at play, as can be

the case in a nanowireweak link, spin is no

longer a good quantum number and � has

to be understood as a pseudospin index.

Keeping this in mind, we will continue to

denote spin textures as � =↑, ↓.

The coupling between resonator and weak link occurs through current

fluctuations in the resonator (assumed to be in its ground state), which

induce phase fluctuations across theweak link, so that �→ �0+ �̂A , where

�̂A = �zp(0 + 0†)with �zp the amplitude of zero-point phase fluctuations.

The zero-point energy of a LC resonator is given by [70] [70]: Vool and Devoret (2017), ‘Introduc-

tion to quantum electromagnetic circuits’

:

~$A
2

=
〈@̂2〉
2�
+
〈)̂2〉
2!

=
〈)̂2〉
!

,

where the brackets 〈.〉 denotes the average over the resonator ground

state. The second equality follows from equipartition of energy between

quadratic degrees of freedom
10

10: The average energy in the inductor is

〈)2〉
2! =

!〈�2〉
2

= !
2
〈3C&2〉. Since the sys-

tem’s energy oscillates between L and

C at a period $A = 1/
√
!�, 〈3C&2〉 ∼

$2

A&
2 = &2/!�, from which we deduce

〈)2〉/2! = 〈&2〉/2�.

. From this, one can express the zero-point

phase fluctuations of the resonator from the RMS fluctuations of its flux:

�res
zp
=

)zp

!0

=

√
〈)̂2〉
!0

=
24

~

√
~!$A

2

=

√
242/A

~
=

√
�/A
'&

, (4.21)

where we introduced the resistance quantum '& = ℎ/442 ≈ 6453 Ω

and the resonator impedance /A =
√
!/�. These phase fluctuations

occur over the inductance ! of the resonator. Because only a part ℓ/!
of the total inductance is shared with the weak link loop

11
, one has to

multiply Eq. (4.21) by the geometric participation ratio ? = ℓ/! to get the

zero-point phase fluctuations across the weak link:

Zero-point phase fluctuation across the weak link

�zp = ?�
res

zp
=
ℓ

!

√
�/A
'&

. (4.22)

In accordance with experiments where ℓ/! is kept small, we assume

�zp � 1, which allows us to expand the weak link Hamiltonian up to

second order
12

in �zp and identify the coupling Hamiltonian:
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�̂F;(�) = �̂F;(�0) + �̂A�̂′F;(�0) +
�̂2

A

2

�̂′′F;(�0) + >(�2

zp
),

where we have adopted the notations �̂′
F;

= 3�̂F;/3� and �̂′′
F;

=

32�̂F;/3�2
. The total Hamiltonian describing the resonator, the weak

link and their coupling is therefore:

�̂ ≈ ~$A 0†0︸  ︷︷  ︸
resonator

+ �̂F;(�0)︸   ︷︷   ︸
weak link

+ �zp�̂′F;(�0)(0 + 0†) +
�2

zp

2

�̂′′F;(�0)(0 + 0†)2︸                                                 ︷︷                                                 ︸
coupling

.

(4.23)

If the weak link was described as a two-level system and the term

involving �̂′′
F;

was neglected, this model would correspond to the Jaynes-

Cummings Hamiltonian [52] [52]: Park et al. (2020), ‘From Adiabatic to

Dispersive Readout of Quantum Circuits’

.

To compute the second order correction of the energy levels of this

Hamiltonian we introduce a basis set {|Φ8=〉 ≡ |Φ8〉 ⊗ |=〉}, where |Φ8〉
corresponds to the eigenstates of �̂F; with eigenvalue �8 and |=〉 to a

state with = photons in the resonator. Assuming that the |Φ8〉 states are
non-degenerate

‡
, the lowest order correction to the combined system

energy levels can be written as ��8 ,= = ��(1)
8 ,=
+ ��(2)

8 ,=
where

��(1)
8 ,=

=
�2

zp

2

〈Φ8= |�̂′′F;
(
20†0 + 1

)
|Φ8=〉 = �2

zp
〈Φ8 |�̂′′F; |Φ8〉

(
= + 1

2

)
��(2)

8 ,=
= −�2

zp

∑
9≠8 ,=′

|〈Φ9=
′ |�̂′

F;

(
0 + 0†

)
|Φ8=〉|2

� 9 + ~$A(=′ − =) − �8
(4.27)

= −�2

zp

∑
9≠8

|〈Φ9 |�̂′F; |Φ8〉|
2

(
= + 1

� 9 + ~$A − �8
+ =

� 9 − ~$A − �8

)
.

A more compact expression for the energy levels shifts can be obtained

by relating the mean value 〈Φ8 |�̂′′F; |Φ8〉 to �
′′
8
= 32�8/3�2

. The Hell-

mann–Feynman theorem establishes that

�′8 = 〈Φ8 |�̂
′
F; |Φ8〉.

‡
In the presence of degeneracy, the derivatives �̂′

F;
and �̂′′

F;
, may, or may not, break the

degeneracy. When a degeneracy is preserved (for example the spin of Andreev levels in

a weak link), this perturbation result remains valid. This can be seen by expressing the

current matrix element in an alternative way as,

〈Φ8 |�̂′F; |Φ9〉 = �
′
9 �8 9 + (�9 − �8)〈Φ8 |Φ

′
9〉, (4.24)

leading to

〈Φ8 |�̂′′F; |Φ8〉 = �
′′
8 + 2

∑
9≠8

|〈Φ8 |�̂′F; |Φ9〉|
2

�9 − �8
= �′′8 + 2

∑
9≠8

(�9 − �8)|〈Φ8 |Φ′9〉|
2 , (4.25)

which exhibits no singular behavior in the degenerate case. If there exists a 6-fold
degeneracy (for example, orbital degeneracy) at energy � = �8 with degenerate states,

{|Φ80〉} with 0 = 1, 2, ..., 6, and if the states |Φ80〉 do not diagonalize �̂′
F;

and �̂′′
F;
, we

need to solve the following secular equation to obtain ��(1)
8 ,=

in Eq. (S1),

Det

�����2

2

"̂8(2= + 1) − ��(1)
8 ,=

���� = 0, (4.26)

where "̂8 is the 6 × 6 matrix whose elements are given by ("̂8)0,1 = 〈Φ80 |�̂′′F; |Φ81〉.
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Taking the derivative on both sides gives

�′′8 = 〈Φ
′
8 |�̂
′
F; |Φ8〉 + 〈Φ8 |�̂

′′
F; |Φ8〉 + 〈Φ8 |�̂

′
F; |Φ

′
8〉. (4.28)

From �̂F; |Φ8〉 = �8 |Φ8〉, one can express |Φ′
8
〉 = 3 |Φ8〉/3� as |Φ′

8
〉 =

−�8(�−1

8
)′ |Φ8〉 where �8 = (�8 − �̂F;)−1

. Substituting this into Eq. (4.28)

and using the closure relation

∑
8 |Φ8〉〈Φ8 | = 1, one obtains a relation

between the diagonal matrix element of �̂′′
F;

and the curvature �′′
8
of the

energy level 8, which allows to simplify the expressions for the shifts:

〈Φ8 |�̂′′F; |Φ8〉 = �
′′
8 + 2

∑
9≠8

M 2

8 9

� 9 − �8
, (4.29)

where we have introduced the notation M8 9 = |〈Φ9 |�̂′F; |Φ8〉| for the

modulus of the matrix element of the current operator.

A similar sum rule was used to derive the expression given in Section

4.1.4 for the susceptibility of a junction based on linear response theory.

Substituting in Eq. (4.27), we get finally the expression for the shift ��8 ,=
of the energy of the coupled system when the circuit is in state |Φ8〉 and
the resonator contains = photons:

��8 ,= = �2

zp

{
�′′8

(
= + 1

2

)
−

∑
9≠8

M 2

8 9

(
= + 1

� 9 − �8 + ~$A
+ =

� 9 − �8 − ~$A
− 2= + 1

� 9 − �8

)}
,

(4.30)

or, equivalently as

��8 ,= = ~�$A,8
(
= + 1

2

)
−
�2

zp

2

∑
9≠8

M 2

8 9

(
1

� 9 − �8 + ~$A
− 1

� 9 − �8 − ~$A

)
,

(4.31)

from which we finally identify the resonator frequency shift:

Resonator frequency shift for weak link in state |Φ8〉

~�$A,8
�2

zp

= �′′8 +
∑
9≠8

M 2

8 9

(
2

� 9 − �8
− 1

� 9 − �8 + ~$A
− 1

� 9 − �8 − ~$A

)
where M8 9 = |〈Φ9 |�̂′F; |Φ8〉|. (4.32)

I The $A-independent terms on the right-hand side of Eq. (4.32) are

the contributions involving �̂′′
F;

that arise from Eq. (4.29), while

the $A-dependent terms correspond to those obtained from a

multi-level Jaynes-Cummings Hamiltonian.

I It can be seen from Eq. (4.32) that all transitions which couple a

given state 8 with other states 9 via �̂′
F;

are relevant to calculate the

shift �$A,8 of the resonance frequency. The equation includes the

contribution from both, virtual transitions that do not depend on

the resonator and other mediated by the absorption and emission

of photons. Note that Eq. (4.32) only holds far from resonances,

i.e. when all transitions between Andreev states have energies that

differ from $A by much more than the coupling energy.
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13: As was illustrated in Figure 1.3, PT are

viewed as transitions crossing the Fermi

energy, i.e. from negative energy states to

positive energy ones, while SQPT corre-

spond to atomic-like transitions between

positive energy levels.

I In the so-called adiabatic limit where ~$A � |� 9 − �8 | for all

transitions, Eq. (4.32) simplifies to �$A,8 ≈ �$curv

A,8
= �2

zp
�′′
8
/~ corre-

sponding to a frequency shift proportional to the phase curvature

of the Andreev level 8. Noting that !2

(
%2�8/%�2

)−1

is the effective

inductance !wl,8 due to level 8, this limit finds a simple interpre-

tation: the resonator inductance obtains a contribution from that

of the weak link, which is given by the phase curvature of all

populated levels. Using �2

zp
= !−2

0

~$A
2

ℓ 2

! from Eqs. (4.21) and (4.22),

we can rewrite �$curv

A,8
= ℓ 2

2! × 1

!wl,8
and recover the same expression

for the resonator shift as the one derived classically in the previous

section (see Eq. (4.18)). In addition, we also interpret the weak

link inductance as directly arising from the phase curvature of the

Andreev levels.

I Another interesting regime can be identified: the so-called disper-
sive regime when ~$A ∼ |� 9 − �8 | for a set of 8 , 9. In this case, the

terms involving the exchange of virtual photons dominate and

one recovers the result that can be derived from the generalized

Jaynes-Cummings Hamiltonian [71, 72]
[71]: Zueco et al. (2009), ‘Qubit-oscillator

dynamics in the dispersive regime’

[72]: Kohler (2018), ‘Dispersive readout’

.

I Although Eq. (4.32) derives from a quantum description of the

resonator, the result is the same as the one deduced from the

susceptibility in Trif et al. (Eq. (4.10)), where the resonator is treated

classically.

4.2.2 Many-body configurations

In the previous paragraph, we had written |Φ8�〉 the eigenstates of the
Bogoliubov-de Gennes (BdG) equation �̂F;(�)|Φ8�〉 = �8� |Φ8�〉, which

correspond to Andreev states when their energy satisfies |�8� | < Δ,

where Δ is the superconducting gap in the leads. In Figure 4.7(a) and

(b), we now show a typical spectrum of Andreev states for two cases

of interest: zero- and finite-length weak links. Due to the electron-hole

symmetry implicit in the BdG formalism, each state 8� is associated to

a state with opposite spin at opposite energy −8�̄. Note that we have

chosen here to represent the states in the semiconductor picture, which

makes the intrinsic particle-hole symmetry explicit. This representation

is better suited for the computations of the resonator frequency shift and

also better illustrates the nature of the two possible families of transitions

between ABS that we had distinguished in the introduction
13

: pair
transitions (PT) vs. single-quasiparticle transitions (SQPT).

Writing explicitly the spin indices �, �′, Eq. (4.32) for the resonator

frequency shift reads:

ℎ� 5 (8�)A

�2

zp

= �′′8� +
∑
9�′≠8�

M 2

8�, 9�′

(
2

�8�, 9�′
− 1

�8�, 9�′ − ℎ 5A
− 1

�8�, 9�′ + ℎ 5A

)
= �′′8� +

∑
9�′≠8�

V8�, 9�′ , (4.33)

where we introduced the transition energies �8�, 9�′ = � 9�′ − �8� . The
coupling strength 68�, 9�′ is related to M8�, 9�′ by ~68�, 9�′ = �zpM8�, 9�′ ,

and we have noted V8�, 9�′ , the term associated to virtual transitions from

8� to 9�′.
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Figure 4.7: Low-lying many-body states for (a) zero-length weak links and (b) finite-length weak links with spin-orbit coupling. A typical

spectrum of ABS levels is shown for both cases in the semiconductor picture. The ground state |6〉 at a given phase difference � is obtained

by filling all levels of negative energy with quasiparticles, represented as black dots. We depict the level occupancies associated to the

three lowest-lying many-body states above the ground state, which are obtained by adding one quasiparticle of either spin in the lowest

non-occupied ABS (states labeled |> ↑〉 and |> ↓〉) or by adding two of them to form a doubly-excited state (labeled |4〉). As shown in the

red boxes, one can alternatively view the latter as being obtained from promoting the quasiparticle filling the highest occupied state to

the lowest unoccupied one. For single-channel zero-length weak links, these four many-body states are actually the only possible ones,

as the Andreev spectrum comprises only one pair of states, labeled ±1 in the leftmost plot. As they are spin-degenerate, |> ↑〉 and |> ↓〉
actually coincide. The space spanned by the two states of even parity, |6〉 and |4〉, allows to implement what is known as an Andreev pair

qubit. Alternatively, finite length weak links with spin-split levels should in principle give rise to an Andreev spin qubit, using the two lowest

energy states of odd parity |> ↑〉 and |> ↓〉.

The resonator frequency shift, however, is determined not by a single

but by all Andreev levels which are populated in a given many-body

state of the weak link. Let us first consider the ground state |6〉, which

is obtained by filling up all negative energy levels. The frequency shift

associated to |6〉 is then given by

� 5
|6〉
A =

1

2

∑
8<0,�

� 5 (8�)A , (4.34)

where the factor 1/2 compensates for the redundancy of the BdG de-

scription. Note how we differentiate in the notation the shift � 5 (8�)A (with

parentheses) associated to the occupancy of a single level 8� and the shift

� 5 |Ψ〉A (with a ket) associated to a many-body state |Ψ〉.

When combining Eq. (4.33) and Eq. (4.34), and taking into account

that V8�, 9�′ = −V9�′ ,8�, only virtual transitions to positive energy levels

contribute:

ℎ� 5
|6〉
A

�2

zp

= �′′|6〉 +
1

2

∑
8<0,�
9>0,�′

V8�, 9�′ , (4.35)

where �|6〉 = (1/2)
∑
8<0,� �8� is the energy of the ground state. Further

simplification occurs in the absence of amagnetic field and in the presence

of a mirror symmetry, where the operator H ′
0
does not mix opposite

pseudospins (� and �̄) [32]

[32]: Park and Levy Yeyati (2017),

‘Andreev spin qubits in multichannel

Rashba nanowires’
, so that V8�, 9�̄ = 0.
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Once � 5
|6〉
A is known, one can compute the shift associated to any many-

body state |Ψ〉, as the latter can be built by creating appropriate electron-

like �†
8� |6〉 (8 > 0) or hole-like �

8� |6〉 (8 < 0) excitations from the ground

state. Here �†
8� (�8�) stands for the Bogoliubov quasiparticle creation

(annihilation) operator. Notice also that �†−8�̄ = −B�8� due to double

counting in the semiconductor picture that we are using, where B = 1(−1)
for � =↑ (↓). The frequency shift in |Ψ〉 is then given by

� 5 |Ψ〉A = � 5
|6〉
A +

∑
8>0,�

[
=8�� 5

(8�)
A − (1 − =−8�) � 5 (−8�)A

]
, (4.36)

where =8� = 0, 1 is the occupancy of the state 8�. More generally, =8�
has to be understood as the average occupancy of the state 8�. The
number of fermionic quasiparticle excitations in the weak link given

by #|Ψ〉 =
∑
8>0,� [=8� + 1 − =−8�] can be even or odd, but states with

different parity are not coupled by photons.

In Appendix H, we use these results to revisit data taken in the group

prior to this thesis on atomic contacts, which implement zero-length

weak links. The case of finite length weak links is the object of the next

paragraph.

4.2.3 Resonator shift for finite-length junctions

Importance of the continuum

As compared to the simple situation of zero-length junctions (Figure 4.7(a)

and Appendix H), the case of finite-length junctions is richer due to their

multilevel structure (Figure 4.7(b)) and the role played by the continuum

of states. In particular, the weak link inductance has contributions of

the continuum, in addition to that of the ABS. This is because any

state with energy & smaller than the Thouless energy & . �Th = ~E�/!
may exhibit sensitivity to the superconducting phase difference � and

therefore carry some phase curvature
§
. In the long junction limit ! � �,

the Thouless energy is small compared to the superconducting gap,

�Th = Δ�/! � Δ, therefore all the current-carrying states are at subgap

energy & . �Th � Δ, i.e. only ABS carry the Josephson current. For

zero-length junctions, it is also established analytically that the entire

current is still given by the ABS, as an artefact from the limit �Th →∞
[73] [73]: Levchenko et al. (2006), ‘Sin-

gular length dependence of critical

current in superconductor/normal-

metal/superconductor bridges’

. However for the intermediate situation corresponding to finite-

length junctions, as is the case for our nanowire weak links, the situation

is more complicated because �Th > Δ. Consequently, one expects that
the extended states in the range Δ < & < �Th also have some phase

dependence and thus contribute to both the Josephson current and

inductance. Furthermore, when the coupling between the weak link and

the superconducting leads is strong – as is the case in our nanowire weak

link due to the high quality epitaxial contact between the aluminium

shell and the InAs nanowire – the effect of the extended states from

the continuum can become comparable to that of the ABS, as shown in

Ref. [64]

[64]: Kurilovich et al. (2021), ‘Microwave

response of an Andreev bound state’

.

§
This expression for the Thouless energy is valid for a ballistic junction forwhich � = ~E�/Δ
and ! < ;4 , where ;4 stands for the elastic mean free path. For a weak link made out of a

diffusive conductor, i.e.when ! > ;4 , the Thouless energy would read �
Th
= Δ(�/!)2 =

~�/!2
, with � the quasiparticles diffusion coefficient.



4 Modeling the coupling between a resonator and a phase-biased weak link 48

This effect can make the quantitative fitting of single-tone resonator

spectroscopy quite challenging, as the curvature of the continuum and

of all other subgap levels (which may be numerous when !/� & 1) will

contribute to adding a smooth phase-dependent background to the total

resonator shift. This means that depending on the phase range where

the data is to be fit, it may no longer be enough to merely add a small

constant offset to the overall shift, as done to account for the contributions

of unknown low-transmitted channels in the case of atomic contacts in

Appendix H. Although it is well established that two-tone measurements

can reveal thephasedispersion of pair transitions involving low lyingABS,

from which one can deduce their associated curvature, this technique is

in our case limited to the 0-40 GHz range and therefore does not allow to

access the phase curvature of higher ABS. Consequently, a quantitative

fit of the resonator shift, as we did in Figure H.3 and H.5 for the atomic

contact single-tone spectroscopy data, may in general not be within reach

for finite-length weak links, since it would require the knowledge of the

phase curvature of all subgap levels and of the continuum, which is not

experimentally accessible. A recent work by Fatemi et al. [50] [50]: Fatemi et al. (2021), ‘Microwave

susceptibility observation of interacting

many-body Andreev states’

shows that

in the adiabatic regime achieved with a low resonator frequency and the

specific limit of small !/� such that essentially a single ABS level exists in

the gap, the adiabatic contribution from the continuum assumes a simple

form and it is still possible to describe quantitatively the state-dependent

resonator shift.

Note also that for differential measurements like two-tone spectroscopy,

the measured signal reflects differences of resonator shifts due to the

drive, and not absolute shifts. Therefore, it does not involve the unknown

curvature from all other states, although the latter may still have a

dispersive contribution through virtual transitions (see Eq. (4.33)). This

contribution can even become sizeable when some transition frequencies

between ABS are close to the resonator frequency. This is evenmore likely

as !/� is large and many ABS are present. In general, this would prevent

any fitting of the line intensity of nanowire two-tone data, as it would

require knowledge of the phase-dispersion of possible higher ABS levels

that are out of the experimentally accessible frequency range. However,

two limiting situations may still allow for quantitative local comparisons

within restricted frequencywindows. First, when the resonator frequency

is low enough compared to all possible transition frequencies, so that the

state-dependent shift is merely given by the adiabatic curvature of the

states. Second, when the line intensity that we seek to fit is associated to a

transition anticrossing the resonator line or coming very close to it, such

that the dispersive shift associated to this single transition dominates

all other contributions. Those two cases will be detailed in the next

paragraph and illustrated with experimental results in Section 6.5.

Spin-resolved levels

Let us now review in detail the case of finite-length junctions with

spin-orbit coupling. As already mentioned, the situation becomes richer

when there are several Andreev levels within the gap as in Figure 4.7(b).

Furthermore, in the presence of spin-orbit the subgap states are spin

split, which gives rise to a larger number of possible transitions between

all spin-split levels. The term V−8�, 9� in Eq. (4.35) depends on the matrix
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Figure 4.8: Resonator frequency shift for finite-length junction with spin-orbit coupling (same parameters as in Figure 4.7(b)). (a-e) Resonator

at 5A = 0.07Δ/ℎ; (f-j) 5A = 0.18Δ/ℎ. (a,f) Spectrum of Andreev states at positive energies, with vertical bars in (f) indicating places where

energy difference between levels of same spin is equal to ℎ 5A . (b,g) Energy of transitions from state |6〉; (c,h) idem from state |1 ↑〉. The color
of the lines encodes the resonator frequency difference between initial and final state (colorscale on y-axis of (d) and (e)). (d,e) Resonator

frequency shift difference between |6〉 and |1 ↑ 1 ↓〉 (pair transition), and contribution of the states’ curvature (dashed line). (e,j) Idem for the

transitions from |1 ↑〉 to |2 ↑〉 or |2 ↓〉 (single-quasiparticle transitions). The resonator shifts are calculated from matrix elements obtained

with a tight-binding model.

elements of �̂′
F;

which do not have analytic forms in this case. However,

they can be obtained by solving numerically the BdG equation, for

which we use two complementary approaches: the scattering model of

Ref. [51] [51]: Tosi et al. (2019), ‘Spin-Orbit Splitting

of Andreev States Revealed by Microwave

Spectroscopy’

, discussed in Section 3.2, and a discretized tight-binding model

of the nanowire (see Appendix C). As these methods rely on different

approximations one cannot expect a one-to-one correspondence of their

results. For instance, the scattering method is based on a linearization

of the electrons and holes dispersion relations around the Fermi level

(Andreev approximation) which is not assumed in the tight-binding

model. On the other hand the tight-binding model used here includes

only two sites to describe the nanowire cross-section. We have checked,

however, that the methods yield qualitatively similar results for the limits

where their approximations are both valid.

In Figure 4.8, we show the predictions for the frequency shifts in the

typical case of a weak link with three spin-split manifolds of Andreev

levels (same parameters as for Figure 4.7(b)), at zero Zeeman field. Two

values of the bare resonator frequency are considered: 5A = 0.07Δ/ℎ
(panels (a–e)) and 5A = 0.18Δ/ℎ (panels (f–j)). The frequency shift in the

ground state |6〉 is first evaluated using Eq. (4.35). All matrix elements

are computed with the tight-binding model. We assume that scattering

takes place only in the longitudinal direction, and hence does not mix the

subbands. Thus, in absence of amagnetic field, thematrix elements of �̂′
F;

are zero for all pseudospin-non-conserving transitions [32]. Frequency

shifts in the other states are found from Eq. (4.36). Transitions from |6〉
create pairs of excitations (pair transitions), leading for example to the

state �†
1↓�−1↓ |6〉 = −�

†
1↓�
†
1↑ |6〉 = −|1 ↑ 1 ↓〉. Because of the redundancy

between negative- and positive-energy states, we use here only labels

corresponding to positive energies (Figure 4.8(a,f)).
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The states accessible from |6〉 and involving only the two lowest subgap

levels are therefore those shown in Figure 4.8(b,g). We also consider the

closest-in-energy states that can be reached from the single-particle

state |1 ↑〉 (Figure 4.8(c,h)). On the one hand, states with a single

quasiparticle are accessible through single-quasiparticle transitions, like

|2 ↑〉 = �†
2↑�1↑ |1 ↑〉, or |2 ↓〉. On the other hand, the same fermion

parity is also maintained with pair transitions that lead to states with

three quasiparticles: |1 ↑ 1 ↓ 2 ↑〉 = −�†
1↓�−2↓ |1 ↑〉, |1 ↑ 1 ↓ 2 ↓〉, and

|1 ↑ 2 ↑ 2 ↓〉. For all these possible states, frequency shifts are given by

Eq. (4.36), which simplifies to

� 5 |Ψ〉A = � 5
|6〉
A +

∑
8>0,�

=8�� 5
(8�)
A . (4.37)

Figure 4.8(b,c,g,h) shows the transition energies from |6〉 and |1 ↑〉, with

line colors encoding the resonator frequency shift for each transition

(color scale in (d) or (e)). The phase asymmetry of the transition energies

shown in panels (c) and (h) comes from the fact that we consider an

initial state with a given pseudospin (|D〉). The mirrored spectra about

� = � would be obtained when considering transitions from |1 ↓〉. The
situation is the simplest when the resonator photons energy ℎ 5A is smaller

than the energy of all the virtual transitions entering in the calculation

of � 5 (8�)A . All � 5 (8�)A are then dominated by the curvature term, and the

resonator frequency shift for each transition is essentially related to the

curvature of the transition energy. This is seen in Figure 4.8(b,c) with the

red color (� 5 |Ψ〉A − � 5 |6〉/|1↑〉A > 0) of the transition lines when they have

positive curvature, blue for negative curvature. Detailed comparisons

of the total shift with the curvature contribution are shown in Figure

4.8(d) for the pair transition |6〉 → |1 ↑ 1 ↓〉 and in Figure 4.8(e) for the

single-quasiparticle transitions |1 ↑〉 → |2 ↑〉 and |1 ↑〉 → |2 ↓〉.

The results look more complicated in Figure 4.8(g,h), with many sign

inversions of the frequency shift when sweeping �. Sign inversions

occur when the energy of one of the virtual transitions entering in the

calculation of the frequency shift in the initial or the final state coincides

with ℎ 5A . These coincidences are marked in panel (f) with small vertical

bars linking levels of same spin and distant by ℎ 5A . For example, there

is one of them at �/� ≈ 1.92, where �
2↑ − �1↑ = ℎ 5A . Correspondingly,

� 5 (1↑)A and � 5 (2↑)A present abrupt changes of sign at this phase, which

is seen in all the lines involving 1 ↑ or 2 ↑ in Figure 4.8(g,h). Similarly,

there is another such coincidence at �/� ≈ 1.27, where �33 − �2↓ = ℎ 5A ,
leading to color changes in the transition lines |6〉 → |...2 ↓〉. Detailed

plots of the frequency shift for pair and single particle transitions are

shown in Figure 4.8(i,j), with divergences when energy differences match

ℎ 5A .
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In the preceding chapter, we showed that the shift of resonator frequency

when coupled to aweak link is proportional to a dimensionless parameter,

the square amplitude of the zero point phase fluctuations on the weak

link �2

zp
=

(
ℓ
!

)
2 �/A
'&

(see Eqs. (4.21),(4.33),(4.37)). In order to be sensitive

to the many-body states of the weak link, the phase fluctuations must

be sufficiently large, thus there must be a current anti-node at the

coupling region. Here, we discuss two types of distributed quarter-wave

transmission lines: shunted coplanar waveguide (CPW) as we have used,

and coplanar striplines (CPS) resonators, as have been used by our

colleagues at Yale [19, 41, 42, 50]

[19]: Hays et al. (2018), ‘Direct Microwave

Measurement of Andreev-Bound-State

Dynamics in a Semiconductor-Nanowire

Josephson Junction’

[41]: Hays et al. (2020), ‘Continuous

monitoring of a trapped superconducting

spin’

[42]: Hays et al. (2021), ‘Coherent

manipulation of an Andreev spin qubit’

[50]: Fatemi et al. (2021), ‘Microwave

susceptibility observation of interacting

many-body Andreev states’

.

5.1 Quarter-wave resonators

5.1.1 Short-circuited �/4 line

One can show that a short-circuited transmission line hosts a current type

of resonance when it is excited by a signal which wavelength matches

4 times the length of the line. At frequencies near resonance, the line

can be modeled by a parallel RLC lumped-element equivalent circuit.

This allows to model with a simple circuit the coupling with the weak

link and estimate the expected frequency shift associated to the given

geometry. The following derivation of this property is largely based on

the textbook description from Pozar [65] [65]: M.Pozar (2011), Microwave Engineer-

ing, 4rd Ed, pp. 281-282

.

Consider a length of lossy transmission line, short-circuited at one end,

as depicted in Figure 5.1(a). The line has a characteristic impedance

/0, a propagation constant � and an attenuation constant 
. Let us
define $ = $0, the frequency at which the length of the line is ℓ = �/4,
where � = 2�/�. The input impedance of a line loaded at its end by an

impedance /! is:

/in = /0

[
/! + /0tanh((
 + 9�)ℓ )
/0 + /!tanh((
 + 9�)ℓ )

]
. (5.1)

In our case, the line is short-circuited, so /! = 0 and we are left with:

/in = /0 tanh((
 + 9�)ℓ )

= /0

tanh(
ℓ ) + 9tan(�ℓ )
1 + 9tan(�ℓ )tanh(
ℓ )

= /0

1 − 9tanh(
ℓ )cot(�ℓ )
tanh(
ℓ ) − 9cot(�ℓ ) . (5.2)

When �ℓ = �/2, i.e. cot(�ℓ ) = 0, this input impedance is maximal and a

parallel type of resonance occurs. This condition defines the frequency
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of the �/4 mode:

�ℓ =
2�
�0

ℓ =
�
2

⇒ $0ℓ

E
=
�
2

i.e. $0 =
�E
2ℓ
, (5.3)

where E is the phase velocity of the transmission line, assuming a TEM

mode.

5.1.2 RLC equivalent circuit near resonance

Lets us now expand /in close to the resonance frequency $ = $0 + �$
with �$ � $0:

�ℓ = ($0 + �$)
ℓ

E
=
�
2

+ �
2

�$
$0

,

which allows to rewrite

cot(�ℓ ) = cot(�
2

+ �
2

�$
$0

) = −tan(�
2

�$
$0

) �$�$0≈ −�
2

�$
$0

.

Assuming also small loss coefficient 
, we have tanh(
ℓ ) ≈ 
ℓ , from
which we get the input impedance of the line close to resonance:

/in = /0

1 + 9
ℓ��$/2$0


ℓ + 9��$/2$0

≈ /0


ℓ + 9��$/2$0

. (5.4)

It has the same form as the impedance of a parallel RLC circuit near

resonance (see Figure 5.1(b)):

/RLC =

(
1

'
+ 1

9$!
+ 9$�

)−1

≈
(

1

'
+ 1 − �$/$0

9$0!
+ 9($0 + �$)�

)−1

using (1 + G)−1
G�1≈ 1 − G

=

(
1

'
+ 9 �$

$2

0
!
+ 9�$�

)−1

since $2

0
= 1/!�

=

(
1

'
+ 29�$�

)−1

=
'

1 + 29�$'�
. (5.5)

Identifying Eq. (5.4) with Eq. (5.5), we obtain the parameters of the

equivalent RLC circuit for the quarter-wave line near resonance:

' =
/0


ℓ
! =

4/0

�$0

� =
�

4/0$0

. (5.6)

This allows to express the total impedance /A of the quarter-wave line:

/A =

√
!

�
=

1

$0�
=

4

�
/0 ≈ 1.27 × /0 , (5.7)

where /0 is the characteristic impedance of the line. Note that /A ≠ /0.

This is because the line is not matched: as it is short-circuited (/! = 0),

magnetic energy is stored at the line’s end due to the return currents

flowing in the ground, so that the line effectively gains more inductance,

hence /A ' /0

1

1: Similarly, for an open-circuited�/2 line,

one would have /A =
2

�/0 / /0 because

of the extra capacitive contribution due to

the open end.

.
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𝜀 ௥

MS

CPS

CPW

Figure 5.2: Transmission line topologies:

microstripline (MS); coplanar stripline

(CPS) and coplanarwaveguide (CPW). Yel-

low: conductor. Grey: dielectric substrate.

Cross-hatched yellow: ground plane.

5.1.3 Practical implementations

The transmission-line topologies generally used for microwave appli-

cations include the microstrip (MS), coplanar waveguide (CPW) and

coplanar stripline (CPS) geometries. All three have in common to belong

to the family of coplanar transmission lines for which all conductors lie

on the same plane, namely, on the top surface of a dielectric substrate.

The CPW geometry is advantageous in many respects. First, it allows for

a wide range of line impedance, simply by tuning the spacing between

the central microstrip and the lateral ground planes. When this spacing

is only a few microns tight, one can reach as low as a few tens of Ω

impedance; as it is increased, so does the impedance: the lateral grounds

have less and less effect and when the spacing is high enough, the central

conductor of the CPW starts resembling electrically to a microstrip circuit.

Due to their strong ground structure, CPWs are also capable of lower-

loss performance at higher frequencies than microstrip circuits. This is

because for microstrips, the EM fields are contained mainly within the

dielectric material between the strip and the bottom ground plane below

the substrate, while for CPWs the circuit’s effective dielectric constant is

reduced, as part of the EM field resides in the vacuum above the circuit

rather than in the substrate’s dielectric material. Finally, as they are a

planar version of coaxial cables, CPWs also allow gradual transitions

towards the Printed circuit board (PCB) connectors.

The fundamental difference between the CPW and CPS topologies is that

the CPS is a balanced line, meaning that it consists of two conductors, each

having the same impedance to the surrounding ground planes. Therefore,

a CPS allows to carry microwaves in two possible modes: an oddmode,

where both conductors oscillate in opposite phase, and an even mode,

where the two conductors oscillate together in phase with respect to the

ground potential. Since these twomodes resonate at different frequencies,

this topology has the advantage that one can independently explore (see

Section 4.1.5) the current-current susceptibility "�� (encoded in changes

in the odd frequency mode) and the charge-charge susceptiblity "&&
(even mode). The CPW on the other hand is an unbalanced line consisting

in a single planar conductor surrounded on both sides by ground planes,

which act as return lines. It is the 2D version of a coaxial cable and as

such, it is also the easiest to implement since it can be directly routed

to external coaxial cables delivering microwaves to the PCB. However,

connecting in series one end of an unbalanced line to the weak link

does not allow to probe it differentially: the measured response will be

sensitive to a combination of both "�� and "&& .

If targeting a differential drive, one needs in this case to implement a

balun to convert the unbalanced readout signal into a balanced one. This

can be done either using discrete microwave components like a 180°
hybrid coupler, or by directly integrating such a device on-chip [74, 75,

76]

[74]: Baek et al. (2009), ‘94-GHz Log-

Periodic Antenna on GaAs Substrate

Using Air-Bridge Structure’

[75]: Dehollain et al. (2012), ‘Nanoscale

broadband transmission lines for spin

qubit control’

[76]: Vasylchenko et al. (2008), ‘A very

compact CPW-to-CPS balun for UWB

antenna feeding’
. Still, there may be other designs in which unbalanced lines may

actually do the trick, like for example by placing the weak link in the

middle of a half-wave CPW line, but ultimately this may just be seen as

an unfolded version of a quarter-wave balanced line connected at its end

to the weak link.
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5.2 Shunted CPW design

During this thesis, two generations of CPW resonators have been used

— the main difference lying in the coupling scheme with the nanowire

weak link. In the first generation, represented by sample S1 (Section 6.3),

the coupling was achieved through a mutual inductance between the

weak link loop and the strip shorting the CPW at its current antinode.

We gained about two orders of magnitude in the coupling by later

implementing a galvanic coupling scheme (section 5.2.2), in which the

shorting inductance was physically shared by the resonator and the weak

link loop. Sample S2, on which all the data except these of Section 6.3

were obtained, belongs to this generation. Recently, we further adapted

this geometry towards a gradiometric design suitable for microwave

spectroscopy under magnetic field (see Appendix J). The recipes for the

fabrication of samples S1 and S2 are given in Chapter 12. Let us review

here the different steps that guided the design of these three generations

of resonators.

5.2.1 Inductive coupling

The first experiment on InAs nanowires that we designed was similar

in principle to the latest one realized on atomic contacts in the group,

namely: a CPW resonator inductively coupled to the phase-biased loop

containing the weak link (see Figure 5.3(a)). In the experiments with

atomic contacts, with a resonator impedance
2

2: The resonator was made out of a �/4
CPW line with characteristic impedance

/0 = 70 Ω on a kapton substrate (&A ∼
3.2). Using Eq. (5.7), this gives a resonator

impedance /A = 4/0/� ≈ 90 Ω./A = 90 Ω, a resonance

frequency 5A = 10 GHz and a mutual inductance " = 27 pH between

the loop and the resonator, the inductive coupling scheme provided

zero-point fluctuations of about �zp = 2� 5A"
√
�//A'& ≈ 0.004 (see

Eq. (4.21)), which for an Andreev pair transition energy frequency 5� =

8GHzat � = �, gave a typical coupling factor of 6 = �zp Δ
2

(
1−( 5�/2Δ)2

)
≈

100 MHz [21] [21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’, p. 61

. With such a high coupling, the typical dispersive shift

experienced by the resonator, " = 62/( 5A − 5�) ≈ 5 MHz, was high

enough to resolve well the states of the Andreev pair qubit.

𝜙𝜙

Vg

(a) (b)

𝜙𝜙

𝑀𝑀

𝑀𝑀

Figure 5.3: (a) Resonator design for the

atomic contact experiment [21]. The phase-

biased loop containing the atomic contact

is located in the gap of the CPW resonator

and the coupling between the two occurs

through a mutual inductance ". Super-

conducting film is shown in grey and cur-

rent as a red arrow. (b) For the nanowire ex-

periment [51], a DC gate has to be brought

close enough to the weak link, the loop is

therefore placed outside the CPW gap of

the resonator and a trumpet-like shape is

needed for the resonator end to achieve

similar coupling with the loop.

If the same design had been used to probe Andreev states in nanowires,

similar considerations would have held but the coupling factor 6 would

have been weaker, as the effective superconducting gap Δ∗ is lower due

to the finite length of the weak links (see Eq. 3.14). Also, compared to the

atomic contact experiment, it would have been necessary to adapt the

design of the resonator end so as to bring a DC gate close to the nanowire.

To avoid the complexity of having the gate bridging the ground plane, we
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Figure 5.4: A loop of inductance !
loop

is

inductively coupled to a wire of induc-

tance ℓ through a mutual inductance ".

Equivalent circuit useful to compute the

input impedance /in viewed from the left.

initially chose to put the superconducting loop containing the nanowire

outside the gap of the CPW resonator (see Figure 5.3(b)). This lowers the

mutual inductance " as the return current through the ground plane

no longer contributes to the coupling. In order to compensate this effect

and keep the mutual inductance as high as possible, the end of the CPW

was given the shape of a trumpet, which maximizes the length of the

current path that couples to the loop (see Figure 5.3(b)). To affect as little

as possible the resonator mode, this termination was designed such that

the aspect ratio of the CPW remains constant at the same time as the

gap is gradually increased. Reducing the spacing B between the loop and

the resonator short-circuit also increases the coupling, but because of

fabrication constraints this spacing can not be arbitrarily small and we

chose B ≈ 2 �m. Another difference with the atomic contact experiment

was the target frequency 5A for the resonator. For the nanowires, the

initial goal of the experiment was to make evident intra-manifold spin-

flip transitions, the frequency of which would go as the energy splitting

of the ABS. As this splitting was expected to be weak [32] [32]: Park and Levy Yeyati (2017),

‘Andreev spin qubits in multichannel

Rashba nanowires’

, we targeted

a low frequency resonator around 5A ≈ 3 GHz. This also decreased the

overall resonator-nanowire coupling, because �zp ∝ 5A .

Estimation of the mutual inductance

The coupling between the weak link and the resonator mode depends on

the mutual inductance" between the resonator and the loop containing

the weak link. To compute M, the following trick is used. We use Sonnet

to estimate with the finite-element method the loop inductance !loop as

well as the resonator’s inductance to which the loop is coupled, which

we write ℓ when there is no loop and ℓ ′ when the loop is coupled. Then,

the following formula yields the mutual:

" =

√
!loop(ℓ − ℓ ′). (5.8)

Indeed, using the convention from Figure 5.4, we can compute the input

impedance /in seen by the resonator:

/in = 9$(ℓ +") + 9$(−") // (ℓ +" + !loop − ℓ )

= 9$(ℓ +") − 9$ "

!loop
(!loop +")

= 9$ℓ ′ with ℓ ′ = ℓ − "2

!loop
, (5.9)

from which we deduce Eq. (5.8). For this inductive coupling design, the

resonator’s short-circuit to which the loop is coupled was designed to be

100-µm-long, similar to the experiment on atomic contact for which this

design value had proved to provide a high-enough coupling [21] [21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’, pp.61-63

. The

loop itself was designed a posteriori, because the rudimentary nanowire

deposition technique that we were using at the time was not precise

enough to deposit a unique nanowire at a given location (see Section

12.2.2). The shape of the loop had to be adapted so that it would connect

to the nanowire. Therefore, its exact shape was not known before the

nanowire deposition, and so a Sonnet simulation was run a posteriori

with the exact shape of the loop to determine the loop-resonator coupling

(see Figure 5.5(b)).
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Figure 5.5: (a) False-color scanning-electron-microscope image of the experimental device with inductive coupling (sample S1), showing on

the right hand side the 100-µm-long inductive wire shorting the resonator’s end to which the nanowire loop is coupled. (b) Simplified

geometry of the loop used for the Sonnet simulation. (c) Full simulation geometry comprising the CPW resonator (meander) coupled to a

2-port transmission line. Measuring the transmission coefficient (21( 5 ) along this lines allows to extract the resonator’s frequency 50 and its

quality factor.

Using Sonnet , the following values were obtained: !loop = 113.4 pH,

ℓ = 539.9 pH and ℓ ′ = 536.3 pH. From this, Eq. (5.8) gives a mutual

inductance" = 20.9 pH, not far from the 27 pH which were achieved in

the experiment on atomic contacts with a slightly different loop geometry

[21]. This value is consistent with the simple estimate from the analytical

result for the mutual inductance of a rectangular loop of size ! ×,
coupled to an infinitely thin straight wire at a distance B:

"th =
�0

2�
! ln

(
B +,
B

)
.

The loop fabricated for the experiment was almost rectangular, made

from a 3 = 2 �m-wide strip with a length ! = 84 �m and a width

, = 10 �m (see Figure 5.5(a)). Using the nominal spacing B = 2 �m, we

get"th = 30 pH. However, this simple model assuming infinitely thin

wires and given that the strips were 2 �m wide, we should rather use

B = 4 �m for the distance between the inner part of the loop and the

center of the straight wire, which gives"th = 21 pH, quite close to the

value simulated with Sonnet.

Resonator frequency shift

𝜙𝜙
V0

L-

C

Cc

  Vg

M Lloop-
𝑍𝑍in

Figure 5.6: LC resonator coupled through

a mutual inductance " to the weak link

loopmodelled by the inductance !
loop

.We

call /in, the input impedance seen from

the coupling capacitance �2 .

The resonator frequency shift due to the coupling with the loop induc-

tance !loop through the mutual " can be computed by expressing the
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Figure 5.7: (a) Amplitude and phase of

the resonator input impedance /in for the

inductive design, simulated using Son-

net. Fit with Eq. (5.5), shown in red line,

gives � = 767 fF and 50 = 3.213322 GHz,

from which we deduce the equivalent in-

ductance ! = 3.19 nH. (b) /in was sim-

ulated using a pair of two co-calibrated

internal ports: port 1 being connected to

the CPW central conductor and port 2

to the ground plane in front. To ensure

that the impedance seen from port 1 in-

deed corresponds to /in, we define both

ports as "floating" calibrated ports, which

means that during the EM analysis, Son-

net will add extra metal to connect both

ports (shown in green), which will act

as a local ground for both. This metal is

then removed during the de-embedding

process.

total resonator impedance /in seen from the coupling capacitance �2
(see Figure 5.6):

/in =

[
9�$ +

(
9$(! +") − 9$ "

!loop
(!loop +")

)−1
]−1

=

[
9�$ + 1

9$(! − "2

!loop
)

]−1

=

9$(! − "2

!loop
)

1 − �$2(! − "2

!loop
)
.

The circuit exhibits a parallel type of resonance when /in($A) → ∞, from

which we identify:

$A =
$0√

1 − "2

!loop!

"/!�1

≈ $0(1 +
1

2

"2

!loop!
) , with $0 = 1/

√
!�. (5.10)

Using the frequency 50 = $0/2� and impedance /A =
√
!/� of the bare

resonator, its frequency shift due to the coupling with the weak link loop

can be re-expressed as

Δ 5A =
Δ$A
2�

= �
"2 5 2

0

/A!loop
. (5.11)

The only unknown here is the resonator impedance /A . Using Sonnet , we

simulate the input impedance near resonance of the bare CPW resonator

and model it with Eq. (5.5) for a parallel RLC circuit. The simulation

geometry which we use is the one of sample S1 presented in Figure 6.3(c)

and Figure 5.7(b). Fitting of the resonance yields 50 = 3.213322 GHz,

� = 767 fF and' > 20MΩ (themetal layer in the simulationwas assumed

lossless and no dielectric losses were included for simplicity, so we expect

R to be unbounded). From this, we deduce the equivalent inductance

of the resonator, ! = 1/(�$2

0
) = 3.19 nH, and its equivalent impedance

/A = 1/(�$0) = 64.6 Ω. Assuming a perfect quarter-wave line for the

CPW resonator, we can independently estimate /A from the characteristic

impedance /0 of the CPW with Eq. (5.7). Using the transmission-line

calculator TXLine from Cadence
TM

Inc. [77], we estimate /0 = 47.6 Ω

for a "CPW-Ground" topology with silicon as a dielectric (&A = 11.9, no

dielectric loss for simplicity), a width ( = 12 �m for the central conductor,

a gap, = 6 �m and a substrate thickness-to-ground ℎ = 700 �m. From

Eq. (5.7), this gives /A =
4/0

� = 60.6 Ω, not far from the above value,

obtained independently by fitting the resonator input impedance with a

RLC model.

We have now everything at hand to estimate the expected zero-point

phase fluctuations �I? for this design. Note that for the participation

ratio in Eq. (4.22), we should use "/2 instead of ". Indeed, in the

design shown in Figure 5.3(b), the current �tot flowing through the CPW

is effectively split in two at the short-circuit, so that only ∼half of the
current contributes to phase-fluctuations in the loop

3

3: Since "2/!
loop
� ℓ , with ℓ the bare

inductance of the short-circuit in Eq. (5.9),

ℓ ′ ≈ ℓ and the CPW current splits al-

most equally in both ℓ and ℓ ′ to which

the loop is coupled (we showed that the

two inductances vary by only 3.6 pH).

Exactly, the current flowing in the short-

circuit where the loop is coupledwould be

�ℓ′ =
ℓ

ℓ+ℓ′ �tot =
1

2−"2/(ℓ!
loop
) ≈ 0.50 × �tot.

. The flux induced in

the loopwould then readΦloop ≈ " �tot
2
= "

2!Φtot, so that the participation

ratio would be

Φloop

Φtot

≈ "∗
! with "∗ = "/2. From this, we get both the

phase fluctuations �zp and the frequency shift due to the coupling with
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(a)

(b)

𝐿𝐿loop

Figure 5.8: (a) Current distribution simu-

latedwith Sonnet for the geometry shown

in Figure 6.3. It shows the structure of the

�/4mode at frequency 50 = 3.203433GHz

with an antinode at the shorted end of the

CPW, where the weak link loop is coupled.

(b) Enlargement on the short-circuit region

showing the induced current in the loop. ℓ
refers to the partial bare inductance of the

short-circuit wire and ℓ ′ to its inductance

when the loop is added. M denotes the

mutual inductance between the wire and

the loop and !
loop

, the loop inductance of

the latter.

the weak link loop inductance:

�zp =
"∗

!

√
�/A
'&

= 2� 50"
∗
√

�
/A'&

= 5.6 × 10
−4 , (5.12)

Δ 5A = �
"∗2 5 2

0

/A!loop
= 450 kHz. (5.13)

Using again Sonnet , we can independently estimate this shift by simulat-

ing the resonance frequency of the bare resonator and of the one to which

the actual loop (sample S1, see Figure 6.3(b)) is coupled. By fitting the

simulated amplitude and phase of the transmission coefficient (21( 5 ), we

obtain 50 = 3.203433 GHz for the bare resonator (with an external quality

factor &ext = 176 × 10
3
) and a shift Δ 5A = 545 ± 0.5 kHz when adding

the loop, which is about ∼ 16% away from (5.13). This small discrepancy

is likely traced back to our estimation of the mutual inductance: had

we chosen "∗ = 11.1 pH, slightly different from the 10.1 pH value,

Eq. (5.11) would have given Δ 5A ≈ 540 kHz. Finally, to confirm that the

simulated mode indeed corresponds to a current resonance, we verified

the associated current distribution, which does show the structure of a

�/4 mode (see Figure 5.8).

As we will review in Chapter 9, the zero-point fluctuations associated to

this inductive design provided too weak a coupling to the nanowire to

allow single-shot readout of the weak link many-body states. Although

this design was ill-suited for any time-domain applications, we could still

well detect the ABS, due to the high total quality factor &tot ≈ 170 × 10
3
,

which allowed for the resolution of very small frequency shifts. Provided

long integration times (∼ 10-100 ms), we could evidence single-particle

transitions between ABS by performing two-tone spectroscopy with this

sample. This will be the focus of Chapter 6.

5.2.2 Galvanic coupling

Moving to a galvanic coupling scheme was the natural extension to

achieve higher coupling between the resonator and the weak link. The

easiest way to implement it was to build on the existing resonator

geometry by simply depositing and contacting the nanowire weak link

across the gap of the CPW, thus acting as a shunt-inductance to ground

for the CPW (see Figure 5.9). This design, which was suggested to us by

Emmanuel Flurin from the Quantronics group, has the advantage that

the central conductor of the CPW and its return path-to-ground naturally

define a DC loop in the gap area, which can be used to phase bias the

nanowire weak link.

Transmission line model

The sCPW geometry can be described as a series association of two pieces

of transmission line, with a given characteristic impedance each (see

Figure 5.9(a)). The terminating piece of line located after the nanowire

behaves like a stub, as it is shorted to ground to make the resonator

quarter-wave. Let us denote by /B the characteristic impedance of the

stub andby/0 the one of themain transmission line forming the resonator.
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Figure 5.9: Shunted CPW resonator. (a) Transmission line model of the sCPW. (b) Scheme of the physical implementation corresponding to

the end part of the resonator, highlighted by the dashed box in (a). The grey area depicts the superconducting thin film deposited on the

substrate. The nanowire weak link is shunting the central conductor of the CPW to the ground, naturally defining a loop used to control the

superconducting phase difference across it.

Using the impedance transformation rule from Eq. (5.1), one can see

that for a lossless piece of line (
 = 0) with characteristic impedance /B
and terminated by a short /! = 0, the input impedance reads simply

/stub = 9/B tan (�ℓstub), with ℓstub the length of the stub.

Resonance is achieved when �0 = 4ℓtot, where ℓtot stands for the total

length of the resonator. This allows to rewrite Eq. (5.3): �ℓstub = �
2

ℓstub
ℓtot

�0

� =

�
2

ℓstub
ℓtot

$
$0

, so that close to resonance ($ ≈ $0), the tangent can be approxi-

mated by its argumentwhen the stub is small compared to the total length

of the resonator line (ℓstub � ℓtot). We are then left with /stub ≈ 9$!stub,
where !stub = /B

�
2$0

ℓstub
ℓtot
� 1 stands for the stub inductance. In short,

if the stub stays short compared to the resonator length, it essentially

behaves near resonance like a pure inductor !stub. Therefore by adding

a stub with /B > /0, one expects to increase the total inductance of the

resonator and as a result, to decrease its frequency. This can be modeled

using a transmission line description of the resonator. Introducing the

length ratio & = ℓstub/ℓtot � 1, one can express the input impedance of

the sCPW resonator:

/in =
/stub + 9/0 tan (�(1 − &)ℓtot)
1 + 9 /stub

/0

tan (�(1 − &)ℓtot)

= 9/0

/B
/0

tan (�&ℓtot) + tan (�(1 − &)ℓtot)

1 − /B
/0

tan (�&ℓtot) tan (�(1 − &)ℓtot)

≡ 9/0

tan (�ℓtot�) + tan (�(1 − &)ℓtot)
1 − tan (�ℓtot�) tan (�(1 − &)ℓtot)

= 9/0 tan (�ℓtot(1 − & + �)). (5.14)

To get the above simplification, we needed to enforce the following

expression:

/B

/0

tan (�&ℓtot) = tan (�ℓtot�).

When & = ℓstub/ℓtot � 1, this is true to first order in & if we set � = & /B/0

.

From this expression, we deduce that a parallel type of resonance is

achieved when �ℓtot(1 − & + �) = (2= + 1)�/2 with = ∈ ℕ, which defines

the resonance frequencies of the sCPW:
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sCPW resonance frequencies

5 = 5A
1

1 − &(1 − /B
/0

)
≈

&→0

5A

[
1 − &

(
/B

/0

− 1

)]
with 5A =

(2= + 1)E
4ℓtot

.

(5.15)

As a check we see that either by removing physically the stub &→ 0 or by

equating /B = /0, we recover 5 = 5A , the bare resonance frequencies of

the quarter-wave line. Also, when /B > /0, the renormalized resonator

frequency is smaller than its bare value 5A and as expected, increasing

the stub length further decreases the resonator frequency.

In section 5.1.2, we showed that near resonance a lossless quarter-wave

resonator can be modelled by an equivalent LC circuit. By comparing

the impedance and frequency of an ideal LC circuit with the ones of the

quarter-wave line (Eqs. (5.3,5.7)), one can express the equivalent discrete

elements !sCPW , �sCPW in terms of the line parameters: the inductance

and capacitance per unit length, respectively LA and CA :
/A =

4

�
/0 =

4

�

√
LA

CA
≡

√
!sCPW

�sCPW

5A,0 =
E

4ℓtot
=

1

4ℓtot
√
LACA

≡ 1

2�
√
!sCPW�sCPW

.

Solving this set of equations for {!sCPW , �sCPW}, one deduces the equiva-
lent discrete model for the �/4 resonance of the shunted CPW resonator:

!sCPW =
8ℓtot

�2

LA

�sCPW =
ℓtot

2

CA .
(5.16)

From this, one can now estimate the coupling between the resonator

and the nanowire weak link using Eq. (4.22). First let us express the

participation ratio, i.e. the ratio of the inductance shared between the

resonator and the weak link loop (=the stub inductance here) to the total

resonator inductance:
!stub = /B

�
2$0

ℓstub

ℓtot

!sCPW =
/A

2� 5A,0

5.7
=

4

�
/0

$0

⇒ !stub

!sCPW
=
�2

8

/B

/0

ℓstub

ℓtot
, (5.17)

from which we deduce the phase fluctuations induced in the weak link

loop:

�sCPW
zp

=
!stub

!sCPW

√
�/A
'&

=
�2

4

ℓstub

ℓtot

√
/2

B

/0'&
. (5.18)

I The coupling to the resonator of a pair transition arising from a

single finite-length (!/� ' 1) channel of transmission � would be

given at phase � = � by

6(�) =
�sCPW
zp

~
Δ

1 + !/�
�
2

∝ �sCPW
zp

. (5.19)
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Therefore, in this shunted CPW geometry, the coupling increases

linearly with the length ratio of the stub to the resonator’s total

length. This provides a simple means to tune the coupling by

adjusting the length of the stub, remembering that it still needs to

be small compared to ℓtot so that our perturbative approach remains

valid and �zp � 1. Increasing the stub length ℓstub provides a better

coupling, but on the other hand, one also has to keep its inductance

low compared to the weak link’s inductance, so that the relation

between the phase drop � across the weak link and the applied

flux ) through the loop does not become hysteretic (see discussion

on the loop inductance in Section H.2). This means the stub length

should be chosen as a trade-off between a good coupling and a

proper phase biasing.

I To maximize the coupling, we see from Eq. (5.18) that the charac-

teristic impedance of the stub /B should be as large as possible

as compared to the geometric mean of the resonator’s characteristic

impedance /0 and of the resistance quantum '& .

StubCPW resonator

𝜔𝜔 ≈ 𝜔𝜔0

𝐿𝐿sCPW

𝐶𝐶sCPW
𝐿𝐿stub

𝜙𝜙
𝛿𝛿

𝜙𝜙zp

𝛿𝛿 =
𝜙𝜙
𝜙𝜙0

+
𝐿𝐿stub
𝐿𝐿sCPW

𝜙𝜙zp

𝜙𝜙0
= 𝛿𝛿0 + 𝛿𝛿zp

ℒ𝑟𝑟𝛿𝛿𝛿𝛿

𝐶𝐶𝑟𝑟𝛿𝛿𝛿𝛿
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𝑍𝑍𝑠𝑠 =
ℒ𝑠𝑠
𝐶𝐶𝑠𝑠
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𝐶𝐶𝑟𝑟

Figure 5.10: Equivalent LC circuit of the shunted CPW line near resonance.

Resonator shift

Using the equivalent LCmodel of the resonator that we just foundwe can

easily recover the expression for the classical resonator shift, in accordance

with the general derivation done in section 4.1.5. Following the notations

of Figure 5.10, we can express the total equivalent inductance !eq of the

circuit and deduce the change of resonator inductance �!when the weak

link is coupled to it:

!eq = (!sCPW−!stub)+(!stub//!wl) = !sCPW−
!2

stub

!wl + !stub
⇒ �! ≈ −

!2

stub

!wl

.

The resonator shift �$ due to the coupling with the weak link inductance

!wl is then given by:

�$
$0

= −1

2

�!
!sCPW

≈
!2

stub

2!sCPW
× 1

!wl

. (5.20)

Finally, combining Eqs. (5.17) and (5.20), one can express the resonator

shift due to the inductive response of the weak link as a function only of
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Figure 5.11: CPW characteristic

impedance /0 as a function of the gap

W (a) and the width S (b) of the CPW

central conductor. The values highlighted

by black and red disks correspond to

the design values for the CPW resonator

and its stub termination used in the

experiment. Simulation points shown

in disks and theory from Eq. (5.22) in

continuous lines.
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Figure 5.12: Current distribution of a

sCPW resonator simulated in Sonnet

showing the structure of the �/4 mode

with an antinode at its shorted end where

the weak link is coupled.

the geometric parameters of the sCPW:

� 5 =
�$
2�

=
!2

0

ℎ
�2

zp
!−1

wl
=

(�
8

ℓstub

ℓtot

)
2 /2

B

/0!wl

. (5.21)

Design parameters

In experiments on atomic contacts [21] [21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’

, the loop in which the weak link

was embedded was chosen to be 90× 20 �m², which proved to provide a

good phase bias of the weak link. We set the stub length to ℓstub = 100 �m
so as to get in a similar loop size for our nanowire experiment. As for the

lengths of the resonators, they were chosen between ℓtot = 3.9 − 4.2 mm

for the resonances to fall in the 6 − 7 GHz range below the dispersive

feature of our TWPA amplifier used for detection. Within this frequency

range, the TWPA typically gives ∼20 dB amplification.

The characteristic impedances of the two CPW parts (resonator and

stub) were chosen to maximize the coupling. According to Eq. (5.21), this

means having a low impedance resonator /0 and a high stub impedance

/B so as to maximize the phase fluctuations over the loop region. The

CPW topology is well suited for that, as it allows to easily tune the line

impedance in a wide range by simply adjusting the gap width. Reducing

the gap width decreases consequently the impedance. But it is limited by

the spatial resolution of optical lithography system used to pattern the

resonators in superconducting thin films, which lies typically around

1 µm. Optical lithography allows to reach minimal structure size as low

as half a µm. However, to keep the recipe reliable on the whole resonator

area, we prefered to set the CPW gap to, = 2 �m.

In Figure 5.11 we show the evolution of the CPW line impedance /0 with

the gap, (a) and the width ( (b) of its central conductor, as estimated

froma two-port Sonnet simulation of a piece of line. The simulated results

show good agreement with the simple theory for a CPW of negligible

thickness on top of an infinitely thick substrate (ℎ → ∞) obtained by

conformal mapping techniques [78]

[78]: Gupta et al. (1979), Microstrip Lines

and Slotlines, pp.261-262

:

/CPW

0
=

30�√
&A+1

2

 ′(:)
 (:) with : =

(

( + 2,
, (5.22)

where K is the complete elliptic integral of the first kind and  ′(:) =
 (
√

1 − :2).

Taking ( = 30�mgives a characteristic impedance/0 = 27.9Ω. Using the

transmission-line calculator TXLine fromCadence
TM

Inc. [77], we recover

the same value within ±0.1Ω for this "CPW-Ground" geometry (lossless

metal on a 700 �m thick silicon substrate with &A = 11.9, assuming no

loss for simplicity). For the stub region, we set a width (B = 14 �m,

resulting in a gap of,B = 10 �m to keep the same total distance between

the ground planes. From a Sonnet simulation, we expect this second

piece of CPW to have a nominal characteristic impedance of /B = 52.7Ω,

again in agreement with the prediction from TXLine.

With this geometry, we checked the validity of Eq. (5.21) giving the

resonator shift due to the coupling with the weak-link inductance. To
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Figure 5.13: Frequency shift of a sCPW resonator as a function of the stub length. (a) Model used for the Sonnet simulation, comprising a

sCPW resonator connected in a notch geometry to a two-port transmission line. The weak link is modelled by an ideal inductor !
wl
= 5 nH

shunting the CPW gap before the stub region terminating the �/4 resonator. The CPW gap was set to B = 2 �m and the central width to

, = 30 �m. For the stub region, the gap is increased to B = 10 �m, leaving a width of,B = 14 �m for the central conductor. The parameters

for the substrate layers (material, thickness, dielectric constant) are given in the table above. (b) Resonance frequency 5A and its shift when

the shunt inductance !
wl

is added, as extracted from a Sonnet simulation of the (21( 5 ) along the transmission line. Simulation points

shown in solid circles and best fit with Eqs. (5.21,5.15) in solid lines.

do so, we ran a parameter sweep varying the stub length and, for each

simulation, extracted from the (21( 5 ) data the resonance frequency with

and without the weak link, which was modelled by a !F; = 5 nH to

get an idea (this corresponds to the expected inductance for a perfectly

transmitted channel and with ΔAl = 45 GHz [40] [40]: Bretheau (2013), ‘Localized Ex-

citations in Superconducting Atomic

Contacts’, pp. 4 & 40

). Looking at the

simulated distribution of current, shown in Figure 5.12, we confirm the

�/4 nature of the investigated resonator mode, showing a node of the

current at its open end coupled to the transmission line and an antinode

at its shorted end. Figure 5.13 shows both the expected linear decrease of

the resonance frequency and the quadratic behaviour of the frequency

shift as a function of the stub length. The simulation data was fitted with

Eq. (5.21), while fixing the parameters !wl = 5 nH and ℓtot = 3966 �m.

Note that the shift is not identically zero when the stub length is reduced

to ℓstub = 0. This is because the inductor modelling the weak link was

not put exactly at the discontinuity delimiting the beginning of the stub,

but a few microns away to mimic the actual geometry of sample S2.

A global offset of 0.45 MHz was therefore added to account for this

residual shift. The best fit of both the resonance frequency and its shift

yields the following values for the resonator and stub characteristic

impedances: /fit

0
= 18.4 Ω and /fit

B = 51.5 Ω. Those values fall a few

ohms away from the nominal values given above, which are expected for

infinite lines. Note that a perfect agreement with the model is not to be

expected, because the latter considers two ideal pieces of transmission
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Figure 5.14: Change of resonance fre-

quency � 5A of a sCPW resonator when

the shunt inductance modelling the weak

link is varied by an amount �!
wl
.

lines connected in series and does not account for spurious effects like

the extra capacitance-to-ground arising from the step discontinuity in

the width of the CPW’s central conductor at the stub transition. The

microwave engineering literature provides semi-analytical formulas to

estimate such a capacitance [79] [79]: Sinclair and Nightingale (1992), ‘An

equivalent circuit model for the coplanar

waveguide step discontinuity’

, but the fine modeling of these extra

non-ideal effects was not the purpose of the present work.

From Eq. (5.18) and using those values of /fit

0
= 18.4 Ω, /fit

B = 51.5 Ω

along with ℓtot = 3966 �m and ℓstub = 100 �m, we estimate the zero-point

phase fluctuations associated to this coupling design to be:

�sCPW
zp

=
�2

4

ℓstub

ℓtot

√
/2

B

/0'&
≈ 9.3 × 10

−3. (5.23)

Fitting of a single-tone spectroscopy measurement of a resonator with

this design (sample S2) gives a result quite close to this nominal value

�zp = 1.2 × 10
−2

(see Section 6.5.2). Note that compared to the inductive

design from sample S1 (Section 5.2.1), we gained a factor ×16.6 in �zp
(see Eq. (5.12)), which means a factor ∼ 275 for the nanowire-resonator

coupling. Compared to the mutual coupling design used for the atomic

contact experiment [16], a factor ×3 in �zp was also achieved. Given that

for finite-length junctions, the coupling factor 6 is further reduced by a

factor 1/(1 + !/�) (see Eq. (5.19)), this new design is expected to offer

a globally similar coupling for pair transitions in !/� ≈ 2 weak-links

compared to what was achieved with atomic contacts implementing

!→ 0 weak links.

From Figure 5.13, we see that a stub length of ℓstub = 100 �m yields a

sizeable resonator shift of almost 4 MHz when !wl = 5 nH. Using again

Eq. (5.21), one can now compute by how much the resonance frequency

would change when the shunt inductance modeling the weak link is

varied from !wl to !wl + �!wl (see Figure 5.14). This is precisely the

quantity that we want to optimize: in the spectroscopy measurements

that we seek to perform, themicrowave drive induces transitions between

Andreev states which result in a change of inductance of the weak link

and therefore shift the resonance frequency. Following our illustrating

case where !wl = 5 nH, we see that a change of weak link inductance of

±1 nH typically shifts the resonator in the range ±700 kHz. To optimize

the detection one requires this shift to be comparable to the resonator

linewidth Δ 5A . For a resonance at 5A = 7 GHz, this means a total quality

factor of typically & = 5A/Δ 5A ≈ 10000. Then, assuming low internal loss

&int � &ext, we need to design the external coupling of our resonators

to the feedline so as to target &ext ≈ 10 × 10
3
.

5.2.3 Coupling resonators to a readout transmission line

Contrary to the experiments on atomic contacts [21] [21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’

, where the resonator

was probed in reflection, we read out the resonators using a notch-type

coupling to a common transmission line (TL). This allows to implement

relatively weak resonator-feedline coupling without perturbing signifi-

cantly the off-resonant modes propagating in the feedline. Because of this

property, notch-port couplers enable frequency multiplexing schemes,

where many CPW resonators of different frequencies can be coupled
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Figure 5.15: Dependence of the sCPW frequency and external quality factor on the length of the coupler region and distance to the

transmission line, obtained from a 2-port Sonnet simulation. Same simulation geometry as for Figure 5.13.

to a single feedline in a so-called hanger geometry. This offered us a

convenient possibility to fabricate and probe multiple resonators on a

single chip to maximize the fabrication success rate and end up after the

fab process with a least one working nanowire resonator (see Section 12.2

for details about the weak link fabrication). Finally, using our currently

available 6-ports PCBs, we could fit up to four resonators on a single

chip: two ports for the transmission line and one port to address the gate

of each resonator (see Figure 12.1 and 12.2).

Using a transmission line coupling scheme also allows to measure easily

the internal losses of a resonator, simply by connecting the TL to a vector

network analyzer (VNA) and measuring the scattering parameter (21 as

a function of the probe frequency 5 . For a two port network, the complex

scattering parameter can be written in the form [80, 81]

[80]: Khalil et al. (2012), ‘An analysis

method for asymmetric resonator

transmission applied to superconducting

devices’

[81]: Deng et al. (2013), ‘An analysis

method for transmission measurements

of superconducting resonators with appli-

cations to quantum-regime dielectric-loss

measurements’

:

(21( 5 ) = 042�8 5 � el

[
1 − 4 8)&/&ext

1 + 28&( 5 / 5A − 1)
]
, (5.24)

with 5A the resonance frequency and Q, the loaded quality factor of

the resonator. The additional parameters 0, � el , ) are introduced to

model the transmission through the cables and other components of the

measurement system
4

4: Note that in realistic circuits, the reso-

nance line shape may be asymmetric due

to impedance mismatches at the TL ports.

This phenomenon is well described and

modelled in Refs. [80, 81].
.

For high quality resonances, losses are perturbatively small and the

total loss rate can be decomposed as a sum of partial loss rates over the

different loss channels. For a TL-coupled resonator, the external losses

related to the emission of radiation into the TL can be separated from the

dissipative losses occuring inside the resonator (in particular dielectric

losses): &−1 = &−1

int
+ &−1

ext
. For most applications, one wishes for the

internal quality factor &int to be as high as possible and for the external

quality factor &ext to fall close to the design value.

To tune the coupling of the resonators to the transmission line, described

by&ext, one can playwith two geometrical parameters (see Figure 5.16(a)):

the length ;2 of the notch coupler parallel to the transmission line and

its distance F2 to the line. To check how they affect the coupling, we ran

two-parameter sweeps in Sonnet. For each simulation, we fitted with

Eq. (5.24) the amplitude and phase of the transmission coefficient (21( 5 )
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Figure 5.16: (a) Sonnet geometry used to

tune the coupling of the resonator to the

TL. The two parameters are the length ;2
of the notch coupler and the width F2 of
the electrode separating it from the TL.

A small gap of 2 �< was put between

this electrode and the close-by ground

plane in order to avoid a second closed

DC loop that could perturb the phase bias

of the weak link. (b) External quality fac-

tor &ext and resonance frequency 5A of a
TL-coupled CPW resonator vs the length

;2 of the notch coupler. Data points from

Sonnet simulations are compared to ana-

lytical predictions obtained by conformal

mapping techniques [82].

as a function of frequency to extract the resonance frequency 5A and the

external quality factor &ext (see Figure 5.15).

Using conformal mapping techniques, Besedin et al. [82] [82]: Besedin and Menushenkov (2018),

‘Quality factor of a transmission line

coupled coplanar waveguide resonator’

have derived

analytical expressions for the external quality factor &ext and frequency

shift Δ 5A of a TL-coupled CPW resonator. In the general case, when the

input and output ports of the TL are not matched, the quality factor

depends crucially on the position of the resonator along the line. This is

because standing waves arise in the feedline due to impedance mismatch,

thus making the coupling position-dependent. For matched ports, the

quality factor has no leading-order dependence on the position of the

coupler section and its expression assumes a simple form. Let us note ;2
the length of the coupling region and ;A the total length of the resonator.

Assuming that the resonator is coupled to the TL at its open end and that

it is shorted at the other end, we then have:


Δ 5A = −

3�2

2�
5A sin

(
�
;2

;A

)
&ext =

�

2�2
sin

2

(
�
2

;2
;A

) . (5.25)

These expressions result from a perturbative expansion in the coupling

strength � and describe only the leading order terms for the quality

factor and frequency shift. Although they reproduce the trend of the data

simulated with Sonnet (Figure 5.16), they yield a systematically higher

estimate of the quality factor. This discrepancy can be attributed to the

spurious couplings between the resonator and the feedline,mainly arising

from the conductor arcs attached to the notch coupler (see simulation

geometry in Figure 5.13), which lead to a larger effective coupler length.

Note also that the small dimensionless parameter � characterizing the

strength of the coupling does not have any analytical expression, in

particular its dependence on the TL-resonator separation F2 is not

explicit and therefore such theory cannot be used for synthesis, only for

analysis. Fitting jointly with Eq. (5.25) the 5A and&ext data obtained from

Sonnet simulation, one obtains a coupling coefficient � = 0.18. Note

that compared to Eq. (5.25) a global offset of +340 MHz was added to

5A to fit the data. This agrees with the qualitative remark above that the

model underestimates the coupling and therefore also overestimates the

resonance frequency. Therefore it cannot be used to predict quantitatively

the coupling and to assist the design. For completeness, it would be

interesting to improve the agreement with theory, but this lies beyond

the scope of this work; for our purpose it was enough to run microwave

simulations to get a quantitative estimate of the external coupling and

tune the design accordingly.

Finally, note that for this method to work, the simulated transmission

(21( 5 ) data needs to be fine enough in frequency, so that the resonance

curve is well-sampled to be fitted and to extract reliably &ext. In practice

this often means to run iteratively several simulations over successively

smaller frequency ranges.Designingmicrowave resonators in thismanner

can be time consuming since it requires many simulation runs. Note that

there exists a smart alternativemethod allowing to retrieve accurately and

much faster 5A and &ext from a single simulation with a wide frequency

sweep [83]

[83]: Wisbey et al. (2014), ‘New Method

for Determining the Quality Factor and

Resonance Frequency of Superconducting

Micro-Resonators from Sonnet Simula-

tions’

. It consists in adding an internal (virtual) port in the Sonnet
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Figure 5.17: (a) Two coupled coplanar mi-

crostrip lines over a dielectric substrate of

thickness ℎ and relative permittivity &A .
(b) Distributed-element model of the cou-

pled lines. Coupling elements are shown

in grey.

model and examining the input impedance viewed from this added port.

The latter should be placed near a current maximum so as to represent

the impedance near resonance of a an equivalent series RLC circuit. By

looking at the slope and zero-crossing of Im(/in), one can directly extract

5A and &ext.

From Figure 5.15, we deduce the length of the coupler and its distance to

the TL to choose, so as to implement the &ext = 10 × 10
3
value that we

had targetted. In practice, to maximize SNR for states discrimination, we

require the resonator shift to be comparable to the resonator linewidth,

which is directly determined by &ext when &ext � &int. This condition

cannot be unconditionally implemented, because the resonator shift is

not a design parameter but depends on the weak link’s microscopic

inductance, which may be tuned by the external flux ) and the gate volt-

age +6 . More importantly, pair transitions between Andreev states may

couple differently to the resonator that single-quasiparticle transitions.

Indeed, current matrix elements between odd states were estimated to be

a hundred times smaller than for states of even parity, therefore making

their observation in microwave experiments challenging [32]

[32]: Park and Levy Yeyati (2017),

‘Andreev spin qubits in multichannel

Rashba nanowires’

as they

would shift the resonator by a much smaller amount than states of even

parity.

Therefore, to check a posteriori which coupling was best, we fabricated

resonators with various coupler lengths to cover a wide range of external

coupling to the feedline, with four target values for the quality factor:

&ext = 10
3 , 4 × 10

3 , 10 × 10
3
and 40 × 10

3
(see Figure 12.2). Ideally,

designing the resonators to have an in-situ tunable coupling to the TL

would allow to optimize the SNR and state discrimination depending on

their parity. Some tunable coupling schemes have been proposed using

either SQUIDs and an external magnetic field as the tuning knob [84]

[84]: Wulschner et al. (2016), ‘Tunable

coupling of transmission-line microwave

resonators mediated by an rf SQUID’

or

relying on the intrinsic non-linearity of superconducting thin films due

to their kinetic inductance and using a DC current to tune it [85]

[85]: Bockstiegel et al. (2016), ‘A tunable

coupler for superconducting microwave

resonators using a nonlinear kinetic

inductance transmission line’

. For our

first experiment on nanowires, implementing such a tunable coupling

scheme would have added complexity to the design and so we decided

not to go ahead with this option.

5.3 Coplanar stripline design

In the course of this thesis, another resonator design was investigated,

following the works of Hays et al.. It consists in a differential pair of

two coupled microstrip lines (see Figure 5.17(a)), known also as coplanar

stripline (CPS). This appears as the simplest design to implement a

differential excitation of the weak link, using the odd mode of the two

coupled lines. As reviewed in section 4.1.5, measuring the weak link

through the differential mode of the resonator allows to probe only the

diagonal current component of the weak link susceptibility matrix, which

in principle should make easier the resolution of the spin states. This

strategy was chosen by Hays et al. and allowed them to demonstrate the

manipulation of a nanowire-based Andreev spin qubit [41, 42]

[41]: Hays et al. (2020), ‘Continuous

monitoring of a trapped superconducting

spin’

[42]: Hays et al. (2021), ‘Coherent

manipulation of an Andreev spin qubit’

. We came

to understand rather late the relevance of such a design compared to a

simple CPW implementation, and why the intrinsic left/right symmetry

of the resonator mattered at all.
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To test this idea of a differential pair to probe the weak link, we designed

similar resonators at the end of this thesis. The motivation was twofold:

(1) trying to reproduce the published results from Hays et al. on a slightly

different platform, using fullshell nanowires instead of partially-covered

ones (2) performing not an indirect (Raman) manipulation of the spin

states as in [42], but a directmanipulation through the intramanifold SQPT

that we had identified in [53] [53]: Metzger et al. (2021), ‘Circuit-QED

with phase-biased Josephson weak links’

. At the time of writing this manuscript,

the sample was cooled down. Let us review in this section the basics of

differential pairs in PCB transmission lines and how to design them.

5.3.1 Even & odd modes

All the properties that we derived in the previous section 5.2 for the

sCPW resonator design depend on the characteristic impedance /0 of

the single-ended transmission line from which the resonator is made.

This impedance relates the voltage and current at any point I on the

line through the relation +(I) = /0�(I). For an almost lossless line,

this impedance reads /0 =
√
L/C, where L and C are respectively the

inductance and capacitance per unit length of the line.

However, for a differential pair, the relation between current and voltage

can no longer be described by a single characteristic impedance. This is

because the two lines of the pair may be coupled electromagnetically if

close enough to each other. Therefore, a current flowing in line 1 may

also induce a voltage in line 2 of the pair through a coupling or mutual

impedance. In this situation, the relation between voltage and current

for the coupled system is now described by a 2x2 impedance matrix:(
+1

+2

)
=

(
/11 /12

/21 /22

)
⇒

{
+1 = /B4 �1 + /< �2
+2 = /B4 �2 + /< �1 ,

(5.26)

where we have labeled /B4 = /11 = /22 the characteristic impedance of

a single-ended line, and /< = /12 = /21 the mutual impedance between

lines 1 and 2. We assume here that both lines of the pair are identical and

uniform, with a fixed separation along the whole length of the lines.

The mutual impedance /< arises due to coupling between the two lines,

which can be modeled in the general case by a coupling capacitance C<
and a mutual inductance L< per unit length (see Figure 5.17(b)). Relating

the voltage +(I) to the current �(I) on an infinitesimally small length

of line �I allows to write the set of coupled equations describing the

propagation of time-varying signals along the line:

Maxwellian form Physical form

− %+1

%I = L11

%�1
%C + L12

%�2
%C − %+1

%I = LB
%�1
%C + L<

%�2
%C

− %+2

%I = L21

%�1
%C + L22

%�2
%C − %+2

%I = L<
%�1
%C + LB

%�2
%C

− %�1
%I = C11

%+1

%C + C12

%+2

%C − %�1
%I = (CB + C<)

%+1

%C − C<
%+2

%C

− %�2
%I = C21

%+1

%C + C22

%+2

%C − %�2
%I = −C<

%+1

%C + (C< + CB)
%+2

%C .
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Table 5.1: Correspondence between physi-

cal & Maxwellian parameters

L11 = L22 = LB

L12 = L21 = L<

C11 = C22 = CB + C<
C12 = C21 = −C<

I1

I1

𝐿𝑚𝛿𝑧
2𝐶𝑚𝛿𝑧

𝐶𝑠𝛿𝑧

+V1

0

ℒ𝑠𝛿𝑧

ℒ𝑠𝛿𝑧

𝐶𝑠𝛿𝑧

2𝐶𝑚𝛿𝑧
-V1

I1

I1

𝐿𝑚𝛿𝑧

+V1

ℒ𝑠𝛿𝑧

ℒ𝑠𝛿𝑧

+V1

𝐶𝑠𝛿𝑧

𝐶𝑠𝛿𝑧

(a) Odd mode

(b) Even mode

Figure 5.18:Equivalent circuits for the odd
(a) and even (b) modes of two coupled

transmission lines.

Voltages and currents on both lines of the pair are related through 2x2

inductance and capacitance matrices !8 9 and �8 9 with 8 , 9 ∈ {1, 2}. To
make contact with the circuit model in Figure 5.17(b), one can rewrite

the set of equations in terms of their physical parameters {!B , �B} and
{!< , �<} (Table 5.1), describing respectively the properties of the isolated
lines (subscript s, for self ) and of their coupling (subscriptm, formutual).

Although it is enough to solve numerically this set of differential equations

to get the time-evolution of a propagating signal at each point of the two

lines, one can get further physical insight by introducing the concepts

of even and odd modes. Indeed, any two arbitrary signals +1 and +2

can always be expressed in terms of their average value and of their

difference: 
+1 = +com +

+diff

2

≡ +4 ++>

+2 = +com −
+diff

2

≡ +4 −+> ,

where we have defined +com ≡ (+1 + +2)/2 = +4 , the common mode

or even signal, and +diff ≡ +1 − +2 = 2+> the differential signal or odd

mode. Those are actually the normal modes of the system, as they allow to

diagonalize the inductance and capacitancematrices: even and oddmode

currents can be seen as the eigenvectors of the symmetric impedance

matrix. Likewise, even and odd mode voltages are the eigenvectors of

the associated admittance matrix.

EVEN mode ODDmode

− %+4
%I = (L11 + L12) %�4%C − %+>

%I = (L11 − L12) %�>%C
− %�4

%I = (C11 + C12) %+4%C − %�>
%I = (C11 − C12) %+>%C

+4 =
1

2
(+1 ++2) = +com +> =

1

2
(+1 −+2) = +diff/2

�4 =
1

2
(�1 + �2) = �com/2 �> =

1

2
(�1 − �2) = �diff

/4 ≡
+4

�4
=

2+com

�com
= 2/com

=

√
L11 + L12

C11 + C12

=

√
LB + L<

CB

/> ≡
+>

�>
=
+diff

2�diff
=
/diff

2

=

√
L11 − L12

C11 − C12

=

√
LB − L<

CB + 2C<
E4 =

1√
(L11 + L12)(C11 + C12)

=
1√

(LB + L<)CB

E> =
1√

(L11 − L12)(C11 − C12)

=
1√

(LB − L<)(CB + 2C<)
.

Using the above notations, one can easily express the wave impedance of

both modes {/4 , />} and their propagation velocities {E4 , E>}.

– Odd mode: +2 = −+1 and �2 = −�1
Therefore, no current flows in the return path �1 + �2 = 0. It is

convenient to make the 1/2 antisymmetry explicit and unfold both

lines with respect to the symmetry axis of the pair, which coincides

with a zero equipotential line (See Figure 5.18(a)). ’C<�I’ can then

be split in two series capacitors of value 2C<�I each (because of the

potential division between two equal capacitors). This equivalent

drawing allows to identify the effective inductance and capacitance
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5: The odd (even) mode impedance is the

impedance seen by a wave propagating

through one of the transmission lineswhen

the pair is excited with a differential (com-

mon) drive. On the other hand, the dif-

ferential (common) impedance is defined

as the impedance between the two lines

when the pair is excited with a differential

(common) drive.

per unit length of each line in the odd mode. The inductive voltage

in line 1 is due to current � flowing through LB�I and to current

�2 = −�1 flowing through L<�I, which can be equivalently stated

as due to I flowing through the inductor (LB − L<)�I. Therefore,
L> = LB − L< . As to the effective capacitance per unit length

between line 1 and the zero potential line, it reads C> = CB + 2C< ,
from which we deduce the wave impedance of the odd mode,

/> =
√
L>/C> , and its propagation velocity E> = (L>C>)−1

.

– Even mode: +2 = +1 and �2 = �1
Therefore, the two lines are identical and the coupling capacitance

C<�I is shunted, because the voltage on each side is the same

+1 = +2 (See Figure 5.18(b)). It can therefore be ignored and we are

left with C4 = CB for the effective capacitance per unit length of

either line in the even mode. With the same reasoning as for the

odd mode, one can identify the effective inductance of either line

as L4 = LB + L< because �1 = �2.

5.3.2 Equivalent LC circuit

Knowing the impedance and velocity of the two modes, one can now

build an equivalent lumped-element model for the common- and differ-

ential-mode resonances. At this point, it may be important to stress an

important subtlety in the notations, namely the factor 2 in the definitions

of odd/even vs differential/common modes
5
. Therefore, to compute

the impedance /A,diff of a resonator made from a differential pair, one

has to use /diff and note /> as the characteristic impedance of the line.

Indeed, /> represents the wave impedance of a single transmission line,

while /diff refers to the impedance seen by a differential signal across the

pair of lines. With this in mind, one can identify the equivalent LC circuit

for both modes from the expression of their impedance and frequency

(we noteL the physical length of the resonator, i.e. of each of the coupled

microstrips):

– Differential mode
/A,diff =

4

�/diff =
8

�/> =
8

�

√
L(−L<
CB+2C< ≡

√
!diff
�diff

5> =
E>

4L = 1

4L
√
(LB−L< )(CB+2C< )

≡ 1

2�
√
!diff�diff

⇒
{

L(−L<
CB+2C< =

�2

64

!diff
�diff

(L( − L<)(CB + 2C<) = �2

4L 2
!diff�diff

;

– Common mode
/A,com =

4

�/com =
2

�/4 =
2

�

√
L(+L<

CB ≡
√

!com
�com

54 =
E4

4L = 1

4L
√
(LB+L< )CB

≡ 1

2�
√
!com�com

⇒
{
L(+L<

CB = �2

4

!com
�com

CB(L( − L<) = �2

4L 2
!com�com

.

Solving these equations for {!diff , �diff} and {!com , �com}, we deduce the

equivalent LC model for the two types of resonance:



5 Designing microwave resonators 71

COMMONmode DIFFERENTIAL mode

!com =
4L
�2
(LB + L<) = 4L

�2
(L11 + L12) !diff =

16L
�2
(LB − L<) = 16L

�2
(L11 − L12)

�com = L CB = L (C11 + C12) �diff =
L
4
(CB + 2C<) = L

4
(C11 − C12).

Knowing the LC equivalent circuit, one can now easily express the zero-

point phase fluctuations over the shared inductance ℓ using Eq. (4.22).

We are interested in the case where the resonator is driven differentially,

hence we should use /0 = /diff = 2/> , as the resonator is made from a

differential pair:

�diff
zp

=
ℓ

!diff

√
�/A,diff
'&

=
�2

8

ℓ

!loop

√
4/diff

'&
=
�2

4

ℓ

!loop

√
/diff

'&
, (5.27)

where we have introduced !loop ≡ 2L (LB − L<) = �2

8
!diff ≈ 1.2 × !diff,

the geometrical loop inductance of the differential pair.

5.3.3 Design parameters

The target parameters are the frequency and the impedance of the res-

onator, the impedance determining the phase fluctuations and therefore

the coupling with the weak link. For a given geometry {,, B, ℎ, &A}, it
is possible to estimate the even/odd mode impedances of the coupled

microstrip lines, using a closed-form expression obtained by the method

of conformal transformation [78]

[78]: Gupta et al. (1979), Microstrip Lines

and Slotlines, pp. 322-323

:

/th

>,4 =
30�√
(&A + 1)/2

 (:′>,4)
:>,4

, where


:4 = tanh

�
4

,

ℎ
tanh

�
4

, + B
ℎ

, :′24 = 1 − :2

4

:> = tanh

�
4

,

ℎ
coth

�
4

, + B
ℎ

, :′2> = 1 − :2

> ,

(5.28)

with  (:) and  (:′) the complete elliptic function of the first kind and its

complement
∗
. There exists simple expressions for the ratio  / ′, given

by [78] [78]: Gupta et al. (1979), Microstrip Lines

and Slotlines, p. 275

, which are accurate to within 3ppm:

 (:)
 (:′) ≈


1

�
ln

[
2

1 +
√
:

1 −
√
:

]
for

1√
2

≤ : ≤ 1

�

ln

[
2

1+
√
:′

1−
√
:′

] for 0 ≤ : ≤ 1√
2

.

These analytical expressions however are only approximations, valid

for infinite lines and for geometries where the slab of vacuum above

the microstrip is exactly as thick as the substrate layer. To compute

better estimates of the even/odd mode impedances, one may resort to

microwave finite-element simulations.

∗
Most of the programming languages (Python, Matlab, etc) use arithmetic–geometric

sequences to compute efficiently elliptic functions. I noticed that for small : < 10
−8
,

due to convergence issues, the ratio K(k)/K(k’) may be ill-estimated numerically with

this method, giving rise to significant errors as much as a few tens of percent. One

way to bypass this issue and estimate correctly the half-period ratio K’/K is to re-

sort to the concept of elliptic nome @ = 4−�
 ′
 , from the Jacobian elliptic function the-

ory. For example in Matlab: use K/K’=-pi/log(ellipticNome(kˆ2)) instead of

ellipke(kˆ2)/ellipke(1-kˆ2), which suffers from the convergence issue.
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Sonnet simulations

In Sonnet 17.54, there are several ways to extract the line impedance.

The easiest possibility is to add a port on the box side and look at the

result of the Sonnet port calibration. As a part of the EM analysis, the

solver analyzes different calibration standards and plots as a side result

the resulting line impedance and effective dielectric constant.

Sonnet is also well suited for the simulation of differential lines [86] [86]: Sonnet Software Inc. (2020), Using

Even and Odd Mode Parameters

. One

can simulate a general case with 4 independent ports (labelled 1,2,3,4),

or one can enforce specifically the differential or common mode by using

multiple ports with the same number, with respectively opposite polarity

(+1,-1 and +2,-2) or same polarity (+1,+1 and +2,+2).

If the ports are labelled according to the differential or common mode

convention, the value of line impedance computed by Sonnet during

the port calibration will be the differential (common) impedance /diff

(/com), instead of the somewhat confusing /odd (/even) definitions. This

is because, for a microwave engineer point of view, the value that matters

is /diff, since to have matched circuits one requires: port impedance =

source impedance = load impedance = differential line impedance and

not the odd mode impedance.
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Figure 5.19: Dependence on the line geometry of the differential and common mode

impedances of two coupled microstrip lines. (Left) Gap B is varied for, = 50 �m.

(Right) Width, is varied for B = 10 �m. Theory (Eq. (5.28)) is shown in dashed lines.

In Figure 5.19, we show the differential and common mode impedance

values extracted from a Sonnet simulation of a L = 3 mm piece of

coupled microstrips on top of a stack of 300 µm of sapphire substrate and

400 µm of Rodgers TMM 10 (see Figure 5.20(a)), as a function of the gap

andwidth of the lines. The simulation results show reasonable agreement

with the approximate theory (Eq. (5.28)). The comparison is quite good

for the common mode, but for the differential mode, the theory shows a

global negative offset of about 5Ω compared to the simulation results.

This error may come from the value of effective dielectric constant used

to compute the theory curves
6

6: As an approximation, it is estimated

from the average value of the sapphire and

air dielectric constants, therefore assum-

ing that the field lines are equally spread in

the substrate and in the slab of air above it

(thiswould be true for a stripline geometry,

where the line is buried in a homogeneous

substrate with a top and bottom ground

plane, but not exactly for a microstrip on

top of a substrate). Second, sapphire does

not have an isotropic &A and we took here

an average of its G and I values. It is rea-

sonable to assume that for the odd mode,

the electric field lines are mainly directed

in the G direction, perpendicular to the mi-

crostrips and so &G = 9.3 should be taken,

instead of 10.4.

.

As an illustration, let us analyze a geometry similar to the differential

pair of microstrip lines used by Hays et al. [69]

[69]: Hays (2020), ‘Realizing an Andreev

Spin Qubit’, pp. 84-93

. We fix , = 50 µm,

B = 10 µm and L = 3 mm. The distance from the microstrips to the

bottom ground plane is ℎ = 300 (sapphire) + 400 (Rodgers) = 700 µm.

Sapphire is an anisotropic medium with &G = &H = 9.3 and &I = 11.5.

Here for simplicity, we treat it as a homogeneous substrate with an
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effective &A ≈ (9.3 + 11.5)/2 = 10.4. We assume a kinetic inductance

microstrip thin films of ! = 0.6 pH/�, which was the value used by

Hays et al. in their design, and also close to what we measured for our

Nb films.

For this geometry, the port calibration gives the following estimates

for the even/odd mode impedances at 10 GHz: /diff = 74.6 Ω and

/com = 89.0 Ω (Figure 5.20(b)). This means /> = /diff/2 = 37.3 Ω and

/4 = 2/com = 178 Ω. The odd mode is quite insensitive to frequency:

its impedance varies by less than 0.05 Ω over the 20 GHz range of the

simulation. The even mode however varies a bit, by about 1.5 Ω.
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Figure 5.20: (a) Sonnet simulation of two coupled microstrip lines. (b) Differential and

common mode impedances extracted from Sonnet port calibration for a 3x3mm² simulation box.

Thesevalues compare reasonablywellwith the simple analytical estimates

from Eqs. (5.28): /th

> = 32.8Ω and /th

4 = 175.1Ω. Actually, those formula

do not take into account the possible kinetic inductance of themicrostrips.

Conducting again the simulation but with ! = 0, we find this time,

/> = 35.1Ω and /4 = 176.6Ω, which are in better agreement with

/th

>,4 .

Note that to simulate well the properties of a transmission line, the size

of the simulation box has to be well chosen. Indeed, the box walls are

grounded. This means that for small boxes, if the walls are too close,

they can modify the capacitance per length of the line. One has to make

sure then that the distance of the line to the lateral and top walls is way

larger than the substrate thickness, so that the only contribution to the

line capacitance is the one to the bottom ground where return current is

supposed to flow. In Figure 5.21 we show how the extracted impedance

of both modes is affected by the choice of the box size. When the box

is taken too small, the capacitance to ground from the lateral walls can

become sizeable. As the box increases, this parasitic capacitance becomes

negligeable and the extracted impedance increases towards the nominal

value for the line. As one may expect, the odd mode is quite insensitive

to this effect because the em fields is mainly localized between the two

strips. On the other hand, for the even mode, the field lines are directed

mainly to the grounded box and so the parasitic capacitance to ground
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affects significantly the line properties, which can give rise to an error

in the estimation of the impedance as high as 50%. From this study, we

see that by taking a box size of 3x3 mm², the extracted impedance no

longer varies with the box size and corresponds well to the nominal

mode impedance of the isolated line.
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Figure 5.21: Differential and common mode impedances extracted from Sonnet port calibration

as a function of the size of the square simulation box.

Another possibility to access the mode impedance is to use the N-coupled

LineModel tool fromSonnet,which allows to extract theRLGCparameters

from an EM simulation of a short section of transmission line. These

parameters can then be used to model any length of line having the same

cross-section. It also computes for free the impedance of the even/odd

modes and the associated propagation constants. For the aforementioned

geometry (with ! = 0.6 pH/�), this method yields the following

inductance and conductance matrices:

L11 = L22 = 886 nH/m C11 = C22 = 136 pF/m

L12 = L21 = 571 nH/m C12 = C21 = −90.3 pF/m

from which we deduce:
/> =

√
L11 − L12

C11 − C12

= 37.3 Ω E> = 1/
√
(L11 − L12)(C11 − C12) = 1.18 × 10

8

m/s

/4 =

√
L11 + L12

C11 + C12

= 179 Ω E4 = 1/
√
(L11 + L12)(C11 + C12) = 1.23 × 10

8

m/s.

These values coincide with the ones extracted from the port calibration

method. Using Eq. (5.3), we can now evaluate the resonance frequency

of a line of length L = 3 mm excited differentially or with a common

mode: 
5> =

E>

4L
= 9.88 GHz

54 =
E4

4L
= 10.2 GHz.

These two resonances can be modelled with an equivalent LC circuit,

using the notations from Sec. 5.3.2:
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!diff = 1.53 nH !com = 1.77 nH

�diff = 0.170 pF �com = 0.137 pF

/A,diff =

√
!diff
�diff

= 4

�/diff = 95.0 Ω /A,com =

√
!com
�com

= 4

�/com = 114 Ω.

Another important parameter for the design is the length of the inductive

wire shared between the resonator and the weak link loop, as it directly

determines the magnitude of the phase fluctuations over the weak link,

and so the nanowire/resonator coupling.

There exists an analytical formula for the per-unit-length loop inductance

Lms of a microstrip line of width, lying on top of a dielectric substrate

of thickness ℎ and a ground plane below. Assuming zero thickness for

the microstrip, it reads [87] [87]: Paul (2011), Inductance: Loop and

Partial, p. 181

:

Lms =


60

2
ln

(
8ℎ

,
+ ,

4ℎ

)
for

,

ℎ
≤ 1

120�
2

[
,

ℎ
+ 1.393 + 0.667 ln

(
,

ℎ
+ 1.444

)]−1

for

,

ℎ
≥ 1

H/m,

(5.29)

where 2 ≈ 3× 10
8
m/s is the speed of light in vacuum. This expression is

a simplification of a more general formula for narrow strips derived by

Wheeler using conformal transformations and the concept of effective

dielectric constant [78] [78]: Gupta et al. (1979), Microstrip Lines

and Slotlines, p. 11

:

Lms =
60

2

[
ln

(
8ℎ

,

)
+ 1

8

(
,

2ℎ

)
2

− 1

2

&A − 1

&A + 1

(
ln

�
2

+ 1

&A
ln

4

�

)]
. (5.30)
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Figure 5.22: (a) Sonnet simulation of a piece of microstrip line. (b) Comparison between the

loop inductance per unit length of a microstrip extracted by Sonnet (markers) with the

approximate theory from conformal theory in Eq. (5.30) (dashed).

Using Sonnet, it is easy to simulate the properties of a piece of mi-

crostrip and extract its loop inductance by modeling the response with

an equivalent series inductor in a two-port circuit. Figure 5.22 shows the

evolution of this inductance with the width of the microstrip, revealing a

good agreement with the theory from Eq. (5.30). For a, = 5-µm-wide

microstrip, we find a loop inductance of about Lms = 1.35 pH/µm. If

a kinetic inductance of ! = 0.6 pH/� is added, the loop inductance

slightly increases to 1.48 pH/µm.
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Putting all the pieces together, we can now estimate the phase fluctuations

induced in the weak link loop for the above geometry with a 100-µm-

long microstrip for the coupling inductance (, = 50 µm, B = 10 �m,

L = 3 mm, ℓ = 148 pH):

�diff
zp

=
ℓ

!diff

√
�/A,diff
'&

=
100 × 1.48

1.53 × 10
3

√
3.14 × 95

6453

≈ 0.020 � 1. (5.31)

This value is still small enough compared to 1, so that a perturbative

treatment of the resonator/weak link coupling is valid (see Sec. 4.2.1),

but high enough to be in the strong coupling regime with the weak

link. As an example, with this geometry, the coupling to the resonator’s

differential mode of a pair transition arising from a single finite-length

(!/� ≈ 1) channel of transmission � = 0.98 would be at phase � = �:

6(�) =
�diff
zp

~
Δ

1 + !/�
�
2

= 0.02 × 45

2

0.98

2

≈ 230 MHz.

The frequency of the pair transition at � = �would be 5� = 2Δ∗
√

1 − � ≈
6.4 GHz with the effective pairing Δ∗ = Δ/(1 + !/�) ≈ 22 GHz (see

Eq. (3.14)), meaning 9.8 − 6.4 = 3.4 GHz detuned from the resonator

mode, which gives a dispersive shift of about " =
62

5A,>− 5� ≈ 15 MHz.
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weak links
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Figure 6.1: (a) Phase dependence of two

typical spin-split Andreev doublets (ex-

citation picture). (b) All possible parity-

conserving transitions between the ABS

shown in (a) at the phase denoted by the

dashed blue line. They are grouped in two

families: Pair transitions (PT) for which

a pair of quasiparticles is created from

the ground state, either both in the same

manifold (solid) or not (dashed) ; Single-

quasiparticle transitions (SQPT) for which a

quasiparticle already present in one ABS

(solid dot) is excited to another ABS, either

in the same (dotted) or in another (solid)

manifold.
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Most of the results presented in Section 6.3 were published in Ref. [51], and

those of Section 6.4 and 6.5 in Ref. [53].

In this chapter we report the experimental observation in InAs-Al

nanowireweak links of single-quasiparticle transitions between zero-field

spin-split ABS, which represents one of the main results of this thesis

as it demonstrates that the spin degree of freedom can be addressed in

Josephson junctions. First, building on the theory presented in Chapter 3,

we review the parity-conserving transitions expected to show in the

microwave absorption spectrum of multi-channel Rashba nanowire weak

links. In section 6.2, we describe the device and microwave setup used

to perform the microwave spectroscopy. Then we present in section 6.3

two typical microwave spectra measured on this device, which show

distinctive features with bundles of four lines crossing when the super-

conducting phase difference across the weak link is 0 or �. We interpret

these features as arising from zero-field spin-split Andreev states. In

section 6.3.3, we show the evolution with magnetic field of such features

and confirm the spin nature of the underlying single-particle transitions.

Finally in section 6.3.2, we discuss the comparison with the analytical

model of Chapter 3 and show that taking into account the Rashba SOI in

a nanowire containing several transverse subbands is enough to explain

these features and their evolution with magnetic field.

6.1 From ABS levels to absorption spectrum

In section 3.2, we showed that due to SOI and the presence of transverse

subbands in the semiconductor, the ABS are expected to group in mani-

folds of spin-split states, which in the absence of a magnetic field, remain

degenerate at � = 0 and �. In Figure 6.1(a), we show two such typical

Andreev doublets, as predicted by the non-interacting theory developed in

section 3.2. Note that for simplicity, we chose here an excitation represen-

tation, rather than the semiconducting picture, which, although redundant

because it both shows the symmetric negative and positive energy states,

still has the advantage to provide a better physical insight on the nature

of the transitions. At a given phase difference � ≠ 0,� denoted by the

dashed blue line, there are four possible states with distinct energies. In

Figure 6.1(b), we classify all possible parity-conserving transitions be-

tween these four states that can be induced by absorption of a microwave

photon. We distinguish two families of transitions, depending on the

parity of the number of associated excitations. Red arrows correspond to

pair transitions (PT) in which the system is initially in the ground state,

and a pair of quasiparticles is created either in one manifold or in differ-

ent ones. Green arrows correspond to single-quasiparticle transitions
(SQPT) where a trapped quasiparticle – denoted by a black dot in the

figure – already occupying an Andreev state is excited to another one,

which can belong to the same or to another ABS doublet.
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Figure 6.2: (a) Energies �exc of the possi-
ble transitions between the ABS shown

in Figure 6.1 as a function of the phase

difference � across the weak link. (b) Mi-

crowave absorption spectrum measured

on sample 1 at a gate voltage+6 = −0.89 V.

The gray scale represents the frequency

change 5 − 50 of the resonator coupled

to the weak link when a microwave ex-

citation at frequency 51 is applied as a

function of the phase difference � across

the weak link. In the right half of the fig-

ure, some transition lines are highlighted.

Red line corresponds to a pair transition;

green lines are single-particle transitions.

The phase dependence of the transition energies in the absorption

spectrum for both the pair and single-particle cases is shown in Figure

6.2(a). Pair transitions that create two quasiparticles in the same energy

manifold do not carry information on the spin structure. On the contrary,

pair and single-particle transitions involving different energy manifolds

produce peculiar bundles of four distinct lines all crossing at � = 0 and

�. We stress here that they are a direct signature of the spin splitting
of ABS. Finally, single-particle transitions within a manifold give rise to

bundles of two lines, shown with dotted green lines in Figure 6.2(a).

Figure 6.2(b) shows a two-tone microwave spectrum that we measured

on an InAs nanowire weak link coupled between Al electrodes. The

results corresponds to sample S1 (see Chapter 12 for fabrication details).

The greyscale contrast shows at which frequencies 51 microwave photons

are absorbed, as a function of the phase difference � across the weak

link. The spectrum appears quite complex, with many transition lines

amongst which we highlight with color lines two typical features on the

right-hand side of the figure (not fits). The red line, with extrema at � = 0

and �, likely corresponds to a pair transition. Note that the frequency

51(� = 0) = 26.5 GHz is much smaller than twice the gap of aluminum

2Δ/ℎ ≈ 88 GHz, which is indeed expected for a junction shorter than the

coherence length. Second, we highlight in green a bundle of four lines

showing clear crossings at � = 0 and � = �, which shows all the expected

features of the single-particle transitions shown in Figure 6.2(a) that

we expect to measure in InAs nanowire weak links. Their observation

constitutes one of the main results of this thesis. Let us now review how

the experiment was performed.

6.2 Device & microwave setup

The measurements are obtained using sample S1 in the circuit QED setup

shown in Figure 6.3(d), the design of which was presented in section 5.2.1.

The experiment was performed at approximately 40 mK in a pulse-tube

dilution refrigerator. Details on the sample holder and fridge wiring

are provided in sections 13.1 and 13.2 of Chapter 13 whereas details

on fabrication are presented in Chapter 12. The superconducting weak

link of sample S1 is obtained by etching away, 370 nm-long section, the

25 nm-thick aluminum shell that fully covers a 140 nm-diameter InAs

nanowire (see figures 6.3(a) and 6.3(b)). A side gate allows to tune the

charge carrier density and the electrostatic potential in the nanowire, and

therefore the Andreev spectra. The weak link is part of an aluminum

loop of area ( ≈ 10
3 �m², which has a connection to ground to define

a reference for the gate voltage (see Figure 6.3(c)). The phase difference

� across the weak link is imposed by a small magnetic field �I < 5 �T
perpendicular to the sample plane: � = �I(/!0, with !0 = ~/24 the

reduced flux quantum. Two additional coils are used to apply a magnetic

field in the (G, H) plane of the sample. Their effect on the spectrum will

be discussed in section 6.3.3.

The loop containing the nanowire weak link is inductively coupled

to the shorted end of a �/4 microwave resonator made out of Nb,

with resonance frequency 50 ≈ 3.26 GHz and internal quality factor

&int ≈ 3 × 10
5
. A continuous signal at frequency 50 is sent through the
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Figure 6.3: Experimental setup. (a) False-color scanning-electron-microscope image of the InAs-Al core-shell nanowire. The Al shell (gray)

is removed over 370 nm to form the weak link between the superconducting electrodes. A close-by side electrode (Au, yellow) is used to

gate the InAs exposed region (green). (b),(c) The nanowire is connected to Al leads that form a loop. This loop is located close to the shorted

end of a coplanar wave-guide (CPW) resonator. (d) The CPW resonator is probed by sending through a bus line a continuous microwave

tone at its resonant frequency 50 = 3.26 GHz and demodulating the transmitted signal, yielding quadratures � and &. Microwaves inducing

Andreev transitions are applied through the side gate (frequency 51) using a bias tee, the dc port being used to apply a dc voltage Vg.

coplanar transmission line coupled to the resonator (coupling quality

factor&ext ≈ 1.7×10
5
), and the twoquadratures � and& of the transmitted

signal are measured using homodyne detection (see Figure 6.3(d)).

Andreev excitations in the weak link are induced by a microwave signal

of frequency 51 applied on the side gate, which is chopped by a square

waveform at 3.3 kHz. The resulting modulation of the circuit response

on the two quadratures � and & is detected using two lock-in amplifiers,

with an integration time of 0.1 s (see Chapter 14.2). We interpret these

modulations as arising from shifts of the resonator frequency 5 − 50. To
calibrate this effect, we measure how the dc values of � and & change

for small variations of the measurement frequency 50 around 3.26 GHz.

With all of the measurement chain being taken into account, we find

%�/% 50 = −40.3 �V/Hz and %&/% 50 = 34.4 �V/Hz. This calibration

allows us to express the response of the circuit encoded in � and & in

terms of the corresponding frequency shift 5 − 50 in the resonator, which

is plotted in gray scale in the two-tone spectra (see e.g. Figure 6.2).

6.3 Experimental evidence of zero-field ABS
splitting

The fact that single-particle transitions are observed means that during

part of the measurement time, the weak link indeed resides in an odd

occupancy state with Andreev doublets being occupied by a single

quasiparticle. This is in agreement with previous experiments on InAs

nanowires in which the fluctuation rates for the occupancy of Andreev

states by out-of-equilibrium quasiparticles were found to be in the

10 − 100 ms
−1

range [88, 16, 19]

[88]: Zgirski et al. (2011), ‘Evidence for

Long-Lived Quasiparticles Trapped in

Superconducting Point Contacts’

[16]: Janvier et al. (2015), ‘Coherent

manipulation of Andreev states in

superconducting atomic contacts’

[19]: Hays et al. (2018), ‘Direct Microwave

Measurement of Andreev-Bound-State

Dynamics in a Semiconductor-Nanowire

Josephson Junction’

. We are indeed integrating the response

of our lock-in amplifiers over ≈ 100 ms, i.e. on a duration longer than this

typical parity-switching time.
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Figure 6.4: Two-tone spectrum measured on sample S1 at +6 = 0.5 V. (a) Large-scale spectrum at zero magnetic field. (b) Enlargement of

the same data with fits of the main bundle of single-quasiparticle transitions. (c) Dependence of the spectrum near � = 0 and � on the

amplitude � of an in-plane magnetic field applied at an angle of −45° with respect to the nanowire axis. Green lines are fits using the

parameters obtained for B=0, 6 ‖= 8 and 6⊥ = 12 see section 6.3.3

6.3.1 Observation of single-particle transitions (� = 0)

Figure 6.4(a) presents another two-tone spectrumwhich wasmeasured at

at +6 = 0.5 V and zero magnetic field (apart from the tiny perpendicular

field �I < 5 �T required to phase bias the weak link). Contrary to the

spectrum shown in Figure 6.1(b), pair transitions are hardly visible in

Figure 6.4(a). A trained eye will notice however a very faint line around

51 ≈ 22.7 GHz at � = 0 and 21 GHz at � = �, with the typical shape

for a pair transition, but showing surprisingly only very little phase

dispersion. The associated current is therefore expected to be small,

leading to a weak coupling to the resonator, hence a small dispersive shift

resulting in a weak signature in the two-tone spectrum. On the other

hand, one observes clearly at least 3 bundles of 4 lines, corresponding

to single-particle transitions with crossings at 7.1, 14.0, and 22.4 GHz

at � = 0 and 9, 21.5, and 26.0 GHz at � = �. Note also the presence in

the spectrum of some spurious lines, corresponding to duplicates of

transitions lines shifted by 50 (see for example the bundle of lines near

51 = 11 GHz around � = 0). Those replicas correspond to transitions

between ABS involving the absorption of a photon from the resonator.We

do observe them in our two-tone spectra because we probe continuously

the resonator with a microwave tone at the frequency 50. Because in

this experiment the resonator frequency 5A = 3.26 GHz is particularly

low compared to the range of excitation frequency 5 ≤ 5A ≤ 32 GHz,

numerous replicas of this type are visible and complicate the spectra.
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Remarkably, the sign of the response appears correlated with the curva-

ture of the transition lines. Indeed, in Figure 6.4(a), the resonator shift

associated to the main bundle of 4 lines in the 13-23 GHz window varies

continuously from negative to positive values. This suggests that the

signal is mainly associatedwith a change in the effective inductance of the

nanowire weak link. From the theory presented in Section 4.2, this is to be

expected since the resonator frequency 5A ≈ 3.2 GHz is far detuned from

the transition lines between ABS that we are exciting: we are probing the

resonator deep in the adiabatic regime and the frequency shift is therefore

expected to be dominated by the phase curvature of the Andreev levels’

energy (see Eq. (4.32)). This also explains why we measure frequency

shifts of the resonator in such a broad frequency window. Transition

lines which are strongly detuned from the resonator, like the bundle

of 4 lines around 51 ≈ 22 − 26 GHz, would not show if the response

was purely dispersive, as the resonator shift due to such transitions

would decay like the inverse of their detuning to the resonator frequency

Δ 5A ∝ (6/2�)2/( 51− 5A). This will be further detailed in Section 6.4 where

we will revisit these data and provide a quantitative comparison with

the expected theory for the resonator shift.

6.3.2 Fit with theory

To support the identification of the measured transition lines in Figure 6.4

with SQPT processes, we compared their phase dependence with the one

expected from theory. We focus on the bundle of lines between 13 and

23 GHz, for which the effect of a magnetic field � is also later explored

(Section 6.3.3). The green lines in Figure 6.4(b) are fits of the data at � = 0.

They were computed with the simple continuum model presented in

Chapter 3.2, Eq. (3.12). The fit in Figure 6.4(b) corresponds to �1 = 1.3,

�2 = 2.3, � = 0.295, GA = 0.525 andwe takeΔ = 182 µeV = ℎ×44 GHz for

the gap of Al. These values can be related to microscopic parameters, in

particular to the intensity 
 of the Rashba SOI entering in theHamiltonian

of the systemas�' = −
(:G�H−:H�G),with �G,H the Paulimatrices acting

in the spin [32] [32]: Park and Levy Yeyati (2017),

‘Andreev spin qubits in multichannel

Rashba nanowires’

. Assuming a parabolic transverse confinement potential,

an effective wire diameter of, = 140 nm and an effective junction length

of ! = 370 nm, the values of �1,2 are obtained for � = 422 �eV (measured

from the bottom of the band) and 
 = 38 meV.nm, a value consistent

with previous estimations [89, 36] [89]: Fasth et al. (2007), ‘Direct Measure-

ment of the Spin-Orbit Interaction in a

Two-Electron InAs Nanowire Quantum

Dot’

[36]: Scherübl et al. (2016), ‘Electrical

tuning of Rashba spin-orbit interaction in

multigated InAs nanowires’

.

However, we stress that this estimation is model dependent: very similar

fits of the data from Figure 6.4(b) can be obtained using the double-barrier

model presented in Chapter 3.2, which assumes scattering barriers located

at the left G = −!/2 and right G = !/2 edges of the wire. Using this time

the values �1 = 1.1 and �2 = 1.9, we obtain with the same reasoning the

value 
 = 32 meV.nm for the intensity of the Rashba SOI. Crucially, both

models only give two Andreev doublets in the spectrum, and therefore

account only for the four SQPT that were fit. Within this minimal model,

they are the only transitions expected in this 5 − 32 GHz window, as

intra-doublet transitions would all fall below 3.5 GHz, due to the small

spin splitting of each Andreev doublet. Therefore this model does not

account for all the other observed bundles of transitions, which are likely

attributed to other conduction channels. Indeed, although we considered

so far only one occupied transverse subband, the same effect of spin-
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Figure 6.5: (a) Data from Figure 6.2 at +6 = −0.89 V, with yellow arrows pointing to transition lines that are replicas of lines appearing

exactly 5A = 3.26 GHz above. (b) Same data superimposed with predictions of the single-barrier model using parameters corresponding to

the spectrum of ABS shown in (c). To account for all visible SQPT lines, three sets of fitting parameters {�(8) ,�(8)
1
,�(8)

2
, G
(8)
A }8∈{1,2,3} had to

be used, which can be understood as the contributions from three independent channels. They are summarized in Table 6.1. The ABS

spectrum associated to each channel is plotted in the excitation picture in panel (c) with different colors. Green lines in (b) correspond to

single-particle transitions between the two or three ABS manifolds arising for each channel. Note that all possible SQPT between the ABS

shown in (c) that are supposed to fall in the frequency range probed in (b) are indeed observed in the experimental data. Red line in (b) is

the pair transition leading to two quasiparticles in manifold 1 of the ABS depicted in black in (c).

Table 6.1: Fit parameters used in Figure

6.5

# � �1 �2 GA Color

1 0.25 2.81 4.7 0.17 Black

2 0.18 1.4 3.2 0.535 Blue

3 0.085 0.71 2.6 0.36 Red

dependent velocities is still found if several subbands are to cross the

Fermi level. Eventually, a more elaborate model together with a realistic

modeling of the nanowire bands is required to treat this situation and

obtain a quantitative fit of the whole spectra. This will be the focus of

Chapters 7 and 8, in which we will try to develop a better description of

realistic multi-channel weak links based on tight-binding simulations.

Before moving on, let us pause for a moment and illustrate the success of

the single-barrier model in rationalizing a complex spectrum like the one

measured at +6 = −0.89 V, which was already presented in Figure 6.2.

Indeed, it seems that most of the transition lines visible in this data can be

accounted for by assuming three independent channels. This is illustrated

in Figure 6.5, where we compare the experimental spectrum with the

theory results from the single-barrier model using three sets of fitting

parameters, summarized in Table 6.1. The Andreev levels associated to

these 3 sets of parameters are shown in Figure 6.5(c) with a different

color for each set. The spectrum comprises :

– threemanifolds 1, 2 and 3 arising from the parameter set #1 encoded

in black, which accounts for the lower bundle of 4 lines between

5 − 10 GHz (1→ 2 SQPT), the ones around 16 − 21 GHz (2→ 3)

and 23− 27 GHz (1→ 3) (all highlighted in green in Figure 6.5(b)),

and for the PT in red between 23 − 26 GHz ;

– three manifolds labeled 1
′, 2′ and 3

′
arising from the parameter set

#2 encoded in blue, which accounts for the observed bundles of 4

lines between 14 − 18 GHz and around 9 − 13 GHz, corresponding

respectively to the 1
′→ 2

′
and 2

′→ 3
′
SQPT (highlighted in dark
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Figure 6.6: ABS spectrum inferred from the fit of SQPT lines in Figure 6.5. (a) Spectrum deduced by fitting the visible SQPT lines in Figure

6.5(a) with three sets of parameters given in Table 6.1 in the single barrier model. (b) Reconstructed ABS spectrum obtained from (a) by

shifting some levels in energy to identify manifolds 2” with 3 and manifolds 1 and 1
′
. All the possible SQPT transitions involving any two

doublets of this spectrum are depicted in (c) and compared to the data. The color of the lines encodes the manifold from which the SQPT is

initiated. Amongst them, we highlight in two enlargements the 2→ 3 (blue) and 3→ 4 (green) SQPT lines, which seem to correspond

to faint features of the measured data indicated by small arrows. White areas correspond to regions where unfortunately no data was

measured.

green in Figure 6.5(b)) ;

– two manifolds labeled 1” and 2” corresponding to the parameter

set #3 encoded in red, which was used to fit the bundle of lines

around 10−14 GHz, interpreted as the 1”→ 2” SQPT (highlighted

in light green in Figure 6.5(b)).

Altogether, these fitting parameters allow to capture well the main

features of the measured spectrum. However on second thought, in

view of Figure 6.5(c), the picture of three independent channels – the

contributions of which merely adding linearly in the spectrum – does

not seem very physical as it results in overlapping Andreev states (e.g.

manifolds 2 and 1” touching at � = �, or 2
′
and 2” almost superimposed)

which are spaced in energy in a very irregular manner. As we will see in

Chapter 7, tight binding simulations show that even in a multi-channel

scenario when the chemical potential crosses several subbands, the spin-

split doublets still repel each other and never cross. A second cause of

worry is that one would naïvely expect to observe all possible SQPT lines

between any two doublets of the spectrum, i.e. transitions like 1
′→ 2 or

1
′→ 1”, etc should also appear. This is not observed in the experimental

data in Figure 6.5(b).

More striking about this ABS spectrum, which was inferred from the

SQPT fits, is that doublets 2” and 3 have almost the same shape ; same also

for 1 and 1
′
(see Figure 6.5(c)). Actually, in this picture of independent

channels, nothing fixes the absolute energy of the states: only energy

differences between manifolds define the SQPT frequencies. Therefore,

manifold 2” could be identified with 3, provided that manifold 1” is

pushed upwards to keep the same energy for the 1”→ 2” process, which

is visible in the spectrum. Similarly, it would be tempting to identify 1

with 1”, and manifold 2” should then be pushed downwards to keep
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or perpendicular to the wire (c) magnetic

field on the band structure (top row), the

Andreev levels (bottom row, left) and the

excitation spectrum (bottom row, right)

shown in (a) for no field. The field effect

on the bands is exaggerated for clarity.

the right relative energy spacing between 1
′
and 2

′
. This transformation

is illustrated in Figure 6.6, where we show in (a) the ABS spectrum

obtained from the SQPT fit and interpreted as resulting from three

independent channels, and in (b) the reconstructedABS spectrum obtained

after performing those 2 identifications between manifolds. The latter

shows a significantlymore regular structure,with no overlapping features.

All possible SQPT transitions between any twomanifolds of the spectrum

in (b) are shown in Figure 6.6(c) and superimposed to the data.

Interestingly, this second picture seems to describe well and in a self-

consistent way the experimental data, because if the manifolds are now

relabeled from 1 to 5, then the expected 2 → 3 and 3 → 4 processes

would predict lines at locations where very faint features of some SQPT

can indeed be observed (see lower green and blue bundles of 4 lines in

Figure 6.6(c)) and that were not predicted by the ABS level structure

from Figure 6.6(a) deduced from the fit. The signal-to-noise ratio being

∼ 1, this requires a trained eye to be observed. Also, the full dispersion

of the bundles of 4 lines can unfortunately not be compared as there

are missing data in this frequency region (depicted as white areas in

the spectra). However, in Figure 6.6(c), we provide two enlargements

pointing out to some features in the data, highlighted with arrows, that

likely correspond to the 2→ 3 (blue) and 3→ 4 (green) SQPT processes

expected from the reconstructed ABS level structure. In particular the

crossings at � = 2� of the four lines of each bundle seem to fall at the right

frequency. One also observes faint features in black near the 1→ 2 SQPT

that seem reminiscent of these SQPT lines. Finally, notice that because

1 and 1
′
were identified despite their slightly different shape, the fit of

the SQPT lines involving manifold 2
′
(now labeled 4) is slightly worse

than in Figure 6.5(b). To complete the analysis one should therefore fit

again with this new shape for manifold 1
′
and a better agreement with

the data would probably be obtained.

6.3.3 Spin character of ABS (� ≠ 0)

The splitting of the ABS in the absence of a Zeeman field and the resulting

SQPT transitions reveal the difference of Fermi velocities associated to

different spin textures, arising from the SOI in the nanowire. To confirm

that the measured splitting is indeed a spin effect, we probed the ABS

spectrum under a finite magnetic field and, in particular, its dependence

on the field orientation with respect to the nanowire axis.

We consider a magnetic field lying in the GH-plane. The H-component

�H (parallel to the spin states of the transverse subbands without SOI)

Zeeman-shifts the energy of the subbands depending on the spin states

and modifies the Fermi wave vectors as illustrated in Figure 6.7(c). On

the other hand, the G-component �G mixes opposite-spin states and

therefore contributes to opening a gap at the subbands crossings points,

as illustrated in Figure 6.7(b). For both, � ‖ G and �⊥G cases, the resulting
ABS and the corresponding transition lines are shown in the middle

and bottom rows of each panel in Figure 6.7. Let us now compare this

qualitative picture with the experimental results. Figure 6.4(c) shows the

spectrum in the presence of an in-plane magnetic field with amplitudes

� = 0, 2.6, and 4.4 mT applied at an angle of -45° with respect to the

nanowire axis. We observe that the left/right symmetry of the SQPT lines
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Figure 6.9: Correlation (normalized to

maximum value) between finite magnetic

field data and theory as a function of the

6 factor, for field direction parallel (blue)

or perpendicular (red) to the nanowire.

around � = 0 and � = � is lost. Provided that an anisotropic 6 factor is

assumed (explained below), this effect can be quantitatively accounted

for, using the extension of the single-barrier model at finite magnetic

field, which is reviewed in Section E.3 of Appendix E (green lines).

The specific effects of an either parallel or perpendicular magnetic field

on the ABS are now shown in Figure 6.8. When a field perpendicular

to the nanowire is applied (�⊥G), we observe in Figure 6.8(b) and (d)

that the ABS spectrum becomes asymmetric, as illustrated in Figure

6.7(c)). The stronger the field, the bigger this asymmetry. Indeed, the

magnetic field is directly acting in the quantization direction of the

spin-split transverse subbands from which the ABS are constructed,

leading to Zeeman shifts of the energies. On the other hand, when

the applied field is parallel to the nanowire axis (� ‖ G), and therefore

perpendicular to the spin quantization direction, itmixes the spin textures

and lifts partly the degeneracies at � = 0 and �. This modifies the ABS

spectrum, although the latter remains this time symmetric around � = 0

and � (see Figure 6.8(a) and (c)). As the parallel field is increased, we

observe a gap opening more and more between the two outer lines of the

SQPT bundle, as predicted by theory (see Figure 6.7(b)). This agreement

with theory, both qualitative and quantitative, of the field orientation

behaviour therefore confirm that the bundles of four lines observed in our

spectra indeed correspond to SQPT transitions between ABS – eventually

revealing their fine structure.

In order to fit these data and reproduce accurately the lines’ evolution

with magnetic field, we realized that in addition to the parameters

determined at zero field (see Figure 6.4(b)), an anisotropic 6 factor had

to be taken 6⊥ ≠ 6‖ . Using the data taken with field in the parallel and

perpendicular directions, we calculated for both series the correlation

function between images of the measured spectra (taking the absolute

value of the response 5 − 50) and theory using various values of 6⊥ and

6‖ . Figure 6.9 shows the dependence of the correlation functions with

6⊥ and 6‖ . We observe that the best agreement is found for 6‖ = 8 and

6⊥ = 12, which are within the range of values reported in the literature

[90, 91, 92, 49]. Green lines in Figure 6.8 show the theory result, using

these two values for the 6 factor and the fitting parameters at zero field

estimated from the fit of Figure 6.4(b). Note that the determination of

6‖ is less accurate, and that overall, 6‖ = 4 gives a similar correlation

as 6‖ = 8, but agreement is worse at the largest values of �‖ where the

effect is the strongest.

6.3.4 Absence of intra-doublet transitions

Initially, the experiment was designed with a low 5A because we were

targetting a dispersive readout of the intra-doublet transitions (depicted

in dotted green lines in Figure 6.2) and this, without anticipating that

single-quasiparticles transitions to higherABS doublet could actually also

fall in the accessible frequency range ! Eventually, those SQPT lines proved

to be easier to evidence experimentally, as we saw in Figures 6.2 and 6.4,

and turned out to provide equally well a signature of the underlying spin-

splitting of the ABS. Despite many efforts, intra-doublet transitions could

never be observed on this sample, probably due to a too low coupling

between the resonator and the weak link. This process, corresponding
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Figure 6.10: Schematics of a supercon-

ducting weak link (light green) placed in

a superconducting loop and inductively

coupled to a microwave resonator, repre-

sented as a lumped elements LC circuit.

Transitions between Andreev states can

be driven by an ac signal either through a

gate (+ 02
6 ) or a flux line (�02

Φ
).

to the spin-flip of a single quasiparticle, was not only predicted to be

strongly suppressed compared to the usual pair transition involving

even parity states, but actually to also vanish in absence of parallel field

[32] [32]: Park and Levy Yeyati (2017),

‘Andreev spin qubits in multichannel

Rashba nanowires’

. In Section 6.4, we will discuss the existence of approximate spin

selection rules and show that the intra-doublet transitions can actually

be allowed at zero field, provided that the transverse spatial symmetry

of the nanowire be broken. This can be achieved a posteriori by exciting

the weak link through a lateral gate, but cannot happen if the microwave

drive is sent through the resonator : in this case, the RF electric field is

longitudinal and couples only to the phase difference across the weak

link. Note that in a real device, the transverse symmetry may actually

be broken a priori, for example by the superconducting shell itself (in

other-than-fullshell nanowires) or by the presence of metallic gates and

their applied voltages (see Supplemental of Ref. [42] [42]: Hays et al. (2021), ‘Coherent

manipulation of an Andreev spin qubit’

).

Furthermore, as we noticed in Section 6.3, transition lines can be evi-

denced even when strongly detuned from the resonator frequency, i.e.

far away from the dispersive regime. Indeed, if the zero-point phase

fluctuations �zp are high enough, thus providing a good resonator-weak

link coupling, the phase curvature of the ABS can itself contribute to a

still-small-but-measurable resonator shift, therefore allowing for their

detection. With hindsight, this means eventually that the resonator fre-

quency value does not matter that much, as long as it falls in the typical

2 − 30 GHz range that we are probing. The constraint of a low 5A to

detect the intra-doublet transitions can therefore be lifted. Increasing the

resonator frequency is actually helpful in two ways: fewer replicas are

present in the same frequency range and the coupling with the weak

link is also higher (see discussion in Section 5.2.1). This motivated the

fabrication of a new sample with a higher resonator frequency (this time

around 5A ≈ 6 GHz) and a galvanic coupling with the phase-biased loop,

which altogether allowed to detect intra-doublet spin flip transitions, as

we will see in Section 6.5.2.

6.4 Modeling the resonator shift in
spectroscopy measurements

Using the two-subband scattering model developed in Chapter 3.2 we

have shown that both the position and shape of the PT and SQPT

lines observed in our two-tone spectroscopies can be accounted for (see

Figure 6.11(d’)). However, understanding the lines’ intensity appears

more challenging. When transition lines are crossing the resonator

frequency 5A , like the PT measured on atomic contact depicted in Figure

6.11(c’), the signal is characterized by a change of sign typical from a

measurement in the dispersive regime where the resonator shift varies

like Δ 5A ∝ (6/2�)2/( 5� − 5A), with 5� the frequency of the pair transition.

Surprisingly, when it comes to the nanowire weak link data, similar

changes of sign can be seen along the bundle of SQPT lines (see Figure

6.11(d’)), although they are far detuned from the resonance frequency,

which lay around 5A ≈ 3.2 GHz. This was attributed qualitatively to the

resonator being probed in the adiabatic regime, where the frequency shift

is expected to be dominated by the phase curvature of the ABS levels.
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Figure 6.11: (a) Atomic contacts (AC) vs. nanowire (NW) weak links. Typical Andreev spectrum are shown both for AC (c) and NW (d) in

the single-particle picture. In addition to pair transitions (PT), depicted in red, nanowire weak links allow, due to the multilevel structure

of their ABS spectrum, for a new family of transitions, the so-called single-quasiparticle transitions (SQPT), shown in green. (c’,d’) Typical

two-tone microwave spectrum for both cases, as a function of the superconducting phase difference �, evidencing a PT close to � = � for the

AC (data from [16]) and a bundle of SQPT for the NW weak link (data from [51], also shown in Figure 6.4). Fits are superimposed in dashed

lines on the left half of the data. The bare resonator frequency 5' is indicated for both experiments on the right axis of the spectra (c’,d’).

Still, to understand quantitatively the lines’ intensity, one needs to use

the theory for the crossover between dispersive and adiabatic regimes

(Section 4.2.2), and to describe the response of the resonator to changes

in the occupancies of the Andreev states induced by a drive. Here, we

introduce a model to describe the driving through either an AC flux or

an AC gate voltage [51] [51]: Tosi et al. (2019), ‘Spin-Orbit Splitting

of Andreev States Revealed by Microwave

Spectroscopy’

(see Figure 6.10). The AC flux can be applied

either through an AC current in a conductor placed nearby the loop [19]

[19]: Hays et al. (2018), ‘Direct Microwave

Measurement of Andreev-Bound-State

Dynamics in a Semiconductor-Nanowire

Josephson Junction’

,

or with an excitation applied directly through the resonator coupled to

the superconducting loop [16, 41]

[16]: Janvier et al. (2015), ‘Coherent

manipulation of Andreev states in

superconducting atomic contacts’

[41]: Hays et al. (2020), ‘Continuous mon-

itoring of a trapped superconducting spin’

(in this case, the excitation is filtered by

the resonator and therefore this scheme only allows to drive the weak

link in a restricted frequency window). We find under which conditions

spin-non-conserving transitions can occur (Section 6.4.2), like the intra-

doublet spin transition which was mentioned in Section 6.3.4. Finally, in

Section 6.4.3 we derive the resonator frequency shifts in the presence

of driving fields and compare in Section 6.5 the predictions from this

theory to experimental data on superconducting atomic contacts and

nanowire weak links.
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6.4.1 Spin-conserving vs. spin-flipping transitions

In the model of two Andreev doublets, used to fit the data in Figure

6.4, the SQPT lines divide in two families: those between states with

the same pseudo-spin (spin-conserving transitions), and those between

states with opposite pseudo-spin (spin-flipping transitions). It turns out

that driving through a flux modulation only allows for spin-conserving

transitions between ABS levels. This observation is supported by a series

of measurements performed on nanowire weak links by Hays et al. [41].

(a) (b)
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Figure 6.12: (adapted from Ref. [41]) (a)

Two-tone spectroscopyof a nanowireweak

link revealing four SQPT lines at highdrive

power. (b) Visibility of the bundle of SQPT

at a given flux Φ as a function of the drive

power sent through the resonator.

Using a similar c-QED setup, they were also able to evidence SQPT

transitions, however only the two outer transition lines corresponding

to spin-conserving processes were clearly visible at low drive power.

This is illustrated in Figure 6.12(a), adapted from Ref. [41]. The two inner

lines, associated to spin-flipping transitions, started to be faintly visible

only when driving at much higher power (see Figure 6.12(b)) and still

remained substantially dimmer at maximum power (-115 dBm) than the

outer two spin-conserving transitions at the lowest power (-140 dBm).

This tends to show that some spin selection rules are at play in the system

i.e. that depending on the way it is driven, all transitions may not be

allowed by their associated matrix elements. To understand this effect,

one needs to model first the effect of the drive.

6.4.2 Gate vs flux drive: spin selection rules

To account for the driving at a frequency $3 = 2� 53, the following term

may be added to the system Hamiltonian given in Eq. (4.23)

�̂(C) = 1

2

∑
8�< 9�′

(�8�, 9�′�†8��9�′4
8$3 C + h.c.), (6.1)

In the case of a flux driving, which acts on the phase �, �8�, 9�′ ∝
〈Φ8� |�̂′F; |Φ9�′〉. In the absence of magnetic field and for a ballistic model

whichpreserves the transverse spatial symmetry [32], the current operator

�̂F; does not mix the transverse channels of the weak link and thus only

pseudospin-conserving transitions are allowed. Notice, however, that

whenever the driving field or the scattering breaks the transverse spatial

symmetry, spin-flip transitions can take place [41].

In the case of a gate driving, the AC signal induces a displacement

�+(®A) in the electrostatic potential experienced by the electrons in the

junction region. The correspondingmatrix elements in the drivingHamil-

tonian are thus �8�, 9�′ = 〈Φ8� |�+(®A)�I |Φ9�′〉, where �I is a Pauli matrix
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Figure 6.13: (a) Schematic of a nanowire

weak link with local side gates. (b) In-

duced driving potential in the transverse

(H) direction of the nanowire in various

situations: symmetric (blue line), anti-

symmetric (green line) or mostly anti-

symmetric (magenta line) profiles can be

obtained by controlling +61 and +62 ap-

plied to the gates. (c) Allowed transitions

in the weak link with spin-split Andreev

levels. Each color indicates the transitions

induced by the driving potentials illus-

trated in (b). The associated matrix ele-

ments are shown in (d).

in electron-hole space. As discussed in Section 3.2, the pseudospin of

the Andreev states comes from nanowire’s transverse modes with dif-

ferent spins hybridized by Rashba spin orbit coupling. A perturbation

�+(®A) = �+0 uniform in the transverse direction does not couple dif-

ferent transverse modes and therefore pseudospin flip transitions are

not allowed, i.e. �8D,93 = 0. Only a non-uniform perturbation couples

transverse modes and allows pseudospin flip transitions. The fact that all

possible transitions between two Andreev manifolds have been observed

in the experiments (see Fig. 6.4 and 6.5(a)) indicates that the non-uniform

component of the induced potential �+ by the gate electrode was signifi-

cant. More insight into the possibility of engineering the selection rules

using gate driving can be obtained by considering the model of Ref. [32]

for the nanowire’s transverse channels. Within this model, the nanowire

confining potential is assumed to have cylindrical symmetry. Thus, the

modes in the lowest subband have zero angular momentum along the

nanowire axis (; = 0) and they have ; = 1 on the first excited subband. A

lateral gate would impose a perturbation �+(®A)which typically breaks

the rotational symmetry and therefore would couple states on different

subbands, naturally leading to both pseudospin flip transitions and

pseudospin conserving transitions.

One could think, however, of a more general gate configuration like the

one in Figure 6.13(a), where two lateral gates can be set such that �+(H) =
−�+(−H) (or �+(H) = �+(−H)) in an anti-symmetric (or symmetric)

configuration as indicated in panel (b). In the anti-symmetric case, the

�+ matrix elements vanish for states on the same subband, but are

finite for states in different subbands. As a consequence we would

have �8↑, 9↑ = �8↓, 9↓ = 0. The allowed transitions between spin-split

ABS are indicated in Figure 6.13(c) with arrows of different colors for

symmetric (blue), anti-symmetric (green) or an intermediate (magenta)

configuration. We also plot in Figure 6.13(d) the phase-dependent matrix

elements, which were calculated for each case with the scattering model

of Section 3.2 and for the parameters that give the spectrum in (c). The

latter corresponds to a fit of the data in Figure 6.4 evidencing SQPT lines,

which were discussed in Section 6.3. Those matrix elements show that

indeed the symmetric and anti-symmetric potentials lead to respectively

pseudospin-conserving (dashed arrows in (c), dashed lines in (d)) and

pseudospin-flipping (dashed-dotted and full arrows in (c), dashed-dotted

and full lines in (d)) transitions, and that the mostly anti-symmetric

potential results in both transitions with similar amplitudes. Note that

for a transversally symmetric drive, which is also the case when driving

in flux, the matrix elements squared are 3 orders of magnitude higher for

spin-conserving transitions (Figure 6.13(d) top panel) than they are for

spin-flipping transitions when the drive is purely anti-symmetric but of

still similarmagnitude (Figure 6.13(d)middle panel). This rationalizes the

observation in Figure 6.12 that spin-flipping transitions corresponding

to the inner two lines of SQPT bundles are strongly suppressed when

the drive does not break the transverse symmetry of the nanowire. Note

also that the matrix elements for the intra-manifold pseudospin-flipping

transitions (solid lines) are also generally much lower than the one for

inter-manifold transitions. In addition, the square matrix elements for

intra-manifold transitions are ∼ 15 times larger in the second manifold

than in the first one, which at the scale of Figure 6.13(d) is barely visible.
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6.4.3 Weak driving of a multi-level system

In order to obtain the frequency shift for the resonator coupled to the

driven weak link, we need a theory for the steady-state dynamics of

a driven multi-level system. While the Bloch equations do well the

work for the case of a driven two-level system [93]

[93]: Palacios-Laloy (2010), ‘Superconduct-

ing qubit in a resonator’, p. 111

, to our knowledge

no generalization to the multi-level case seemed to be available. To

keep it tractable, Sunghun Park and Alfredo Levy Yeyati developed

such a theory by analysing the resonator spectral function �'($) =
−8

∫ ∞
0

3C4 8$C 〈[0(C), 0†(0)]〉 for the case of a weak drive. First, they make

use of the interaction picture in which the time evolution of both the

resonator and the weak link are provided by solving master equations

including dissipation, and then treat the resonator-weak link coupling

and the drive as small perturbations. The perturbation terms up to second

order are calculated in both �zp and �8�, 9�′ (see Appendix A in Ref. [53] [53]: Metzger et al. (2021), ‘Circuit-QED

with phase-biased Josephson weak links’
for details).

The frequency shift for a single-quasiparticle transition from |80�0〉 is
found to be given by

� 5 SQPT

A = 2

∑
9�>0

|�80�0 , 9� |2

|�80�0 , 9� |2
(
� 5
(9�)
A − � 5 (80�0)

A

)
, (6.2)

where �0,1 = ~$3 − |�0 − �1 | + 8(Γ0 + Γ1)~/2. $3 is the driving field

frequency and Γ0(1) are phenomenological parameters to account for the

finite linewidths in the transition spectrum, which are associated to the

states relaxation. The � 5
(9�)
A terms still refer to the resonator shift due to

single levels (9�), as given by Eq. (4.33).

For a pair transition from the ground state |6〉, one obtains

� 5 PTA = 2

∑
{ 9�,:�′}

|�−9�̄,:�′ |2

|�−9�̄,:�′ |2
(
� 5
(9�)
A + � 5 (:�

′)
A

)
, (6.3)

where { 9�, :�′} means a set of indices 9� and :�′ corresponding to

positive energy levels ordered in energy, and does not contain a permu-

tation of the indices. 9� and −9�̄ are for a pair of particle-hole symmetric

Andreev levels. With these two equations at hand, we can now attempt

to model our two-tone spectroscopy data.

6.5 Understanding resonator shifts in nanowire
weak links

In this section, we reproduce figures from Ref. [53] where the x-axis of the spectra

is the applied (reduced) flux phase !. Neglecting the inductance of the loop in

which the weak link is enclosed, the phase � across the junction is equal to !.

6.5.1 Two-tone spectra of sample S1 (mutual coupling)

In Figure 6.2 and 6.4, we presented two microwave spectra measured on

sample S1 at two different gate-voltages. We noticed that the measured

signal could not be qualitatively explained by purely dispersive effects,
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Figure 6.14: Fit of the nanowire two-tone

spectroscopy shown in Figure 6.2. Left:

experimental data obtained with sample

S1. Colorscale represents the resonator fre-

quency shift (sign corrected compared to

Ref. [51]). A pair transition (PT) and a bun-

dle of single particle transitions (SQPT)

are pointed at. Right: calculation for a

single occupied channel (see text). Col-

orscale is the difference in frequency shift

between initial and final state. Solid line

at 3.26 GHz indicates the resonator fre-

quency. In the calculation, it was assumed

that �zp = 1.2 × 10
−5

and the dissipation

rate is Γ1� + Γ2�′ = 0.62GHz. The sign of

the frequency shift in the experiment has

been corrected compared to Ref. [51].
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Figure 6.15: Fit of the nanowire two-tone

spectroscopy shown in Figure 6.4. The

measured transition lines are compared

with a full calculation of the shift taking

into account that the transitions were in-

duced by microwaves applied on the gate.

The parameters for the calculation are

those that allowedfitting the spectrumand

the matrix elements for the microwaves

shown in magenta in Figure 6.13(c) are

used. The same values of �zp and the dis-

sipation rate are used as in Fig. 6.14.

in particular that the intensity of SQPT lines was rather reflecting an

adiabatic shift of the resonator frequency, which also explained why

signal could be measured at frequencies much higher than the resonator

one. Now that the equations are set, we can provide a quantitative

comparison of those spectra with the theory for the resonator shift due

to driving near a PT frequency (Eqs. (6.3)) or near a SQPT (Eq. (6.2)). In

Figure 6.14 and 6.15, we compare the intensity of the main measured

lines of Figure 6.2 and 6.4 with a full calculation of their associated shift,

taking into account that the transitions were induced by microwaves

applied on the gate. Both spectra correspond, like in Figure 4.8(a-e), to

a situation in which the resonator frequency 5A = 3.26 GHz is very low

as compared to most of the observed transition lines, meaning that the

resonator shift is mainly given by adiabatic contributions.

A PT and several SQPT are clearly recognized in the spectrum of Fig. 6.14.

From the analysis illustrated by Figure 4.8(a-e), one understands that the

frequency shifts corresponding to transitions above the resonator bare

frequency are essentially given by the curvature of the transition lines:

with the color scale of Figure 6.14, lines are red when they have positive

curvature, and blue when negative. For a more quantitative comparison

with theory, we make use of the scattering model from Chapter 3.2 that

we had used to fit the position of the bundle of SQPT appearing in the

range 3-10 GHz (fitting parameters are those corresponding to #3 in

Table 6.1). The calculated SQPT lines shown in the right half of Figure

6.14 reproduce well the observed SQPT energies, but the pair transition

predicted from the same Andreev levels is observed to disperse less than

in the experimental data. Using these parameters, we then calculate the

matrix elements for �̂′
F;
, which are needed to estimate the associated

resonator shift.

Since the two-tone spectroscopy data was taken at very small power, the

theory of weak-driving presented in Section 6.4.3 is fully applicable. We

evaluate the matrix elements for the weak-driving through the gate and

compute the resonator shift shown in the figure, using Eqs. (6.3, 6.2).

Globally, the shifts calculated for the four SQPT reproduce quite well

the observed ones. However, some details differ, notably for the highest

single-quasiparticle transition, with shifts near ! = 0 larger in the data

than in the calculation. Also, the shift for the PT is reproduced only

at a qualitative level. Finally, note that the value of zero-point phase

fluctuations deduced from this "fit", �zp = 1.2 × 10
−5
, is about a factor

45 lower than the nominal one obtained from microwave simulations

(see Eq. (5.12)). Indeed, the magnitude of the frequency shift depends

strongly on the estimated matrix elements which are known to be model-

dependent. It would not be surprising to obtain a different order of

magnitude using a different model for the matrix elements.

A similar procedure was used to fit the data in Figure 6.15. The fitting

parameters for the main SQPT were given in Section 6.3.2. In this case,

the calculated PT lies outside the frequency range of the graph and only

the bundle of four SQPT lines is clearly recognisable (transitions in the

range 13-23 GHz). For this set of SPQT lines, theory captures most of

the measured features. Note that in the experimental results reported

in Figure 6.14 and 6.15, the resonator shift was remarkably low (tens of

Hz) as compared to that observed for atomic contacts (tens of MHz) [16].

There are two reasons for this. On the one hand, the geometry of the



6 Observation of the fine structure of Andreev levels 93

circuit, which determines the phase fluctuations the resonator induces in

the loop. It can be optimized with the circuit design. On the other hand,

and more fundamental, the reduction of the matrix element of �̂′
F;

in the

long-junction limit [32]. As a rough approximation (see Eq. (3.14), the

matrix element is that for a short junction with an effective gapΔeff =
Δ

1+� ;
this contributes to a (1 + �)2 reduction in the coupling.
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Figure 6.16: (a) Two-tone spectrum measured on sample S2 (! ∼ 550 nm). The color-coded

quadrature of the measured signal shows many sign changes along the transition lines,

qualitatively in agreement with the behavior illustrated in Fig. 4.8(g,h): the sign changes

are attributed to situations where the energy of some virtual transitions matches ℎ 5A . (b)
Associated single-tone spectrum.

6.5.2 Two-tone spectra of sample S2 (galvanic coupling)

We present now two-tone data obtained with sample S2, in which

the nanowire is coupled to the resonator through a shared inductance

(see Section 5.2.2). The resonator frequency was also increased from

5A = 3.2 GHz to 6.6 GHz and we diminished its impedance by about a

factor 2, leading altogether to an enhanced coupling by about two orders

of magnitude (a factor×275 in �2

zp
, see Eq. (5.12) and Eq. (5.23)). An actual

picture of the device is shown in Figure 10.1. Importantly, the coupling

being much larger than in sample S1, the measured signal cannot be

easily converted in a resonator shift, and we show in Figure 6.16 the

change in one quadrature, �&.

In the range between 5 and 10 GHz of the otherwise very busy spectrum

of Figure 6.16, one recognizes three PTs and a bundle of SQPTs. The color-

coded quadrature shows many abrupt sign changes along the transition

lines, like the behavior illustrated in Figure 4.8(g,h): the sign changes
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are attributed to situations where the energy of some virtual transition

matches the resonator frequency (as indicated by the black dashed lines).

This spectrum has other remarkable features, like the occurrence of sets

of PTs very close in energy. Moreover, the shape of several other lines

in the spectrum does not correspond to what our simplistic scattering

model predicts. These features will be the focus of Chapter 8.
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Figure 6.17: (a,b) Two-tone spectrum measured on sample S2 (! ∼ 550 nm) for a different

gate tuning compared to Fig. 6.16. The color-coded quadrature of the measured signal

shows sign changes along the transition lines, qualitatively in agreement with the behavior

illustrated in Fig. 4.8(g,h): the sign changes are attributed to situations where the energy

of some virtual transitions match ℎ 5A . For example when the lowest transition line of the

second group of single particle transitions (underlined with black splines in (a)) crosses the

resonator, the sign of frequency shift along the transition lines in the lowest group of SQPT

changes. In (b), same data as (a) but stronger contrast and other colorscale, intra-manifold

spin-flip transitions are visible. The red lines that superimpose on the data are obtained as

differences between the inter-manifold transition energies underlined in black and labeled

a,b,c,d. (c) Single-tone spectrum.

Observation of direct spin-flip transitions

In Figure 6.17 we show data measured in a different cooldown. In this

case, changes of sign of the displayed quadrature occur when the lowest

transition of a SQPT bundle (drawn in black based on the signal of both

quadratures) crosses the resonator line. The resonator shift measured

in the CW single-tone spectroscopy (Figure 6.17(c)) shows a dominant

contribution from the pair transition that lies at 12 GHz at � = �,
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but the anti-crossings expected at the position of the dotted lines in

Figure 6.16 (a) are not visible, indicating the very small occupancy of the

initial state for the corresponding transition. This is in agreement with

the difference in intensity between the transition lines in the two-tone

spectroscopy. A remarkable feature in this spectrum is the presence of

two very low-frequency lines (below 2 GHz), better seen in Figure 6.16(b).

By analyzing their position in energy, they can be identified as spin-flip

intra-manifold transitions, which were discussed in Section 6.3.4 on

spin selection rules. The lines labelled a,b,c,d correspond to transitions

between the first and the secondmanifold, at energies �
2↓,1↓, �2↑,1↓, �2↓,1↑,

�
2↑,1↑. Their differences, labelled a-c, b-d, a-b and c-d, coincide two by

two. They are shown with red lines and perfectly match the observed

low-frequency transitions. The two first ones correspond to a transition

energy �
1↑,1↓, the two last ones to �

2↓,2↑. The lines are dimmer at low

frequency because the matrix elements go to zero at phases 0 and �
(see Figure 6.13(d)), and because the difference in occupancy of the two

spin states diminishes when their energy difference is comparable to

temperature: :�)/ℎ ≈ 0.8 GHz. Note that such transitions have been

recently driven indirectly through Raman processes [42, 94]

[42]: Hays et al. (2021), ‘Coherent

manipulation of an Andreev spin qubit’

[94]: Cerrillo et al. (2021), ‘Spin coher-

entmanipulation in Josephsonweak links’.
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Figure 6.18: (a) Two-tone spectroscopy of sample S2, showing a pair transition 5� anticross-

ing the resonator at 5A = 6.60762 GHz. Red line on the right-side is a fit of this transition

(parameters given in Table 6.2) with its two replicas at 5� ± 5A shown in dashed gray. (b)

Single-tone spectroscopy. (Left) Transmission coefficient amplitude (21 measured with a

VNA. (Right) Comparison with theory. For each phase value, the resonator frequency is

extracted from the raw data ; the shift from its bare value is shown with gray disks and

compared to the calculated shift due to a single channel (dashed red), whose pair transition

towards the lowest Andreev manifold fits the transition line 5� shown in (a). Blue dashed

line: contribution of an effective second channel (parameters given in Table 6.2); because of

its low transmission, the corresponding pair transition does not fall in the frequency range

of (a)). Black line: total shift due to both channels.
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Table 6.2: Fit parameters used in Figure

6.18

# � �1 �2 GA Color

Ch1 0.996 1.86 1.86 0 Red

Ch2 0.26 0.95 0.95 -1 Blue

A complete fit of the often complex spectra found in nanowire weak

links is in general not possible with a simple modelling of the weak link.

However, in the absence of a drive, the frequency shift of the resonator is

often dominated by the contribution from a single channel, which allows

for a simpler description. Before concluding this section dedicated to the

modelling of the resonator shift in nanowire devices, let us flash a quick

example of such situation where the resonator shift in the ground state

is dominated by the contribution from one main PT transition.

In Figure 6.18(a) and (b), we show the two-tone spectroscopy and single-

tonemeasurement of the same nanowireweak link as in Figure 6.17, again

from another cooldown. Among the observed transition lines, there is a

high-contrast PT that crosses the resonator at ! = �(1± 0.12). Within the

scattering model of Section 3.2, it can be fitted as a PT towards the lowest

of three Andreev manifolds arising from a high-transmission channel

(� = 0.996). In Figure 6.18(a) we indicate this fitwith a red line on the right

hand side (parameters in Table 6.2), as well as two replicas shifted by ± 5A ,
also visible in the data and associated to a strong measurement tone. The

corresponding shift of the resonator, fitted with Eq. (4.33) and (4.34) with

�I? = 0.012 and using 5A = 6.60762 GHz (bare frequencymeasuredwhen

the nanowire is fully depleted), is shown in dashed red in the right hand

side of Figure 6.18(b). This value of the zero-point phase fluctuations

obtained from the fit falls close to the nominal value �sCPW
zp

= 9.3 × 10
−3

expected for the shunted CPW design and estimated in Section 5.2.2

from Eq. (5.18). From this value of �zp and the fit parameters given in

Table 6.2, we can deduce using Eq. (5.19) the coupling factor at � = �
with the pair transition, 6(�) = 92 MHz, which is close to the 100 MHz

coupling that was achieved in the atomic contact experiment [21]

[21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’, p. 61

.

Although the resonator shift contains contributions from both the con-

tinuum and the three Andreev manifolds, it is mainly dominated by the

�̂′
F;

contribution at energy �−1,1 associated to the transition to the lowest

manifold. Therefore it can be well approximated within a simplified

Jaynes-Cummings description, taking Eq. (H.7) with a renormalized gap

Δeff/ℎ = 15.4 GHz and 5� = 2�−1,1 (not shown in the figure for clarity,

because it coincides almost exactly with the full theory for the channel

shown in dashed red). Although it does not fit perfectly, it offers a simple

analytical form that captures well the main features of the data around

the anticrossing.

The small discrepancies with the experimental data are attributed to

contributions from other possible channels. Many other transitions are

indeed visible in the two-tone spectroscopy, which we model with an

effective second channel (parameters in Table 6.2). Its contribution, shown

with a dashed blue line in Figure 6.18(b), produces the smooth phase-

dependent background that, added to the shift from the main transition,

quantitatively accounts for the data at all phases (black line). Finally,

let us stress once more that a rigorous fit of the resonator shift would

require the knowledge of the continuum’s curvature and of the phase

dispersion of all subgap levels, which is not accessible given the restricted

frequency range of our two-tone spectroscopies. By encompassing these

other contributions into an effective second channel, we only seek to

illustrate here that higher energy levels are indeed contributing to the

total resonator shift by an extra phase-dependent offset, the detailed

origins of which being inaccessible experimentally.
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So far we have relied on a simple model of the Andreev spectrum

consisting in only two spin-split doublets, as illustrated in Figure 6.1(a).

As was shown in Chapter 6, such a minimal description is successful

at explaining some features of the measured data, in particular the

existence of single-quasiparticle transitions (SQPT) as a signature of the

spin-splitting of Andreev levels in InAs weak links. However, as we shall

now discuss, several features found regularly in nanowire spectra remain

unexplained within such a minimal model. Using a galvanic coupling

(sample S2, see Figure 10.1(a)), we improved significantly the quality

and resolution of the spectra, allowing for better line identifications and

an improved understanding. From these data, we could start drawing

systematics in the phenomenologies of observed lines, which eventually

allowed to rationalize the typical structure expected for a nanowire weak

link transition spectrum in the 0 − 30 GHz frequency window.

7.1 Unidentified spectroscopic lines in
nanowire spectra

7.1.1 Long junction regime

A typical two-tone spectrum obtained with the galvanic coupling device

is shown in Figure 7.1(a), where we highlighted the main transition lines :

a PT (red), a set of four SQPT lines (green) and slightly above, a group

of four unidentified lines (blue) sharing some similarity with PTs. At

this stage, several remarks can already be made. First, the full phase

dispersion of the pair transition is accessed at frequencies below 25 GHz,

which is about half the measured value of the superconducting gap of

aluminium. Contrary to atomic contacts where only a small part of the

PT dispersion could be probed, this is made possible here because of

the finite length of the weak link, which reduces the amplitude of the

dispersion of the first ABS
∗
.

We showed in Section 3.2.3 that at low energy and close to � = �, the
lowest ABS manifold can be approximated by the expression for a zero-

length junction with a reduced gapΔeff = Δ/(1+�),with � = (�1+�2)/2
(see Eq. (3.14)). The frequency of the lowest pair transition is then

well captured close to � = � by 5�(�) = 2Δeff

√
1 − � sin

2 (�/2). This is
illustrated in Figure 7.1(b) where we show in red solid line a fit of the

lower pair transition close to �, which is obtained for � = 0.934 and

Δeff = 11.9 GHz. This indicates that we are indeed in a long junction

regime with � ≈ !/� ∼ 45/11.9− 1 ∼ 2.7. As expected, this approximate

dependence is less accurate away from � = �.

∗
A finite coupling to the superconducting leads, or a finite dwell-finite in the weak link

region for any other cause, can also reduce the dispersion [64, 50]

[64]: Kurilovich et al. (2021), ‘Microwave

response of an Andreev bound state’

[50]: Fatemi et al. (2021), ‘Microwave

susceptibility observation of interacting

many-body Andreev states’
.
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Figure 7.1: (a) Two-tone spectrum measured on sample S2. Main transition lines are highlighted by colored splines on half of the plot: a pair

transition (red), a set of four single-particle transitions (green) and four lines (blue) sharing some similarity with pair transitions. Note

that at least three other sets of SQPT are visible at higher frequencies (around 17.1, 20.9 and 25.4 GHz at � = 0). (b) Fit of the lower pair

transition with the short junction formula 5�(�) = 2Δ
eff

√
1 − � sin

2 (�/2) (solid red line), yielding a transparency � = 0.934 and effective

gap Δ
eff
= 11.9 GHz. The four transition lines highlighted in blue in panel (a) seem to be well fit around � = � by 5�(�)/2 plus a constant

offset (dashed red lines), indicating that these processes involve the creation of one quasiparticle in the lower ABS manifold and another

quasiparticle in some level that disperses only little with � around � = �.

7.1.2 Evidence for mixed pair transitions

With !/� ∼ 2.7, one would expect that mixed pair transitions involving

the creation of one quasiparticle in each of the two lowest Andreev

doublets would be visible in the frequency range of Figure 7.1. They

would display a set of four lines crossing at � = 0,� similarly to SQPT

lines and above the lowest PT. This is not observed. Instead, as a recurring

feature in many measured two-tone spectra, we often observe a group

of four transitions lines which show almost parallel phase dispersions

close to � ∼ �, like the ones highlighted in blue in Figure 7.1(a). It would

be tempting to classify these lines as PTs, since their phase dispersion

always features a local minimum at � = �. This interpretation can be

discarded for at least two reasons: firstly, their behavior near � = 0 is

more complex than PTs, with local kinks and avoided crossings. Secondly,

on would need to invoke at least four extra channels with very similar

transparencies, which is very unlikely. And if this was to happen for a

certain value of the gate voltage, onewould expect that the transparencies

of these four channels would evolve differently with +6 and the lines

shouldmove away from each other. Instead, the four lines evolve together,

as illustrated in Figure 7.2. The fact that such sets of four lines, not more

or not less, are routinely observed above the PT in various regimes of gate

voltage indicates that they are generic features of low-energy spectra.
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Figure 7.2: Evolution of the low-energy spectrum over a wide gate voltage region. (a) Two-tone spectrum showing in gray-scale one

quadrature of the measurement field as a function of +6 and taken at � = 0.79� to reveal the splitting of the SQPT away from the

�-degeneracies. (b) Same spectrum but with the main lines highlighted: the lower PT (red), the lowest set of SQPTs (green) and the

four unidentified lines (blue), interpreted as mixed PTs between the two lowest ABS. As expected, PT and SQPTs evolve with +6 in an

out-of-phase manner: when the PT exhibits local maxima (minima) in +6 , then the bundle of SQPTs shows local minima (maxima). As

they shift the resonator in opposite manners, SQPT lines therefore appear as white lines, while pair processes give rise to rather black

lines. The four blue lines evolve more or less parallel with +6 and follow the same global trend as the PT, which indicates that they may be

associated to processes involving pairs of quasiparticles. In some gate voltage regions, indicated by light orange areas, the line contrast

vanishes for SQPTs as they drop to low frequencies. This makes the line tracking unreliable and therefore the highlighted splines in these

specific regions should be taken only as illustrative not quantitative, as some liberty was taken when drawing them. For this reason, they

were also drawn with much thicker lines to stress the inherent uncertainty in their precise location. The two-tone spectrum shown in Figure

7.3 was taken at +6 = 2.012 V, highlighted by a dashed orange like and an asterisk. As for the spectrum from Figure 7.4, it was taken at

+6 = 2.087 V which is highlighted by a magenta asterisk.

Strikingly, it is observed that close to � = �, these four lines are well

approximated by 5�(�)/2 plus a constant energy offset, with 5� the

transition energy of the pair transition. This is illustrated in Figure 7.1(b),

where the dashed red lines were obtained as 5�/2+offset. This is also
observed for the blue lines in Figure 10.5. This tends to indicate that those

lines may be associated to mixed processes involving the creation of one

quasiparticle in the lowest ABS doublet and another quasiparticle in a

level that disperses only little with �. As we shall demonstrate in the next

chapter, these transition lines can be attributed to the expected mixed

PTs involving the lowest two ABS doublets, with their degeneracies at

� = 0,� being lifted due to Coulomb interactions.

In Appendix K, we present a collection of two-tone spectra that have

been measured on sample S2 in many different conditions. Most of them

share the same common characteristics at low frequencies as Figure

7.1(a), including a PT, one or severals sets of SQPTs and four other lines

similar to PTs that run more or less parallel as phase is varied and that

are interpreted as mixed PTs involving the lowest two ABS manifolds.
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Figure 7.4: Two-tone spectrum measured

at +6 = 2.087 V (magenta asterisk in Fig-

ure 7.2(a); Reciprocally, the same asterisk

highlights in this plot the phase value

� = 0.79� at which the gate map from

Figure 7.2 was measured). This spectrum

is the same as in Figure 6.17 but extends

to higher frequency. Full data is shown in

Appendix K.
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Figure 7.3: Spectrummeasured at+6 = 2.012V (orange asterisk in Figure 7.2(a); reciprocally,

we highlight here with the same asterisk the phase value � = 0.79� at which the gate map

from Figure 7.2 was measured). Main transition lines are highlighted by colored splines on

half of the plot: a PT (red), a set of four SQPTs (green) and four unidentified lines (blue)

sharing some similarity with PTs transitions. Two other sets of SQPTs are visible at higher

frequencies. The PT can be well fitted by the short junction formula with � = 0.9486 and

Δ
eff
= 8.6 GHz. As a remarkable feature of this spectrum, the energy �SQPT at � = � of the

lowest bundle of SQPTs is higher than the energy �PT at � = 0 of the lowest PT.

7.2 Incorporating multi-channel effects

7.2.1 Hint of a second channel

In Figure 7.3 another two-tone spectrum measured on sample S2 is

presented, measured at the gate voltage value indicated by an orange

asterisk in Figure 7.2(a). This spectrum illustrates another instance of

these four unidentified lines (blue) sitting above the low-lying PT (red).

Here, the four blue rather show a more regular phase dispersion close

to � = 0. However, sweeping +6 , we observe that at another close-by

value of the gate voltage, indicated by a magenta asterisk in Figure 7.2(a),

they show again a phase dispersion similar to the one from Figure 7.1(a),

see Figure 7.4: the upper line is separated from the other three by a few

GHz and presents a "camelback"-like dispersion around � = 0. This clear

separation of the four transition lines into a triplet and singlet is observed

in all three spectra from Figures (7.1, 7.3, 7.4) and is reminiscent of an

exchange interaction effect, as will be further explained in Chapter 8.

As a remarkable feature of the spectrum from Figure 7.3, the energy �SQPT

at � = � of the lowest bundle of SQPTs is observed to be higher than the

energy �PT at � = 0 of the lowest PT. Such an ordering is not compatible

with the predictions of the minimal two-band model of Chapter 3.2,

indicating that another effect is at play.
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Figure 7.5:Hint of multichannel effects. (a) Same spectrum as in Figure 7.3 with the main features highlighted with splines on the right half

of the plot : the lower PT (red) and three bundles of SQPTs (green) likely associated to transitions from the first to the second, third and

fourth ABS manifolds. On the left half is overlaid the result of a tentative fit with the transcendental equation given by Eq. (3.12) with the

following parameters adjusted to best reproduce the lower PT : �1 = 5.0, �2 = 5.5, � = 0.93 and GA = 1.0. The topmost red line, showing the

dispersion expected for the PT to the second ABS manifold, does not seem to correspond to any feature in the data. (b) Associated ABS

spectrum in the excitation picture, obtained either from the PT fit with the transcendental equation (dashed lines) or reconstructed for the

lowest two manifolds from the measured phase dispersion of the lowest PT and SQPT (solid lines).

Discrepancies with this model are made clearer when trying to fit the

PT using the transcendental equation given by Eq. (3.12) (see left half of

Figure 7.5(a)). Reproducing well the bottom of the phase dispersion at

� = � requires to set the transmission rather high, � = 0.93, but doing so

we miss the rounded shape of the PT around � = 0 and the fit remains off

by a fewGHz even. The ABS spectrum that comes out of this fit comprises

four manifolds with alternating curvatures, as illustrated in dashed lines

in Figure 7.5(b) using the excitation picture. The two-tone spectrum

features three bundles of SQPTs at around 18.5, 22.5 and 30.8 GHz at

� = �. Although their respective shapes is not well reproduced, the

tentative fit suggests that they likely correspond to SQPT transitions

from the first to either the second, the third or the fourth ABS manifold,

therefore supporting a long-junction scenario with at least 4 manifolds.

The SQPTs between the lowest two manifolds that are expected from

the fit fall at the right frequency at � = �, but are about 12 GHz too

low at � = 0, showing a much bigger amplitude compared to what is

observed in the data. To improve the match, one would need to reduce

the energy of the first manifold around � = 0, but this would in turn

reduce the phase dispersion of the PT and be incompatible with the data,

or to increase the energy of the second manifold.
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One can actually play the reverse game and reconstruct the lowest two

manifolds from the measured dispersion of the lowest PT and SQPT,

the mean energy of the first manifold being given by half the frequency

dispersion of the measured PT, while differences between the inner and

outer lines of the SQPT bundle provide the size of the ABS splitting. The

deduced ABS spectrum is plotted in thick solid lines in Figure 7.5(b) and

shows anunusual feature : bothmanifolds have a positive phase curvature

around � = �, a feature not accountable by the continuum model which

assumes that the chemical potential crosses only a single band. Precisely,

this is because such feature actually suggests the presence of a second

conduction channel being open in the weak link, meaning that at least

two transverse bands are populated in the semiconductor. Unfortunately,

none of the analytical models developed so far take explicitly into account

such a second band. We may however gain valuable insight on what

happens in such a regime by resorting to tight binding simulations, for

which it is easy to incorporate finite-length and multi-channel effects.

7.2.2 Tight binding modeling

The continuum model presented in Chapter 3.2 focused on a single-

band description of the weak link
†
. Extending this analytical model to a

multi-band scenario presents some challenging difficulties. On the other

hand, it is straight-forward to discretize it in a tight-binding model (TB),

which can be adapted at will and solved numerically. In such a model,

illustrated with Figure 7.6, the weak link region is described by a chain

of longitudinal sites between which electrons can hop. Including many

longitudinal sites therefore allows to easily model the case of a finite-

length weak link. Similarly, one can add extra transverse chains of sites,

which then directly accounts for themulti-channel nature of theweak link.
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Figure 7.6: Sketch of the extended tight-binding models for a nanowire junction.

The TB Hamiltonian of this system can be written in full generality as

�0 =
∑
8 ,�,�

(&8 ,� − �)2†8 ,�,�28 ,�,� + CG2
†
8 ,�,�28+1,�,�

+ �
G2†8 ,�,�28+1,�,�̄ +
∑
8 ,�

Δ828 ,�,↓28 ,�,↑

+
∑
8 ,�,�

CH2
†
8 ,�,�28 ,�+1,� + 8
H2†8 ,�,�28 ,�+1,�̄ + h.c. , (7.1)

†
At least 2 transverse bands are required so that SOI gives rise to spin-dependent Fermi

velocities and ABS spin splitting. However the deduced transcendental equation only

describes the case where the chemical potential � crosses a single band. It also enforces

linearization around �, which may not be valid when � lies at the bottom of a band.
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Figure 7.7: (a-c) Evolution with the chemi-

cal potential� of theABS energy spectrum

of a three-channel weak link for � = 0,�/2
and �, as obtained by numerical diagonal-

ization of the TB Hamiltonian (Eq. (7.1);

parameters in Table 7.1). (d) Bulk bands of

the normal region.

where 2†
8 ,�,� creates an electron with pseudospin � on the longitudinal

site 8 belonging to the transverse chain � ; &8 ,� denotes the onsite potential,
� the chemical potential which is only changed in the normal region,

CG,H and 
G,H are spin-conserving and spin-flip hopping amplitudes

in the longitudinal and transverse direction respectively, and Δ8 is the

pairing amplitude which we choose to be zero for the sites describing

the wire and Δ4±8�/2 for the left and right superconducting electrodes,

respectively. To incorporate the effect of scattering, we proceed as in

the single-barrier model introduced in Chapter 3.2 by adding a local

impurity at a given site 8. This amounts to choosing at this specific site a

different onsite energy &
imp

8 ,� compared to the bulk one &8 ,�. Note that such

a single-barriermodel gives qualitatively similar results to a more physical

two-barriermodel where scatterers are localized at the two interfaces with

the superconducting leads, as was the case in the continuum model.

The parameters for the TB model are related to the ones from the

continuous Hamiltonian through the following discretization:

CG =
C0

02

, CH =
C0

,2

; 
G =


0
, 
H =



,

with C0 =
~2

2<∗
,

where 0 is the lattice spacing in the G-direction, , the width of the

normal region and 
 ∼ 10−30meV.nm is the spin-orbit coupling constant

appropriate for InAs. In the following, we use 
 = 12 meV.nm, <∗ =
0.023<4 and Δ = 190 �eV. In Appendix C, we illustrate the dispersion of

the two lowest energy bands associated to this TB Hamiltonian and detail

how transverse spin-orbit coupling gives rise to an energy-dependent

spin texture responsible for the splitting of ABSs.

Chemical potential dependence of ABS

The continuum model from Chapter 3.2 describes well the case where a

single band is crossed by the chemical potential �, when it lies far above

the band bottom. This situation leads to analytical results after lineariza-

tion of the bands around �. As a first generalization, we are interested in

what happens both in low-density regime when � approaches the band

bottom, and conversely when � increases and gets close to or crosses the

second band. As this second band also hybridizes with the next one when


H ≠ 0, we need to consider at least three chains of sites � ∈ {1, 2, 3} to
incorporate the third band and treat well the effect of the second one.

In Figure 7.7(a-c), we show a typical ABS energy spectrum for � = 0,�/2
and � as a function of �, as obtained by numerical diagonalization of the

TB Hamiltonian from Eq. (7.1) with three transverse chains made of 13

sites for the normal region of length ! = 560 nm and width, = 100 nm,

and 11 sites in each superconducting lead. The associated bulk bands of

the normal region are depicted in panel (d) with the same x- (energy)

axis. For simplicity, in order to illustrate the minimal physics at play, we

choose the onsite energies to be uniform and constant for all three chains,

except at a single site of the normal region where a repulsive impurity is

introduced to incorporate the effect of scattering. This is done by setting

there a higher onsite energy &imp
.

Starting from the insulating state where � lies much lower than the first

conduction band, we observe two ABS states detaching from the gap
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Figure 7.7 Figure 7.8 unit

! = 500 560 nm

, = 90 100 nm

&8∈#,� = 1 (1.1, 1.1, 0.8) 2C0/02

&7,� = 2 (0.8, 0.75, 0.9) 2C0/02

&8∈(,� = 1 0.95 2C0/02

C#G = −1 −0.9 C0/02

C(G = −1 −1.05 C0/02

C#H = −1 −1 C0/,2

C(H = −1 −1.05 C0/,2


 = 12 12 meV.nm

Table 7.1: Parameters of the tight-binding

calculations for Figure 7.7 and Figure 7.8.

The number of transverse chains is 3. The

superconducting leads are described with

11 sites each, the normal wire with 13 sites.

The impurity is positioned at site 7 in the

normal region.

edge Δ as � approaches the bottom of the first band, � ∼ −2Δ. Although

these states are initially spin-degenerate and carry low supercurrent,

the amplitude of their phase dispersion increases as � rises above the

band bottom, as shown in Figure 7.7(a-c). When � ∼ −Δ, i.e. when the

chemical potential lies deep in the first band and is higher than the

band bottom by at least Δ, the Andreev approximation is verified and

we recover the typical situation described by the continuum model.

The low-energy spectrum of the weak link then comprises two well-

split ABS manifolds that are properly captured by the transcendental

equation Eq. (3.12)
‡
. As � is further increased, a second pair of ABS

manifolds detaches from the gap edge. Although those states dive deep

in the gap, they initially feature a flat phase dispersion and therefore

do not carry any supercurrent. However, for � ∼ 0, when the chemical

potential approaches the second band, the two manifolds of this second

bundle start to split, disperse with phase and eventually contribute to

the low-energy ABS spectrum. The same effect arises when � ∼ 2Δ,

i.e. approaches the third band, which reflects the opening of a third

conducting channel.

Fabry-Pérot oscillations & resonant transmission

Although these TB results illustrate well the gradual opening of the weak

link as � crosses the successive conduction bands of the normal region,

Figure 7.7 also shows a complex non-monotonous dependence of the ABS

energy spectrumwith �, characterized by oscillations of the ABS energies

with �. These oscillations of the weak link’s effective transmission can be

understood as Fabry-Pérot resonances in the normal region, which arise

due to the Fermi momentum mismatch between the superconducting

and normal regions. A minimal model describing this effect is the one

of a perfect single mode SNS junction of finite length ! [56, 95] [56]: Prada et al. (2020), ‘From An-

dreev to Majorana bound states in

hybrid superconductor-semiconductor

nanowires’

[95]: Cheng and Lutchyn (2012),

‘Josephson current through a

superconductor/semiconductor-

nanowire/superconductor junction’

, which

predicts the following expression for the Andreev energies :

��(�) = ±Δ
√

1 − �eff(:0) sin
2 (�/2) with �eff(:0) =

1

1 + � sin
2 (:0!)

.

(7.2)

‡
Note that the transcendental equation would incorrectly predict a diverging number of

ABS states as � approaches the band bottom, since � = !/�→∞ due to vanishing of the

Fermi velocity E� . However the model leading to the transcendental equation is valid only

in the Andreev approximation, i.e.when � lies far above the band bottom. TB calculations

show that no such divergence occurs: the states continuously collapse to the gap edge as

� is lowered.
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Figure 7.8: Evolution of the ABS energy spectrum and transitions with the chemical potential �, obtained by numerical diagonalization

of the TB Hamiltonian from Eq. (7.1; parameters in Table 7.1). The reduced energies &=� = �=�/Δ of the ABS states are plotted in panels

(a,b,c) as a function of � for � = 0,�/2 and �. Throughout the series, the three lowest Andreev manifolds are highlighted in gold (= = 1),

cyan (= = 2) and purple (= = 3). At � ≠ 0,�, each state = is spin-split in two sublevels � =↑, ↓, as exemplified in panel (b) for � = �/2.
The intensity of this splitting &=↑ − &=↓ is plotted for the lowest three manifolds = = 1, 2, 3 in panel (d) and shows maxima close to the

energy where the hybridization of the lowest two bands is the highest. (e) Bulk bands of the normal region (dark green lines). Dashed red

lines depict the bands when setting the transverse SO coupling 
H to 0 and illustrate that its effect is to hybridize the transverse subbands.

Vertical dashed gray lines correspond to 9 different values of � starting from below the first band until deep in the second band. For each of

these 9 illustrative cases, the ABS energy spectrum is shown in the excitation picture in (g), with all possible transitions involving the lowest

two Andreev manifolds in (h): SQPT transitions (green), PT transitions to the = = 1 and = = 2 manifolds (red), and the mixed transitions

(blue). (f) Evolution with � of &=(� = �) − &=(� = 0), which reflects the sign of the phase curvature of ABS manifold =.

where � = [(:(
�
)2 − :2

0
]/(2:(

�
:0) models the effect of momentum mis-

match between the normal and superconducting regions, the Fermi

wavevectors of which being denoted respectively by :#
�

and :(
�
, with

:0 =

√
(:#
�
)2 + 4:2

($
and the SO momentum :($ = <

∗
/~2
. This mini-

mal model shows that the :� mismatch acts as an effective barrier at each

interface with transmission �eff(:0) = 1

1+� sin
2 :0!
≤ 1. Therefore, although

no scattering takes place in the normal region, the weak link acquires

a finite transmission which oscillates with :0 and remains smaller than

1, except at resonant values where :0! = =�, = ∈ ℤ. In the general

case, scattering and spin-orbit in the normal region further mix this
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simple picture, making the oscillations less regular and one can no longer

distinguish in the ABS spectrum the contributions from each individ-

ual channel as bundles of state detaching from the gap edge when �
approaches the next band.

Effect of a second transverse channel

Using this TB model, let us now investigate the two-bands limit when the

chemical potential lies close to the second transverse band, reflecting the

opening of a second conduction channel in the weak link. This second

situation is illustrated in Figure 7.8(g-h) where we show, for slightly

different TB parameters than in Figure 7.7, the evolution of a typical ABS

spectrum (g) and the associated transitions between ABS (h) for 9 values

of � crossing successively the first and second transverse conduction

bands of the normal region.

Case 1 corresponds to the tunnel regime where the chemical potential �
lies below thefirst band: theABS levels showalmost flat phasedispersions.

As � crosses the bottom of the lowest band, they start acquiring a sizeable

phase dispersion and carry supercurrent, as illustrated in Cases 2 and 3.

For � deep in the lowest band (Case 4), i.e. higher than the band bottom

by at least Δ, the Andreev approximation is verified and we recover

the typical situation described by the transcendental equation from the

continuum model (Eq. (3.12)). The corresponding transition spectrum in

(h) shows opposite phase curvature for the PTs associated to the = = 1 and

= = 2 manifolds (red), a bundle of well-split SQPT lines (green) crossing

the lower PT and with a maximum at � = �, and a bundle of mixed

PTs (blue) sandwiched between the two lowest PTs. This corresponds

qualitatively to the typical picture described in Chapters 3.2 and 6. When

� ∼ 0, close to the energy where the hybridization between the lowest

two bands is maximal (Case 5), the Fermi velocity difference between

the two = = 1 spin subbands is maximal and the transition spectrum

shows large splitting for both the SQPTs and the mixed PTs. Finally, as �
approaches the second band (Cases 6-9), the phase curvature of the PT to

the = = 2 manifold gets inverted, which reflects the opening of a second

channel in the weak link. This inversion is further illustrated in panel

(f) where we plot as a function of � the quantity &=(� = �) − &=(� = 0)
which describes the sign and magnitude of the phase curvature of a

given ABS manifold =. While this curvature is always negative for the

lowest manifold (gold), for the second one (cyan) it goes from positive to

negative, canceling close to � = 0 (Case 5).

The cases 6-7, where � lies close to the bottom of the second transverse

band, seem to correspond qualitatively to the situations probed in the

experimental spectra from Figs 7.1,7.3 and 7.4. Indeed, the transition

spectrum in such a regime is characterized by mixed PTs at low energy

lying close to the lower PT and by an almost flat phase dispersion for the

= = 2 ABS manifold. As will be shown in the next chapter, this explains

why the mixed pair transition disperse almost like half the lowest PT.
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There is a large overlap between this chapter and our most recent article [54]

[54]: Cañadas et al. (2021), ‘Signatures of

interactions in the Andreev spectrum of

nanowire Josephson junctions’

.

The theoretical developments that we reproduce here are essentially due to

our colleagues in Madrid Francisco Matute, Sunghun Park and Alfredo Levy

Yeyati.

In theprevious chapter,wepresentedmicrowave spectra showing features

consistent with finite-length physics in the weak link and suggesting a

multi-channel scenario. In addition, we evidenced as a recurring feature

of our nanowire spectra a set of four transition lines lying above the

lowest pair transition, which remain grouped together as � or +6 is

changed, never cross each other, and feature a minimum at � = � like

pair transitions although they show more complex patterns close to

� = 0, 2�. Besides, they often split spectrally into a low-lying triplet of

lines and a singlet at higher frequency.

Surprisingly, we also noticed that the phase dispersion of those four lines

appears to be generally well fit close to � = � by half the dispersion of the

lowest pair transition up to a frequency offset, thus indicating that they

are likely related to processes involving the creation of one quasiparticle

in the lowest ABS manifold and a second one into another spin-split level

dispersing only little close to � = �. Because they appear above but still

close to the lowest PT, this level is expected to be low-lying, and as it

does disperse with phase, although little, there is no reason at first sight

why it should be anything than an ABS, in the view of parsimony. On

the other hand, we evidenced with a TB calculation in Section 7.2.2 that

when a second channel is about to open, the second lowest ABS manifold

may indeed show almost flat dispersion around � = �, up to its splitting,

which makes it a possible candidate for this level.

Altogether, this gives hints that those four unidentified transition lines

may correspond to mixed PTs involving the lowest two ABS manifolds,

although they do not show degeneracies at � = 0,� as one would

first expect from non-interacting models. The recurring separation of

those lines into a triplet and singlet further suggests that an exchange-

interaction physics may be at play, and we shall now demonstrate that the

weak Coulomb interactions expected in our nanowires actually result in a

sizable splitting of themixedPTs into a group of four lines,which disperse

in phase similarly to the transition lines evidenced experimentally.

To discuss the effect of interactions we will resort in this chapter to

different models ranging from minimal ones, which can be solved exactly,

to an extended tight-binding model compared to the one from Chapter 7,

where the effect of interactions is introduced in a perturbative fashion.

As we will see, this extended model allows to predict spectra that have a

close resemblance to those obtained in the measurements.
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8.1 Modeling the effect of Coulomb
interactions

8.1.1 Estimations on e-e interactions and their effect

Coulomb interactions in the nanowire weak link are expected to be

strongly screened by the nearby metallic electrodes, by free charges in

the nanowire and by the substrate. They can thus be approximated by a

contact potential

+̂ =
1

2

∑
�,�′

∫
WL

3r3r′Ψ†�(r)Ψ†�′(r′)D(r−r′)Ψ�′(r′)Ψ�(r), (8.1)

where D(r−r′) = D0�(r−r′) is non-zero only for r, r′ in the junction region

andΨ�(r) are the field operators for electrons with pseudospin � in the

wire. The typical junction dimensions (length ! ∼ 500 nm and diameter

, ∼ 150 nm) and the fact that a few conduction channels might be

contributing to transport suggest that a 3D screening model should

be appropriate. Within a Thomas-Fermi (TF) approximation we have

D(®A) ∼ 4−|®A |/�TF/|®A |, where �TF is the screening length and thus

D3�
0
=

42

4�&0&A
4�

∫ ∞

0

3AA2
4−A/�TF

A
=

42

4�&0&A
4��2

TF
. (8.2)

On the other hand, the TF screening length can be estimated as

�2

TF
= &0&A/(42��) =

0�

8

<4

<∗
&A�� , (8.3)

where �� = (2<∗/~2)3/2
√
��/(2�2) is the 3D density of states with ��

the Fermi energy, 0� = 4�&0~2/(<4 4
2) ∼ 0.05 nm the Bohr radius, �� the

Fermi wavelength and &A ∼ 15 the dielectric constant of InAs. As the

data presented in the previous chapter suggest, �� should correspond to

a situation where a second subband starts to be populated, i.e. �� ∼, ∼
100 nm, which gives �TF ∼ 20 nm using Eq. (8.3). Thus, as �TF � , , a

3D model is indeed justified. In our TB calculations however, the wire

was modeled as a planar quasi-1D geometry. This 2D D0 can be deduced

by D0 = D
3�
0
/, . From Eq. (8.2), we estimate the D0 parameter relevant

for our galvanic coupling device (see Figure 10.1(b)) to be of the order of

D0 ∼ 3 eV.nm
2

, a value similar to what was estimated in Ref. [96] [96]: Manolescu et al. (2014), ‘Coulomb

interaction effects on the Majorana states

in quantum wires’

.

Some insight on the effect of interactions on the energy of Andreev

excitations can be obtained by considering the random matrix theory

analysis of Ref. [97] [97]: Kurland et al. (2000), ‘Mesoscopic

magnetization fluctuations for metallic

grains close to the Stoner instability’

for an isolated mesoscopic grain. In that work it was

shown that an interaction as in Eq. (8.1) leads to an effective exchange

interaction −� ®(2
, where with

®( is the total spin and � ∼ 2D0/�, � being

the area where the states are localized, which is of the order of 0.1 �m2

in our experiments; leading to � ∼ 60 �eV (i.e. ∼10 GHz). As suggested

in Ref. [98] [98]: Padurariu and Nazarov (2012), ‘Spin

blockade qubit in a superconducting

junction’

, such an interaction would lead to a splitting of the bundle

of four mixed pair transitions at � = 0 into a degenerate triplet at lower

energy and a singlet state lying roughly 2� above. This rough analysis

is in agreement with the splitting into a triplet and a singlet seen in the

spectra of Figs. (7.1,7.3,7.4), but it fails in explaining the breaking of the

degeneracy of the triplet lines.
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8.1.2 Exactly solvable four-sites TB model

The TB Hamiltonian introduced in the previous chapter can be adapted

to include the effect of interactions in the central normal region #

by adding in Eq. (7.1) a Hubbard-like term �int =
∑
8∈#,�*8=8 ,�,↑=8 ,�,↓,

while assuming perfect screening in the superconducting regions. Here,

=8 ,�,� = 2
†
8 ,�,�28 ,�,� represents the number of electrons with pseudospin �

on the site (8 , �).Aswasdone in Section (7.2.2), discretizing the continuous

model and setting a given value 0G,H for the lattice spacings in the G, H

directions allows to get estimates for the model parameters appropriate

for InAs wires coupled to Al leads. Similarly, the *8 value, taken for

simplicity as a constant * in the normal region, can be related to the

above D0 estimate by* ∼ D0/(0G0H). To make contact with the standard

jargon commonly used to describe charging effect in nanostructures, one

can also define here an effective charging energy of the normal region

when disconnected from the leads �eff

2 =D0/�# , where �# denotes its

area.

Unfortunately, this TB model cannot in general be solved exactly in the

presence of interactions. In Refs. [64, 50] [64]: Kurilovich et al. (2021), ‘Microwave

response of an Andreev bound state’

[50]: Fatemi et al. (2021), ‘Microwave

susceptibility observation of interacting

many-body Andreev states’

, the nanowire weak link is de-

scribed in terms of a quantum dot (QD) coupled to two superconducting

leads, which amounts to taking a single site in the normal region, with

adjustable couplings to the superconducting leads. Such a situation is

generally analyzed in the literature by means of an Anderson model

where a single level with Hubbard-like interaction is connected to the

leads. Although this allows to account for some of the observed effects

[50] [50]: Fatemi et al. (2021), ‘Microwave

susceptibility observation of interacting

many-body Andreev states’

, it is not able to describe the experimental situation tackled in the

present work, where at least two spin-split ABS manifolds are neces-

sary to account for the experimental data. In addition, the coupling of

transverse modes due to spin-orbit interactions is essential to explain

the splitting of SQPTs, as already commented in the previous chapter. In

order to incorporate both the finite-length and multi-channel ingredients,

a minimal model includes 2 sites both in the longitudinal and transverse

directions. We therefore restrict the normal region of our TB model to

four sites only, two in the longitudinal direction and two in the transverse

one.

𝜖𝑖,1
𝑁

𝜖𝑖,2
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𝜖𝑖,3
𝑁
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Figure 8.1: Sketch of the four-sites tight-binding model. The grey shading represents the

effect of the superconducting leads projected into each site. This is achieved through the

effective singlet and triplet pairings ΓB and ΓC (grey arrows and lines) between electrons

(thick, black arrows), which have onsite energy &8 ,�. Other lines depict the spin conserving

(thin black) and spin flipping (thin green) hoppings. Finally, the interaction is represented

with the gain in energy +* when a site is occupied with two electrons.
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Figure 8.2:Transition lineswithin the four-

site model without (a) and with (b) the

effect of Coulomb interactions.Within this

model effective singlet and triplet pairing,

characterized by parameters ΓB and ΓC ,

arise by assuming Δ→∞ in the leads.

To include the superconducting leads in a simplified manner, one can

take the infinite gap limit
∗ Δ8 →∞, as suggested in several works on the

superconducting Andersonmodel [99, 100] [99]: Vecino et al. (2003), ‘Josephson

current through a correlated quantum

level’

[100]: Meng et al. (2009), ‘Self-consistent

description of Andreev bound states in

Josephson quantum dot devices’

. By projecting the effect of the

superconducting pairing in the leads into the central four sites (denoted

by 
 = !, ' (left,right) and � = ± (top, bottom)), the infinite system is

mapped onto a simple “superconducting molecule” with a finite number

of electronic configurations and can be diagonalized exactly
†
. One obtains

the following effective pairing model :

�pairing =
∑

,�=±

ΓB,
2
†

,�,↑2

†

,�,↓ + (8.4)

8
∑



ΓC ,


(
2†
,+,↑2

†

,−,↑ − 2

†

,+,↓2

†

,−,↓

)
+ h.c.,

where ΓB,
 and ΓC ,
 are effective singlet and triplet pairing amplitudes

for the 
=!, ' sites arising from the combination of s-wave pairing and

spin-orbit interactions in the multi-channel leads. A sketch of such an

effective model is provided in Figure 8.1.

While in the single-level model the infinite gap limit leads to an induced

local singlet pairing in the dot, for the case of the multi-channel spin-orbit

coupled lead one expects both local singlet and non-local triplet pairings to

be induced on the central region, the amplitude of which being indicated

here by ΓB and ΓC . Obtaining their expressions in terms of the bare model

parameters would require the calculation of the leads boundary Green

functions [101]

[101]: Alvarado et al. (2020), ‘Boundary

Green’s function approach for spinful

single-channel and multichannel Majo-

rana nanowires’

in the Δ8 → ∞ limit. While this calculation could be

affordable using the techniques of Ref. [101], in the present work we just

consider ΓB,C as tunable effective parameters.

Splitting of the mixed pair transitions

For this minimal four-sites model, the scaling used to determine the

parameters in Eq. (7.1) is not expected to hold.However, setting reasonable

parameters (e.g. &8 ,�/2=ΓB=−CG=−CH and ΓC=
G=
H=0.8ΓB), we get the

typical results shown in Figure 8.2. As expected from the previous

considerations, Coulomb interactions do lift the degeneracies of the

mixed pair transitions at � = 0 and �. Moreover, in contrast to the simple

argument based on the emergent exchange interaction, which splits the

transition lines into triplet and singlet [98], we observe here a complete

splitting of the four lines, as illustrated in Figure 8.2(b). This is due to

the presence of a significant spin-orbit interaction which breaks spin

symmetry.

∗
For finite Δ, the weak link region is coupled to both the Cooper pairs, which lie at the

Fermi level and are responsible for the proximity effect, and to the quasiparticles in the

leads, which give rise to conduction electrons excitations with energies higher than the

gap. In the large Δ→∞ limit, the quasiparticles are far in energy and their coupling to

the weak link vanishes, which greatly simplifies the physics and makes an exact solution

possible. However, as the weak link is still coupled to the Cooper pairs at the Fermi level,

the proximity effect survives, manifesting as induced pairing terms in the central region

of the weak link. When considering physics at energies � � Δ, the effective Hamiltonian

that is obtained gives a qualitatively good description of the behavior of the full model,

as will be shown below.

†
Although the full four-site model is not quadratic (Eq. (8.4) describes only the pairing

terms, but the total Hamiltonian also contains the onsite Hubbard like terms, which are

quartic in the fermionic operators), one can perform numerically an exact diagonalization.
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Figure 8.3: Phase diagrams of the four-sites model in the *−& and ΓB−& planes, with and without SO respectively in the right and left

columns. The white dashed lines in the upper (lower) row correspond to the values of* (ΓB ) used in the lower (upper) row. The white point

in the upper right figure corresponds to the parameters used for Fig. 3 in the main text (hopping parameters CG,H are fixed to −1).

On the other hand, the inter-manifold SQPT lines do not split at � = 0,�
but are rather shifted to higher energy. This is because these crossings are

protected by time reversal symmetry (see Appendix B), which leads to a

Kramers degeneracy for odd states even in the presence of interactions.

As for the shift to higher energy, it can be understood as a consequence

of level repulsion between the lower and upper Andreev manifold

when coupled through Coulomb interaction. In contrast, no Kramers

degeneracy is granted for even parity excitations, which explains the

splitting of the mixed transitions. Finally, notice that the weak link

effective charging energy in Figure 8.2(b) is �eff

2 = */4 = ΓB , i.e. of

the order of the pair transition amplitude, therefore much lower than

Δ. Within this interaction range, the ground state parity is expected to

remain even, meaning no 0−� transition.

Phase diagrams of the four-sites model

To get an idea of the main properties of this model we show in Figure

8.3 phase diagrams for different parameter choices. If the normal region

of the nanowire was to become more isolated from the leads, we would

expect a QD-like behavior. The most typical feature that arises from the

interplay of the superconducting pairing, the Coulomb interaction and

the coupling with the leads, is the transition to a �-junction behaviour

where the ground state (GS) changes parity. In Figure 8.3 the colors

indicate the phases “0”, where the GS is even for any � and the absolute

minimum is at �=0 (dark blue); “�”, where the GS is odd for any � and

the absolute minimum is at �=� (red); and “0
′
” and “�′” (bright blue

and yellow), which are intermediate phases similar to the previous ones,

but where the parity of the GS is not the same for all �.

The top row shows diagrams in the*−& plane, where a “0” background

develops vertical and diagonal regions with different phase at sufficiently
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Figure 8.4: Evolution of the transitions in the four-sites model with phase difference (white background), SO (pink) and interaction (yellow).

From left to right, it starts displaying the evolution in phase difference � without SO nor interaction (a), then it includes interactions at �=�
(b), and evolves again in � (c). In (d), it includes SO at �=0, then evolves in � (e) and starts removing the interaction at �=� (f). Finally, in (g)

it shows the evolution in � with SO but without interaction. Fixed parameters are &8 ,�=1.5ΓB , CG=2CH=−ΓB . The higher PT to the second

manifold is not shown because for these parameters it cannot be distinguished from other mixed PTs involving higher manifolds.

high value of* . Their structure is similar to the diagram associated to

linear arrays of quantum dots between superconducting leads [102] [102]: Bergeret et al. (2007), ‘Josephson

effect through a quantum dot array’

when

the number of dots is 4. As discussed in that reference, for a sufficiently

large fixed interaction and weak coupling to the leads, the GS alternates

parity as the dots filling increases (i.e. for increasing −&). The figures in
the bottom row are diagrams in the ΓB−& plane, displaying 0

′
regions

with inverted “U” shapes that connect odd valleys. As can be observed

in the right lower panel these regions become distorted when spin-orbit

interactions is switched on.

Interplay between Rashba spin-orbit & Coulomb interactions

The rich structure of the transition spectrum, characterized by the 4-fold

degeneracies at phases �=0,� of the odd transitions and the full splitting

of the even ones, emerges from the presence of time reversal symmetry

and the combination of spin-orbit coupling with Coulomb interaction.

Let us describe progressively how these ingredients affect the ABS energy

spectrum. Their consequences on the evolution of the transition lines is

summarized in Figure 8.4.

In the situation without spin-orbit nor Coulomb interaction (Figure

8.4(a)), the four ABSs of lowest energy, which correspond to the odd

states with 1 quasiparticle, consist of two manifolds, which are spin-

degenerate for all � (green line). In the even sector, there are 6 states

made of 2 quasiparticles: 2 states where both quasiparticles are in the

same manifold with opposite spin (they give rise to pair transitions from

the ground state, the lowest one being shown in red), and 4 degenerate

states where each quasiparticle is in one different manifold (these give

rise to mixed pair transitions, shown in blue). When the interaction is

introduced (Figure 8.4(b,c)), the odd states remain degenerate, while the

mixed even states split into a singlet and a triplet. This behaviour stems

from the spin rotational symmetry, encoded in [�0+�8=C , (8]=0, since

for any state with certain energy and spin, there is another state with

the same energy but with rotated spin (same total spin, different spin

projection) (Figure 8.4(b,c)).
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In the non-interacting situation with spin-orbit (Figure 8.4(g)), relevant

for long multi-channel weak links, spin is no longer a good quantum

number. This allows for a splitting at almost all values of �. However, time

reversal symmetry imposes some constraints. First, since � is 2�-periodic
and ultimately originates from a magnetic flux, we have, respectively,

�(�+2�)=�(�) and T �(�)T −1=�(−�), so the spectrum over � must

be mirror-symmetric around �=0,� (this constraint also applied for the

previous situation without SO). Second, since in the odd states there is

always at least one unpaired spin and T reverses it, there must be pairs

of odd states with the same energy (Kramers degeneracy), as already

discussed in Section B.Mixed even states inherit this degeneracy when no

interactions are present, but in presence of interactions, nothing prevents

the splitting (Figure 8.4(d-f)).

8.1.3 Perturbative resolution of the extended TB model

The four-site model is a minimal one that incorporates the multichannel

character and the finite length of the junction while being amenable to

exact diagonalization including the Hubbard terms. While it provides

insight into the effect of interactions on the subgap states, it is based on

the unphysical assumption of an infinite gap in the leads. The calculated

energies not being referred to the gap energy, no quantitative comparison

with experimental data can be reached. To counter this, we now introduce

an extended TB model for which such a comparison becomes possible

using realistic values for all the model parameters and that allows, in

addition, to take higher energy levels into account.

To go beyond the four-site model, we use the eigenstates of the non-

interacting Hamiltonian from Eq. (7.1) to write the interaction Hamil-

tonian �int in terms of the Bogoliubov operators �= . This is performed

through the inverse Bogoliubov transformation 28 ,�,� =
∑
=≥1

D=
8,�,��= +

E=∗
8 ,�,��

†
= , where =≥1 refers to stateswith positive energy and (D/E)=

8,�,� are

the (electron/hole)-like coefficients of the non-interacting wavefunctions.

Assumingweak interactions, wemay project�int to the subspace of states

with zero (|�(〉), one (�†= |�(〉), and two (�†=�
†
< |�(〉) quasiparticles on

the #pr lowest energy levels (i.e. =, < ≤ #pr). Due to parity conservation,

we end up with effective Hamiltonians in the even and odd sectors that

can be diagonalized exactly.

The eigenstates Φ= of the non-interacting model are calculated by diago-

nalizing the corresponding Bogoliubov-de Gennes Hamiltonian

��3�Φ==�=Φ= , �0=
1

2

Ψ̂†��3�Ψ̂, (8.5)

where Ψ̂=(2̂1,1 , 2̂1,2 , 2̂2,1 , 2̂2,2 , ...)) , 2̂8 ,�=(28�↑, 28�↓, 2†8�↓,−2
†
8�↑)

)
and we

parametrized the eigenstates as (Φ=)8�=(D=8�↑, D
=
8�↓, E

=
8�↓,−E

=
8�↑)

)
. Thequasi-

particle operators that diagonalize �0 are related to the eigenvectors by

�==Φ†=Ψ̂↔ Ψ̂=
∑
= Φ=�= , and the electron-hole symmetry implicit in

the BdG formalism, that relates states with opposite energy (�†==�−= ,
�−==−�=), allows to write it in terms of the quasiparticle operators of
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Figure 8.5: Experimental results showing microwave two-tone spectra as a function of phase difference (�) for a sequence of decreasing gate

voltages +6 = 5.563 V+�+6 . The gray scale represents the change of one quadrature of the measured signal when the drive signal at 51 is

applied. Both measurement and drive tones are applied simultaneously. Each pixel corresponds to averaging over 150 ms. The color lines on

the right half of the spectra are guides to the eye indicating what we identify as single-quasiparticle (green), pair (red) and mixed pair (blue)

transition lines. Note that a second group of SQPT is visible around 20 GHz; it likely corresponds to single-quasiparticle transitions from

the first to the third Andreev doublet (not highlighted here).

states with positive energy:

�0=��( +
∑
=≥1

�=�
†
=�= , (8.6)

where ��(=1/2∑
=≤−1

�= is the energy of the ground state (GS), in

which all states with negative energy are occupied. Thus, quasiparticle

excitations over the GS of e.g. 1 and 2 quasiparticles are represented by

�†= |�(〉 and �†=�
†
< |�(〉 (=, <≥1), satisfying �= |�(〉=0.

Interactions are then introduced by projecting �8=C into the many-body

states with zero (GS), one and two quasiparticles excitations of lowest

energy (=, <≤#?A). This requires the calculation of cumbersome expec-

tation values such as 〈�( |�82�81�
(†)
=1

�(†)=2

�(†)=3

�(†)=4

�†
91
�†
92
|�(〉, which can be

efficiently computed using the QuantumAlgebra.jl package [103]

written in Julia.

8.2 Comparison with experimental data

Let us now demonstrate how this extended TB model can be used to

describe complex Andreev spectra measured on sample S2. We concen-

trate here on a series of microwave two-tone spectra taken successively

in a narrow range of gate voltage +6 (see Figure 8.5). Over the series, we

recover the same generic features which were observed in the spectra

from Figs. 7.1, 7.3, and 7.4
‡
. Namely, there are groups of four lines, such

as the ones highlighted in green, which cross at phase 0 and �, and are

identified as SQPTs. One also finds regular, almost sine-shaped lines,

highlighted in red, attributed to PTs. Finally, there are groups of four

lines highlighted in blue, behaving similarly to the four unidentified

lines discussed in the previous chapter. We show in Figure 8.6 that, like

Figure 7.1, the dispersion of the blue lines resembles, close to � = �,
half that of the lowest pair transition, plus an offset. The “camel-back"

‡
This series of spectra was measured during a different cooldown of the galvanic coupling

sample and therefore cannot be related to the gate evolution shown in Figure 7.2.
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Figure 8.6: Evidencing the mixed PT character of the unidentified lines. Red and blue lines are the splines overlying the data in Figure 8.5.

Dashed red lines are obtained by taking half the frequency of the red lines, and shifting vertically. This shows that, around � = �, the
dispersion of the mixed pair transition has a curvature close to half that of the lowest pair transition.

Figure 8.7: Evolution with the weak link effective charging energy �eff

2 of the spectral lines as a function of phase difference � as obtained

from the extended TB model with 31 sites in the G-direction (11 in the normal region) and 3 transverse chains, describing a junction with

length ∼ 550 nm and width ∼ 200 nm (TB parameters are given in the caption of Figure 8.8). Full lines correspond to the main inter-manifold

SQPT (green), lowest PT (red) and mixed PTs (blue). The faint lines correspond to secondary transitions (i.e. from the first to the third or

from the second to the third manifolds, intra-manifold and higher PTs). Excitations up to #pr = 12 are included in the effective interacting

Hamiltonians. Rightmost panel are the data of the central panel of Figure 8.5 shown for comparison.

phase dispersion near � = 0, 2� seen in Figure 8.5 for the topmost blue

line at �+6 = −13.8 mV is also very reminiscent of the one observed

in the spectra of Figs. 7.4 and 7.1. The spectra measured at �+6 = −8.9

and −23.5 mV also show a clear separation of these lines into triplet and

singlet, as was observed in Figs. 7.1, 7.4.

We searched for a set of parameters that best reproduce the central spec-

trum of Figure 8.5, in which the full dispersion of the mixed transitions

in blue is visible. The result is shown next to the data in Figure 8.7. Most

features of the spectrum, both for the relative frequencies of the transition

lines and for their shape, are essentially reproduced. In particular, the

camel-back dispersion of the upper mixed pair line around � = 0, absent

in a non-interacting model, is well captured here. It should be mentioned,

however, that these spectra are extremely sensitive to microscopic details

in the potential profile, which are completely unknown for an actual

experimental realization. Although an exact fit of experimental spectra

with our extended TB model is not expected, many features of our com-
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Figure 8.8: Transitions from the extended TB model for increasing values of #?A to include progressively higher states. Parameters are the

same as in Figure 8.7 with �eff

2 = 19.0 �eV: #sitesN = 11, #sitesS = 10, �=0.14 meV (in the N region), Δ=0.2 meV, !=550 nm, 0G=!/#sitesN,

0H=100 nm, 
/2=11 meV.nm=0G
G=0H
H , C0=~2/2<∗ (<∗=0.023<4 ), (&1# , &2# , &3# )=(1.2, 1.1, 0.8)·2C0/02

G , &1(=&2(=&3(=2C0/02

G−Δ,
(CG# , CG()=(−0.85,−1)·C0/02

G , CH#=CH(=−C0/02

H . Impurity position: site 3 of N region, (&imp1 , &imp2 , &imp3)=(0.6, 0.75, 0.75)·2C0/02
.

plex spectra are reproduced. In the other panels of Figure 8.7, we show

how the spectrum evolves when changing only the Coulomb interaction

strength, expressed in terms of an effective charging energy �eff

2 for

the weak link. As in the case of the four-site model from Section 8.1.2,

the most remarkable effect of interactions is to lift the degeneracies of

the mixed pair transition lines at � = 0,�. One also observes how the

mixed pair transitions split into a triplet at lower energy and a singlet at

higher energy, reminiscent of the triplet/singlet separation predicted in

Ref. [98] [98]: Padurariu and Nazarov (2012), ‘Spin

blockade qubit in a superconducting

junction’

. The inter-manifold SQPT lines are shifted to higher frequency

without breaking their characteristic shape, which clarifies why they

could already be identified and fit within the non-interacting theory

previously described (see Chapter 6).

As a sanity check,we show inFigure 8.8how the results using�eff

2 =19�eV ∼
Δ/10 converge with the number of states #?A on which the interaction

is projected. Little change is observed for #?A > 8. For larger interac-

tion strengths, a larger mixing with continuum states occurs and the

convergence with #?A becomes slower.

As supplemental data,we show inFigure 8.9 the evolution in the excitation

picture of the energy spectrum of quasiparticle states as a function of

�eff

2 , as obtained from the extended TB model for the parameters of

Figure 8.7. Green curves correspond to states with an odd number of

excitations, while red ones are associated to states with an even number.

In particular, we highlight in thick lines the states involving the lowest

four ABS, out of which the SQPT, PT and mixed PT lines shown in Figure

8.7 arise. The green lines represent the evolution of the ABS spectrum

as the interaction strength is increased. It shows that the degeneracies

at � = 0,� are indeed preserved and that the spin-split ABS manifolds

slightly repel each other, resulting in an increase of the SQPT frequencies,

as mentioned previously.

Above the first set of mixed states around �exc = 0.6Δ (involving

excitations in both first and second ABS manifolds) the spectrum shows

a very busy structure. In particular, the topmost thick red line around

�exc = 0.8Δ corresponds to the state with two quasiparticles in the

second ABS manifold. As interactions are introduced, it starts mixing
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Figure 8.9: Energies of the quasiparticle states in the extended TB model as a function of the weak link effective charging energy �eff

2 .

Parameters are the same as in Figure 8.7. (a) States energies in the excitation picture, obtained by diagonalization of the extended TB

Hamiltonian. Green (resp. red) lines correspond to states with an odd (resp. even) number of excitations. The set of green curves therefore

represents the (one particle) ABS spectrum and how it evolves as the interaction strength is cranked up. We show all 12 ABS levels appearing

for this set of TB parameters ; the states involving the lowest four ABS are highlighted with thick lines. Differences between these energies

give the transition spectra shown in Figure 8.7. To keep the same energy axis and compare the spectra, the energy of the lowest state at

� = 0 was substracted to the spectrum for each value of �eff

2 . (b) Energies of all many-body states |Φ〉 arising by creating excitations in the

12 possible ABS. The spectrum is the same as in (a) except that we added to each curve the energy of the non-interacting ground state

�GS = −1/2Σ=<=12�exc,= obtained by summing the energies of all 12 ABS (green lines in panel (a) for �eff

2 = 0). The continuum is expected

to add only an offset with a small phase dependence and is therefore not included in the sum.

with other even parity states, resulting in a complex line shape which

makes its identification complicated. In particular, its phase dispersion

is strongly modified compared to the regular one expected from a non-

interacting model, as was shown in Figure 6.2. This illustrates why,

even in microwave spectra associated to long weak links, where the

pair transition to the second ABS manifold is expected to show in the

measured frequency window, it is never identified as such. Only the

lowest PT, SQPT and the first set of mixed PT are generally well visible

and decoupled from the higher sets of transitions.

The energies of the many-body states involving excitations in the lowest

two ABS manifolds are plotted in thick lines in Figure 8.9(b). They were

obtained by adding to the states energies in the excitation picture from

panel (a) the quantity �GS, corresponding to the sum of the energies of

all 12 subgap states being occupied in the non-interacting ground state.

As the continuum is expected to add only an offset with a small phase

dependence, it is not included in �GS. Remarkably, we observe that for
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this TB parameters, a 0−� transition is almost realized for �eff

2 = 7.5 �eV:
at this value, the energy at � = � of the even-parity ground state (lowest

thick red line) almost equals the one of the lowest energy state of odd

parity (lowest thick green line). More work is needed to understand how

such transitions would occur.

8.3 Thoughts on the model & link with atomic
physics

Nanowire weak links offer a remarkable platform to observe in a tun-

able and controlled manner electronics many-body effects beyond what

can be achieved with real atoms. Our microwave spectra reveal a rich

interplay between spin-orbit physics and Coulomb interactions in the

semiconducting region, which shares conceptual similarities with the

spectra of real atoms. While the spectrum of hydrogen can be effectively

modeled with a small number of parameters, we may wonder how many

such parameters are minimally needed here to account for the generic

features of our nanowire spectra.

As discussed above, the ingredients that matter are the finite length, at

least two transverse channels, spin-orbit coupling and interactions. All

these are required to account both for single-quasiparticle transitions

and mixed pair transitions. Therefore, as argued before, a minimal model

should include at least 2 longitudinal and 2 transverse normal sites

between the two superconducting reservoirs, which is precisely the

four-sites model introduced in Section 8.1.2. To incorporate the effect of

disorder in the normal region, including one scatterer in a longer TB

model is the least one can do. By adding more longitudinal sites and

several scatterers, our extended TB model from Section 8.1.3 allows to

reproduce correctly the measured spectra on the qualitative level, which

comforts our understanding. This is at the price of non-analytical results,

but has the credit of grasping the main effects that are relevant to account

for our series of measurements. With additional parameters, one would

probably be able to reach a quantitative fit of the spectra, but one would

not gain more physical insight into the physical phenomena that are at

play.
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In Chapter 4 we developed a general framework to model the coupling

of a phase-biased weak link with a microwave resonator. As a result of

this coupling, the resonance frequency of the coupled system depends

on the occupancy of the ABS levels in the weak link. In the limit of

weak coupling, this manifests as a state-dependent shift of the resonator

frequency around its bare value. By probing the resonator, one can

therefore track the many-body state of the weak link, which is encoded

in the resonator frequency shift.

So far, we focused on continuous probing of the resonator, where only

the frequency of the readout microwave is varied. When associated

to a second microwave tone to drive transitions between ABS, this

allows to perform the microwave spectroscopy of the weak link and gain

information on the level structure of the Andreev "atom". In Chapters 6,

7 and 8 we reported such spectroscopy on InAs nanowire weak links

and used it to evidence the fine structure of the ABS levels and the role

of Coulomb interactions. We described a general recipe to compute the

resonator shift associated to any many-body state of the weak link and

applied it to model the resonator shifts in two-tone spectra.

Let us now discuss time-resolved (=pulsed) measurements. As illustrated

in Figure 4.7, the Andreev "atom" hosted by finite-length weak links is

inherently a multi-qubit system, due to the presence of many ABS levels

in the gap, which makes the system very rich. One generally seeks for

simple situations, where the weak link hosts at best one or two high

transparency channels such that the spectrum of excitations exhibits

only a few well-isolated transition lines. Once a given transition has been

identified among themany lines present in the spectrum, one can attempt

to manipulate the states corresponding to the transition as a qubit using

sequences of time-resolved microwave pulses. Those generically involve

a sequence of drive pulses, used to prepare the qubit in a given state,

followed by a readout pulse on the resonator to measure the resulting

state of the qubit. As discussed in Figure 4.7, the four lowest-lying many-

body states of an Andreev "atom", labelled {|6〉, |> ↓〉, |> ↑〉, |4〉}, allow
to implement both an Andreev pair qubit (|6〉 → |4〉), and an Andreev

spin qubit (|> ↓〉 → |> ↑〉). While the former involves a pair of excitations

and therefore deals with the weak link’s charge, the latter corresponds to

manipulating the spin state of a single quasiparticle trapped in the lowest

ABS level.

After a reminder on state detection and single-shot state readout, we

present in Chapter 10 results on an Andreev pair qubit (APQ) and review

in Chapter 11 preliminary results towards the spin manipulation of a

single quasiparticle.
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Figure 9.1: (a) The quarter-wave resonator

is notched-coupled to a bus line. Its com-

plex transmission coefficient (21 depends

on the resonator frequency which itself

encodes the many-body state |Ψ〉 of the
weak link coupled to it. (b) At resonance,

the transmission coefficient shows a dip

in amplitude and a jump in its phase. (c)

�& representation of the tranmission coef-

ficient. Each many-body state |Ψ〉 of the
weak link is mapped to a point on the

circle.

9.1 State readout from transmission
measurements

Before delving into complicated math, let us start by sketching in a few

words the idea behind state readout. As discussed previously, to track

the many-body state of the weak link, one has to monitor the resonance

frequency of the resonator to which it is coupled. Instead of measuring

explicitly its resonance frequency, another possibility which is quicker

to implement is to couple the resonator to a bus line in a notch-type

geometry (see Figure 9.1(a)) and to measure the transmission (21($)
through this line of a microwave tone at a fixed angular frequency $,
chosen close to the bare resonator frequency $0. The transmitted signal

will therefore depend on $0 and whenever the state of the weak links

changes, the associated shift �$0 of the resonator frequency will modify

the amplitude and phase of the transmitted signal, which we can then

use as a marker of the weak link state. In the best scenario, amplitude and

phase signatures will be enough to discriminate amongst the different

many-body states of the weak link, so that a single-shot measurement

will allow to unambiguously determine the actual weak link state.

As discussed in Section 5.2.3, Eq. (9.1), the complex scattering parameter

for such a two-port network can be written:

(21($) = 04 9$�el
[
1 − &/&ext

1 + 29&($/$0 − 1)
]
, (9.1)

with $0 the resonance frequency, & the loaded total quality factor of

the resonator, 0 > 0 some real-valued amplitude capturing attenuation

and gain factors in the measurement setup and �4 ; the electrical delay
in the probe cables. As illustrated in Figure 9.1(b), the amplitude of

the scattering coefficient shows a dip at $0 and a jump in its phase.

Introducing the parameter 
 = &/&ext =
&int

&ext+&int

, the reduced frequency

H = ($ − $0)/$0, one can rewrite Eq. (9.1) in a way that makes explicit

the shape of this function in the complex plane:

(21(H) ∝ 1 − 

1 + 29&H

(9.2)

= 1 − 

[
1 − 29&H

1 + 29&H
+

29&H

1 + 29&H

]
= 1 − 


[
4 8� +

29&H

1 + 29&H

]
,

where � = −2 arctan (2&H). Then, rewriting the second term in the

bracket

29&H

1+29&H = 1 − 1/(1 + 29&H) = 1 − (1 − (21)/
, we obtain:

(21 = 1 − 
(1 + 4 8�) + 1 − (21

⇒ (21 = 1 − 

2

(1 + 4 8�). (9.3)

One recognizes in Eq. (9.3) the parametric equation of a circle of radius


/2 and center 1 − 
/2 in the complex plane, which is also commonly

called "�&-plane" in reference to homodyne demodulation technique: the

"In-phase" ("Quadrature") component is the real (imaginary) part of the

complex amplitude of a demodulated signal. This is illustrated in Figure
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9.1(c), where we represent parametrically the � and & quadratures of

the transmission coefficient (21($) given in Eq. (9.3). If we now measure

the � and & components of (21 at the bare frequency of the resonator,

any shift of its resonance frequency will be mapped to a point on this

circle. The resonator and its coupling to the external lines should then be

designed in such a way that the many-body states we want to resolve are

maximally separated on the �& circle.

Since the circle radius is given by 
, to maximize its size, one should

therefore choose &ext � &int. This condition is generally verified in

practice when fabricating resonators out of superconducting materials:

internal quality factors of several millions [104] have been achieved

with aluminium resonators on low dielectric-losses substrates. The total

loaded quality factor will therefore be limited by the external losses

captured by &ext and determined by the coupling of the resonator to the

external bus line. This coupling should be chosen such that the resonator

linewidth Δ$0 ≈ $0/&ext is comparable to the expected resonator shifts

�$ |Ψ〉
0

associated to the weak link’s many-body states |Ψ〉 that we want

to resolve. These constraints on the design were already discussed in

Section 5.2.3.

Before moving on, let us note that for a reflection type of measurement,

for which the scattering parameter being probed is this time (11, one also

obtains a circle in the �& plane but with a radius twice larger [21] [21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’, p. 38

:

(11(H) = 1 − 
(1 + 4 8�). (9.4)

This factor 2 gain in the SNR can make reflection measurements more

appealing than transmission ones. However, other difficulties may ap-

pear with reflection measurements, related in particular to the limited

performances of available directional couplers, which are commonly

used to route input/output signals in a reflectometry experiment. Due

to their low directivity, part of the output signal is polluted by the small

leakage through the coupler. This parasitic signal interferes with the one

reflected from the resonator, and does not carry any information.

Physically, this factor 2 can be understood as follows: among the photons

reflected off the resonator, only half of them are effectively routed through

the output port, the other half being back-scattered towards the input

port. In contrast, a reflection measurement only makes use of a single

port, and all the reflected photons are recovered. One way to bypass both

the factor 2 constraint on the SNR for a transmission measurement and

the limitation in directionality for reflection measurements is to perform

an asymmetric transmission measurements, whereby the input/output

ports are asymmetrically coupled to the resonator [105]

[105]: Heinsoo et al. (2018), ‘Rapid

High-fidelity Multiplexed Readout of

Superconducting Qubits’

[106] [106]: Bienfait (2016), ‘Magnetic resonance

with quantum microwaves’, p. 62

. Making the

output port very well coupled ensures to recover most of the reflected

photons, while keeping the input port weakly coupled so as to minimize

the perturbations from the environment.
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9.2 Time evolution of the resonator fields

To gain insight on the state readout through the resonator, an interesting

situation to describe is the response of the resonator to a square pulse

oscillating at an angular frequency $ ≈ $0. For simplicity, we will first

investigate the response to a step-like excitation, which corresponds to

the limiting case of a square pulse of infinite duration.

9.2.1 Step-like excitation: resonator response

Let us model the readout pulse by a step-like excitation of real amplitude

�0 and angular frequency $:

+in(C) = �0 4
9$C · Θ(C), (9.5)

where Θ(C) denotes the unit-step Heaviside function and we use a

complex amplitude notation to simplify the following math. So as to

probe the resonator response, the angular frequency $ of this input pulse

is chosen close to the frequency $0 of the resonator, which we are now

going to refer to as "the cavity", as its readout amounts to "load" it with

photons. We introduce the detuning &, counted in number of linewidths

away from the cavity resonance frequency $0, so as to keep it a reduced

parameter: $ = $0

(
1 + &

&

)
. The time evolution of the outgoing pulse is

readily obtained by Fourier transform:

+out(C) = F−1{F {+in(C)} · (21($)}
= (+in ∗ ℎ)(C), (9.6)

where ℎ(C) = F−1{(21($)} is the impulse response of the two-port

network and ∗ denotes the convolution operation. This impulse response

is easily computed by inverse Fourier transform of Eq. (9.2):

(21($) = 1 − 


1 + 9�($ − $0)
F−1

⇒ ℎ(C) = �(C) − 

�
4−

C
� 4 9$0C · Θ(C),

(9.7)

where we introduced the relaxation time of the cavity � = 2&
$ = 2

� , with

� the total loss rate of the cavity given by the full width at half maximum

(FWHM) of the resonator line. In this terms, the angular frequency of

the input pulse reads $ = $0 + �&. From Eqs. (9.6, 9.7), we deduce the

time evolution of the outgoing pulse:

+out(C) = �0E(C)

E(C) = 4 9$C
[
1 − 


1 + 29&

(
1 − 4− �C

2 4−9�&C
)]
· Θ(C).

(9.8a)

(9.8b)

Writing+out(C) = (�out− 9&out)�04
9$C ·Θ(C) = (�out− 9&out)+in(C), we can

identify the time evolution
∗
of the pulse coordinates {�out , &out} in the

rotating frame at $, using that
1

1+29& =
1√

1+4&2

4−9 arctan (2&)
:

∗
The minus sign in +out comes from the +$ convention in 4 9$C . This way,

+in(C) = Re[�04
8$C ] = �0 cos ($C) gives +out(C) = Re[(� − 9&)�04

8$C ] =

�0(� cos ($C) +& sin ($C)) and we recover the usual definition of the in-phase/in-

quadrature components of a modulated signal.
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Figure 9.2: Time response of the two-

port network to a unit-step excitation

+in(C) = 4 9$C · Θ(C) for 
 = 0.9 and

& = 100. (a) Time evolution in the �&-

plane of the outgoing pulse +out(C) =
(�out− 9&out)4 9$C ·Θ(C) for different detun-
ing & = ($−$0)/� to the cavity frequency

$0. The evolutions of both coordinates

for each value of detuning are shown in

(b). (c) Dependence on the detuning & of
the stationary amplitude �∞ and phase

�∞ of the outgoing pulse +out as given by

Eq. (9.11).


�out(C) = 1 − 


1 + 4&2

+ 
4−
�C
2

1 + 4&2

[
cos (�&C) − 2& sin (�&C)

]
&out(C) = −

2&


1 + 4&2

+ 
4−
�C
2

1 + 4&2

[
2& cos (�&C) + sin (�&C)

]
.

(9.9)

The complex amplitude �out = �out − 9&out can be seen to move at an

angular frequency$−$0 = �& on a circle of center�∞
out

and time-varying

radius '(C), given by �out(C) = �∞
out
+ '(C)4−9�&C with:

�∞
out
= 1 − 


1 + 29&
= (21($) = 1 − 
√

1 + 4&2

4−9 arctan (2&)

'(C) = 
4−
�C
2

√
1 + 4&2

4−9 arctan (2&).
(9.10)

After a time C ∼ � = 2/�, '(C →∞) = 0 and the complex amplitude has

converged towards its stationary value:

�∞
out
= 1 − 
√

1 + 4&2

4−9 arctan (2&) =
(
1 − 


1 + 4&2

)
+ 9 2
&

1 + 4&2

= �∞4
9�∞ ,

(9.11)

with


�∞ =

√
1 + 
(
 − 2)

1 + 4&2

→
&→0

1 − 


�∞ = arctan ( 2
&

1 − 
 + 4&2

) →
&→0

0.

In absence of detuning & = 0, we recover the expected results:

+out(C) = �04
9$C

[
(1 − 
) + 
4− �C

2

]
· Θ(C)

|+out | →
C→∞

�0(1 − 
) = �0 · |(21($0)|,

(9.12a)

(9.12b)

which consists in a linear superposition of the stationary response

(21($0) ×+in(C) and of a transient response 
4−
�C
2 ×+in(C) decaying over

a time ∼ � given by the loss rate � = 2/� of the cavity.

When the input pulse has a finite detuning & to the cavity frequency,

then the output pulse+out(C) shows transient oscillations at the detuning

frequency �& = $ − $0 (period &/&) as illustrated in Figure 9.2(b). The

trajectory in the �&-plane of the complex amplitude �out(C) presents
a spiral-like behaviour around its stationary value �∞

out
: its amplitude

starts from 1 then decays exponentially at a rate �/2 towards �∞
out

while

its phase wraps at the angular frequency �& (see Figure 9.2(a)).

For zero detuning, the amplitude stays real and follows a straight line in

the �& plane from amplitude 1 to amplitude (21($0) = 1 − 
. As a finite

detuning is introduced, this straight trajectory is deflected clockwise and

swirls around its stationary value. If we were to describe the complex

amplitude �out(C) as the position of a point moving in a 2D-plane seen

from a frame rotating at $, this deviation from its straight trajectory

would be understood as the action of a fictitious/inertial force, in a

manner formally similar to the Coriolis force in Newton mechanics,

which acts on objects in motion within a frame of reference that rotates

with respect to an inertial frame.
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Figure 9.4: (a) Single-tone resonator spec-
troscopy measured on the device with the

shunted CPW design and galvanic cou-

pling. The magnitude of the transmission

coefficient (21 is plotted as a function of

the probe frequency 50. (b) Amplitude and

phase of (21 at � = 0 (blue line in panel

(a)). The data is shown in black disks and

a fit with Eq. (9.1) is overlaid in red. An

extra fitting parameter &asym is added

to capture the small asymmetry in the

resonance line that may arise due to fi-

nite impedance mismatches on both sides

of the transmission line (see Eq. (23) in

[81]). The fit yields &int = 92800 ± 400,

&ext = 16960± 40 and 5A = 6.607643 GHz,

from which we deduce the total loaded

quality factor & ≈ 14300 and � = 690 ns.
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lines are the raw data after coherent averaging of 5000 pulses. The dotted lines are obtained by applying a moving average filter with a time

window of 100 ns. (b) Comparison of the filtered experimental data (dotted) with theory (solid lines) from Eqs. (9.9). The plotted theory

curves correspond to the best global fit of all curves with 
 = 0.91 and � = 3.3 × 10
−3

rad.s
−1
, i.e. a relaxation time � = 2/� = 604 ns. (c)

Single fit of the Δ 5 = 0 data giving � = 764 ± 3 ns.

In Figure 9.3, we show the measured time evolution of the transmitted

signal for an input square pulse of duration 5 µs and frequency 5 =

5A + Δ 5 , with various detuning Δ 5 = �&
2� = 0, 0.1, 0.2, 0.3, 0.5, 1.0 and

2.0 MHz around the resonator frequency 5A = 6.60752 GHz. The data

were obtained on the sample with the shunted CPW resonator design

with galvanic coupling (see Section 5.2.2). They were measured near

� = 0, where we can probe the bare resonator response as it is expected

to be only little affected by the weak link admittance. In Figure 9.3(a),

we present the raw data obtained after averaging ∼ 5000 pulses and

overlay a filtered version to better evidence the oscillations of the transient

response at the detuning frequency. The heterodyne modulation setup

used to acquire this data is presented in Section 14. What appears as noise

over the mean level of each curve is in fact a fast oscillation at twice the

intermediate frequency 2$�� (period 10 ns) arising from imperfections

of the IQ mixer used for down-conversion. Indeed, because of the finite

phase imbalance of the mixer, the circle in the �&-plane is slightly

distorted into an ellipse, which after numeric demodulation at $�� yields
a spurious amplitude modulation at 2$�� . This could easily be corrected,

either numerically after digitization of the pulses, or directly at the signal

level by applying phase/amplitude corrections to the LO tone. This was

not yet implemented at the time of these measurements.

In Figure 9.3(b), we compare the filtered data with the theory for �out =√
�2
out
+&2

out
from Eq. (9.9), while leaving � and 
 as free parameters, as

well as a global offset and scaling factor. The best fit yields 
 = 0.91 and

� = 604 ns. Note that although this value of � gives the best comparison

with theory when a global fit of all curves is performed, it remains

∼ 100 ns smaller than the value extracted when fitting only the resonant

response (see Figure 9.3(c)). Getting the right stationary values in panel

(b) requires taking a smaller � than the real relaxation time. If constraining

� to the value obtained in panel (c), then the stationary values for the

time evolutions shown in (b) may be off by at most ∼ 5%. Still, the values

of 
 and � obtained from the global fit of the transmitted signals compare

well with the estimates obtained by a reciprocal method in the frequency

domain, from single-tone measurements of (21( 5 ) around the resonator

frequency. As shown in Figure 9.4, a global fit of the amplitude and

phase of the measured transmission coefficient (21( 5 ) at � = 0 gives

&int ≈ 93 × 10
3
, &ext ≈ 17 × 10

3
, from which we deduce the loaded
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Figure 9.5: Dependence on the ampli-

tude ratio �0/�1 of the optimal duration

C0 = C
kick

for the pre-pulse, as given by

Eq. (9.14). The fast-load gives an advan-

tage, C
kick

< �, only in the region where

�
0

�
1

> (1 − 1

4 )−1 ≈ 1.58, denoted as red

area.

quality factor & =≈ 14 × 10
3 , 
 = &/&ext = 0.84 and � = &

� 5A
= 690 ns.

This measured value of & falls close to the nominal 10 × 10
3
value that

we had targeted for this design (see Section 5.2.3).

9.2.2 Time-resolved readout

Thedifferent states of themany-body systemare characterizedbydifferent

resonator frequencies, therefore different responses to the measurement

pulse, i.e. different trajectories in the �& plane. In practice, one would

send a readout pulse of duration )meas sufficiently long to separate the

trajectories beyond the noise. As discussed in the preceding section, the

maximum separation is achieved, with a square pulse, after a few �.
Ultimately, states are better distinguished if they correspond to frequency

shifts that differ by ∼ � = 2/�. When measuring spectra, one aims

at observing several transitions, and one chooses � as a compromise

between the frequency shifts of the different transitions. When aiming at

manipulating states that cause small shifts [32], like different spin states,

one would take a small �, at the cost of needing a long time to separate

the corresponding trajectories.

To circumvent the difficulty of the slow separation of the trajectories

with square measurement pulses, one can resort to other types of pulses.

For example, McClure et al. introduced so-called "CLEAR" pulses to

demonstrate rapid load and reset of a resonator. Such pulses differ only

slightly from standard square pulses by the addition of extra constant-

amplitude segments designed to “kick” the resonator rapidly from one

steady-state population to another [107] [107]: McClure et al. (2016), ‘Rapid Driven

Reset of a Qubit Readout Resonator’,

. It was shown that such simple

shaped pulses could reduce the time scale for cavity ring-down by more

than 2�.

Similarly, using a first constant segment of high amplitude and short
†

duration can allow to speed up the cavity ring-up. Such "fast-load" pulses

can be described by the following functional form:

+in, FL(C) =
[
�0 · Θ(C) − (�0 − �1) · Θ(C − C0)

]
4 9$C , (9.13)

where C0 denotes the duration of the fast-load pre-pulse and �0 its

amplitude. After this time C0, the pulse amplitude does not decay to zero

but maintains a constant sticky amplitude �1 < �0 during which the

cavity readout is performed. When the frequency $ of the pulse is tuned

to the cavity frequency $0, the amplitude of the transmitted pulse decays

exponentially at a rate �/2, as illustrated in Figure 9.3(c). Therefore by

choosing a duration C0 such that �0exp(−C0/�) = �0 − �1, i.e.

Ckick = � ln

(
�0

�0 − �1

)
<

�
1

�
0

<1− 1

4

�, (9.14)

one ensures that at C = C0, the transmitted pulse amplitude has reached

its stationary value �1.

This is illustrated in Figure 9.6, where we show the qualitative shape of

the transmitted pulse for three illustrative values of C0. When the pre-

†
Short compared to the relaxation time � = 2&/$0 of the cavity
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pulse (red solid line) is shorter than the value given by Eq. (9.14), there is

only small improvement compared to a standard square pulse (dashed

blue line): reaching the stationary value still takes a time ∼ �. Similarly,

when the pre-pulse is too long, there is an "overshoot" and the amplitude

has to relax back, as shown in Figure 9.6(c). For a pre-pulse duration

C0 = Ckick, the transmitted pulse has exactly reached its stationary value

at the end of the prepulse, i.e. over a time Ckick < �. This improvement

over a square pulse provides a simple way to speed-up the readout, but

note that the above considerations only hold for a resonant pulse. Finite

detuning will necessarily introduce oscillations due to the transients,

so that the overall pulse shape would still need to be optimized for the

separation of a given pair of states.

0

A1(1-α)

A1

A0 t0 < Tkick

0

A1(1-α)

A1

A0 t0 = Tkick

0

A1(1-α)

A1

A0

0  t0   3τ Tmeas

t0 > Tkick

0

αA1

t0 < Tkick

0

αA1

t0 = Tkick

0  t0   3τ Tmeas

0

αA1

t0 > Tkick

(a)

(b)

(c)

Figure 9.6: Adding a short pre-pulse of high amplitude before the readout square pulse

can allow for faster readout. The transmitted pulse (left column) and the intra-cavity

field (right column) are shown for the resonant case $ = $0 in three illustrative cases,

both for a fast-load (solid red) or standard square (dashed blue) input pulse. The input

fast-load/square pulses are depicted in the left column in thinner lines and paler color. (a)

When the pre-pulse duration C0 is smaller than C
kick

given by Eq. (9.14), then the transmitted

pulse has not reached yet its stationary value at the end of the prepulse and a further

relaxation over a time ∼ � still takes place. (b) When C0 = Ckick, the stationary amplitude is

exactly reached at the end of the pre-pulse: instead of waiting about 3�, readout can be

performed already at C = C0 < �. The associated intra-cavity field shows an-almost square

shape. (c) If the pre-pulse duration is chosen too long, C0 > C
kick

, then the transmitted

pulse amplitude overshoots and has to relax back on a time ∼ �, therefore removing any

advantage of the fast-load.
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Figure 9.8: Trajectories in the �&-plane

during a fast-load pulse (solid dots) or

a square pulse (open dots), for & = 0.8
(black) and & = −2 (red), using�0 = 1 and

�1 = 0.3. With a square pulse, the trajec-

tory develops from (� , &) = (�1 , 0) (open
circles). During the pre-pulse, one starts

from a large amplitude (� , &) = (�0 , 0),
and reaches at C

kick
a larger amplitude

in &out . When the pulse amplitude is

reduced to �1 , the representative point

jumps in �out by �1 − �0 , then spirals to-

wards the asymptotic value, which is on

the circle corresponding to the amplitude

�1 .

To illustrate on real data the effect of a fast-load pulse, we show in

Figure 9.7(a) measurements of one quadrature of the transmitted pulse

for several durations of the high amplitude pre-pulse. The best perfor-

mances are obtained for C0 = 200 ns (green curve), which coincides well

with the expected value of Ckick for an amplitude ratio �0/�1 = 4 and

� = 764 ns. In Figure 9.7(b), we compare the associated response to

the one obtained without any pre-pulse, which shows that the station-

ary regime is reached about 4× earlier by using a fast-load sequence.
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Figure 9.7: Tuning the pre-pulse duration. (a) One quadrature of the transmitted pulse is

shown after demodulation for several values of C
kick

, with )meas = 5 µs, �0/�1 = 4 and

5 = $/2� = 6.60725 GHz. Each curve results from coherent averaging of 1000 pulses.When

the duration is tuned to∼ 200 ns, the amplitude stays flat after the pre-pulse with no further

evolution ; this value coincides well with the expected C
kick
≈ −760 × ln (1 − 1/4) = 220 ns.

(b) Comparison of the time responses for an initial pre-pulse of 200 ns (green curve) and

without (red curve). With a standard square pulse, the stationary amplitude is reached after

about 3� ≈ 2.1 µs (red arrow). With a fast-load however, it is reached as early as ∼ 0.5 µs
(green arrow).

Similarly as for the square pulse Eq. (9.5), we can derive an analytical

expression for the time evolution of the outgoing pulse when a fast-load

sequence is operated. With the input signal given by Eq. (9.13), we obtain

using Eqs. (9.8, 9.7) the following generalization of Eq. (9.8):

+out, FL(C) = �0E(C) + (�1 − �0)E(C − C0)

E(C) = 4 9$C
[
1 − 


1 + 29&

(
1 − 4− �C

2 4−9�&C
)]
· Θ(C). (9.15)

Writing this time +out, FL(C) =
(
�out, FL(C) − 9&out, FL(C)

)
4 9$C , the coordi-

nates in the �&-plane after demodulation at $ are then easily deduced

by linearity of the response:{
�out, FL(C) = �0 �out(C) · Θ(C) + (�1 − �0) �out(C − C0) · Θ(C − C0)
&out, FL(C) = �0 &out(C) · Θ(C) + (�1 − �0)&out(C − C0) · Θ(C − C0),

(9.16)

where �out(C) and&out(C) are the expressions for a square pulse excitation
given by Eq. (9.9). In Figure 9.8, we compare the trajectories with a square

and an optimized fast-load pulse (pre-pulse duration C0 = Ckick), using

�0 = 1 and �1 = 0.3.

In principle, one would use a large ratio �0/�1 to have the pre-pulse as

short as possible. In practice, �0 is limited by the maximum available

voltage of the arbitrary-wavegenerator (generally∼ 1V), and�1 cannot be

too small for a good performance of the mixer that combines the fast-load

waveform with the microwave tone. We used typically �0/�1 ∼ 3 − 4.
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The actual measurement results from an average
‡
of (�out , &out) during

a time )meas. This is illustrated in Figure 9.9, which shows how the

pre-pulse allows to separate the states more efficiently. How this is done

in practice is discussed in Section 14 and in Appendix I
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Figure 9.9: (a) Trajectories in the �&-plane during time)meas (solid lines) and total trajectory

(thin lines) after an optimized pre-pulse (C0 = Ckick, trajectories starting on the left hand

side) or with a standard square pulse (trajectories starting at �out = 0.3), for 4 values of the

detuning & = 0.05, 0.2, 0.4, 1. Without pre-pulse, we use )meas = Ckick + �. With pre-pulse,

)meas = �. Solid and open dots show the average values of (� , &) on each trajectory. (b)

Dotted lines show the position of the averages when & is varied.

‡
More elaborate methods have been reported in the literature to distinguish two states of a

simple qubit [108, 109, 110].



1: Thosedrifts inphaseweremainlydue to

periodic changes of the room temperature

due to the cycling of the air conditioning

system used in the experiment room.
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Figure 10.2: Equivalent electrical circuit
of the cQED setup with galvanic coupling

to the nanowire weak link. The readout

resonator, probed by a microwave tone 50,
ismodeledbyaparallel LC circuit (orange).

A part ℓ (light blue) of its total inductance
! is shunted by the nanowire weak link,

symbolized by a green bar surrounded by

twogrey triangles for the superconducting

electrodes. This naturally defines a DC

loop through which a flux Φ is threaded

to phase-bias the weak link. A bias tee is

used to both gate the nanowire with a DC

voltage+6 and to apply an AC microwave

drive 51 to drive transitions between the

ABS levels hosted by the weak link.

Manipulation of an Andreev pair
qubit 10

10.1 Rates & population dynamics131
10.2 Driven dynamics & coher-
ence . . . . . . . . . . . . . . . . . . 133

After this review on state readout, let us present experimental results

on the coherent dynamics of Andreev levels in nanowire weak links

and on the manipulation of a nanowire-based Andreev pair qubit. The

device and experimental setup that were used for these measurements

are depicted in Figure 10.1. The setup is essentially unchanged compared

to the one used in Chapter 6 (see Figure 6.3), except that we moved

to a heterodyne detection scheme to get rid of the slow drifts in the

signal phase that were plaguing our measurements
1
. As the signal is

now encoded in an amplitude modulation over the slowly-varying drifts,

those are completely discarded after numerical demodulation at the

intermediate frequency $IF.

f0
TWPA

Readout

f1
Drive

Vg

250 µm

(a)

(b) Φ

(c)
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I
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Q(t)
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Figure 10.1: cQED setup used for time-domain measurements. (a) Optical image of the

measured device (sample S2). Left port connected to the gate is devoted to tune the

properties of the NWwith a DC voltage +6 and to drive microwave transitions between

ABS with a tone at frequency 51. (b) Close view (SEM image), showing the local back

gate placed below the weak link. (c) (optical image) Shorted end of the resonator, with

nanowire in green rectangle corresponding to the area shown in (b). A superconducting

coil placed under the sample allows to control, through the flux Φ, the superconducting
phase difference across the weak link. The �/4 CPW resonator is probed by a readout

tone 50 through a bus transmission line to which it is coupled in a hanger geometry. The

readout tone 50, generated by mixing a LO tone with � and & pulses at $IF/2� = 50 MHz,

is sent to the bus line, then amplified (triangle) with a TWPA followed by a HEMT and a

room-temperature amplifier (not represented); and finally down-converted with another

IQ mixer in a process known as heterodyne detection. The � and & outcomes are then

digitized and numerically demodulated at $IF (not shown).

The experimentswere performedwith sample S2. An equivalent electrical

circuit of the device is shown in Figure 10.2. As already mentioned,

moving to a galvanic scheme increased the geometrical coupling to the

nanowire by about two orders of magnitude (factor ×275 in �2

zp
), which

allowed to better resolve the many-body states. In addition, the stronger

coupling to the measurement port (&ext ∼ 17× 10
3
instead of& 170× 10

3

in sample S1) allows faster resonator readout.
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𝑉௚ = 0.695𝑉(a) (b) (c)

(#50000pts)

0.5µs

Figure 10.3: (a) Continuous-wave single-tone spectroscopy of the resonator showing the modulation of its frequency as a function of the

applied gate voltage +6 , close to a sweet spot at +6 = 0.695 V. The color-scale encodes the magnitude of the transmission coefficient (21 as a

function of the frequency of the probe tone 50. (b) Similar measurement performed at the sweet spot gate voltage showing the modulation

of the resonator frequency as a function of the superconducting phase difference �, which is controlled by sweeping linearly the magnetic

flux Φ in the weak link loop. Close to � ∼ �, one observes two dips in the transmission coefficient, corresponding to the resonator frequency

when the weak link resides either in the ground (|6〉) or in the odd state (|>〉). Same data as the one presented in Figure 9.4, which was used

to characterize the resonator readout dynamics. (c) Histogram showing the outcome of 50000 measurements pulses taken at � = � at the

sweet spot in gate in absence of any driving. The pulse sequence shown in orange consists of a high amplitude fast-load pre-pulse of 220 ns

duration followed by a 500 ns square pulse for readout. The results gather in two well-resolved clouds, which are identified as the ground

(|6〉) and odd state (|>〉) of the weak link. The � and & values are normalized by �, which corresponds to the spread of the gaussian-fitted

clouds.

10.1 Rates & population dynamics

10.1.1 Single-shot readout

We first performed a continuous-wave resonator spectroscopy to choose

a working point in gate and flux. In Figure 10.3(a), we show how the

resonator frequency is modulated with gate voltage around its bare

frequency 5A = 6.6076GHz, in the region of interest for the data presented

in the following. At +6 = 0.695 V, the resonator frequency shows a

local minimum in gate voltage: operating in such sweet spot is highly

appreciated as it allows to be insensitive to first order noise in gate

voltage.

Figure 10.3(b) shows the associated modulation in flux of the resonance

around � = � for the gate voltage value of the sweet spot. Note that this

data is the same as the one presented before in Figure 9.4, whichwas used

to characterize the resonator dynamics and from which we extracted

the time constant � ≈ 700 ns of the resonator and its bare frequency

5A = 6.607643 GHz. In this particular situation, one can observe that near

� = �, the transmission coefficient features two dips in its magnitude,

corresponding to the resonator frequency associated to the lowest two

many-body states of the weak link. As this measure was performed

in absence of any driving 51, we expect the system to reside mainly

in its ground state. Therefore, the lower dip around 50 = 6.6067 GHz

is associated to |6〉. As a now well-established characteristic of such

nanowire weak link, we know that in some fraction of the time, the

system is poisoned by some non-equilibrium quasiparticles and therefore

resides in an odd-parity state, labelled |>〉 [19, 88]. Importantly, note that

contrary to atomic contacts data, the resonator frequency still exhibits a

small shift in the odd state of finite-length weak links. This was discussed

in Section 4.2.3, where we attributed this effect to a contribution from

the continuum.
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To better evidence the two states, we show in Figure 10.3(c) a histogram

of the outcome of 50000 measurement pulses taken at the sweet spot

at � = � without any driving. The measurement pulse, which was set

at the frequency of the odd state 50 = 6.6075 GHz, consists in a high

amplitude pre-pulse of 220 ns to fast-load the resonator, followed by

a 500 ns square pulse for readout. After down-conversion to the IF

frequency ($IF = 50 MHz), the pulses were digitized and demodulated

numerically, as described formally in Section 14.3 and in Appendix I. For

each pulse record, averaging the demodulated samples over the time

window corresponding to the readout part of the pulse yields one pair

of {� , &} outcomes. As observed in Figure 10.3(c), the results cluster in

two well-resolved clouds of points. As the system mainly resides in its

ground state, the most intense cloud corresponds to |6〉. The other cloud,
which is associated to |>〉, does not split when � departs from �. The
two spin substates |> ↑〉 and |> ↓〉 remain undistinguishable: this will be

discussed in section 11.2. These measurements illustrate how in absence

of any driving, the weak link resides in a steady mixed state, where the

normalized number of points in each cloud of the �& histogram is a

direct measurement of the states’ population. Importantly, because the

two clouds are separated enough, a single measurement pulse allows to

discriminate between the two many-body states |6〉 and |>〉 of the weak

link.
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Figure 10.4: Parity switching rates. (a) Evolution of the ground (blue) and odd state (green)

populations %6 and %> as a function of the time delay between the state preparation by

pre-selection and the readout, for three different cases: no state pre-selection (circle data),

with |6〉 (triangle data) or |>〉 (square data) pre-selection. (b) Two-statemaster equation used

to model the state population evolution. Best fit of the data obtained when pre-selecting

|6〉, which gives %6(0) = 0.93, Γ>6 = 50 ms
−1

and Γ6> = 13.4 ms
−1
, is overlaid on the data

in (a), as well as the prediction for %6(0) = 0.275 (|>〉 pre-selection) and %6(0) = 0.65 (no

pre-selection).

10.1.2 Parity-switching rates

We first explored the dynamics between |6〉 and |>〉 by measuring how

the system relaxes to steady state after preselecting a starting point (see

method in Section 14.4). In Figure 10.4(a), we show for three different

cases the evolution of the ground and odd state populations %6(C) and
%>(C) as a function of the time delay between the state preparation by pre-

selection and the readout. The first case corresponds to no pre-selection.

In such situation, the system resides in a mixed state with in average

%6,∞ = 0.65 and %>,∞ = 0.35. The two other cases correspond to an

initial pre-selection of either |6〉 (triangle data points) or |>〉 (square
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data points). By preparing the state in |6〉, pre-selection allows to start

with an initial population as high as %6 = 0.93. As the delay between

state preparation and readout increases, %6 relaxes back to %6,∞ at a rate

Γ6> . Similarly, if |>〉 is pre-selected, we manage to start with an initial

population %> = 0.74, which relaxes back to %>,∞ at a rate Γ>6 . We can

model this 2-state dynamics using the following master equation for the

populations %6 and %> , associated to a normalization condition:{
%′6(C) = −2Γ6>%6(C) + Γ>6%>(C)
%6(C) + %>(C) = 1,

(10.1)

where the prime exponent denotes time derivative. Injecting the normal-

ization condition in the first equation, we can rewrite it as a function of

%6 only:

%′6(C) + (2Γ6> + Γ>6)%6(C) = Γ>6 . (10.2)

The solution of this first order equation is then easily found:

%6(C) =
(
%6(0) − %6,∞

)
4−Γ6 C + %6,∞ with


%6,∞ =

Γ>6

Γ6

Γ6 = 2Γ6> + Γ>6 .
(10.3)

Fitting the %6(C) and %>(C) curves obtained when pre-selecting |6〉 yields :
%6(0) = 0.93, Γ6> = 13.4 ms

−1
and Γ>6 = 50 ms

−1
. The steady state

populations are %6,∞ =
Γ>6

2Γ6>+Γ>6 = 0.65 and %>,∞ = 1 − %6,∞ = 0.35.

The solid lines shown in Figure 10.4(a) correspond to the theory from

Eq. (10.3) applied with the rates obtained from this fit of the data with |6〉
pre-selection and for different initial populations : %6(0) = 0.93, 0.65 and

0.275. The effective relaxation rate for |6〉 is given by Γ6 = 2Γ6> + Γ>6 =
76.8 ms

−1
, which corresponds to a time scale )parity = 1/Γ6 = 13 µs. Note

that this lifetime for the odd state is about a factor ×10 smaller than what

was found in experiments with atomic contacts [88]. Surprisingly, the

parity switching time measured by Hays et al. on similar nanowire weak

links was also found to be much bigger, around )parity ≈ 160 µs. Finally,
note that the hierarchy Γ>6 > Γ6> was also found in atomic contacts weak

links.

10.2 Driven dynamics & coherence

10.2.1 Evidencing the excited state

Let us now investigate the effect of a drive tone at frequency 51. To do so,

we use the same readout sequence as in Figure 10.3 but prepend before

it a driving pulse at frequency 51. This allows to perform a two-tone

spectroscopy of the weak link at the sweet spot gate voltage+6 = 0.695 V,

which is presented in Figure 10.5(a). The measured spectrum shows a

parabolic-shaped line with a minimum 5�(� = �) = 9.28 GHz, typical

of a pair transition (PT) to the lowest-lying ABS manifold, as well as a

set of four single-quasiparticle transitions (SQPT), shown in green, with

vanishing intensity away from � ∼ �.
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Figure 10.5: (a) Two-tone spectroscopy performed at +6 = 0.695 V showing a pair transition (red), labelled PT, and a set of single-particle

transitions (green), denoted SQPT. The dashed blue lines correspond to half the frequency of the PT with offsets 11.8 and 12.5 GHz. The �
quadrature obtained after numerical demodulation at $IF/2� = 50 MHz is plotted as a function of the superconducting phase-difference �
across the weak link and the frequency 51 of the driving tone. Each data point is obtained by averaging the � outcome of 1000 demodulated

pulses consisting of a 220 ns fast-load pre-pulse followed by a 500 ns readout square pulse at 50 = 6.6075 GHz. This readout sequence was

preceded by a 10 µs square saturating drive pulse at the frequency 51. (b) Histogram showing the outcome of 10 million measurement pulses

taken at � = � at the sweet spot in gatewith a driving tone (violet pulse) at the frequency of the pair transition (PT) 51 = 5�(� = �) = 9.28GHz.

The pulse sequence shown in orange consists of a high amplitude fast-load pre-pulse of 220 ns duration followed by a 500 ns square pulse

for readout. Compared to Figure 10.3(c), a third cloud is now visible in the histogram, positioned symmetrically to |6〉 with respect to the

|>〉 cloud. Because it appears only when driving at 5�, this cloud is associated to the excited state, labeled |4〉.

When driving at the frequency of the pair transition 51 = 5�(� = �) =
9.28 GHz, we observe a new cloud appearing in the histogram of the

�& values at � = � (see Figure 10.5(b)). Because it only appears when

driving at this frequency, we attribute it to the lowest excited state of

even parity, denoted |4〉, which is obtained by creating two electron-like

excitations in the lowest ABS manifold. This interpretation is supported

by the fact that the clouds corresponding to |6〉 and |4〉 are located

almost symmetrically with respect to that corresponding to |>〉. Indeed,
as demonstrated in Section H.1 for the case of zero-length junctions (and

easily generalizable to the finite-length case), the resonator shifts in |6〉,
|4〉 and |>〉 verify the following half-sum rule : (� 5 |6〉A + � 5 |4〉A )/2 = � 5 |>〉A .

This is a quite general result, true even when contributions from the

continuum are included, but as a key point of Refs [64, 50]

[64]: Kurilovich et al. (2021), ‘Microwave

response of an Andreev bound state’

[50]: Fatemi et al. (2021), ‘Microwave

susceptibility observation of interacting

many-body Andreev states’

, it holds only

for non-interacting many-body states, which may explain why a perfect

symmetry about the odd state cloud is not observed here.

10.2.2 Coherent manipulation of the |6〉 → |4〉 transition

To confirm the clouds identification, we perform a Rabi flopping ex-

periment at the frequency of the pair transition |6〉 → |4〉 at � = �, as
identified from Figure 10.5(a). To do so, we vary the duration C3 of a

square driving pulse of frequency 51 = 5�(� = �) = 9.28 GHz preceding

the readout pulse sequence. For each value of the drive duration, we

fit with a mixture of three gaussians the associated histogram of the

� , & outcomes obtained by demodulating 50000 readout pulses. The
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Figure 10.6: Coherent manipulation of an Andreev Pair Qubit. (a) Rabi flopping of the |6〉,|4〉 populations as a function of the drive pulse

duration C3 . The drive frequency is set to 51 = 9.28 GHz, which corresponds to the frequency of the pair transition at � = � depicted in

Figure 10.5(a). (b) Enlargement on the first 14 ns of the data from panel (a). An asterisk indicates the drive duration corresponding to a �
pulse. For each value of the drive duration, the populations of the three states are extracted by fitting with a mixture of three gaussians the

histograms of the � , & outcomes obtained by demodulating 50000 readout pulses. Such an histogram is shown in panel (c), corresponding

to the situation where a � pulse drive was sent. It illustrates the transfer of population from |6〉 to |4〉 due to the coherent drive. (d) Bloch

sphere representation of the Andreev Pair Qubit state, describing the effect of the coherent drive as a rotation 'Ĝ� at the Rabi frequency $'
of the state vector around the Ĝ axis. Starting from the north pole, associated to |6〉, a pulse of duration C3 drives the qubit to a coherent

superposition 
 |6〉 + � |4〉.

normalized height of the three gaussians gives access to the associated

state population, which we can then monitor as a function of the drive

pulse duration. This is illustrated in Figure 10.6(a), which shows coherent

oscillations of the populations with C3, with a clear oscillatory transfer

between %6 and %4 . This evolution is described qualitatively using a

Bloch sphere representation of the |6〉 → |4〉 qubit state (see Figure

10.6(d)), where the north (resp. south) pole corresponds to |6〉 (resp. |4〉).
The effect of a resonant drive is then seen as a rotation 'Ĝ� of the state

vector around the Ĝ axis at the Rabi frequency $' proportional to the

drive amplitude, with a polar angle � = Ω'C3, itself proportional to the

drive pulse duration. Starting from the north pole, associated to |6〉, a
pulse of duration C3 then drives the qubit to a coherent superposition


 |6〉 + � |4〉, with 
 = cos (�/2) and � = sin (�/2). Subsequent readout
will therefore find the system with a probability |
 |2 ∝ cos

2 (Ω'C3/2) in
|6〉 and a probability 1 − |
 |2 in |4〉. In addition to this simple picture,

we also observe a small oscillation in the odd state population %> in

phase with the oscillation in %4 . At first sight, this is surprising since

the drive tone being used is resonant with the transition between two

even-parity states, and we do not expect microwaves to couple states

of different parity. This oscillation is understood here as a consequence

of relaxation before measurement: there is a finite delay between the

driving pulse and the readout one, and the duration of the readout pulse

is also finite. In this time interval part of the |4〉 population relaxes to |>〉
or |6〉 leading to an oscillation of %> in phase with that of %4 . Note that
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similar measurements on atomic contacts did not show such an effect [21] [21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’, p. 92

,

indicating that the rate Γ4> is significantly larger here. The measurement

of Γ’s is described the next section.

The damping of the oscillations is associated both to the relaxation rate

of |4〉 and to the dephasing rate at the Rabi frequency [111] [111]: Ithier et al. (2005), ‘Decoherence in a

superconducting quantum bit circuit’

. In order

to measure these rates independently, other pulse sequences are used.

First, using the measured Rabi oscillations, we define a � = � driving

pulse which sets the qubit into its maximally excited state. From Figure

10.6(b), we see that |4〉 reaches a maximum for a drive duration C� = 3 ns,

highlighted by a black asterisk in the figure. The associated histogram is

shown in Figure 10.6(c), where the population transfer from the |6〉 cloud
to the |4〉 one is observed. Once again, this transfer appears uncomplete

because of transitions during the measurement.
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Figure 10.7: Relaxation dynamics. (a) Evolution of the ground, odd and excited states

populations %6 , %> , %4 as a function of the time delay C
delay

after a �-pulse. %4 decays
exponentially to zero over a typical time scale of 1.5 µs. (b) Schematics of the pulse sequence,

consisting of a square drive pulse (violet) of duration C� = 3 ns to prepare the system in its

maximally excited state, followed by the usual readout sequence (orange) which is delayed

with respect to the drive pulse end by a time C
delay

. In a Bloch sphere representation, the

�-pulse by definition corresponds to a rotation 'Ĝ� of the state vector, which is brought

to the south pole associated to the excited state |4〉. (c) Three-state model of the system

with six different rates. The associated master equation is solved and the best fit of the

dynamics is displayed as solid lines in panel (a) on top of the experimental data. The

extracted rates are summarized in the given table and represented on the state diagram

with arrows’ thickness proportional to the relative rates. The Γ64 rate which is several

orders of magnitude lower than the others is depicted with a dashed arrow.

10.2.3 Lifetime of the excited state

To access the lifetime of the excited state, we drive the pair qubit into

its maximally excited state by use of a �-pulse, and measure its state

with the same readout sequence as before, but after a delay Cdelay. The

relaxation dynamics of the three states’ populations is shown in Figure

10.7(a). As the delay is increased, the population %4 of the excited state

decreases because it relaxes back to the ground state. %4 is observed

to decay exponentially over a time scale )1 ∼ 1.8 µs.The relaxation of

the ground state population %6 to its steady-state value %6,∞ = 0.65 is
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found to be well captured by a double exponential increase with time

scales �6,1 , �6,2 = 1.8, 15.7 µs. As for the odd state, its population %>
shows a non-trivial evolution characterized by a fast initial increase, a

bump at Cdelay ∼ 3 �s, and finally a long-time decrease to its steady-state

value %>,∞ = 0.35 over a ∼ 14 µs. This relaxation dynamics can be well

accounted for by the following three-state master equation, with six rates

and two initial populations %6(0) and %4(0):{
%′4(C) = Γ64%6(C) − (Γ4 6 + 2Γ4>)%4(C) + Γ>4%>(C)
%′6(C) = −(Γ64 + 2Γ6>)%6(C) + Γ4 6%4(C) + Γ>6%>(C).

(10.4)

The six rates are defined in the state diagram in Figure 10.7(c). Using the

normalization condition %6 + %4 + %> = 1, we can rewrite this system in

function of %6 and %4 only:{
%′4(C) = (Γ64 − Γ>4)%6(C) − (Γ4 6 + 2Γ4> + Γ>4)%4(C) + Γ>4
%′6(C) = −(Γ64 + 2Γ6> + Γ>6)%6(C) + (Γ4 6 − Γ>6)%4(C) + Γ>6 .

(10.5)

It assumes an analytical solution, but the expressions for %6(C) and %4(C)
are long and cumbersome and are therefore not given here in extenso. The

solution of the master equation Eq. (10.5) is used to fit the data of Figure

10.7(a) with the six rates as free parameters and the initial populations

fixed by the data. This model is found to fit well the data (see solid lines

in Figure 10.7(a)) and the extracted rates are summarized in the table of

Figure 10.7(c). From Eq. (10.5), we identify the typical relaxation rate of

the excited state Γ1 = Γ4 6 +2Γ4> +Γ>4 = 550 ms
−1
, fromwhich we deduce

the typical lifetime of |4〉, )1 = 1/Γ1 = 1.8 µs (= �6,1). The other relevant
rate, associated to the long-time regain of %6 after the� pulse is identified

to Γ6 = Γ64 + 2Γ6> + Γ>6 , which corresponds to �6,2 = 1/Γ6 = 15.7 µs.

The dominant rate is found to be Γ4 6 = 400 ms
−1
. We can also deduce

the rates Γin, Γout for getting a single quasiparticle in or out : Γin =

2Γ6> = 14.2 ms
−1

and Γout = Γ>6 = 49.4 ms
−1
. Remarkably, the rate Γin2

(resp. Γout2) for getting in (resp. out) a second quasiparticle is found to

be different than Γin (Γout) for the first one : Γin2 = Γ>4 = 6.2 ms
−1

and

Γout2 = 2Γ4> = 144 ms
−1
. This asymmetry Γ4> ≠ Γ>6 (resp. Γ6> ≠ Γ>4 )

for removing (resp. adding) a quasiparticle might be interpreted as a

consequence of a Coulomb interaction effect beyond mean-field, which

was the subject of Chapter 8.

As illustrated in Figure 10.8(a), the initial excited state population can be

slightly increased by preparing the system in |6〉 by state pre-selection,

before applying the �-pulse. Although pre-selection is demonstrated to

work well and an initial population %6 = 0.93 is achieved, only ∼half of
this population is at best found in |4〉 after the measurement sequence:

with a �-pulse one obtains an initial population %4(0) = 0.43 instead

of 0.3 without pre-selection. Using the rates extracted from the dataset

without pre-selection, we capture well the population evolutions of all

data sets by merely changing the populations at Cdelay = 0 (see Figure

10.8(c)).
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Figure 10.8: (a) Rabi oscillations at the frequency of the pair transition for � = �, at the sweet

spot gate voltage+6 = 0.695 V. The evolution of the populations %6 , %> and %4 is plotted as

a function of the drive pulse duration C3 with (bottom) or without (top) pre-selection of |6〉
before manipulation. (b) Schematics of the pulse sequences used for Rabi measurements

(a) and relaxation measurements (c), with state pre-selection. (c) Evolution of the state

populations %6 , %> and %4 as a function of the delay after a �-pulse for three different

cases: no state pre-selection (circle), with |6〉 (triangle) or |>〉 (square) pre-selection. The
duration of the �-pulse is determined from (a). Solid lines are predictions from the master

equation model using the rates extracted from the fit of the data without pre-selection, by

just changing the initial populations.

The value of Γ1 that is found here is about four times larger than what

was measured in experiments with atomic contacts [21] [21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’, p. 146

2

2: To perform a fair comparison one have

to consider the rates obtained for an atomic

contact with a similar Purcell relaxation

rate.

. Indeed, both

the direct rate Γ4 6 and the relaxation channel through the odd state is

observed to be four times faster than for atomic contacts. Relaxation

through the odd states occurs at a rate Γ1,odd =
Γ4>Γ>6

Γ4>+Γ>6 = 30 ms
−1
,

which is about ×4 larger than for atomic contacts, although the rates

ratio for the two relaxation channels
Γ1,even
Γ1,odd ≈ 13 is similar. This fast

relaxation from |4〉 to |>〉 limits the maximal %4 accessible with a �-pulse,
so that even with |6〉 pre-selection, the maximum %4 accessible does not

exceed ∼ 0.4. As another remarkable difference with atomic contacts,

we observe that reciprocal processes for poisoning and de-poisoning

events do not have similar rates here: Γ6> ≠ Γ6> and Γ4> ≠ Γ>4 . The

de-poisoning processes that remove quasiparticles are about ×10 faster

than the poisoning processes. The comparison here is done for a given

working point in gate and flux. To complete the analysis, one should

perform in the future similar measurements for the rates as a function

of the frequency of the pair transition to allow for a fair comparison

between nanowire- and atomic contact weak links.

10.2.4 Coherence

To conclude the characterization of this nanowire-based Andreev pair

qubit, we now present the measurements performed to quantify its

coherence properties at � = �. The latter is known to be limited by two

effects: pure relaxation at a rate Γ1 which we just characterized, and pure

dephasing at a rate ΓΦ, which originates from fluctuations of the qubit
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frequency. In particular, since the Andreev energy depends both on �
and +6 , noise in flux and gate voltage can directly affect the coherence

of an Andreev Pair Qubit. To minimize these two possible sources of

dephasing, one generally tries to work in so-called "sweet spots", where

the qubit frequency dispersion with the external parameters (here Φ

and +6) exhibits a local extremum. This way, qubit operation remains

insensitive at first order to these possible noise sources. Therefore, for

the best performance we characterized our pair qubit at � = � and at

+6 = 0.695 V where the pair transition frequency exhibits a minimum

both in flux and gate voltage.
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Figure 10.9: Ramsey experiment and two-tone spectroscopy of an Andreev Pair Qubit,

suggesting the presence of a bi-stable charge fluctuator (BF). (a) Ramsey sequence, consisting

in two �/2 rotations 'Ĝ
�/2 separated by a time delay C

delay
. A C

delay
-dependent phase !

can be added to the second �/2-pulse to introduce oscillations in the Ramsey pattern and

allow for a more accurate fit. Contrary to the previous data, the drive pulses were this time

designed with a gaussian envelope with FWHM=16 ns. (b) Corresponding Qubit trajectory

on the Bloch sphere for ! = 0. (c) Measured evolution of the populations %6 , %4 and %>
as a function of the time delay C

delay
between the two �/2-pulses of a Ramsey sequence.

Oscillations in the populations are obtained by setting alternatively ! to 0 and �. Data

without the ! rotations are shown with dashed lines. (d) Fit of the %4 evolution with

Eq. (10.6) showing an exponential damping of the oscillations with C
delay

over a typical

decay time )
decay

= 13 ± 1 ns, as well as a beating with a half-periodicity in C
delay

of about

24 ns, corresponding to a ∼ 20 MHz detuning.

Ramsey experiment

To characterize the dephasing time )Φ = 1/ΓΦ of our qubit, we perform

a Ramsey sequence, with consists in applying two driving �/2-pulses
separated by a delay Cdelay andmeasuring the qubit state right afterwards.

The first pulse ideally drives the qubit to an equal superposition (|6〉 +
|4〉)/
√

2 ; in the Bloch sphere representation, this amounts to bringing

the state vector from the north pole to the equator, as shown in Figure

10.11(a). If Cdelay is short and no dephasing occurs between the two pulses,

the second one then drives the qubit to |4〉, associated to the south

pole of the Bloch sphere. If dephasing occurs during the delay, then the

state vector will diffuse on the equator, i.e. the state will change from

(|6〉 + |4〉)/
√

2 to (|6〉 + 4 8Ψ |4〉)/
√

2. After the second �/2-pulse, the qubit
will therefore be in {G, H, I} = {sin (Ψ), 0,− cos (Ψ)}, corresponding to

the state sin (Ψ/2)|6〉 + cos (Ψ/2)|4〉. The second �/2-pulse will then
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Figure 10.10: (a) Two-tone spectroscopy

of the pair qubit frequency around � = �
with a finer frequency resolution than in

Figure 10.5, evidencing a split-peak struc-

ture of the qubit transition line. (b) Linecut

of (a) at � = � showing a clear 20 MHz

splitting of the qubit frequency around

5� ≈ 9.30 GHz. A gaussian fit of the two

peaks is overlaid in solid blue line. Indi-

vidual contributions to the lineshape are

shown in dashed black lines.

bring the qubit to |4〉 with an oscillating probability cos
2 (Ψ/2) = (1 +

cos (Ψ))/2. If the phase is randomly distributed, then the qubit will

be in a random mixture of |6〉 and |4〉. For a white dephasing noise,

one expects an exponential damping of the %4 oscillations with Cdelay
over a time scale )∗

2
, which is related to the pure dephasing time )Φ by

()∗
2
)−1 = (2)1)−1 + )−1

Φ
[111] [111]: Ithier et al. (2005), ‘Decoherence in a

superconducting quantum bit circuit’

.

To allow for an accurate fit of this decay, we introduce oscillations by

adding a Cdelay-dependent phase !(Cdelay) to the second �/2-pulse. This
corresponds to turning the direction of the second pulse in the GH

plane. Figure 10.9(a) shows the result of such a Ramsey experiment

performed in sweet spot conditions (+6 = 0.695 V, � = �) for both ! = 0

and ! = � × Cdelay/CB with a sampling time CB = 1 ns. For Cdelay = 2=

with = ∈ ℕ, ! = 0 and the driving sequence performs an equivalent

�-pulse ; indeed a maximum %4 = 0.64 is observed at Cdelay = 0. For

Cdelay = (2= + 1)CB , ! = � and the second �/2-pulse is then expected to

bring the qubit back in |6〉: indeed, Figure 10.9(a) shows a maximum

in %6 and a minimum in %4 at Cdelay = CB = 1 ns. This trend extends

further with %4 and %6 oscillating between local maxima and minima

at each CB increment of Cdelay. Besides the expected exponential decay of

the coherent signal, one also observes a strong beating pattern with a

half-periodicity in Cdelay of about 24 ns, corresponding to a ∼ 20 MHz

detuning. This evolution can be phenomenologically captured with the

following functional form:

%6(C) =
(
%6(0)−%6,∞

)
cos

[
!(Cdelay)

]
cos

[
2�ΔCdelay + )

]
4
−
C
delay

)
decay +%6,∞.

(10.6)

Fitting %4 with this expression, we obtain )decay = 13 ± 1 ns for the

exponential decay of the Ramsey oscillations and a beating frequency

Δ = 20.6 ± 0.8 MHz, as shown in Figure 10.9(b).

Evidence of a charge bi-stable fluctuator

Further insight on the origin of this beating can be gained from the

two-tone spectroscopy of the transition line with increased frequency

resolution compared to Figure 10.5, see Figure 10.10. It shows a split-peak

structure of the pair transition line close to � = �. The linecut at � = �
shown in Figure 10.10(b) evidences a ∼ 20 MHz splitting of the transition

line. This splitting, which is a signature of a discrete environment, seems

to be associated to a fluctuation of the weak link transmission, as the

splitting is maximal at � = � and apparently vanishes away from �. It
could originate from the presence of a charged impurity at the surface of

the weak link behaving as a bistable fluctuator (BF). Such an impurity

can couple to the qubit and if the rate of its incoherent switching is slow

enough, it can result in two discrete frequency values for the qubit, as

observed in the Ramsey pattern.

Effects due to individual BFs have been observed both in spectroscopy

and in time-resolved measurements and their impact on the coherence of

solid state qubit was modelled by Falci et al. [112] [112]: Falci et al. (2005), ‘Initial Decoher-

ence in Solid State Qubits’,

. They showed that even

if the BF is not resonant with the qubit, it can strongly affect it. Indeed,

provided that its switching rate is slower than the induced splitting Δ

of the qubit frequency, it then makes the working point of the qubit
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bi-stable and amplifies defocusing from high frequency noise during

Cdelay. Even if the qubit is initially well prepared by the first �/2-pulse,
during Cdelay the BF may switch it to a different working point, which will

result in damped beats in the coherent oscillations and a split-peak qubit

lineshape in spectroscopy, exactly as observed in Figure 10.9. Although

in our case the origin and nature of this BF is unclear, it would not

be surprising that the quality of the weak link surface had degraded

since these measurements were taken during the 17th cool-down of the

sample.

Now because of this beating in the Ramsey oscillations, the decay time

extracted with the phenomenological equation (10.6) should not be

interpreted as the dephasing time )∗
2
. To better evidence the effect of

this beating, we perform a Ramsey experiment at various values of the

driving frequency 51, see Figure 10.11. When 51 differs from the qubit

frequency by an amount Δ/2�, the Rabi frequency changes from $' to

Ω' =

√
$2

'
+ Δ2

, and the rotation axis in the Bloch sphere changes from

Ĝ to Ĝ′, which is directed along the unitary vector { $'
Ω'
, 0, Δ

Ω'
}.

Denoting by � the angle between Ĝ and Ĝ′, we illustrate graphically in

Figure 10.11(a) the effect of such a detuning Δ ≠ 0 on the trajectory of the

qubit state vector in the Bloch sphere induced by a Ramsey sequence. In

absence of drive, $' = 0 and the rotation vectorΩ' · Ĝ′ reduces to Δ · Î,
i.e. during Cdelay when the drive is off the state vector rotates around Î,

moving on the Bloch sphere equator at the detuning frequency Δ. With

the same analysis as above for the effect of a dephasingΨ during Cdelay,

we deduce that a finite detuning results in an oscillation of %4 and %6 at

an angular frequency Δ, which evolve with Cdelay with the same decaying

envelope as at zero detuning.

Figure 10.11(b) shows the result of such a measurement at � = � with

the population of the ground state %6 oscillating with Cdelay as the drive

frequency 51 gets detuned from 5� ≈ 9.286 GHz. These experimental

data are compared to calculations taking into account (panel (c)) or not

(panel (d)) the presence of a BF. Those calculations were obtained from a

phenomenologicalmodel describing the expected geometrical trajectories

in the Bloch sphere for a Ramsey sequence. The rotation matrix around

Ĝ′ by an angle � is given by:

'[$' ,Δ, �] =
©­­­­«

$2

'

$2

'
+Δ2
(1 − 2) + 2 − Δ√

$2

'
+Δ2

B $' Δ

$2

'
+Δ2
(1 − 2)

Δ√
$2

'
+Δ2

B 2 −$'√
$2

'
+Δ2

B

$' Δ

$2

'
+Δ2
(1 − 2) $'√

$2

'
+Δ2

B Δ2

$2

'
+Δ2
(1 − 2) + 2

ª®®®®¬
,

(10.7)

where we abbreviated 2 = cos (�) and B = sin (�). Assuming that the

�/2-pulse duration C�/2 is tuned at a frequency 51,0 corresponding to a

detuning Δ0, i.e.
�
2
= Ω'(Δ0)C�/2, the rotation angle �Δ due to a pulse at

another detuning Δ is then �Δ =
Ω'(Δ)
Ω'(Δ0)

�
2
.
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Figure 10.11: Effect of a bi-stable charge fluctuator (BF) on a Ramsey measurement of an Andreev Pair Qubit. (a) Qubit trajectory on the Bloch

sphere associated to a Ramsey sequence, consisting in two �/2 rotations 'Ĝ
�/2 separated by a time delay C

delay
. When the drive frequency 51

has a finite detuning Δ/2� = 51 − 50 to the qubit frequency 50 , the qubit rotates at a generalized Rabi frequencyΩ' =

√
$2

'
+ Δ2

and around

a modified axis, denoted Ĝ′, which is tilted by an angle � = tan (Δ/$')with respect to Ĝ. After the first �/2 rotation, the qubit follows a free

evolution during a time C
delay

, corresponding to a rotation at the angular frequency Δ around the Î axis that dephases the qubit by an angle

Ψ = Δ · C
delay

. (b) Experimental data for ! = 0 showing the oscillations of the ground state population %6 with the drive frequency 51 and

the time C
delay

between the two �/2-pulses of the Ramsey sequence. The �/2-rotations were performed using 16 ns gaussian pulses, the

amplitude of which was obtained by a prior calibration from a power Rabi measurement at the frequency 51,0 = 9.286 GHz. Panel (d) shows

a calculation of the Ramsey pattern for $'/2� = 25.6 MHz and )∗
2
= 50 ns assuming a single transition frequency 50 = 9.286 GHz. This

calculations reproduces qualitatively the measured pattern but does not capture the damped beating visible in the data. To improve the

comparison, we assume that the transition line is split in two frequencies 50 and 51 due to the switching of the BF. Panel (c) shows the

expected Ramsey pattern deduced from Eq. (10.10) for an equal weight superposition (
 = 0.5) of the responses at the two frequencies. Best

comparison is obtained for 50 = 9.28 GHz, 51 = 9.3065 GHz, which are about ∼ 20 MHz apart, as was evidenced by two-tone spectroscopy

of the transition line in Figure 10.9(c,d). (e) Linecut at 51 = 9.286 GHz comparing data from (b) and the calculation with BF from (c).
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Starting from {G, H, I} = {0, 0, 1} associated to |6〉, the point on the Bloch

sphere reached after the first �/2 pulse has the following coordinates:

'[$' ,Δ, �Δ]·
©­«
0

0

1

ª®¬ =
{

2Δ$'
Ω'(Δ)2

sin
2

(�Δ
2

)
, − $'

Ω'(Δ)
sin (�Δ), 1−

2$2

'

Ω'(Δ)2
cos

2

(�Δ
2

)}
.

(10.8)

During Cdelay, the qubit vector then experiences a free evolution, corre-

sponding to a rotation around Î at the angular frequency Δ, given by

'[0,Δ,Δ · Cdelay]. Finally, the second �/2-pulse amounts to applying a

second time the rotation matrix '[$' ,Δ, �Δ]. The asymptotic state can

be easily found: if Cdelay � 2�/Δ, then the state vector has diffused all

along the circle of constant latitude reached after the first �/2-pulse ; the
mean z-coordinate I∞ after the second �/2-pulse is then given by :

I∞ =
1

2�

∫
2�

0

d� '[$' ,Δ, �Δ] · '[0,Δ, �] · '[$' ,Δ, �Δ] ·
©­«
0

0

1

ª®¬
=

1

Ω4

'

(
Δ2 + $2

' cos (�Δ)
)

2

. (10.9)

The probability to have reached the excited state is deduced from %4 =

(1 − I')/2, with I' the z-coordinate of the point on the Bloch sphere

reached at the end of the sequence. After some algebra, one finds the

following expressing for %4 :

%4(Cdelay) = %4 ,∞+sin
2

(�Δ
2

) $2

'

Ω4

'

[(
$2

'+(2Δ
2+$2

') cos (�Δ)
)

cos (ΔCdelay)

− 2ΔΩ' sin (�Δ) sin (ΔCdelay)
]
, (10.10)

with %4 ,∞ = (1 − I∞)/2 and I∞ given by Eq. (10.9). For Δ = 0, this

expression reduces to %4 = (1 − cos (2�0))/2 = sin
2 (�0) = 1, as expected.

Finally we introduce phenomenologically the exponential damping of

the oscillations with

%fit

4 (Δ,Δ0) = %4 ,∞ +
[
%4(Cdelay) − %4 ,∞

]
4−Cdelay/)

∗
2 . (10.11)

In Figure 10.11(d) we plot the expected evolution of %fit

6 = 1 − %fit

4 − %>
for a transition frequency at 50 = 9.286 GHz (Δ0/2� = 51,0 − 50 = 0),

$'/2� = 25.6 MHz and )∗
2
= 50 ns. The odd state population %> shows

only a veryweak linear dependencewith Cdelay andwasfirst fit to a straight

line. The result shares some resemblance with the data but we miss the

observed beating pattern in the Ramsey oscillations. Considering that

due to the BF there exists two transition frequencies 50 and 51 with relative

weight 
, we compare the datawith 
 ·%fit

4 (Δ0 ,Δ0,0)+(1−
)·%fit

4 (Δ1 ,Δ0,1),
whereΔ8/2� = 51− 58 andΔ0,8/2� = 51,0− 58 with 8 ∈ {0, 1}. This second
calculation now captures rather well the measured Ramsey pattern.

The best agreement with the data from Figure 10.11(b) is obtained for

$'/2� = 25.6 MHz with the two qubit frequency values 50 = 9.28 GHz

and 51 = 9.3065 GHz, which is consistent with the ∼ 20 MHz peak

splitting that was observed in Figure 10.9(d). 51,0 = 9.286 GHz is the

frequency at which the �/2-pulses were tuned for this measurement.
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We find an exponential decay time of the order )∗
2
= 50 ns, a value almost

×4 bigger than the )decay = 13 ns that we had with the phenomenological

expression Eq. (10.6). A linecut at 51 = 51,0 = 9.286 GHz in Figure 10.11(e)

shows that the measured populations from panel (b) are globally well

captured by the calculation with BF from panel (c).

The effect of the BF can also be seen in a Rabi flopping measurement

where the drive frequency 51 is varied. In Figure 10.12(a), we illustrate the

effect of such a detuning on the trajectory on the Bloch sphere. A drive

pulse of duration C3 rotates the qubit state vector by an angle Ω' · C3
around Ĝ′ withΩ' =

√
$2

'
+ Δ2

. As Δ is increased, the circle described

on the Bloch sphere gets smaller and closer to the North pole, associated

to |6〉. The {G, H, I}-point on the sphere reached after C3 is given by:

'[$' ,Δ,Ω' ·C3]·
©­«
0

0

1

ª®¬ =
{
Δ$'
Ω2

'

(
1−cos (Ω'C)

)
, −$'

Ω'
sin (Ω'C),

Δ2 + $2

'
cos (Ω'C)
Ω2

'

}
,

(10.12)

with the rotation matrix defined in Eq. (10.7). From this, we deduce the

evolution of the ground state population:

%6(C3) =
1 + I(C3)

2

=
1

2

+
Δ2 + $2

'
cos (Ω'C)

2Ω2

'

. (10.13)

As for the Ramsey sequence calculation, this expression does not take

into account the presence of the odd state. As a first approximation, on

can consider its population constant and simply rescale %6 accordingly.

Also, we further introduce a phenomenological exponential decay over a

time )Rabi

decay
:

%fit

6 ($' ,Δ0 , C3) = %6,∞ +
[
%6(C3) − %6,∞

]
4
−C3/)Rabi

decay . (10.14)

In Figure 10.12(b) we present this detuned Rabi measurement in a

200 MHz window around the pair transition frequency and we compare

it with theory assuming again two possible frequencies for the transitions.

In Figure 10.12(c), we plot 
 · %fit

6 ($' ,Δ0 , C3) + (1 − 
) · %fit

6 ($' ,Δ1 , C3)
with %fit

6 from Eq. (10.14). The calculation was performed using the

same values for the two qubit frequencies deduced from the detuned

Ramsey measurement calculation in Figure 10.11(c), i.e. 50 = 9.28 GHz

and 51 = 9.3065 GHz. The best agreement with the data was found

with a relative weight 
 = 0.65 between the two qubit frequencies,

a Rabi frequency $'/2� = 85 MHz and an exponential decay time

)Rabi

decay
= 170 ns. Importantly, note that the frequency axis range differs

for the data (b) and the calculation (c) by about a factor ×1.5. For some

yet unexplained reason, the oscillations frequency was observed to

increase faster with the detuning than Eq. (10.13) predicts. A linecut

at 51 = 9.286 GHz is shown in Figure 10.11(d) to compare data and

calculation. It shows in particular that the oscillation period in the

measured data slightly increases with C3, which is again an effect of the

beating between the oscillation patterns centered in 50 and 51 . Capturing

quantitatively these fine effects would require a more elaborate model

taking into account the presence of perhaps more fluctuators, which is

out of the scope of the present work.
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Figure 10.12: Effect of detuning on the Rabi oscillations of an Andreev Pair Qubit. (a) A resonant driving pulse (Δ = 0) of duration C3
rotates the qubit around the Ĝ-axis of the Bloch sphere by an angle $' · C3 , with $' , the Rabi frequency which is proportional to the drive

amplitude. As a finite detuning Δ ≠ 0 is introduced, the rotation axis Ĝ → Ĝ′ gets tilted by an angle � = tanΔ/$' and the Rabi frequency

is modified to Ω' =

√
$2

'
+ Δ2

, which has the effect to lower the amplitude of the %4 oscillations with C3 as the circle described on the

Bloch sphere gets smaller and closer to the north pole, associated to |6〉. (b) Measured Rabi oscillations of the ground state population %6
as a function of drive duration C3 and frequency 51 on a ∼ 200 MHz range around the pair qubit transition frequency. (c) Theory from

Eqs. (10.13,10.14) assuming the presence of a bi-stable fluctuator, which has the effect to split the qubit transition frequencies in two possible

values 50 and 51 . Same values were used for 50 and 51 as in Figure 10.11. Best fit was obtained here with 
 = 0.65, $'/2� = 85 MHz and an

exponential decay time for the oscillations of )Rabi

decay
= 170 ns. Note that the scale in the 51 axis is different compared to (b). (d) Linecut at

51 = 9.286 GHz highlighted by a dashed black line in (b,c). Data is shown in solid lines and open disks and theory for %6 from (c) is overlaid

in dashed blue line. For completeness we also show the extracted values of %4 and %> . A small oscillation is observed in the %> population,
which likely arises from the fast relaxation from |4〉 to |>〉 that may happen in the ∼ 200 ns time lapse between the end of the drive pulse

and the readout, due to the measurement pre-pulse used to fast-load the resonator cavity before readout.

Hahn echo experiment

To further characterize dephasing noise, we performed aHahn echo pulse

sequence. It consists in a Ramsey sequence in themiddle ofwhich an extra

�-pulse has been added, as illustrated in Figure 10.13(a). This has the effect

to filter out the noise at frequencies lower than 1/Cdelay [111, 113] [111]: Ithier et al. (2005), ‘Decoherence in a

superconducting quantum bit circuit’

[113]: Bylander et al. (2011), ‘Noise spec-

troscopy through dynamical decoupling

with a superconducting flux qubit’

, including

the low frequency charge noise arising from the incoherent switching of

the charge BF. Additional oscillations are obtained by rotating the second

�/2 pulse by ! = �
32

Cdelay
1 ns

. The beating in the population oscillations is

no longer visible and their decay time is observed to be about a factor

×10 longer than for a Ramsey sequence, see Figure 10.13(b). Fitting the

oscillations with an exponentially damped cosine, a characteristic decay

time )2� = 404 ns is obtained, which although smaller is comparable in

magnitude to the value measured for an atomic-contact-based pair qubit

[21]

[21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’, p.98-99

.
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Figure 10.13: Coherence of a nanowire-based Andreev Pair Qubit. (a) Hahn echo sequence consisting for the drive (violet) in two �/2-pulses
at frequency 51 separated by a time delay C

delay
. An extra �-pulse is added in the middle to filter-out the noise with frequency lower than

1/C
delay

. The second �/2-pulse may be dephased by an amount !(C) with respect to the first one. Once it has finished, the readout sequence

(orange) at frequency 50 is played on the resonator. The effect of a �/2-pulse is illustrated on the Bloch sphere. (b) Populations %6 , %> and %4
as a function of C

delay
measured at � = � at the gate sweet spot +6 = 0.695 V. To allow for a more accurate fit of the decay, we make the

populations oscillate with C
delay

with a 64 ns periodicity by dephasing the second �/2-pulse by an amount !(C) = 2�/64 · C(ns). The �− and

�/2-rotations were performed using 16-ns-long gaussian pulses, the amplitude of which was obtained by a prior calibration from a power

Rabi measurement. The �-pulse was set with a negative amplitude, so as to avoid any saturation of the microwave components at times

C
delay

< 16 ns when the pulses overlap. Therefore, when all three pulses fully overlap, the drive is equivalent to a 0-pulse and we measure

the system in |6〉. Experimental data are shown in circles and a fit with an exponentially decaying sine function is overlaid. In background is

shown in light grey the extracted populations for an other Echo measurement with this time !(C) = �/5 · C(ns); its fit gives a characteristic

decay time for the oscillations of )
2� = 404 ns. (c) Two-tone spectroscopy evidencing the dispersion with gate voltage +6 of the pair

transition frequency 5�(+6) around the sweet spot at 0.695 V. (d) Evolution of the measured characteristic echo time )
2� with+6 , showing a

maximum of 404 ns at the sweet spot location. Away from +6 = 0.695 V, first-order electrostatic noise contributes to dephasing, causing )
2�

to quickly drop. This can then be modeled using the relation for exponential coherence decay 1/)
2� = Γ2 + 2�(% 5 /%+6)2+2

rms
/1Hz. Best fit

is shown in dashed purple line and yields +rms = 3.6 ± 0.3 nV and Γ2 = 2.3 ± 0.1 �s−1
.

To quantify the effect of electrostatic noise, we repeated the same mea-

surement away from the gate voltage sweet spot, as shown in Figure

10.13(c,d). We observe a drastic reduction of )2� as one moves away

from +6 = 0.695 V, which corresponds to the minimum of the parabolic

dispersion of the pair qubit frequency with gate voltage. Away from

this sweet spot, first-order electrostatic noise contributes to dephasing,

causing )2� to drop. Such behaviour can be modeled using the relation

for exponential coherence decay 1/)2� = Γ2 + 2�
(
% 5
%+6

)
2
+2

rms

1Hz
[114] [114]: Martinis et al. (2003), ‘Decoherence

of a superconducting qubit due to bias

noise’,

.

From the parabolic-like dispersion of the transition frequency with +6
evidenced in Figure 10.13(c), we estimate % 5 /%+6 = (−0.15 + 0.216 ×
+6) GHz/µV where +6 is given in Volts. Best fit of the )2� dependence

with +6 is shown in dashed line in Figure 10.13(d); it yields an effective

root-mean-square voltage noise+rms = 3.6±0.3 nV and a+6-independent

dephasing rate Γ2 = 2.3 ± 0.1 �s−1
. At the sweet spot, we estimate

%2 5

%+2

6
= 0.22 kHz/µV², which makes negligible any coupling to second-

order noise, so that at the sweet spot, )2� is given by Γ2 .



10 Manipulation of an Andreev pair qubit 147

To summarize this section, we have demonstrated the realization of an

Andreev PairQubit based on a InAs nanowireweak link. Characterization

of its relaxation and dephasing times show slightly smaller although

comparable performances in magnitude as the ones reported for a similar

qubit implemented using an atomic contact junction. As amain difference,

we have observed that nanowire weak links may be significantly more

sensitive to their electrostatic environment. Because of their finite-length,

their performances as a charge qubit may be affected by the switching

of local charge impurities located nearby which, even if non-resonant

with the qubit, can drastically reduce its coherence properties. The fact

that a single impurity on a white noise background causes a substantial

suppression of the coherent signal raises the problem of reliability of

such an Andreev pair qubit as a charge-based device.



(a)

(b)

7

6

5

4

3
 f 1 (

G
H

z)
1.00.50.0-0.5

δ/π

2

1

0

-1

-2

δQ (mV)

fr

I35

30

25

20

15

10

t d (
ns

)

6.66.46.26.0
 f1 (GHz)

8

6

4

2

0

Figure 11.1: (a) Two-tone spectroscopy per-

formed at+6 = 1.07V (different cooldown

than in Figure 10.5) showing a bundle

of four single-quasiparticle transitions

(SQPT) highlighted in green lines and a

group of four pair transitions highlighted

in blue (likely to bemixed pair transitions).

The resonator frequency, 5A ≈ 6.606 GHz,

is indicated in orange on the left axis. The

vertical lines highlight two � values of in-

terest, � = −0.24� (orange) and � = 0.81�
(cyan) at which further characterization

was performed (see Figure 11.2). (b) Aver-

age level of the � quadrature after a driving
pulse of duration C3 and frequency 51, ev-
idencing the effect of driving at a pair

transition frequency, highlighted by the

red dot in (a).
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In this chapter we now tackle the time-domain manipulation of single-

particle transitions (SQPT). Those involve many-body states with odd

parity differing by the pseudospin of one quasiparticle. Manipulating

SQPTs therefore amounts to manipulating the pseudospin of a single

quasiparticle in the weak link. The lowest-lying SQPTs in our microwave

spectra are understood as transitions from the first to the second ABS

manifolds, i.e. processes of the type |1�〉 → |2�′〉. Unfortunately, with

the present design of our experiment, we could not resolve in the �&

plane the two spin states |1 ↑〉 and |1 ↓〉, differing by the pseudospin of

the quasiparticle trapped in the lowest ABS level, nor could we resolve

|2 ↑〉 and |2 ↓〉. In Section 10.2 of the previous chapter, we demonstrated

the discrimination of three clouds in the �& plane, which we interpreted

as the many-body ground state |6〉, the excited state |4〉 = |1 ↑ 1 ↓〉
and an odd state, which at least enclosed contributions from |1 ↑〉, |1 ↓〉.
Therefore, we were not able to track the spin states population, although

we could demonstrate manipulation of SQPTs by looking at the mean �

and & value of the demodulated readout pulses.

11.1 Manipulation of a single quasiparticle

In Figure 11.1(a) we present a two-tone spectrum measured with sample

S2 showing a bundle of four SQPT lines (green) along with four pair

transitions (blue). This spectrum shows an unusual situation character-

ized by a rather flat pair transition dispersing only over < 2 GHz and

by all the lowest transition lines lying below the resonator frequency,

5A ≈ 6.606 GHz. The resulting small detuning between the SQPT lines

and the resonator came along with a strong dispersive shift which, as we

are now going to report, allowed to perform coherent manipulation of

the SQPTs.

11.1.1 Driving a single quasiparticle

The effect of driving the four SQPT transitions with square pulses is

investigated in Figure 11.2 at two illustrative values of the phase, close

to � = 0 and � = �, shown respectively as orange and cyan lines

in Figure 11.1(a). By varying the duration C3 of the driving pulse, we

induced Rabi flopping of the quasiparticle population between the two

lowest ABS doublets, evidenced as coherent oscillations in the average

& level of the demodulated readout pulses. These oscillations appear

whenever the frequency 51 of the driving pulse is set close to resonance

with one of the four SQPT transitions. As the driving frequency 51 gets

detuned, the Rabi frequency Ω' increases, which results in a typical

’chevron’ pattern centered around each of the four transitions, as already

described in Figure 10.12 for the manipulation of a pair transition. Note
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that in contrast to coherent manipulation of quasiparticle pairs that has

been demonstrated in the previous chapter, these measurements now

demonstrate the coherentmanipulation of a single quasiparticle excitation

of a superconductor. Recently, such a manipulation was independently

demonstrated by Hays et al. in Refs [41, 42] [41]: Hays et al. (2020), ‘Continuous

monitoring of a trapped superconducting

spin’

[42]: Hays et al. (2021), ‘Coherent

manipulation of an Andreev spin qubit’

, who went a step further by

demonstrating single-shot readout of the quasiparticle’s spin trapped

in an Andreev doublet. In Section 11.2, we will discuss possible reasons

why in our case the fine structure of the many-body states could not be

evidenced in our histogrammed time-resolved measurements.
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Figure 11.2: Driving single-quasiparticle transitions. Rabi oscillations as a function of the drive

duration C3 and frequency 51 on a 1 − 1.5 GHz window around the four visible SQPT transitions

for the two phase values highlighted in orange and cyan in Figure 11.1(a): � = −0.24� (panel (a))

and � = 0.81� (panel (c)). Each data point is obtained by averaging the & outcome of ∼ 500000

demodulated pulses consisting of a 172 ns fast-load pre-pulse followed by a 500 ns readout square

pulse at 50 = 6.6071 GHz. The readout sequence is preceded by a square driving pulse of duration

C3 incremented by multiples of 1 ns. (b,d) Rabi flopping of each of the four SQPT. The data points

shown in black dots correspond to cuts at the frequencies indicated by black ticks in panels (a,c):

51 = 3.798, 4.289, 4.500 and 4.990 GHz for panel (a) and 51 = 5.692, 5.941, 6.151 and 6.425 GHz for

panel (c). Best fits with an exponentially decaying sine function are shown in blue lines on top of the

data with the associated value of the Rabi frequencyΩ' extracted from the fits.

Spin-flipping vs. spin-conserving transitions

In Figure 11.2(b,c), we observe that the two outer lines, corresponding

to pseudo-spin conserving transitions, show similar Rabi frequencies.

Likewise, fitting the Rabi oscillations of the two inner lines, associated

to pseudo-spin flipping transitions, gives identical Rabi frequencies.

Remarkably, close to � = 0 (phase bias shown in orange), the Rabi

frequency associated to the pair of pseudo-spin conserving transitions

is about a factor 4 − 5 larger than the one for pseudo-spin-flipping
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transitions. Close to � = � (phase bias shown in cyan), the same ordering

is observed butwith only a factor∼ 3 between the pseudospin-conserving

and flipping transitions. As the amplitude of the driving pulse was set

constant over the whole measurement, this variation in Rabi frequencies

suggests a quantitative difference in the matrix elements associated to

both families of transitions. This is in qualitative agreement with the

discussion from Section 6.4.2 where we showed that in the general case,

for an almost symmetric drive field in the transverse direction of the

nanowire, spin-flipping transitions are strongly suppressed and hence

harder to drive compared to spin-conserving ones.

Coherent oscillations could also be measured when driving at the fre-

quency of the other four transition lines visible in the spectrum, which

are likely associated to pair transitions as their phase dispersion exhibit a

global minimum at � = �. In Figure 11.1(b), we show a Rabi measurement

performed in a situation where such a transition line was well separated

spectrally from the four SQPTs and close enough to the resonator fre-

quency 5A to allow for a strong dispersive shift and a good coupling to the

readout resonator. We observe a typical "chevron" pattern, evidencing

the increase of the Rabi frequencyΩ' when the drive is detuned from

the transition frequency, as was discussed in detail in Section 10.2.4.

11.1.2 Relaxation dynamics

We then investigated the relaxation dynamics of a quasiparticle of either

pseudospin trapped in the second ABS manifold. For each of the four

SQPT transitions, we measure the relaxation dynamics after a �-pulse, as
illustrated in Figure 11.3. Compared to the spectrum from Figure 11.1(a),

lines had drifted after a few days: The new spectrum is shown in Figure

11.3(a), which differs slightly from Figure 11.1(a), mainly by the position

of the SQPT lines, which dropped in frequency by about ∼ 0.5 GHz.

In Figure 11.3(b), we show a detuned Rabi measurement, varying its

frequency 51 in the 5− 6 GHz range associated to the four SQPT lines. As

observed in Figure 11.2(a,c), the driven dynamics of the two pseudospin-

flipping transitions is againmuch slowerhere than for the twopseudospin-

conserving transitions. Note that for this new situation, the detuned

Rabi measurement now shows an extra chevron pattern associated to

an additional transition line close to the top SQPT transition. After

close inspection, this line already appeared very faintly in the previous

two-tone spectrum of Figure 11.1(a) but was lying above the top SQPT

and therefore did not show in Figure 11.2(a,c). As the spectrum drifted,

this unidentified line moved in the frequency range of interest and now

mixes with the chevron patterns associated to the four SQPTs (see Figure

11.3(b)).

To measure the relaxation dynamics, we first performed a Rabi mea-

surement at the frequency of each of the four SQPTs to determine the

duration C3 to set in order to achieve a �-pulse. This value is highlighted
with an asterisk in Figure 11.3(c) for each of the four SQPTs. We then

measure for each transition frequency the average � level as a function

of the time delay Cdelay after such a �-pulse. As shown in Figure 11.3(d),

we can fit this spontaneous evolution with a decaying exponential to

extract the inter-doublet relaxation time �2�,1�′ associated to each SQPT
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transition |1�′〉 → |2�〉, with �, �′ ∈ {↑, ↓}. All four relaxation times are

of the order 2− 3 �s, which is about the same timescale found by Hays et

al. in Ref. [41] [41]: Hays et al. (2020), ‘Continuous mon-

itoring of a trapped superconducting spin’

. However, it is puzzling that the relaxation times do not

only depend on the state initially populated, but also from the state from

which the transition was performed: �
2↑,1↓ ≠ �

2↑,1↑, �2↓,1↓ ≠ �
2↓,1↑. This

could be due to the fact that the transition lines are closely packed, and

that when driving one transition, neighbouring ones are also affected, so

that the initial states are not exactly the same in each measurement.

These spontaneous relaxation times must be interpreted with care since

they encompass decay to both |1 ↑〉 and |1 ↓〉. Still, Hays et al. observed

that the inter-doublet decay was essentially spin-conserving. We can

therefore suspect that the measured |2 ↑〉 → |1 ↓〉 decay mainly reflects

the fast |2 ↑〉 → |1 ↑〉 relaxation and that the spin depolarization

associated to |1 ↑〉 → |1 ↓〉 and happening on a longer timescale �B
may in our case not result in a measurable change of the average � level,

given that those spin states could not be resolved in our �& histograms.

Supplemental data on the coherent manipulation of the measured lines

are provided in Figure 11.4, where we extract the Rabi frequency of the

main transition lines at three different values of � close to �. Although a

clear difference inΩ' can be evidenced between SQPTs that are either

spin-flipping or spin-conserving, no systematic trend is visible for the

other transition lines, which resemble PTs. The analysis however is made

more complicated by the fact that in this region of � the PTs are closely

packed with the SQPTs, resulting in highly interfering chevron patterns

in the detuned Rabi measurements of Figure 11.4(b,c).

11.1.3 Coherence

Finally, we evaluate the coherence time associated with coherent super-

positions of the type |1�〉 + |2�′〉 by applying a Hahn echo sequence at

each SQPT frequency. The results are reported in column (e) of Figure

11.3. The relaxation dynamics of superpositions 
 |1�〉 + � |2�〉 with the

same spin texture are well fitted by an exponential decay that gives a

characteristic time )2,Echo ∼ 150 ns. The relaxation time associated to

superpositions 
 |1�〉 + � |2�〉 with opposite spin is faster and at the limit

of our resolution. Indeed, in this experiment the Hahn echo sequence

is composed by a �−pulse that lasted 12 ns and �/2−pulse 10 ns and

hence Cdelay started at 32 ns. The values we report here are similar to

those obtained by our colleagues at Yale in a nanowire weak link similar

to ours [42]

[42]: Hays et al. (2021), ‘Coherent

manipulation of an Andreev spin qubit’

: they found out a T2,Echo associated with 
 |1�〉 + � |2�〉
superpositions around ∼ 100 ns and for 
 |1�〉 + � |1�〉, T2,Echo ∼ 50 ns.

Note that the coherence timescale observed in our system is comparable

to the one observed in spin-orbit qubits implemented either in InAs

nanowires [115]

[115]: Nadj-Perge et al. (2010), ‘Spin-orbit

qubit in a semiconductor nanowire’

or InSb nanowires [116]

[116]: Berg et al. (2013), ‘Fast Spin-Orbit

Qubit in an Indium Antimonide

Nanowire’

quantum dots.
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Figure 11.3: Relaxation and coherence dynamics of a single quasiparticle. (a) Two-tone spectrum evidencing the phase dispersion near

� = � of the four SQPT transitions |1�〉 → |2�′〉 between the lowest and second lowest ABS manifolds, encoded in cyan, orange, violet and

magenta lines. The transition lines have drifted by about −0.5 GHz compared to Figure 11.1(a). (b) Average � level of the demodulated

readout pulse as a function of the duration C3 of a square driving pulse, evidencing Rabi oscillations whenever the driving frequency

51 becomes close to resonance with one of the four SQPTs, which central frequency is marked with colored ticks on the frequency axis

51 = 5.83 (cyan), 5.53 (orange), 5.38 (violet) and 5.12 GHz (magenta). Measurements were performed at � = 0.85�, indicated by a black line

in panel (a). Column (c) Effect of a resonant drive for each of the four SQPTs at � = 0.85� as a function of the drive duration C3 . Compared to

panel (b), the oscillations show a smaller Rabi frequency, because we set a lower power for the drive so as to better define a �-pulse for each
SQPT. For each curve, the best fit with an exponentially decaying sine function is shown in solid lines and the extracted Rabi frequencyΩ'

is displayed on the graph. Column (d) Average � level as a function of the time C
delay

after a �-pulse, the duration of which being indicated

with an asterisk on the x-axis of the corresponding graphs in (c) for each of the four SQPTs. The relaxation is well fit with an exponential

decay (solid lines), from which we extract the associated spontaneous relaxation times �
1�′ ,2� for each of the four processes |2�〉 → |1�′〉.

Column (e) Average � level as a function of the time C
delay

after a Hahn echo sequence for each of the four SQPTs. The exponential fit allows

to obtain an estimation of )
2,echo.
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Figure 11.4: Coherent manipulation of SQPTs and PTs at different phase values. (a) Two-tone spectrum evidencing the phase dispersion
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in (a). For each case, we show the Rabi oscillations measured when driving at the central frequency of each SQPT lines (denoted with disks

on the frequency axis) and of some PT lines (denoted with triangles). Best fit with an exponentially decaying sine function is shown in solid

lines for each curve, with the associated value of the extracted Rabi frequency Ω' . The two spin-flipping SQPTs systematically show a

smallerΩ' by a factor ∼ 3 − 5 compared to the two spin-conversing SQPTs.
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Figure 11.5: Resonator shift associated to the lowest-lying many-body states of a nanowire weak link, as estimated from a tight-binding

calculation. (a) Typical energy spectrum of spin-split ABS levels as a function of phase � (parameters similar to Figure 4.8, but changed

slightly so as to have only 2 ABS manifolds). (b) Energy of all possible transitions between the two ABS manifolds, labelled 1 and 2. Pair

transitions (PT) of the type |6〉 → |=�<�′〉 with =, < ∈ {1, 2} and �, �′ ∈ {↑, ↓} are shown in red and single-quasiparticle transitions

(SQPT) |1�〉 → |2�′〉 are shown in green. (c) Energy �|Φ〉 of all many-body states |Φ〉 involving the two ABS doublets, and neglecting

interactions (see Chapter 8). The ground state |6〉 corresponds to all negative energy levels being filled, i.e. �|6〉 = (1/2)Σ8<0,��8� , where

3040 states were included in the sum to ensure convergence. The ground state energy at � = 0 is taken as the reference of the energy ladder.

(d-f) Resonator shift ~� 5 |Φ〉A associated to each of the six lowest lying many-body states |Φ〉 ∈ {|6〉, |1 ↑〉, |1 ↓〉, |2 ↑〉, |2 ↓〉, |1 ↑ 1 ↓〉} shown

in color in (c), for three illustrative values of the resonator frequency 5A = 3, 9 and 20 GHz, highlighted in dashed lines in (b). While the

continuum is taken into account to estimate �|6〉 , its contribution to the shift through virtual transitions was neglected. Enlargement of (d-f)

are provided close to � = 0, showing that the separation of all six lowest lying many-body states is only possible in a restricted phase range.

11.2 Spin states could not be resolved

Although coherent manipulation of the pseudospin of a single quasi-

particle could be demonstrated, extended characterization of the spin

dynamics was not achievable, because the readout did not allow to

discriminate |1 ↑〉 and |1 ↓〉. Sample S2 was measured in many different

conditions of gate voltage and phase, none of which allowed to evidence

clearly more than 3 clouds in the histogram of � and & outcomes, which

we attributed to |6〉, |4〉 = |1 ↑ 1 ↓〉 and an odd mixed state |>〉 probably
encompassing |1 ↑〉, |1 ↓〉 and perhaps other many-body states. Given

that single-quasiparticle transitions could be routinely observed between

these different spin states, it seems rather puzzling at first sight that our

time-resolved data did not reveal these sub-states as well. However, let us

remember that the signal in two-tone spectroscopy only requires that the

resonator shift changes between the spin states (� 5 |2�〉A ≠ � 5 |1�
′〉

A ), while

discriminating |1 ↑〉,|1 ↓〉, |2 ↑〉 and |2 ↓〉 requires that the clouds in the

�& plane corresponding to the associated shifts be all distinct, which is a

much stricter condition.
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In Figure 4.8, we had shown the evolution with � of the resonator shift

associated to usual transitions for two illustrative cases, where the lowest

SQPTs were crossing or not the resonator line. Figure 4.8(e) showed

in particular that all SQPTs |1�〉 → |2�′〉 were contributing to a finite

resonator shift for almost any value of the phase �, with maxima where

the phase curvature difference between the two manifolds 1 and 2 is

highest. This explains why in the general case, all four SQPTs may be

seen in two-tone spectra over the full range of phase. In contrast, as we

now show, all four substates |1 ↑〉,|1 ↓〉, |2 ↑〉 and |2 ↓〉 actually contribute

to four well-distinct resonator shifts only in a small region of phase close

to � = 0.

We illustrate this effect on a situation with only two ABS manifolds in the

gap (Figure 11.5(a)), which is the minimal scenario to account for both PTs

and SQPTs. The associated transition spectrum is given in Figure 11.5(b),

with SQPTs shown in green lines and PTs in red. In Figure 11.5(c), we plot

the energy �|Φ〉 of all possible many-body states arising from creating

excitations in the two ABS manifolds, and focus on the six lowest ones,

corresponding to |Φ〉 ∈ {|6〉, |1 ↑〉, |1 ↓〉, |2 ↑〉, |2 ↓〉, |1 ↑ 1 ↓〉}. Their
associated resonator shifts � 5 |Φ〉A are depicted in Figure 11.5(d) for three

illustrative values of the resonator frequency, 5A = 3, 9 and20GHz, shown

in dashed lines in panel (b). Panel (d) corresponds to a situation deep in

the dispersive regime where both the PT and the SQPTs are crossing the

resonator line. Panel (f) illustrates on the other hand the adiabatic regime

where all transitions are detuned from 5A . Finally, panel (e) shows an

intermediate situation, where only the SQPT cross the resonator close to

� = 0. The shifts were computed from Eqs. (4.33,4.34,4.36), which require

knowledge of the matrix elements of the current operator coupling the

different states. They were estimated from a tight-binding calculation

with 60 sites for the normal region and 350 sites in each superconducting

lead
∗
. From Figure 11.5(c), we observe that the energy of |1 ↑〉 and |1 ↓〉,

shown respectively in light and deep green lines, have about opposite

slopes with � around � = �, i.e. they carry opposite supercurrents. More

crucially, we further observe that their phase curvature near � = � is

almost zero, meaning that they essentially do not shift the resonator in

the adiabatic regime, while |6〉 and |4〉 = |1 ↑ 1 ↓〉 well contribute to

finite and (almost) opposite resonator shifts by their respective phase

curvatures (see Figure 11.5(f)). Close to � = �, we therefore do not expect

to be able to separate well |1 ↑〉 and |1 ↓〉. However, in a small region

around � ∈ [−0.1�,+0.1�], the shifts associated to all six many-body

states may actually show distinct values, allowing for their separation in

the �& plane, as illustrated in Figure 11.5(d-f). When moving away from

� = 0, the shifts for |1 ↑〉 and |1 ↓〉 start coinciding with the shifts from

|6〉 and |4〉. As for the higher states |2 ↑〉 and |2 ↓〉, they contribute to

almost the same resonator shift as |6〉 when � is close to �.

∗
Taking that many sites for the two leads allows to describe properly the continuum,

which actually carries some phase dependence too given the finite-size of the weak

link. Computing the resonator shifts requires estimating first the energy �|6〉 of the
many-body ground state, by summing the contributions from all negative-energy states.

The phase-dependence of this quantity is observed to converge slowly with the number

of states in the sum. In practice, we need to include states until ∼ 2Δ to estimate properly

�|6〉 . The energies are obtained by numerical diagonalization of the system Hamiltonian,

with dimension (700 + 60) × 2 chains × 2 (spin) × 2 (electron/hole) = 6080. Given this

matrix size, such diagonalization is computationally expensive ; it was performed on a

cluster by A. Reynoso from Balseiro Institute in Bariloche.
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From this analysis, we expect to observe only three clouds in the �&

histogramswhenoperatingnear � = �: themiddle one,whichwedenoted

|>〉, is expected to correspond to |1 ↓〉 and |1 ↑〉 and the other two clouds

on either side should correspond to |6〉 and |4〉. This illustrative analysis
supports the state identification which we performed in Figure 10.6 and

throughout all the time-domain data presented in Chapter 9. It also

shows that |2 ↑〉 and |2 ↓〉 may collapse on the |6〉 cloud near � = �. In
this case, driving SQPT transitions would not light up a new cloud in the

�& histogram, but only change the internal distributions of the 3 clouds.

Since most of the �& histograms we measured were taken close to � = �,
this could explain our difficulties in evidencing |1 ↓〉 and |1 ↑〉. On the

other hand, we carried out extensively single-tone spectroscopies of the

resonator on the full 0 − 2� phase range, none of which showing clearly

distinct values of 5A that could be associated to a splitting of |1 ↓〉 and |1 ↑〉
close to � = 0. Note however that for such measurements, the discrete

dips in |(21( 5 )| associated to the resonator frequencies in each states are

further weighted by the average state populations, which smooths out

the pattern, making the state discrimination possibly harder.

As a final remark, the ordering of the shifts predicted by this analysis for

the six lowest-lying many-body states and illustrated in Figure 4.8(f) is

consistent with the one reported by Hays et al. in Ref. [41] [41]: Hays et al. (2020), ‘Continuous mon-

itoring of a trapped superconducting spin’

. In this work,

single-shot readout of the spin states was demonstrated in a small phase

range close to � = 0. The SQPT lines were about 6 GHz higher than the

resonator frequency, which corresponds qualitatively to the case depicted

in Figure 4.8(f), for which the shift is expected to be dominated by the

ABS curvature. The measured phase dependence near � = 0 of |6〉, |1 ↑〉
and |1 ↓〉 in Ref. [41] also coincides qualitatively with the picture given in

panel (f). One could wonder how this picture would change in presence

of Coulomb interactions in the weak link. As a first step, we showed on

an illustrative case in Figure 8.9(b) how the energies of the lowest-lying

many-body states would evolve for increasing values of the interaction

strength, although it was calculated for different parameters and the effect

of the continuum was not included at the time. Further work is needed

to evaluate properly the impact of interactions on the state-dependent

resonator shift.

Stepping back a little, this analysis illustrates the general difficulty in

implementing an Andreev Spin Qubit at zero magnetic field, given that it

requires fine-tuning the gate voltage+6 (to find a situation in which a set

of SQPTs comes close enough to the resonator to allow a good coupling),

and then fine-tuning of the phase � to isolate a working point in the

restricted phase range near � = 0 where |1 ↓〉 and |1 ↑〉 show distinct

resonator shifts.



Experimental techniques
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Although six samples were fabricated and cooled down at low tempera-

ture during my thesis, I only report data taken on two of them, which are

named for simplicity S1 and S2. In the others, the coupling between the

weak link and the resonator was either too weak or too large, or no flux

modulation was observed, indicating the failure of either the etching

or the recontacting of the nanowires. Samples S1 and S2 correspond to

two generations of CPW resonators. The main difference concerns the

coupling scheme between the resonator and the nanowire weak link: In

sample S1 it was achieved through a mutual inductance (section 5.2.1)

whereas in sample S2 the coupling was galvanic (section 5.2.2).

Overview of the fabrication of the samples:

I Sample S1: Fabrication of the Nb resonator. Au alignment marks.

Deposition of nanowires. Etching of Al to define the weak link in

the nanowire. Au side-gate. Al loop connected to the nanowire and

coupled to the resonator.

I Sample S2: Fabrication of the NbTiN resonator. Alumina patches.

Aualignementmarks and local back-gates.Depositionof ananowire

above the gate. Etching of Al to define theweak link in the nanowire.

Deposition of Al patches to contact the ends of the nanowire.

The chip design comprises mm-�m-size features as well as small patterns

down to ≈ 100 nm. Therefore fabrication involves both optical and

electron-beam lithography. The process flow starts on a whole 2-inch

wafer with the steps concerning the fabrication of the resonators. The

wafer is then diced into chips (3×10 mm) that are individually processed

to incorporate the nanowires and perform the remaining steps. In the

following we describe the process flows that have been used.

12.1 Resonator fabrication

The starting point in both samples is a 2-inch monocrystalline (100)

intrinsic (� > 4 :Ω.cm) Silicon wafer covered with 500 nm of thermally

grown SiO2. In sample S1, a 150-nm-thick Nb film was deposited by RF

sputtering whereas for sample S2 the superconducting material used

was NbTiN film (80 nm thick) also deposited by RF sputtering but in

another machine. We observed that NbTiN gives higher internal quality

factor resonators but they provide a non-negligible kinetic inductance

(≈ 0.6 pH/sq) that must be taken into account when designing the

resonators. The recipe to transfer to the wafer the patterns of the optical

masks depicted in Figure 12.1 and Figure 12.2 is the following (all baking

steps are done on hot plates; optical lithography exposures are performed

with Süss MicroTec MJB4 mask aligner):
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I Superconducting deposition:
Sample S1: Nb deposition by RFmagnetron sputtering: 150 nm

(rate 2 nm/s)

Sample S2: NbTiN deposition by RF magnetron sputtering:

80 nm (rate 0.8 nm/s, sample temperature 600°C)
I Resonator patterning

(a) Photoresist deposition: 1-�m-thick Shipley S1813 (spinning

4000 rpm, baking at 110°C, 1 min)

(b) Optical lithography: UV exposure through themask shown

in Figure 12.1 or Figure 12.2, in hard contact (dose: 200 mJ/cm
2
).

(c) Development: dissolution of exposed resist in Microposit

MF-319 developer for 1 min, subsequently rinsed in DI water and

blown dry with nitrogen.

(d) Etching: Reactive ion etching of unprotected superconduct-

ing material using a gas mixture of ��4 (20 sccm) and �A (10 sccm)

at a pressure of 50 �bar. The etching process, which lasts between 3

and 5 minutes, is monitored by optical interferometry on a control

sample placed nearby.

(e) Resist removal: in a warm bath (70°C) of Microposit 1165

remover (N-methyl-2-pyrrolidone) for ∼ 10 min, subsequently

rinsed in DI water and blow dry with nitrogen.

(f) Cleaning: O2 plasma (5 sccm) at 100 W and a pressure of

50 �bar during 2 min.

I Gate dielectric (Alumina) patch (only for S2) In S2, the gate goes

over the ground plane of the resonator. Insulation is provided by an

Alumina layer, deposited at the position of the small pink rectangle

shown in Figure 12.2(c).

(a) Photoresist deposition: 1.7 − �m-thick of Microposit LOL-

2000 spun at 4000 rpm and baked at 150°C for 1 min. 5 �m Shipley

S1805 spun at 4000 rpm and baked at 110°C for 1 min.

(b) Optical lithography: UV exposure through themask shown

in Figure 12.2, in vacuum contact (dose: 150 mJ/cm
2
). (c) Develop-

ment: dissolution of exposed resist in MF319 developer for 1 min,

subsequently rinsed in DI water and blow dry under nitrogen.

(d) Cleaning: O2 plasma (5 sccm) at 100 W and a pressure of

50 �bar during 2 min.

(e) Alumina layer: e-beam evaporation of 65-nm-thick film at

a rate of 0.1 nm/s, and at an angle of 40 using planetary rotation

of the wafer holder.

(f) Lift-off: the resist stack covered with alumina is finally

removed with a warm (80°C) bath of 1165 remover for ∼ 10 min,

subsequently rinsed in DI water and blow dry under nitrogen.

(g) Cleaning: O2 plasma (5 sccm) at 100 W and a pressure of

50 �bar during 2 min.

I Coating for dicing & individual chip processing
E-beam resist bilayer deposition: ∼400-nm-thick copolymer

MMA (8.5) MAA EL10 spun at 4000 rpm, baked at 150C for 3 min.

∼ 270−nm-thick PMMA (950K) ethyl-lactate spun at 4000 rpm,

baked at 150C for 3 min. UV3 coating to protect the bilayer from

debris produced when dicing the wafer: spun at 2000 rpm and

baked at 120C for 2 min.
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After dicing the processed wafer, each chip is ready for the next steps.

Some of them were directly used, without any further processing, for

preliminary experiments devoted to characterize the resonators. In next

sections we explain in detail the integration of nanowire weak links into

individual resonators.

(a)

(c)

(b)m
ar. janv.

18 13:13:32 2022
(-5425.00000, -2956.25000 ... 5075.00000, 2550.00000)

Figure 12.1: Optical lithography mask S1 (resonators). (a) The mask includes 44 individual chips of 3 × 10 mm
2
with different coupling

quality factors, number of resonators and gates. (b) Individual chip view corresponding to the one we used in experiments. The chip

includes 4 resonators with slightly different resonance frequencies. (c) Close view of resonator R#2, highlighted in red in (b) .



12 Samples fabrication 161

(a)

(c)

(b)

. 18 16:25:36 2022
(-5480.98434, -2229.97763 ... 5042.50559, 3288.59060)

Figure 12.2: Optical lithography mask S2 (resonators). (a) The mask includes 44 individual chips of 3 × 10 mm
2
with different coupling

quality factors, number of resonators and gates. (b) Individual chip view (for the sake of clarity the lattice of 2×2 �m squares is not

represented) corresponding to the one we used in experiments. The chip includes 4 resonators with slightly different resonance bare

frequencies. Highlighted in red, the ending region of resonator R#1 where the coupling with the nanowire will take place. (c) Close view of

this region. The nanowire will be deposited with a micromanipulator across the bottom narrow gap region of the CPW, to the right of the

pink rectangle, which corresponds to the optical mask layer for the alumina patches
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20 µm

40 µm

(a)

(b)
Figure 12.3: (a) Optical image of sample

S1 after NW deposition using a home-

made tip under a binocular microscope

(b) Optical image of sample S2 after NW

deposition using our micromanipulation

station.

12.2 Nanowire weak link fabrication

12.2.1 InAs-Al core-full shell nanowires

The nanowires used in this thesis work were synthesized by Peter

Krogstrup (Copenhagen university). The batch name is QDEV439. It

contains ∼10-�m-long nanowires with an InAs core diameter of about

140 nm, featuring a hexagonal cross section and covered by an epitaxial

Al shell about ∼ 25 nm-thick. They were grown in the wurtzite phase

along the [0001] crystalline direction on a (111)B InAs substrate by the

Au-catalysed vapour–liquid–solid method. An aluminum evaporation

was subsequently performed to cover each of the six facets, following the

recipe of Ref. [37]

[37]: Krogstrup et al. (2015), ‘Epitaxy

of semiconductor-superconductor

nano-wires’

.

12.2.2 Nanowire deposition

High precision alignment marks were defined by means of e-beam

lithography in the region where nanowires are subsequently deposited.

In sample S1, nanowires were picked up and dropped on the sample

using as a tip a Nylon fiber extracted from a cleanroom’s wipe and glued

to the end of a 250-�m-diameter needle. The fiber diameter, ∼ 9 �m,

was about 50 times larger than the diameter of the nanowires. With this

home-made tip, a bunch of nanowires was deposited with a placement

precision of the order of 50-100 �m.

For sample S2, we had set up a micro-manipulation station (see Figure

12.5) and the nanowireswere deposited one by one. The station consists in

a Eppendorf 3-axismicro-manipulator (TransferMan
®
4r) that controls the

position of a home-made tip holder, to which a 100-nm-radius tungsten

STM tip (72X Tungsten Wire 3 mil from American Probe & Technologies

Inc.) is attached. The micro-manipulator is associated with a digital

microscope (Keyence
®
) that allows to monitor the transfer process: a

single nanowire is catched with the STM tip from the small piece of wafer

with nanowires, then deposited on the desired region of our sample with

a precision of the order of a few �meters. With some practice, a nanowire

can be displaced on the surface of the sample to better adjust its final

position. Figure 12.3 shows optical images after deposition of nanowires

on sample S1 and S2.

12.2.3 Weak link definition process

After NW deposition, samples are covered with a layer of PMMA (950K)

A6 e-beam resist. After opening small windows over the nanowires,

the aluminum shell is wet-etched to create the weak links. In order to

center the position of the windows, images of the NWs are incorporated

into the e-beam software and positioned using the alignment marks

(Figure 12.4 (a) and (b)). After e-beam lithography and development, and

prior to wet etching of the aluminum shell, the exposed sample surface

is cleaned under a mild O2 plasma to eliminate organic residues. The

wet etch process consists in dipping the sample for 15 sec in Al etchant

(Transene-D) at a temperature of 50°C, and immediately rinse it in DI

water for 30 sec. The PMMA is then removed using hot acetone. The wet
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1 µm

(a) (c)

1 µm

(b)

(e)

10 µm

(d) (f)

10 µm

Figure 12.4: Weak link definition process.Top (bottom) row corresponds to sample S1 (S2). (a) and (b) Images of deposited NW are

incorporated into the writing e-beam software and centered with the help of the alignment marks in order to define the etching windows

(red) on top of the NWs. (c) and (d) Close view , for samples S1 and S2 respectively, of the etching window opened over the NW. The image

is blurred since the optical microscope is at its resolution limit.(e) and (f) SEM image of the weak link region after wet etching.

etching process proved to be not 100% reproducible because it relies on

surface chemistry, which is highly dependent on the surface state of the

nanowires and/or the substrate, i.e. on the presence of eventual residues

or contaminants for example. Nanowires processed together on the same

chip and having therefore all witnessed the same chemical treatment,

could be etched quite differently, with variabilities in the size of the weak

link on the order of 50%. For this reason, this step is realized first: in case

of failure, the nanowire can be replaced by another one. Figure 12.4 (e)

and (f) shows the SEM images of S1 and S2, respectively, after the etching

process. The semiconducting region appears clean and the facets of the

NW are apparent.

12.2.4 Nanowire gates

In sample S1, side gates were fabricated after obtaining the weak links.

In order to position them as close as possible to the weak link, high

resolution SEM images were incorporated into the e-beam lithography

software as in the previous step and gates were custom-defined for each

nanowire. The process is the following:
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Figure 12.5: View of the micromanipulation station for nanowire deposition. The station consists in a Eppendorf 3-axis micro-manipulator

(TransferMan
®
4r) that controls the position of a home-made tip holder. The control pad with the joystick (upper image on the left-hand

side) allows to move the tip on the X-Y plane whereas the swivel (top part of the joystick) controls the Z -axis. A 100-nm-radius tungsten

STM tip is attached to a home-made holder. The micro-manipulator is associated with a digital microscope (Keyence) that allows to monitor

the transfer process: a single nanowire is catched with the STM tip from the small piece of wafer with nanowires, then deposited on the

desired region of our sample with a precision of the order of a few �meters.
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I Coating: bilayer of MMA(8.5)MMA EL10 / PMMA(950K)A6 (∼
400 / 300 nm thick respectively) baked @ 150°C

I E-beam lithography at 30keV

I Ti/Au deposition: after mild Ar milling, 3 nm thick layer of Ti,

followed by 50 nm of Au is deposited at a rate of 0.1nm/sec and

0.5 nm/sec respectively.

I Lift-off: in hot acetone (60°C) during 15 min. Rinsed in IPA under

mild US. Blow dry under nitrogen.

Limited gate stability was observed on sample S1: two-tone spectra

showed slow drifts and from time to time sudden jumps. Furthermore,

gate sweeps displayed hysteresis. We attributed this behaviour to the

presence of deep charge traps in the nearby silicon dioxide dielectric

substrate determining the electrostatic environment of the semiconductor

weak link. Having in mind this hypothesis, we decided to fabricate gates

differently by placing them underneath the weak link. In sample S2,

gates were fabricated at the same time as the alignment marks. Since

the nanowires were deposited on top of the NbTiN film, and across the

CPW resonator gap, the weak links were suspended typically ∼100 nm

above the gates. This way there is no dielectric between the weak link

and the metallic gate, which furthermore screens the charges in the

substrate. With this gate configuration, spectra were much more stable,

and hysteresis in gate sweeps almost negligible.

12.2.5 Nanowire contacts

The last fabrication step consists in contacting the nanowires’ aluminum

shell to the loop that allows phase biasing the weak link. The process

flow is as follows:

I Coating: bilayer ofMMA(8.5)MMAEL10 / PMMA(950K) EL baked

at 150°C
I E-beam lithography at 30keV

I Alumina dry etch: in order to get superconducting contacts, the

oxide layer on top of the nanowires’ Al shell must be removed prior

to Al evaporation. This is done by means of Ar-milling (sequences

of 10 sec of etching / 40 sec of waiting time to avoid overheating

and hence damaging the PMMAmask).

I Al deposition: after Ar milling, 130-nm-thick Al layer is deposited

at a rate of 1nm/sec.

I Lift-off: in hot acetone (60°C) during 15 min. Rinsed in IPA under

mild US. Blow dry under nitrogen.

Figure 12.6 and Figure 12.7 show details of the region where the CPW

resonator and the nanowire weak link are coupled, in samples S1 and S2,

respectively.
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30 µm

5 µm

1 µm

(b)(a)

(c)

Figure 12.6: SEM images of Sample S1. (a) zoom on the shorted-end of the CPW resonator (on the left) coupled to Al loop containing the

NW (inside red box). Note that the Al loop is connected to the ground plane (upper left corner) to provide a reference for the dc voltage

applied on the gate (thin horizontal bright electrode). (b) close view of the InAs-Al core-shell nanowire. (c) Zoom on the weak link. The Al

shell was removed over 370 nm to form the weak link. A close-by side electrode is used to gate the semiconducting exposed region and

drive microwave transitions between ABS.

1 µm

(b)(a)

Figure 12.7: SEM images of Sample S2 (tilted). (a) Zoom on the shorted-end of the CPW resonator.The nanowire (inside red box) connects

the central conductor of the CPW and the ground plane, thus forming a superconducting loop that allows to control the phase difference

across the nanowire weak link. (b) close view of red box in (a) The Al shell was removed over 600 nm to form the weak link. A local back

gate electrode underneath the semiconductor exposed region is used to control the dc properties of the weak link and drive microwave

transitions between ABS.
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During this thesis, the experiments were performed in two different dry

dilution refrigerators. Most of the spectroscopy experiments (chapters 6

and 8)were carried out in a Cryoconcept fridge (base temperature 30mK),

whereas the time-domain data (Chapter 9) were taken in a BlueFors

LD-250 refrigerator (base temperature 10 mK) installed in 2020. Views of

the two room temperature control desks and of the dilution refrigerators

are given in Figure 13.1 and Figure 13.2

(b)(a)

Figure 13.1: (a) View of the control desk of the experiment with Cryoconcept refrigerator, shown in (b), with the sample box at

the bottom left.

.
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(b)(a)

Figure 13.2: (a) View of the control desk of the experiment with BlueFors refrigerator, shown in (b), with the sample box on the

right hand side.

.

13.1 Sample holder

(b)(a)

(d)(c)

Figure 13.3: (a,b) Views of the sample holder, open and closed. A two-Euros coin gives the scale. (c) Sample wire-bonded

to PCB. (d) Closed sample holder mounted inside a flat superconducting coil (white Teflon tape covers its windings). The

ensemble is enclosed in a double cryoperm/aluminum cylindrical shield, seen in Figure 13.2(b).

The silicon chips are glued on a printed circuit board (PCB), using a

droplet of UV3 resist. As shown in Figure 13.3, wire bonding allows the

connection to the PCB, including many connections to the ground plane

all around the sample. The PCB, which has six SMP connectors soldered
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onto it, is mounted in a cylindrical gold plated copper box. The box is

placed coaxially inside a flat superconducting coil on a copper holder

thermally anchored to the refrigerator mixing chamber. The ensemble is

enclosed in two cylindrical shields, the inner one made of aluminum, the

outer one of Cryoperm.

13.2 Wiring inside the dilution refrigerator

13.2.1 Cryoconcept® fridge

1K

4K

77K

Figure 13.4: Schematics of the wiring of the experiments presented in chapters 6 and 8

.

The wiring of the Cryoconcept fridge is schematically represented in

Figure 13.4. The signals sent to the sample are attenuated by a succession

of XMA attenuators. The measurement signal is amplified first at base

temperature by a TWPA (developed at Lincoln Laboratories and provided

to us byWill Oliver), followed by aHEMT (LowNoise Factory 4−16 GHz,

+40 dB) at the 4K stage. The coaxial line between the two amplifiers is

superconducting (NbTiN), in order to have as little attenuation as possible

but low heat conduction. The circulators between the sample and the

HEMT are fromQuinstar 8−12 GHz (simple and double), and a Pamtech

broadband insulator. The 6 − 8 GHz bandpass filter is from Microtech.

The DC gate port is a coaxial line, equipped with Mini-Circuit VLFX-80+
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and SLP-2.5 low-pass filters. A bias tee (Anritsu K250), placed at base

temperature, allows to combine DC and AC voltages on the gate. A small

superconducting coil placed next to the sample, biased using a twisted

pair and filtered by the combination of its inductance and a 1 Ω resistor,

is used to phase-bias the weak link . Additionally, a two-axis home-made

magnet (not shown in the figure) is used to probe the magnetic-field

dependence of the weak link spectrum. The two Helmholtz coils are

biased through HTc superconducting wires, and filtered with the parallel

combination of their inductance and 9 Ω resistors placed at the 77 K

stage.

13.2.2 Bluefors® fridge

Figure 13.5: Schematics of the wiring of the experiments presented in chapter 9

.

The wiring of the BlueFors fridge was very similar, see Figure 13.5, except

for minor changes like the position of the attenuators. The main differ-

ence concerns the DC gate bias, which is done through a twisted pair

fabricated on long flexible PCBs by our colleague Çağlar Girit at Collège

de France, and includes a low-pass RC filter at base temperature. The coil

on the sample holder (see Figure 13.3) was wired from a 100 �m-diameter

NbTiN wire, 800 turns on 10 layers. To avoid short-circuits to ground,

the metallic mandrel (gold plated copper) was covered with blue-tape

on the sides and Kapton tape at the bottom.
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14.1 Microwave wiring

For the first spectroscopy measurements performed in the Cryoconcept

fridge we used a rather simple room-temperature microwave setup,

shown in Figure 14.1. Simple mixers are used to pulse the measurement

tone (frequency 50.) In some experiments, we had twomeasurement lines

allowing to measure resonators around 3 GHz and 9 GHz (blue and red

lines). The corresponding signals were mixed with IQ mixers, filtered,

amplified, then sent to two lock-ins (in the figure, SR830). The drive

signal at frequency 51 is chopped with an arbitrary waveform generator

(Agilent AWG 33250) delivering a square signal at a frequency given as a

reference to the the lock-ins.

Figure 14.1: Schematics of the room temperature microwave wiring of the experiment in the lab with Cryoconcept fridge.

.

In the subsequent experiments, the setup was enriched and modified

so that all the different types of measurements and the different con-

trols could be performed without disconnecting anything. The present

(January 2022) state of the corresponding wiring of the experiment is

shown in Figure 14.2. Several computer-controlled mechanical switches

(Mini-circuit RC-4SPDT-A18), shown as blue rectangles, allow to route the

signals. The green rectangles aremicrowaves sources (AnritsuMG3292 or

MG3294), a vector network analyser (Keysight PNA-L), a signal analyser

(Rohde and Schwarz FSV), an oscilloscope (Lecroy Waverunner 601). The

QuantumMachine OPX appears split in 3 grey rectangles in the diagram:

analog outputs (left), digital markers (bottom right) and analog inputs
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(top right). The connections to the ports of the experiment at the top

of the dilution refrigerator are symbolized with the purple disks Drive

(drive tone, connects to "Drive" in Figure 13.5), Resonator (connects to

"Readout" in Figure 13.5), Meas (connects to "Output" in Figure 13.5).
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Figure 14.2: Schematics of the room temperature microwave setup. The identification of the different elements is provided by

Figure 14.3.
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Figure 14.3: Caption for Figure 14.2.

.

The actual setup is shown in Figure 14.4.
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(a) (b)

Figure 14.4: Room temperature microwave setup as of January 2022: (a) General view; (b)

close view on the mixers’ board.

.

In Figure 14.5, we show the parts of the circuit used in spectroscopy

experiments performed with the Quantum Machine.
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Figure 14.5: Microwave circuit for spectroscopy experiments. The drive tone generated by the VNA in CW mode (on the top of

the figure) is chopped by the rapid switch (on the bottom), commanded by a digital output of the QM (bottom right).

.
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14.2 Spectroscopy

For measurements of the spectrum, the drive and measurement tones

were applied simultaneously. Two differential methods were used to

measure the effect of the drive tone.

I In the first one, illustrates with Figure 14.1, the drive tone was

chopped using a 3 kHz square voltage signal gating the microwave

source itself. The same signal was used to synchronize lock-in

amplifiers (two Stanford Research LI830, or the two ports of a

Zürich Instruments UHFLI 600 MHz), which give the amplitude

of the corresponding modulation in � and &. The time constant of

the lock-ins was set to 10 − 50 ms. One practical advantage of the

Zürich Instruments Lock-in over the Stanford Research ones is that

it could be addressed through a network port, much more rapid

than the GPIB interface, which makes a difference when the points

of a spectrum are transferred one by one to the computer.

I The second method uses the Quantum Machine: one output of

the QM drives a switch (Analog Devices ADRF5020) on the drive

signal. The signal is a series of 33 �s-long pulses with of 10 times

high/low value. Each pulse is demodulated with alternative signs,

so that one directly obtains the difference of 〈�〉 and 〈&〉 with drive

on and off.

14.3 Time-domain measurements

14.3.1 Generation of pulses

Microwavepulseswereobtainedby single side-bandmixing low-frequency

pulses generated with a waveform generator and microwave tones from a

microwave source. The principles of single side band mixing is described

in Section I.1. The waveform generator was a Quantum machine
®
OPX,

which also allowed acquisition of the measurements and demodulation.

The pulse envelope was defined with $IF/2� ≈ 50 MHz. The microwave

sources were either Anritsu MG3692 (up to 20 GHz), Anritsu MG3694

(up to 40 GHz), or a Keysight PNA-L network analyser used in CWmode

(up to 20 GHz). IQ mixers are from Marki MMIQ-0218L (for drive tone)

and MMIQ-0520 (for measurement tone).

14.3.2 Demodulation

Demodulation of the � and& component of eachmeasurement pulse was

performed using a QUA program (QUA is the Python-based program-

ming language used to address the QuantumMachine). The principles

of demodulation are exposed in Section I.2. A large number of mea-

surements (typically a few thousands) are acquired, then treated using

two method. In the first one, one only takes the average values of �

and &. In the second one, the histograms of the measured values are

analyzed as a mixture of =2 gaussian components, depending on the

number of clouds that are observed (typically 3). Using the Python

class sklearn.mixture.GaussianMixture from the Scikit-learn
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library for machine learning [117], each measurement is ascribed to one

cloud, and one obtains the populations of the =2 clouds.

14.4 State pre-selection

Most of the pulse sequences that we have used for measurements of

Rabi oscillations, measurements of lifetime and coherence times are

standard. Less standard is the state pre-selection method used in the

experiments described in Sections 10.1.2 and 10.2.3. The way we do it is by

repeating measurement pulses and demodulating the results till a given

state is obtained with a high level of confidence. This is done at reduced

amplitude of the pulse measurement (by a factor 3), otherwise one has

to wait too long for the cavity to empty before the actual manipulation

that follows can be performed. Figure 14.6 illustrates the pre-selection

procedure. In (b), we show histogrammed value of the measurements

with low amplitude and normal pulses. The clouds corresponding to

states |6〉 and |>〉 partly overlap with the small amplitude pulses. Dashed

lines indicate the threshold values of � used to decide that a given state has

been measured, with sufficient accuracy. The subsequent manipulation

follows after a dead time of a few �s to ensure that the number of photons

in the cavity has sufficiently decreased.

Readout during
pre-selection

Readout after
manipulation

(b)

|𝒈⟩ ?
|𝒐⟩ ?

Readout

Pre-selection

(a)
(manipulation)

n

Figure 14.6: (a) Pulse: low power measurement pulses are repeated till the required state is

measured. (b) Comparison of the histogrammed output of low amplitude measurements,

like during the preselection, and standard measurements.

.
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15.1 QuantroLab

Data acquisition is based on the integrated development environment

(IDE) QuantroLab, which has been developed in the Quantronics group

since 2012 by Andreas Dewes, Vivien Schmitt, Daniel Flanigan and

Denis Vion. We benefited not only from the IDE itself, under constant

development, but also from the instrument drivers and front panels

written by others in the group.

Figure 15.1: IDE main window, with a Python program opened.

.

QuantroLab allows controlling the experiment with Python programs

(see Figure 15.1) and benefit from three "helpers" (see Figure 15.2):

I The instrument manager, in which all connected instruments ap-

pear, and can be addressed using commands and front panels.

I The data manager, which allows real-time plotting of data (2D or

3D plots).

I The loop manager, which allows to control running loops during

a measurement: loop direction, step, start and end values can be

changed in real time; a loop can be paused and restarted, set to

auto-reverse or auto-restart.
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Figure 15.2: IDE Helpers: from top to bottom, the Data manager, the Instruments manager

and the Loops manager.

.

15.2 Command files

In the experiments of this thesis, several types of measurements are

performed repetitively, and each type of measurement requires spe-

cific tunings. We used an interface written with Igor Pro software

(Wavemetrics
®
) that allows setting up graphical interfaces and program-

ming, as shown in Figure 15.3. In this interface, one chooses the type

of measurement by selecting the corresponding tab, which contains all

the parameters previously used for this specific measurement. As soon

a one tab is selected or one parameter is modified, a text command file

is saved on the computer, and a text recapitulating all the settings is

copied to the clipboard, ready to copy to the lab book. We use essentially

a single Python program IDE, which performs measurements according

to the information read in the command file. Hence, after defining the

measurement in the Igor interface, one just has to launch this Python

program.
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Figure 15.3: Igor interface used to write command files.

Wedeveloped some convenient tools, like themeasurement of spectra in a

non-rectangular region in thephase, frequencyplane (�, 51). After loading

in Igor a spectrum, one draws a spline to define a specific path 51(�). In
the front panel, one loads this path and define a measurement region

as a frequency interval of a given amplitude around this path. When

reading the commandfile, the Python program sweeps the corresponding

snake-shaped window.
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16.1 Summary of the results

Spin. One key result of this thesis work is the experimental observation

of the fine structure of the Andreev states in InAs nanowire

weak links, as an effect of the Rashba spin-orbit interaction.

It is revealed by the existence of distinct spectroscopic lines,

which we interpret as atomic-like transitions of a quasiparticle

between two spin-split ABS doublets. A minimal two-band

model accounting for the spin-orbit interaction in the nanowire is

shown to explain these generic features and their evolution with

magnetic field, and confirms the role of spin in the underlying

processes. Compared to experiments performed with atomic

contacts, where only transitions involving pairs of quasiparticles

were possible, this new family of transitions offers a route,

alternative to quantum dots, to manipulate a single fermionic

spin and implement an Andreev spin qubit.

In collaboration with the group of A. Levy Yeyati, we developed

a general framework to describe the coupling of a resonator to a

multilevel system of ABS, which can be applied to model both

single-tone and two-tone spectroscopies. Although a quantita-

tive modelling of the spectrum of finite-length weak links is in

general out of reach as it requires knowledge of the energy of all

subgap states and of the continuum, this theory allows to capture

in some limits several observed features in the experiment, such

as the effect on the resonator shift of the levels’ curvature and

the crossing of virtual transitions with the resonator frequency.

In addition, we reported data with clear evidence of direct

intra-manifold spin-flip transitions of a single quasiparticle in

the absence of any Zeeman field. These transitions, which were

initially predicted to be strongly suppressed when no magnetic

field is applied, are shown to be possible when the transverse

symmetry of the weak link is broken, which can be achieved by

means of a gate type of driving.

Charge. ABSs are generally perceived as chargeless states that only carry

supercurrent. Nevertheless, charging effectsmay be at playwhen

the weak link transmission is imperfect. The measured spectra

suggest that ABS in different channels of a nanowire junction

are weakly interacting, pointing at the relevance of Coulomb

interactions in the electrodynamics of finite-length weak links.

To evidence this effect, we identified recurring transition lines in

the microwave spectra, which we interpret as mixed pair transi-

tions involving pairs of quasiparticles in different ABS doublets.

Using different models, we show that such mixed transitions

are highly sensitive to electron-electron interactions, which lead
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to a modification of their spectral signatures characterized by a

generic splitting of their degeneracies at � = 0 and �. In some

cases, this splitting is reminiscent of the singlet/triplet physics of

two interacting spins 1/2. Altogether, our measurements show

that an interacting multi-channel theory is in general needed

and that a minimal model to describe nanowire spectra should

include both spin-orbit coupling and the junction’s finite length.

The relevance of the ABS charge was independently established

by Fatemi et al., who evidenced by single-tone spectroscopy a

violation of particle-hole symmetry of the even states [50]

[50]: Fatemi et al. (2021), ‘Microwave

susceptibility observation of interacting

many-body Andreev states’
, as

another signature of Coulomb interactions.

Although the present work focused mainly on spectroscopy, we also

report results on time-domain experiments, in particular preliminary

ones on the manipulation of an Andreev spin. We demonstrate the

coherent driving of a single quasiparticle between two different ABS

doublets, although the populations of the associated spin superpositions

could not be extracted. From tight-binding calculations of the resonator

shift expected for the lowest-lying many-body states, we show that single-

shot readout of a quasiparticle spin may actually be achievable only in

a restricted range of superconducting phase difference around � = 0,

which constrains the operation of the weak link as a spin qubit and may

explain our difficulties in discriminating the spin states, as most of our

time-resolved measurements focused on the region around � = �.

16.2 Future challenges & perspectives

We envision two future perspectives. First, in the continuity of the

present work, to realize the spectroscopy of ABS in an InAs nanowire-

based junction under high axial magnetic field. Second, to apply the

spectroscopy techniques that we developed to the investigation of multi-

terminal nanowire-based junctions.

16.2.1 Spectroscopy under high B field

One interesting path to be explored in the future, is the evolution of

the Andreev spectrum of InAs-nanowire weak links under high axial

magnetic field. Indeed, recent tunneling spectroscopy experiments in

full-shell nanowires claim that this hybrid system could be driven into a

topological phase by a flux-induced winding of the phase around the

superconducting shell [45] [45]: Vaitiekėnas et al. (2020), ‘Flux-

induced topological superconductivity in

full-shell nanowires’

. To reach it, one quantum of applied flux

should thread the nanowire section, corresponding to a phase twist of 2�
in the shell. For nanowires with 3 = 150 nm diameter like the ones used

in this thesis, this would require to apply a longitudinal field of about

)0/(�32/4) ≈ 120 mT, much lower than the stringent 1 T parallel field

which was suggested in previous proposals [43, 44] [43]: Lutchyn et al. (2010), ‘Majorana

Fermions and a Topological Phase Transi-

tion in Semiconductor-Superconductor

Heterostructures’

[44]: Oreg et al. (2010), ‘Helical Liquids

and Majorana Bound States in Quantum

Wires’

. Although tunneling

experimental resultsmust be takenwith care after the editorial expression

of concern published in July 2021, a new experiment using a different

spectroscopic technique (namely, photon absorption spectroscopy), could

bring additional input about this rich system and possibly elucidate the

controversy. In Appendix J, I present the progress made towards this

experiment.
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16.2.2 Microwave spectroscopy of multi-terminal
nanowire junctions

A new class of junctions is now becoming accessible to experiments:

multi-terminal junctions, which are weak links between more than two

superconducting electrodes. Remarkably, several recent theoretical works

predict that such junctions can show topologically non-trivial effects even

if the leads are made from conventional superconductors and no exotic

materials are used to make the weak link [118, 46, 48]

[118]: Heck et al. (2014), ‘Single fermion

manipulation via superconducting phase

differences in multiterminal Josephson

junctions’

[46]: Yokoyama and Nazarov (2015),

‘Singularities in the Andreev spectrum of

a multiterminal Josephson junction’

[48]: Xie et al. (2017), ‘Topological An-

dreev bands in three-terminal Josephson

junctions’

.

In such a multi-terminal junction, the energy of the ABS, always inside

the superconducting gap, depends on the superconducting phase of each

superconducting electrode. Topological effects are predicted to arise for

certain values of the superconducting phase differences between the

terminals, when the gap in the excitation spectrum fully closes, i.e. when

the energy of the lowest ABS becomes exactly zero, even in presence

of disorder. Due to the 2�-periodicity of the superconducting phases,

there exists a formal analogy between the band structure of a periodic

solid, in which states’ energy depends on the components {:G , :H , :I}
of the electron wave vector, and the spectrum of Andreev states [46,

47] [46]: Yokoyama and Nazarov (2015),

‘Singularities in the Andreev spectrum of

a multiterminal Josephson junction’

[47]: Riwar et al. (2016), ‘Multi-terminal

Josephson junctions as topological matter’

. Consequently, the ABS spectrum of a junction with # terminals

simulates a (# −1)- dimensional solid, with the (# −1) phase differences
playing the role of the components of the wave vector. In this analogy,

the vanishing of the energy of ABS corresponds to the physics of a Weyl
semimetal, the 3-dimensional analog of a Dirac material.

Recent advances in material science now allow fabrication of complex

networks of crystalline semiconducting nanowires with epitaxial inter-

faces with superconductors (see Figure 16.1(a)). Using a technique based

on growing intersecting nanowires in etched trenches, Gazibegovic et al.

have demonstrated the realization of multi-junction and multi-terminal

nanostructures [119]

[119]: Gazibegovic et al. (2017), ‘Epitaxy of

advanced nanowire quantum devices’

, which are now available for experimentalists to test

these predictions of topological effects.

So far, existing experiments onmulti-terminal junctions focusedmainlyon

transport properties, and the results are poorly understood [120, 121, 122,

123]

[120]: Plissard et al. (2013), ‘Formation and

electronic properties of InSb nanocrosses’

[121]: Pfeffer et al. (2014), ‘Subgap

structure in the conductance of a

three-terminal Josephson junction’

[122]: Pankratova et al. (2020), ‘The

multi-terminal Josephson effect’

[123]: Draelos et al. (2019), ‘Supercurrent

Flow in Multiterminal Graphene Joseph-

son Junctions’

. The reason is that when finite voltages are applied, phase differences

vary. The occupation ofABS becomes time-dependent, and Landau-Zener

tunneling, relaxation processes, emission of photons and phonons to the

environment are at the origin of very complex, uncontrolled processes.

Probing the junctions at equilibrium requires circuit-QED techniques, of

whichwehavedemonstratedhere the optimization for the spectroscopyof

nanowire junctions. Possible designs to couple a multi-terminal junction

to a microwave resonator are shown in Figure 16.1.

Interestingly, the localized Weyl semimetal idea was recently generalized

to an even simpler case, the one of a Josephson tunnel junction array [124,

125] [124]: Fatemi et al. (2021), ‘Weyl Josephson

circuits’

[125]: Peyruchat et al. (2021), ‘Transcon-

ductance quantization in a topological

Josephson tunnel junction circuit’

. It could be argued that the physics of such system would be very

similar to the multi-terminal one (exchange of Cooper pairs between

islands and reservoirs influenced by offset potentials and phases), so

that ultimately the key interesting facet of implementing it with actual

ABSs would be to access to odd-fermion-number states and their unique

physics (i.e. with spin-orbit as in Ref. [118]).
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Figure 16.1: Towards the microwave spectroscopy of multi-terminal Josephson junctions based on crossed nanowires. (a) Epitaxy of InSb

nanocrosses, obtained from the growth in etched trenches of (almost) intersecting InP nanowires which serve as stems for InSb nanowire

growth (adapted from Ref. [119]). Radial overgrowth is then performed to merge the two wires into a nanocross (red). (b) InAsSb nanocross

obtained from a collaboration with T. S. Jespersen and P. Krogstrup at the Niels Bohr Institute (Copenhagen) and grown with a similar

approach as in (a). (c) Schematic setup to couple a 4-terminal nanowire junction to a superconducting microwave resonator. The junction

(weak link in green, superconducting electrodes in grey) is placed in proximity to the shorted end of a quarter-wave resonator, shown in

blue. Electrostatic gates (magenta) allow tuning the properties of the weak link. The fluxes )1,2,3 through 3 superconducting loops are

tuned with DC currents in local flux lines (yellow) and a global magnetic field. Light grey area is an insulating layer between the gates and

the superconducting ground plane. (d) Device for a preliminary 3-terminal spectroscopy using a CPW implementation for the resonator

and two loops for the phase bias of the junction, which are shown in the green inset (e). A local flux line is used to bias one of the loops with

a flux )1, while the other is sensitive mainly to an external magnetic flux )2 and lies by design in the symmetry axis of the flux line to avoid

cross-talk. (f) Electron micrograph showing an InAsSb nanocross like the one in (b) hanging above a local gate. Three legs of the nanocross

are contacted to define the two loops (unfinished sample: the picture was manually edited to separate the contact pads and illustrate the

desired geometry).
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1: Sharing some similarity with phase-

conjugationmirrors in optics, where light

is reflected straight back the way it came

from, no matter the angle of incidence on

the mirror.

2: In a real system, with finite transmis-

sion, Andreev reflection no longer hap-

pens with probability one, meaning that

electrons may also undergo a normal spec-

ular reflection at the interface.

Superconductors viewed as
information mirrors A

Some recentworks offering amodernwayof looking atAndreev reflection

from the perspective of quantum information theory. The starting point is

the following : when a normal metal becomes superconducting, electrons

pair up to form a macroscopic coherent state, the BCS state, which is

independent of the initial quantum state of the electrons that formed

the condensate, giving the wrong impression that all the information

encoded in the microscopic degrees of freedom of the electrons has been

erased. One can wonder what happens to the information falling into

the superconductor after the formation of the condensate ?

In Ref. [126] [126]: Manikandan and Jordan (2017),

‘Andreev reflections and the quantum

physics of black holes’

, Manikandan et al. show that Andreev reflection of a pure

spin state can be thought about as a deterministic quantum information

transfer described by a unitary scattering matrix, in which the spin state

of the incoming electron — possibly in a superposition state of spin

↑ and spin ↓ — is mapped exactly onto the outgoing hole. Since the

superconducting ground state consists of paired electrons in singlet states,

while the incoming electron is permitted to enter the superconductor, its

spin information is actually reflected.

Due to the proximity effect from the superconductor, entangled pairs of

quasiparticles may be created at the interface as resonances between the

electronic states of the metal and of the superconductor. They correspond

to low-lying excitations of the Fermi sea where an electron with : < :�
is promoted to a higher energy level with :′ > :� , thus leaving behind

a vacancy (hole) in the Fermi sea. An incoming electron undergoing

Andreev reflection can be seen to interact with such an electron-hole pair,

by binding with the electron-like quasiparticle to form a Cooper pair

in the condensate, while the remaining hole-like excitation is reflected

backwards. In such a process, the spin information is deterministically

transferred from the incoming electron to the outgoing hole, with both

the initial shared entangled pair (the electron-hole pair) and the final

entangled pair (the Cooper pair) always spin singlets, thus leaving the

whole transformation unitary.

In this picture, a superconductor can eventually be viewed as a special

kind of mirror
1
, transmitting particles while fully reflecting their spin

information. By sandwiching a normal metal between two such mirrors,

a geometry commonly known as a Josephson weak link, one can then expect

to confine spin information
2
. If this junction is designed in such a way

that the naturally occurring spin degeneracy is lifted, one could expect it

to serve as a platform to implement a novel kind of spin quantum dot,

that could be operated as a qubit.

To push further the analogy between superconductors and information

mirrors, Puspus et al. analyzed the spin entanglement of the BCS ground

state and showed in Ref. [127] [127]: Puspus et al. (2014), ‘Entanglement

spectrum and number fluctuations in the

spin-partitioned BCS ground state’

that its information content, measured

by the entanglement entropy between the two spin sectors, scales like

the number of electrons in a shell 2Δ about �, i.e. like the Fermi surface

area. This "area" law for the entanglement entropy is closely related

to Andreev reflection happening at the normal metal-superconductor
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interface, which provides an interesting new perspective of looking at

it: pairs that contribute the largest to the entropy are precisely those

pairs that enter and leave the condensate during Andreev reflections.

The information contained in the BCS state therefore corresponds to a

physical process, Andreev reflections, which can be thought about as the

microscopic origin of a superconductor’s entropy. They provide a mech-

anism to understand how proximity effect operates at the microscopic

level and how metal electrons near a superconductor are converted to

Cooper pairs, thereby extending the superconducting correlations into

the metal.



Effect of symmetries in spin 1/2
systems B

B.1 Kramers degeneracy

Time-reversal symmetry (TRS) is the symmetry of physical laws under

the transformation ) : C ↦→ −C. In quantum mechanics, the time-reversal

operation is represented by an anti-unitary operator ) = U  where

 denotes complex conjugation and * is an unitary transformation

U † = U −1
. As a consequence of this anti-unitarity, one may have either

)2 = 1 or −1.
1

1: Proof

)2 = U  U  = **∗ = U (U ) )−1 = Φ,

where Φ is a diagonal matrix of phases.

Then U = ΦU )
and U ) = U Φ, so that

U = ΦU Φ, meaning that the coefficients

in Φ are ±1, which implies )2 = ±1.

The sign value depends on the total spin of the system

being an integer (+) or half-integer (−).

If TRS is a symmetry of the system, [�,)] = 0, then for every eigenstate

|#〉 the time-reversed state ) |#〉 is also an eigenstate with the same

energy. Though it may be identical to the original state, this cannot be for

a half-integer spin system, since TRS reverses all angular momenta and

reversing a half-integer spin cannot yield the same state. One can show
2

2: We assume [), �] = 0 and )2 = −1.

Consider � |#〉 = � |#〉, then )� |#〉 =
�) |#〉 = � |) |#〉 = �) |#〉 i.e. |) |#〉 is
also an eigenstate with energy E.

Now suppose that ) is a linear operator :

|)#〉 = 2 |#〉 with 2 ∈ ℂ. Then )2 |#〉 =
−|#〉 = )2 |#〉 = 2∗) |#〉 = |2 |2 |#〉 imply-

ing |2 |2 = −1, which cannot be.

Therefore |)#〉 ⊥ |#〉 and deg(�) ≥ 2.

that if )2 = −1, then the states |#〉 and |)#〉 are actually orthogonal: a

general result called Kramers theorem. This implies that every energy

level of a time-reversal symmetric system is at least doubly degenerate

if it has half-integer spin. This applies in particular to Andreev states,

which are fermionic spin 1/2 states by nature.

B.2 Consequence for the band structures of
solids

Electrons in solids are well described by means of Bloch functions, which

take the formof planewavesmodulated by a periodic function :#=k�(r) =
e
8k·rD=k�(r), with = the band number, k the electron wavevector and

� ∈ { +1,−1} labels the spin index associated to spin ↑ and spin ↓
electrons. If a Bloch state #=k↑ has energy &=k↑, then its time-reversed

state )#=k↑ = −#=−k↓ has energy &=−k↓, which implies &=k� = &=−k−�
because of TRS (Kramers degeneracy apply, because electron is a spin

1/2).

In addition, for a solid with space inversion symmetry, one can show

that &=k� = &=−k�. Then for a solid with both symmetries, we expect

a global two-fold degeneracy at each k-point, &=k� = &=−k−� = &=k−�.
However, if there is TRS but no space inversion symmetry, then the

two-fold degeneracy at a k-point is no longer guaranteed, except at

special k-points that differ from −k by only a reciprocal lattice vector M,

i.e. k = −k + M, which are commonly known as Time-reversal invariant

momenta (TRIM). In addition, a band crossing at a TRIM is protected, i.e.

it is robust to any perturbation that preserves TRS [128] [128]: Bernevig and Hugues (2013),

Topological Insulators and Topological

Superconductors, p. 37

. This general

result has profound consequences on the spectrum of half-integer spin

systems : bands come in pairs and the degeneracy is split in
®:-space

between
®: and −®:, except at the TRIMS, as illustrated in Figure B.1(a).
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Figure B.1: (a) Kramers degeneracy: due

to TRS, bands come in pairs and the degen-

eracy is split in
®:-space between

®: and −®:,
except at special points �0 , �1 called time-

reversed invariant momenta (TRIM), where

®: ≡ −®: mod
®� ∈ reciprocal lattice. (b) Ef-

fect of SOI on the energy levels of a system

with TRS but no space-inversion symme-

try.

In the absence of spin-orbit interaction (SOI), &=−k−� = &=−k� . Thismeans

that for a crystal without space-inversion symmetry, it is still common

to have &=k = &=−k , because TRS further ensures that &=k� = &=−k−�.
This imposes a symmetric energy spectrum with global two-fold spin

degeneracy, as shown in Figure B.1(b). Except at TRIMs, SOI is expected

to break this degeneracy, but the spectrum still looks symmetric because

of the Kramers degeneracy, as illustrated in Figure B.1(b).

Time-reversal invariant momenta (TRIM){
&�(®:) = &−�(−®:)
®: ≡ ®−: mod

®�
⇒ &�(®:) = &−�(®:) at a TRIM

Now for the specific case of Andreev states, their energy depends on

the superconducting phase � across the weak link. Since this phase

is 2�-periodic and originates from the application of a magnetic flux,

we have the following two symmetries for the system Hamiltonian:

�(� + 2�) = �(�) and )�(�))−1 = �(−�). Consequently, the Andreev

spectrum over � must be mirror-symmetric around � = 0,�. This is

indeed verified in Figure 2.4 and Figure 2.5. Each Andreev level is split in

doublets of ↑, ↓ states which must cross in energy at the two time-reversal

invariant phases � = 0,�.



Tight-binding description of
weak links C

The normal region of the weak link can be described by means of

the following tight-binding Hamiltonian, which can be viewed as a

discretized version of the continuum model presented in Appendix E.

It assumes two chains (labelled � = 1, 2) of discrete longitudinal sites

(indexed by 8) on which electrons can hop :

�0 =
∑
8 ,�,�

(&8 ,� − �)2†8 ,�,�28 ,�,� + CG2
†
8 ,�,�28+1,�,�

+
∑
8 ,�,�

CH2
†
8 ,�,�28 ,�+1,� + �
G2†8 ,�,�28+1,�,�̄

+ 8
H2†8 ,�,�28 ,�+1,�̄ + h.c. , (C.1)

where 2†
8 ,�,� creates an electron with pseudospin � on the longitudinal

site 8 belonging to the transverse chain � ; &8 ,� denotes the onsite potential,
� the chemical potential, and CG,H , 
G,H are spin-conserving and spin-

flip hopping amplitudes in the longitudinal and transverse direction

respectively.

This allows to describe the minimal two transverse bands scenario.

Diagonalizing Eq. (C.1) in the (28 ,1,↑, 28 ,1,↓, 28 ,2,↑, 28 ,2,↓) basis yields the

following expression for the energy dispersion of the bands :

�=� =
&1 + &2

2

− � + 2CG cos (: · 0)

+ (−1)=
[( &1 − &2

2

)
2

+ 
2

H + C2H + 4
2

G sin (: · 0)2

+ 4B(3 − 2=)
G sin (: · 0)
√( &1 − &2

2

)
2

+ C2H
]

1/2
, (C.2)

where = ∈ {1, 2} labels the band number and B ∈ {−1,+1} denotes the
pseudospin index � =↓ (↑).

We start from the situation with no spin-orbit interaction (
G = 
H = 0,

left column in Figure C.1). In the first Brillouin zone, : ∈
[
−�
0 ,+�

0

]
with

0 the size of the unit cell, the two bands are well described by two energy

shifted cosine arches (see Figure C.1(a), left):

�= ∼ −2|CG | cos (: · 0) 0→0≈ −2|CG |
(
1 − (: · 0)

2

2

)
=

~2:2

2<∗
+ cst, (C.3)

from which we recover the usual energy parabolas in the continuum

limit 0 → 0. As the two cosine bands are energy-shifted copies, they have

the same Fermi velocity E=� evolution with : (see Figure C.1(b), left). At a

given energy value fixed by the chemical potential �, there exists a Fermi

velocity difference between both = = 1, 2 bands (see Figure C.1(c), left),

butwe are seeking a situationwhere this difference exists between the two

pseudospin subbands within a given band =. As longitudinal spin-orbit

interaction is added (
G ≠ 0, middle column), the two transverse bands

split into two :-shifted copies associated to both pseudospin � ∈ {↑, ↓}.
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This :-shift is given by :

:
 = ±
1

0
arccos

[
1√

1 +
(

G
CG

)
2

]
with


CG =

~2

2<∗02


G =


20
.

(C.4)

Using that (1 + G2)−1/2 G→0≈ 1 − G2/2 and arccos (1 − G2/2) G→0≈ G, we

recover the expected continuum limit : :

0→0≈ <∗
/~2

. As shown in

Figure C.1(c) (middle), the Fermi velocities still remain identical for both

pseudospin � at a given energy ; this is because the associated subbands

are copies from each other merely shifted by :
.

Now, when introducing transverse spin-orbit interaction (
H ≠ 0), mixing

between the two transverse bands occurs. Comparing Figure C.1(d)

for 
H = 0 (middle) and 
H ≠ 0 (right), one observes that subband

hybridization due to transverse spin-orbit interaction gives rise to a finite

Fermi velocity difference between the two spin textures of the lowest

band, which peaks close to the hybridization points :1 and :2 (indicated

by black arrows). The expression for these momenta is obtained by

searching the :-values that cancel the term under the square root in

Eq. (C.2) : 
:1 = −

1

0
arcsin

√
4C2H + (&1 − &2)2

4
G

:2 = −
�
0
− :1.

(C.5)

Although a Fermi velocity difference does also exist close to the bottom

of the second band, it does not show a clear peak as for the lowest = = 1

band. Beware that this is an artefact due to the truncation to two lowest

bands : if a third transverse band = = 3 had been taken into account,

such a feature would have also been present for the = = 2 band. But if

the chemical potential lies close to the bottom of the lowest band, such a

minimal 2-band model is enough to grasp the physics.

When reasoning in terms of ABS, the quantity that intervenes in the equa-

tions is not the Fermi velocity E=�, but the adimensional ratio �=� = !
�=�

between the weak link length ! and the energy-dependent supercon-

ducting coherence length �=� = ~E=�/Δ with Δ the superconducting

gap. This ratio directly determines the number of ABS in the [−Δ,Δ]
energy range around �. More precisely, the number of ABS in the gap is

given by 1 + b2�/�c or 2 + b2�/�c, depending on � and �. Lifting the

spin degeneracy of the ABS requires having different �=� for the two

pseudospin � =↑, ↓. Therefore, the quantity ��= = �=↓ −�=,↑ determines

the spin splitting of the Andreev states.
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Figure C.1: (a) Energy dispersion �=�/Δ of two transverse bands = ∈ {1, 2} as a function of the electron quasi-momentum k for three different

cases (from left to right) : without any spin-orbit interaction (
G = 
H = 0), with 1D-spin-orbit (
G ≠ 0, 
H = 0) and with 2D-spin orbit

(
G ≠ 0, 
H ≠ 0). The curveswere computed fromEq. (C.2) for the followingparameters : C0 = ~2/2<∗ = 1656.51399meV.nm² (<∗ = 0.023<4 ),

Δ = 0.2 meV, 0 = !/# = 12 nm, ! = 500 nm,, = 100 nm, (&1 , &2) = (1.15, 0.8) · 2C0/02
, � = 0.595 meV, 
 = 0 · 
G =, · 
H = 16 meV.nm,

CG = −0.85 · C0/02
, CH = −1.0 · C0/,2

. (b) Fermi velocity E=� = (1/~)%:�=� of each subband =� as a function of the electron quasi-momentum

: (normalization by the unit cell size 0). Addition of spin-orbit (
 ≠ 0) has the effect to make the velocities pseudospin-dependent. (c) Same

curves as in (b) but plotted as a function of the subband energies �=� . To highlight the degeneracies, some of the curves were plotted in

dashed lines to show the ones below. (d) Ratio of the weak link length ! over the energy-dependent superconducting coherence length

�=� = ~E=�/Δ associated to each subband =� as a function of their energy �=�/Δ. Transverse spin-orbit (
H ≠ 0) gives rise to a finite Fermi

velocity difference for the two spin textures associated to a given band =. This quantity peaks close to the hybridization points :1 and :2,

highlighted by black arrows in the lowest rightmost plot.



On the origin of spin-orbit
interaction in InAs nanowires D

For wurtzite WZ nanowires, the Ĝ and Ĥ directions are geometrically

distinct from Î, yielding different effective masses in the longitudinal

and transverse directions. Close to the Γ point, the lowest conduction

bands can be approximated with the following quadratic Hamiltonian :

�0 =
~2

2

[
1

<∗⊥
(:2

G + :2

H) +
1

<∗‖
:2

I

]
. (D.1)

In the following we choose a coordinate system having the Î-axis along

the [0001] crystalline direction of the WZ structure. The spin-orbit Hamil-

tonian of the conduction electrons in bulk WZ semiconductors can be

derived from : · ? perturbation theory, with the following functional

form [129, 63] [129]: Fu and Wu (2008), ‘Spin-orbit

coupling in bulk ZnO and GaN’

[63]: Campos et al. (2018), ‘Spin-orbit

coupling effects in zinc-blende InSb and

wurtzite InAs nanowires’

:

�($ = [
 ®Ω'(®:)+� ®Ω�(®:)]·®� with

{ ®Ω'(®:) = (:H ,−:G , 0),
®Ω�(®:) = (1:2

I − :2

G − :2

H)(:H ,−:G , 0).
(D.2)

It shows terms both linear and cubic in momentum, originating from

the bulk inversion asymmetry of WZ structures. Quantizing this spin-

orbit field
®Ω[0001](®:) = 
 ®Ω'(®:) + � ®Ω�(®:) along the confining Ĝ and Ĥ

directions does not yield a term linear in :I , since each term contains

odd powers of transverse momentum, which integrate to zero. Therefore,

intrinsic bulk effects are expected to vanish for [0001] WZ nanowires !

On the other hand, if we consider a WZ nanowire grown along the [01
¯
10],

the spin orbit field reads

®Ω[011̄0](®:) = [
 + �(1:2

G − :2

H − :2

I)](0,−:I , :H), (D.3)

where the coordinate system was rotated so that the nanowire axis now

points along I=[01¯10]. By quantizing this spin-orbit field in the transverse

directions Ĝ and Ĥ, we obtain this time :

®Ω[011̄0](®:) = :I (0,−
 − �(�2 − :2

I), 0), (D.4)

with �2 = 〈< |1:̂2

G + :̂2

H |<〉, the expectation value of the transverse kinetic

term in the transverse mode <. For this other crystalline direction, we

observe that a term linear to :I is this time always present and is expected

to give the dominant contribution to spin-orbit splitting.

From this analysis, it would appear at first sight that [0001]WZnanowires,

like the ones used in this thesis, would be surprisingly the worst can-

didates for spin-orbit applications and that ZB nanowires or WZ ones

grown along other directions like [01
¯
10] would be much better suited.

This analysis, however, holds only in the single-mode limit. We know on

the other hand that the InAs nanowires measured experimentally host

several transverse conductionmodes [39] [39]: Goffman et al. (2017), ‘Conduction

channels of an InAs-Al nanowire

Josephson weak link’

. For suchmultimode nanowires,

the above intramode result remains valid, however we expect to have an
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additional intermode contribution to intrinsic SOI, which can be non-zero

between transverse modes of different parity. The measured spin-orbit

coupling for conventional WZ nanowires grown in the [0001] direction

would thus result from bulk contributions of intermode intrinsic SOI

and extrinsic contributions due to the structural inversion asymmetry of

the confinement.

Comparing experimentally the SOI in InAs WZ nanowires grown in the

conventional [0001] and in the perpendicular [01
¯
10] direction has been

challenging due to the inherent difficulty of obtaining wire growth along

directions different from the preferred [0001]. An experimental study

carried out by Jespersen et al. [130] [130]: Jespersen et al. (2018), ‘Crystal

orientation dependence of the spin-orbit

coupling in InAs nanowires’

showed recently that surprisingly, the

spin-orbit strengths extracted from low-temperature magneto-resistance

measurements show actually comparable values in both cases ! Thus, the

intraband intrinsic contribution does not add substantially to the effective

SOI of InAs WZ nanowires, as would have been naïvely expected. This

would finally point rather towards extrinsic structural asymmetry as

the main source of the measured SOI. Indeed in Ref. [36] [36]: Scherübl et al. (2016), ‘Electrical

tuning of Rashba spin-orbit interaction in

multigated InAs nanowires’

, Scherübl et

al. demonstrate that the SOI strength can be strongly increased, up to

a factor 2, using the electric field from an external nearby gate, with

Rashba SOI strength in the 
 ≈ 20 − 40 meV.nm range.

Due to the large surface-to-volume ratio of these nanowires, surface effects

play an important role in their transport properties. In particular, for low

band-gap semiconductors like InAs or InSb, the Fermi level at the surface

is known to be pinned inside the conduction band, which results in the

formation of a tubular conducting channel around the nanowire surface,

known as an accumulation layer [131, 132] [131]: Degtyarev et al. (2017), ‘Features of

electron gas in InAs nanowires imposed

by interplay between nanowire geometry,

doping and surface states’

[132]: Bringer and Schäpers (2011), ‘Spin

precession and modulation in ballistic

cylindrical nanowires due to the Rashba

effect’

. Electrons in this conduction

channel would therefore be strongly sensitive to the electric field from the

interface with vacuum and the one generated externally by electrostatic

gates. This goes in favour of the structural inversion asymmetry as the

main source of the observed linear Rashba SOI in InAs WZ nanowires.

Quantitative estimations of this effect for geometries relevant to recent

experiments on InAs nanowires were performed in Ref. [133]
[133]: Escribano et al. (2020), ‘Improved ef-

fective equation for the Rashba spin-orbit

coupling in semiconductor nanowires’

and showed

good comparison with the Rashba strength dependence on gate voltage

extracted from magneto-resistance measurements.



Scattering model for ABS in
Rashba nanowires E

The aim of this Appendix is to present the scattering model used to

derive the ABS energies in a multichannel Rashba nanowire, in particular

the single-barrier model which we used to fit the experimental data from

Chapter 6. This theory was developped by our theoretician colleague

Sunghun Park. The derivation was given in Ref. [32] [32]: Park and Levy Yeyati (2017),

‘Andreev spin qubits in multichannel

Rashba nanowires’

assuming an ideal

junction with no backscattering. Some results for the case with finite

transparency were printed in the supplementary of Ref. [51]

[51]: Tosi et al. (2019), ‘Spin-Orbit Splitting

of Andreev States Revealed by Microwave

Spectroscopy’

, but the

full derivation was never completely detailed. Hence I felt the need to

reproduce it here, to make justice to this theoretical model which was

used throughout this thesis to describe our experimental results.
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Figure E.1: (a) Sketch of a quasi 1D Rashba nanowire proximity coupled on both sides to

B-wave superconductors, thus forming a Josephson weak link with length ! and width, .

We assume the presence in the nanowire of a point-like barrier at G = G0 resulting in some

finite backscattering. A possible external magnetic field �G is applied along the nanowire

axis Ĝ. (b) Energy dispersion of the lowest two transverse bands in the nanowire at zero

magnetic field. The case of no SOI mixing � = 0 is drawn in dashed line and the � ≠ 0

appears in solid lines. Two right-moving electrons (blue and red disks) with different Fermi

velocities due to the finite � are reflected as holes (blue and red circles) through Andreev

reflections at G = !. (c) Linearization of the bands around the chemical potential �.

E.1 System description & model Hamiltonian

We consider a multichannel nanowire Josephson weak link with Rashba

spin-orbit coupling as discussed in [32]. Electrons in a quasi-one dimen-

sional nanowire are free to move in the Ĝ direction and are confined in
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the Ĥ and Î directions by a harmonic potential. This is actually a good

approximation for nanowires grown in a wurtzite phase along the [0001]

crystal direction, like the InAs nanowires used in this thesis. Indeed,

in such nanowires, the Ĥ and Î directions are known to be geometri-

cally distinct from the Ĝ, yielding different effective masses <∗⊥ and <∗‖
for the conduction band electrons in the transverse and longitudinal

directions.

We consider the situation described in Figure E.1. Two superconducting

electrodes separated by a distance ! in the Ĝ direction are proximity

coupled to the nanowire forming a Josephson junction. The Bogoliubov-

de Gennes (BdG) Hamiltonian for this cylindrical Josephson junction is

�3D

BdG
=

1

2

∫
33A Φ†(A)[(H0 − �)�I +H'�I +H/ +H(]Φ(A), (E.1)

where the field operator Φ(A) is the four-component Nambu spinor

Φ = (Φ↑,Φ↓,Φ†↓ ,−Φ
†
↑)
)
and � is the chemical potential. H0 describes the

quasi-one dimensional nanowire, which is well approximated close to

the Γ point by the following quadratic Hamiltonian
∗
:

H0 =
?2

G

2<∗‖
+
?2

H + ?2

I

2<∗⊥
+*1(G) +*2(H, I), (E.2)

where*1(G) = *0�(G − G0) represents a potential barrier at G = G0 with

0 < G0 < ! used to model back-scattering in the normal region, and

*2(H, I) = <∗⊥$2

0
(H2 + I2)/2 is the harmonic confinement potential with

$0, the associated angular frequency. We define an effective diameter for

the nanowire by, = 2

√
~/(<∗⊥$0). The Rashba spin-orbit interaction

H' and the Zeeman interaction H/ are given by :

H' = −
?G�H + 
?H�G , (E.3)

H/ =
6��

2

�G�G , (E.4)

where 
 is the strength of the spin-orbit coupling and �G is an external

magnetic field applied along the Ĝ direction, 6 ≈ 2 is the Landé factor

of the electron and �� the Bohr magneton. The validity of such linear

spin-orbit field for InAs nanowires is discussed in Appendix D. The Pauli

matrices �G,H,I and �G,H,I act in the spin and Nambu spaces respectively.

H( is the induced B-wave pairing potential due to the proximity effect

with the two superconducting electrodes,

H( = Δ(G)(cos �(G)�G − sin �(G)�H), (E.5)

where the induced gap Δ(G) and the superconducting phase �(G) are
given by Δ(G)4 8�(G) = Δ0 at G < 0, Δ04

8� = Δ0 at G > !, and zero

elsewhere. Here, � is the superconducting phase difference. We assume

that the Zeeman field is weak so that we can treatH/ as a perturbation.

∗
The bandstructure of InAs nanowires with hexagonal cross-section was computed in

Refs. [134, 135]

[134]: Faria Junior et al. (2016), ‘Realistic

multiband k.p approach from ab initio

and spin-orbit coupling effects of InAs

and InP in wurtzite phase’

[135]: Luo et al. (2016), ‘k.p theory of free-

standing narrow band gap semiconductor

nanowires’

using a realistic multiband : · ? approach from ab initio, showing that the

conduction bands overall possess good parabolic dispersions.
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E.1.1 Mapping of the BdG Hamiltonian to a 1D model
Hamiltonian

Weproject the total Hamiltonian in Eq. (E.1) onto the subspace spanned by

the lowest two relevant transverse subbands to obtain a one-dimensional

Hamiltonian. By solving (?2

H + ?2

I)/(2<∗⊥) +*2(H, I) in Eq. (E.2), we find

the subband eigenvalues and eigenstates,

�⊥= = ~$0(= + 1) = 4~2

<∗⊥,
2

(= + 1), (E.6)

)⊥
0B(H, I) =

2√
�,

4−2(H2+I2)/,2

"B , (E.7)

)⊥
1B(H, I) =

4

√
2H

√
�,

4−2(H2+I2)/,2

"B , (E.8)

where = = 0, 1, and )⊥
0B(H, I) is the eigenstate with �⊥

0
and )⊥

1B(H, I) the
one with �⊥

1
. "B=↑,↓ = (1/

√
2)[1, 8(−8)]) are the eigenstates of �H . The

one-dimensional Hamiltonian projected to this basis is given by

�1D

BdG
=

1

2

∫
3G Φ′†(G)[(H ′

0
− �)�I +H ′

'�I +H ′
/ +H(]Φ′(G), (E.9)

whereΦ′(G) is the eight-component operatorΦ′ = (Φ
0↑,Φ0↓,Φ1↑,Φ1↓,Φ

†
0↓,−Φ

†
0↑,Φ

†
1↓,−Φ

†
1↑)

)

with the subscript =B referring to the transverse quantumnumber = = 0, 1

and the spin B =↑, ↓, and

H ′
0
=

?2

G

2<∗‖
+ �⊥+ + �⊥−ΣI +*1(G), (E.10)

H ′
' = −
?G �̃I + ��̃HΣH , (E.11)

H ′
/ =

6��
2

�G �̃H , (E.12)

where �⊥± = (�⊥
0
± �⊥

1
)/2. �̃G,H,I are the Pauli spin matrices written

in the basis {"↑, "↓}, and ΣG,H,I are the Pauli matrices acting on the

space associated to the transverse degree of freedom. The coefficient

� in Eq.(E.11) describes the coupling between the different transverse

subbands with opposite spins through the spin-orbit coupling, and is

given by

� =

∫
3H3I )⊥†

0↓ (H, I)H')
⊥
1↑(H, I)

= −
∫

3H3I )⊥†
0↑ (H, I)H')

⊥
1↓(H, I)

=

√
2
~
,

. (E.13)

We solve first H ′
0
+H ′

'
in the absence of a potential barrier*1(G). We

focus on the single-channel energy regime. The dispersion relation is

then given by

�(:G) =
~2:2

G

2<∗‖
+ �⊥+ −

√
(�⊥− ∓ 
~:G)2 + �2 , (E.14)
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where the − sign is for Φ
0↑ and Φ1↓ and the + sign for Φ

0↓ and Φ1↑. The
Fermi velocities E 9=1,2 of the co-propagating electrons with momenta

:G = :�1 and :�2 respectively, in the different spin subbands at �(:G) = �
are

E1 =
~:�1

<∗‖
+ 
 cos�1 ,

E2 =
~:�2

<∗‖
− 
 cos�2 , (E.15)

where the �1 , �2 ∈ [�/2,�] angles are given by

�1 =
�⊥− − 
~:�1√

(�⊥− − 
~:�1)2 + �2

,

�2 =
�⊥− + 
~:�2√

(�⊥− + 
~:�2)2 + �2

. (E.16)

The eigenstates #',9=1,2 (#!,9=1,2) involving right (left) moving electrons

with the velocity E 9 can be expresses as

#',1 = −T #!,1 = 4
8:�1G

(
sin

�1

2

, 0, 0,− cos

�1

2

))
,

#',2 = T #!,2 = 4
8:�2G

(
0, sin

�2

2

, cos

�2

2

, 0
))
, (E.17)

where T = −8�̃HΣ0 is the time-reversal operator with the complex

conjugation operator  .

E.1.2 Linearization of the one-dimensional model
Hamiltonian

We now linearize the dispersion relation around the chemical potential

� and assume that the four-component spinor parts of the eigenstates

in Eq. (E.17) remain the same within the subgap energy range � − Δ0 <
� < � + Δ0. We write the electron field operator in terms of the left and

right propagating fields,

©­­­«
Φ

0↑(G)
Φ

0↓(G)
Φ

1↑(G)
Φ

1↑(G)

ª®®®¬ = '1(G)
©­­­«

sin�1/2
0

0

− cos�1/2

ª®®®¬+!2(G)
©­­­«

sin�2/2
0

0

− cos�2/2

ª®®®¬+'2(G)
©­­­«

0

sin�2/2
cos�2/2

0

ª®®®¬+!1(G)
©­­­«

0

sin�1/2
cos�1/2

0

ª®®®¬ .
(E.18)

Then, the linearized model which is valid around the Fermi level can be

expresses as

�!
BdG

=
1

2

∫
3GΦ̃†(G)

(
H̃kin + H̃1 + H̃/ Δ(G)4 8�(G)
Δ(G)4−8�(G) −H̃kin − H̃1 + H̃/

)
Φ̃(G)

(E.19)

where Φ̃(G) is the eight-component field operator in the left and right prop-

agatingfieldbasis Φ̃(G) = ('1(G), !2(G), '2(G), !1(G), '†
1
(G), !†

2
(G), '†

2
(G), !†

1
(G)).
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The kinetic term H̃kin and the potential barrier H̃1 in this model are

H̃kin =

©­­­«
−8~E1%G − ~E1:�1 0 0 0

0 8~E2%G − ~E2:�2 0 0

0 0 −8~E2%G − ~E2:�2 0

0 0 0 8~E1%G − ~E1:�1

ª®®®¬ ,
(E.20)

H̃1 = *0�(G − G0)
©­­­«

1 cos [(�1 − �2)/2] 0 0

cos [(�1 − �2)/2] 1 0 0

0 0 1 cos [(�1 − �2)/2]
0 0 cos [(�1 − �2)/2] 1

ª®®®¬ .
(E.21)

The Zeeman term has the following form

H̃/ = 8
6��

2

�G

©­­­«
0 0 − cos [(�1 − �2)/2] 1

0 0 1 − cos [(�1 − �2)/2]
cos [(�1 − �2)/2] −1 0 0

−1 cos [(�1 − �2)/2] 0 0

ª®®®¬ .
(E.22)

At zero Zeeman field, the BdG equation is(
H̃kin + H̃1 Δ(G)4 8�(G)
Δ(G)4−8�(G) −H̃kin − H̃1

)
Ψ(G) = &Ψ(G), (E.23)

whereΨ(G) = (#4
'1
(G),#4

!2
(G),#4

'2
(G),#4

!1
(G),#ℎ

'1
(G),#ℎ

!2
(G),#ℎ

'2
(G),#ℎ

!1
(G)).

This equation can be split into the two following ones


©­­­«
−8~E1%G − ~E1:�1 0 0 0

0 8~E2%G − ~E2:�2 0 0

0 0 8~E1%G + ~E1:�1 0

0 0 0 −8~E2%G + ~E2:�2

ª®®®¬
+*0�(G−G0)

©­­­«
1 cos [(�1 − �2)/2] 0 0

cos [(�1 − �2)/2] 1 0 0

0 0 −1 − cos [(�1 − �2)/2]
0 0 − cos [(�1 − �2)/2] −1

ª®®®¬
+ Δ(G)

©­­­«
0 0 4 8�(G) 0

0 0 0 4 8�(G)

4−8�(G) 0 0 0

0 4−8�(G) 0 0

ª®®®¬

©­­­«
#4
'1
(G)

#4
!2
(G)

#ℎ
'1
(G)

#ℎ
!2
(G)

ª®®®¬ = &
©­­­«
#4
'1
(G)

#4
!2
(G)

#ℎ
'1
(G)

#ℎ
!2
(G)

ª®®®¬ ,
(E.24)
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and
©­­­«
−8~E2%G − ~E2:�2 0 0 0

0 8~E1%G − ~E1:�1 0 0

0 0 8~E2%G + ~E2:�2 0

0 0 0 −8~E1%G + ~E1:�1

ª®®®¬
+*0�(G−G0)

©­­­«
1 cos [(�1 − �2)/2] 0 0

cos [(�1 − �2)/2] 1 0 0

0 0 −1 − cos [(�1 − �2)/2]
0 0 − cos [(�1 − �2)/2] −1

ª®®®¬
+ Δ(G)

©­­­«
0 0 4 8�(G) 0

0 0 0 4 8�(G)

4−8�(G) 0 0 0

0 4−8�(G) 0 0

ª®®®¬

©­­­«
#4
'2
(G)

#4
!1
(G)

#ℎ
'2
(G)

#ℎ
!1
(G)

ª®®®¬ = &
©­­­«
#4
'2
(G)

#4
!1
(G)

#ℎ
'2
(G)

#ℎ
!1
(G)

ª®®®¬ .
(E.25)

E.2 Subgap ABS for zero magnetic field

The Andreev levels for |& | < Δ0 are determined by matching the wave

functions of Eqs. (E.24) and (E.25) at G = 0 and G = !, and from the

boundary condition across the delta function potential at G = G0 used in

[136, 137] [136]: Peng et al. (2016), ‘Signatures of

topological Josephson junctions’

[137]: Heck et al. (2017), ‘Zeeman and

spin-orbit effects in the Andreev spectra

of nanowire junctions’

. We assume perfect Andreev reflections at the two interfaces

G = 0, !. It is enough to consider Eq. (E.24) because a solution of Eq (E.25)

is obtained by exchanging the 1, 2 indices in E1 , :�1 , E2 , :�2. Let us write

the wavefunction associated to each of the four pieces of the system. In

the left superconducting region G < 0, we have

Ψ(1(G) = 014
8:�1G+@1G

©­­­«
�
0

1

0

ª®®®¬ + 114
−8:�2G+@2G

©­­­«
0

1

0

�

ª®®®¬ , (E.26)

where @ 9=1,2 = (Δ0/(~E 9))
√

1 − (&/Δ0)2 and � = &/Δ0 − 8
√

1 − (&/Δ0)2. 01

and 11 are the coefficients. In the normal region at 0 < G < G0, we write

Ψ#1(G) = 024
8:41G

©­­­«
1

0

0

0

ª®®®¬+124
8:ℎ1

G
©­­­«
0

0

1

0

ª®®®¬+224
−8:42G

©­­­«
0

1

0

0

ª®®®¬+324
−8:ℎ2

G
©­­­«
0

0

0

1

ª®®®¬ . (E.27)
where we have defined{

:4 9 = :�9 + :̃ 9
:ℎ 9 = :�9 − :̃ 9

with :̃ 9 =
&
~E 9

. (E.28)

Similarly, we can write the wave function at G0 < G < ! as

Ψ#2(G) = 034
8:41G

©­­­«
1

0

0

0

ª®®®¬+134
8:ℎ1

G
©­­­«
0

0

1

0

ª®®®¬+234
−8:42G

©­­­«
0

1

0

0

ª®®®¬+334
−8:ℎ2

G
©­­­«
0

0

0

1

ª®®®¬ . (E.29)
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Finally, in the right superconducting region G > !, the wave function is

given by :

Ψ(2(G) = 044
8:�1G−@1G

©­­­«
1

0

�4−8�

0

ª®®®¬ + 144
−8:�2G−@2G

©­­­«
0

�
0

4−8�

ª®®®¬ , (E.30)

E.2.1 Scattering by the potential barrier
7

x

ψR 1
e

x0

U 0δ(x−x0)

tψR 1
e

t'ψL 2
e ψL 2

e

r'ψR 1
e

rψL 2
e

Figure E.2:Adelta-like barrier is located at position G = G0 tomodel possible backscattering

happening in the nanowire. Electron waves #4
'1
(G) (right-moving with velocity E1) and

#4
!2
(G) (left-movingwith velocity E2) are scattered by the potential barrierwith an amplitude

probability given respectively by A and A′.

The matching condition for the wave functionsΨ#1(G) andΨ#2(G) at
G = G0 can be derived by rearranging Eq. (E.24) with Δ(G) = 0 as

−8~%G
©­­­«
#4
'1
(G)

#4
!2
(G)

#ℎ
'1
(G)

#ℎ
!2
(G)

ª®®®¬ = Θ(G)
©­­­«
#4
'1
(G)

#4
!2
(G)

#ℎ
'1
(G)

#ℎ
!2
(G)

ª®®®¬ (E.31)

with

Θ(G) =
©­­­«
E1 0 0

0 −E2 0 0

0 0 −E1 0

0 0 0 E2

ª®®®¬
−1

×


−*0�(G−G0)

©­­­«
1 cos [(�1 − �2)/2] 0 0

cos [(�1 − �2)/2] 1 0 0

0 0 −1 − cos [(�1 − �2)/2]
0 0 − cos [(�1 − �2)/2] −1

ª®®®¬
−

©­­­«
−~E1:�1 0 0 0

0 −~E2:�2 0 0

0 0 ~E1:�1 0

0 0 0 ~E2:�2

ª®®®¬ + &


(E.32)
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We can obtain the solution as

©­­­«
#4
'1
(G 5 )

#4
!2
(G 5 )

#ℎ
'1
(G 5 )

#ℎ
!2
(G 5 )

ª®®®¬ = *(G 5 , G8)
©­­­«
#4
'1
(G8)

#4
!2
(G8)

#ℎ
'1
(G8)

#ℎ
!2
(G8)

ª®®®¬ , (E.33)

with

*(G 5 , G8) = exp

{
8

~

∫ G 5

G8

3G Θ(G)
}

(E.34)

Specifically, we can compute

*(G0 + 0
+ , G0 − 0

+) = exp


− 8

~
*0

©­­­«
E1 0 0

0 −E2 0 0

0 0 −E1 0

0 0 0 E2

ª®®®¬
−1 ©­­­­«

1 cos
�1−�2

2
0 0

cos
�1−�2

2
1 0 0

0 0 −1 − cos
�1−�2

2

0 0 − cos
�1−�2

2
−1

ª®®®®¬


= 4 8�0

(
A 0

0 A

)
, (E.35)

with

A =
©­«

cos 3 − 8DB sin 3
3 −8D2

sin 3
3 cos

(
�1−�2

2

)
8D1

sin 3
3 cos

(
�1−�2

2

)
cos 3 + 8DB sin 3

3

ª®¬ with �0 = D0

(E.36)

where we defined

3 =
1

2

√
D2

1
+ D2

2
− 2D1D2 cos (�1 − �2) (E.37)

and introduced the following notations : DB = (D1+D2)/2, D0 = (D1−D2)/2
with D9 = E 9/E0 and E0 = ~E1E2/*0.

From Eqs. (E.27), (E.29) and (E.35), we can write the boundary conditions

at G = G0 for the electronic and hole components respectively :(
034

8:41G0

234
−8:42G0

)
= 4 8�0A

(
024

8:41G0

224
−8:42G0

)
(E.38)(

134
8:ℎ1

G0

334
−8:ℎ2

G0

)
= 4 8�0A

(
124

8:ℎ1
G0

324
−8:ℎ2

G0

)
(E.39)

The matrix " = 4 8�0A, which is actually the transfer matrix associated

to the delta function barrier, can be written in terms of reflection and

transmission coefficients. We introduce

" =
1

C′
©­«
CC′ − AA−

√
E 9
E8
A′4 8!

−
√

E8
E 9
A4−8! 1

ª®¬ (E.40)

so that

Ψ(G0 + 0
+) =

©­­­«
"12 0 0 0

0 "21 0 0

0 0 "12 0

0 0 0 "21

ª®®®¬Ψ(G0 − 0
+) (E.41)
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with ! = (:41 + :42)G0. The reflection A, A
′
and transmission C , C′ coeffi-

cients are determined by

C4−8D0 = C′4 8D0 =
(
cos 3 + 8DB

sin 3

3

)−1

, (E.42)

A4−8! = A′4 8! = −84 8!
√
D1D2

sin 3

3
cos

�1 − �2

2

√
CC′. (E.43)

E.2.2 Boundary matching at G = 0, !

The matching of the wave functions in Eqs. (E.26,E.27) at G = 0 yields

©­­­«
01�
11

01

11�

ª®®®¬ =
©­­­«
02�
22

12

32�

ª®®®¬ . (E.44)

Similarly, matching at G = ! gives

©­­­«
034

8:41!

234
−8:42!

134
8:ℎ1

!

334
8:ℎ2

!

ª®®®¬ =
©­­­«

044
8:�1!−@1!

144
−8:�2!−@2!�

044
8:�1!−@1!−8��

144
−8:�2!−@2!−8�

ª®®®¬ . (E.45)

E.2.3 Andreev energy spectrum

Using Eqs. (E.38,E.40,E.44,E.45), we find the equation

Det

[
1−

(
�4−8:ℎ1

0
0

0 �−14 8:ℎ2
0

)
"−1

21

(
�4 8(:41−:ℎ1

)(!−0)−8�
0

0 �−14 8(:42−:ℎ2
)(!−0)−8�

)
"21

(
4 8:410 0

0 4−8:420

)]
= 0,

(E.46)

resulting in the following transcendental equation for the ABS energies,

corresponding to the wave functions #4
'1
(G),#4

!2
(G),#ℎ

'1
(G),#ℎ

!2
(G) :

Re

[
)4 8(:̃1−:̃2)!−8� + '4 8(:̃1+:̃2)(!−2G0) − �24 8(:̃1+:̃2)!

]
= 0 (E.47)

where :̃ 9 = &/(~E 9) and � = &/Δ0 − 8
√

1 − (&/Δ0)2. We defined the

global transmission and reflection probabilities as ) = |C |2 = 1 − ' =

1 − |A |2, which are independent of the energy &. For the wavefunctions

#4
'2
(G),#4

!1
(G),#ℎ

'2
(G),#ℎ

!1
(G), the associated transcendental equation is

obtained from Eq. (E.47) by exchanging the 1, 2 indices in :̃ 9 .

Introducing the reduced energy &̃ = &/Δ0, the ratios � 9 = !:̃ 9/&̃ = !/�9
with �9 = ~E 9/Δ0 the superconducting coherence lengths associated to

both modes 9 = 1, 2, and the reduced barrier position GA = 2G0/! − 1 ∈
[−1, 1], we can expand Eq. (E.47) to finally get :

) cos

[
(�1 − �2)&̃ ∓ �

]
+ (1 − )) cos

[
(�1 + �2)&̃GA

]
=

cos

[
2 arccos (&̃) − (�1 + �2)&̃

] (E.48)
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E.2.4 Double-barrier model

A more physical way to incorporate back-scattering in the model is to

consider that the two potential barriers are located at the left (G = 0)

and right (G = !) interfaces with the superconductors. Using a similar

derivation, one would obtain this time the following transcendental

equation for the ABS energies :

sin (&1 − arccos &̃) sin (&2 − arccos &̃)
= (2 − )! − )') sin (&1) sin (&2)
− (1 − )!)(1 − )') sin (&1 + arccos &̃) sin (&2 + arccos &̃)

− 2

√
(1 − )!)(1 − )') cos (!tot)(1 − &̃2), (E.49)

where & 9 = &̃� 9 + (−1)9B�/2, )!/' are the transmission probabilities at

the left and right interfaces and !tot = (:�1 + :�2)! − (�! + �') is the
total accumulated phase with �!/' the scattering phases acquires at the

� = !/' interfaces :

�� = arg

(
cos 3� + 8

sin 3�

3�

EB

E�

)
, (E.50)

where 3� and E� are defined as 3 in Eq. (E.37), replacing *0 by *�.

Although this model seems more physical than the single-barrier model

that we derived in detail, it predicts similar shapes for the spin-split

ABSs and offers a similar fitting quality of the experimental data from

Chapter 6. The transcendental equation for the ABS energy shows a more

cumbersome expression, but the number of fitting parameters is the

same as before : two transmissions instead of one transmission and the

position barrier.

E.3 Subgap ABS for a finite magnetic field

We incorporate the Zeeman effect as a first order perturbation. Below,

we use the wave functionsΨD(G, �) andΨ3(G, �) written in the original

basis used in Eq. (E.19) :

ΨD = (#4
'1
,#4

!2
, 0, 0,#ℎ

'1
,#ℎ

!2
, 0, 0)) (E.51)

Ψ3 = (0, 0,#4
'2
,#4

!1
, 0, 0,#ℎ

'2
,#ℎ

!1
)) (E.52)

We project H/ in Eq. (E.22) onto the subspace spanned byΨD andΨ3,

leading to a 2 × 2 matrix,

�% =

(
&D(�) BG
B∗G &3(�)

)
. (E.53)

The diagonal terms are Andreev level energies at zero Zeeman field,

&D/3 =

∫ +∞

−∞
3G Ψ†

D/3(G, �)
(
H̃kin + H̃1 Δ(G)4 8�(G)
Δ(G)4−8�(G) −H̃kin − H̃1

)
ΨD/3(G, �),

(E.54)
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As for the off-diagonal terms, they are given by

BG =

∫ +∞

−∞
3G Ψ†D(G, �)

(
H̃/ 0

0 H̃/

)
Ψ†
3
(G, �)

= 8
6���G

2

∫ +∞

−∞
3G (#4∗

'1
#4
!1
+ #4∗

!2
#4
'2
+ #ℎ∗

'1
#ℎ
!1
+ #ℎ∗

!2
#ℎ
'2
) (E.55)

− cos

�1 − �2

2

(#4∗
'1
#4
'2
+ #4∗

!2
#4
!1
+ #ℎ∗

'1
#ℎ
'2
+ #ℎ∗

!2
#ℎ
!1
). (E.56)

ABS energies and states are then obtained by solving the following

equation, (
&D(�) BG
B∗G &3(�)

)
Φ� = &�Φ�. (E.57)

from which we deduce

&�− = &B −
√
&2

0 + |BG |2 , Ψ�− =
1√
#�

( −BG
&0 +

√
&2

0 + |BG |2

)
(E.58)

&�+ = &B +
√
&2

0 + |BG |2 , Ψ�+ =
1√
#�

(
&0 +

√
&2

0 + |BG |2
B∗G

)
(E.59)

with the following notations

#� = 2

(
&2

� + |BG |
2 + &�

√
&2

0 + |BG |2
)

(E.60)

&B =
&D + &3

2

, &0 =
&D − &3

2

. (E.61)
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Figure F.2: Capacitive coupling.

Dispersive shift : how quantum ? F
F.1 Classical derivation

When a two-level system (TLS) is coupled off-resonantly to an electromag-

netic resonator, equivalent to a harmonic oscillator (HO), its transition

frequency is shifted in response to the quantum vacuum fluctuations of

the electromagnetic field, a phenomenon known as the Lamb shift [138] [138]: Lamb and Retherford (1947), ‘Fine

Structure of the Hydrogen Atom by a

Microwave Method’

.

This dispersive shift, routinely observed in spectroscopy in circuit QED,

actually contains a significant contribution from classical normal-mode

splitting that is not driven by any quantum fluctuations, which raises the

following questions: how much of this shift is really quantum in origin ?

how much of this shift persists if quantum fluctuations are neglected ?

In the following section, we derive classically the frequency shift acquired

by two harmonic oscillators coupled to each other. Remarkably, one

recovers the same result for the dispersive shift derived in cQED.

F.1.1 Coupling schemes

To set these ideas, let us derive the result in the context of electrical

circuits and so, do the reasoning in terms of LC resonators. Two couplings

schemes are typically considered, either inductive or capacitive (Figure

F.1, Figure F.2). Let us start first with the case of two identical oscillators,

which makes the math easier and the results more straightforward to

interpret. We will then describe the more general case of two different

oscillators i.e. of finite detuning.

Inductive coupling

Let us define the bare resonance frequency of the uncoupled resonators

$0 = 1/
√
!� and the inductive coupling coefficient�8 as the ratio between

the coupling inductance to the oscillator inductance �8 =
!<
! . The system

can be described by a set of two coupled equations, which can be recast

in the following quartic characteristic equation :
9$!�1 − 9

�1

$�
+ 9$!< �2 = 0

9$!�2 − 9
�1

$�
+ 9$!< �1 = 0

⇒

(
$2 − $2

0
$2�8

$2�8 $2 − $2

0

) (
�1($)
�2($)

)
= 0

($2 − $2

0
)2 − $4�2

8
= 0.

Because it is a polynomial equation of order 4, it has 4 solutions : ±$−
and ±$+ given by $± =

$0√
1∓�8

= 1√
(!∓!< )�

.

Capacitive coupling

Very similarly, one gets for the capacitive case (Figure F.2) the following

set of equations :
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Figure F.3: Mixed coupling.


9$�+1 − 9

�1

$!
− 9$�<+2 = 0

9$�+2 − 9
�1

$!
− 9$�<+1 = 0

⇒

(
$2 − $2

0
$2�2

$2�2 $2 − $2

0

) (
�1($)
�2($)

)
= 0

($2 − $2

0
)2 − $4�2

2 = 0.

To get for the characteristic equation the same structure as in the inductive

case, one needs to put a minus sign in the definition of the coupling

coefficient �2 = − �
�<

with �< ≥ 0. Keeping the notation where the ±
sign for the frequencies refers to the ordering of the solutions : $+ > $−,
one gets $± =

$0√
1±� =

1√
!(�∓�< )

.

When the coupling is small enough �8 , �2 � $0 so that the bare fre-

quencies are only slightly modified, the solutions can be expanded as

$± ≈ $0(1±�/2) andΔ$ := $+−$− = $0�. Thismotivates the following

general definition for the coupling coefficient : � :=
$2

+−$2

−
$2

++$2−
≈ Δ$

$0

.

Mixed coupling

In practice the coupling is never fully inductive or capacitive and one

generally has to deal with a mixture of both effects (Figure F.3). The

coupling coefficient then reflects the competition between inductive and

capacitive effects
1

1: Interestingly, one sees that by tuning

!<� = !�< one can cancel the coupling

� = 0. In structure, it is quite similar to

the famous Heaviside condition between

primary line constants, !� = '�, which

states the requirement that an electrical

transmission line must meet to have no

distortion of the transmitted signal. The

condition is also an equality between two

ratios of longitudinal constants over trans-

verse constants.

: � :=
$2

+−$2

−
$2

++$2−
=

�!<−!�<
!�+!<�< ≈

!
!<
− �

�<
where we have

defined $± =
$0√
1∓� : 

$+ =
1√

(! − !<)(� + �<)

$− =
1√

(! + !<)(� − �<)
.

F.1.2 General case : non-zero detuning

Let us now consider the general case of two distinct oscillators 1 and

2 with bare frequencies $8 = 1/
√
!8�8 with 8 = 1, 2. The characteristic

equation ($2 − $2

1
)($2 − $2

2
) − $4�1�2 = 0 now has the following two

positive solutions :

$2

± =
1

2

1

1 − �1�2

(
$2

1
+ $2

2
±

√
($2

1
+ $2

2
)2 + 4�1�2$2

1
$2

2

)
.

Introducing the detuning � between the two coupled oscillators and the

average frequency $0,{
$1 = $0 + �/2
$2 = $0 − �/2

⇒
{
$1 − $2 = � � $0

$1 + $2 = 2$0

⇒
{
$2

1
− $2

2
= 2�$0

$1$2 = $2

0
− �2/4

,

which allows to rewrite the two solutions :
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2: Since

6162 =

(
$0 +

�
2

) (
$0 −

�
2

)
�1�2

4

=
�1�2$2

0

4

(
1 − 1

4

(
�
$0

)
2

)
=

�1�2$2

0

4

+ $
(
�
$0

)
.

$2

± =
$2

0

1 − �1�2

©­­«1 + �2

4$2

0

±

√√√
�2

$2

+ �1�2

(
1 − �2

4$2

0

)
2ª®®¬

=
$2

0

1 − �1�2

©­«1 + �2

4$2

0

± �
$0

√√√
1 + �1�2

$2

0

�2

(
1 − �2

2$2

0

+ �4

16$4

0

)ª®¬ .
Large detuning � � 6 : dispersive limit

Assuming �1�2 � ( �$ )2 � 1, one can expand to first order :

$2

± ≈
$2

0

1 − �1�2

(
1 + �2

4$2

0

± �
$0

(
1 − �1�2

4

+
�1�2$2

0

2�2

))
$± ≈

$0√
1 − �1�2

(
1 ± �1�2$0

4�
± �

2$0

(
1 − �1�2

4

))
.

One obtains the zeroth-order correction to the oscillators frequencies :

$± = $0

(
1 ± �1�2$0

4�

)
+ $

(
�
$0

)
.

Introducing the coupling factors 68 =
$8
2
�8 for 8 = 1, 2, one can rewrite

the normal mode splitting of the two oscillators as Δ$ = |$+ − $− | ∼
2

�1�2$2

0

4� ∼ 2

6162

� .
2

Normal mode splitting of 2 classical oscillators — Dispersive case

�$± = ± 6
2

�

disp.︷ ︸︸ ︷
6 � ︸  ︷︷  ︸

RWA

� � $0

The first approximation �1�2 � ( �$ )2 � 1 amounts to assuming large

detuning � � √6162, which is generally known as the dispersive approxi-

mation � � 6. Note that one recovers the same expression for the cavity

pull as the one obtained from the Jaynes-Cummings hamiltonian in the

quantum treatment of two coupled modes.[20] [20]: Blais et al. (2004), ‘Cavity quantum

electrodynamics for superconducting

electrical circuits’The second approximation, � � $0, corresponds to the so-called Rotative

Wave Approximation (RWA), ie. |$1 − $2 | � $1 + $2. With this ordering,

�$± � � � $0 and the perturbation approach remains valid : the

relative correction to the bare frequencies �$±/$0 stays small.

Going beyond the RWA, one would get the well-known result in the

qubit community: �$± = ±62

(
1

$1−$2

+ 1

$1+$2

)
= ± 6

2

�

(
1 + �

2$0

)
which

only assumes the large detuning (=dispersive) approximation � � 6

[71, 72] [71]: Zueco et al. (2009), ‘Qubit-oscillator

dynamics in the dispersive regime’

[72]: Kohler (2018), ‘Dispersive readout’

. This limit, in which the qubit and the resonator are far detuned

compared to the coupling strength 6, is generally the one of practical

interest, since it allows a nondemolition-type measurement of the qubit

by probing the resonator.
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Small detuning � � 6 : resonant limit

Assuming this time the opposite limit �1�2($� )2 � 1:

$2

± =
$2

0

1 − �1�2

©­«1 + �2

4$2

0

± �
$0

√√√
1 + �1�2

$2

0

�2

(
1 − �2

2$2

0

+ �4

16$4

0

)ª®¬
≈

$2

0

1 − �1�2

(
1 ±
√
�1�2

)
,

which gives the following mode splitting :

|$+ − $− | ≈ $0

√
1 + � −

√
1 − �√

1 − �2

= �$0 + $(�2) = 26 + $(�2).

Normal mode splitting of 2 classical oscillators — Resonant case

�$± = ±$0

2
� = ±6

res.︷ ︸︸ ︷
� � ︸   ︷︷   ︸

weak coupling

6 � $0

F.2 Quantum or not ?

Wehave just shown that for two coupled harmonic oscillators, the normal-

mode splitting predicted by a purely classical description of the modes

leads to a dispersive shift analogous to the one in cQED, i.e.without taking

any quantum fluctuations into account. Actually, a quantum calculation

for two HOs would also give the same result: this shift is not influenced

by the presence of quantum fluctuations ! By treating the more general

case of a weakly anharmonic atom coupled dispersively to a harmonic

oscillator, Gely et al [139] [139]: Gely et al. (2018), ‘Nature of the

Lamb shift in weakly anharmonic atoms’

have shown that two distinct shifts actually

occur : one indeed is a purely quantum effect due to vacuum fluctuations,

another arises from classical normal-mode splitting. Nevertheless, in the

limit of zero anharmonicity, i.e. when the TLS is modeled as a purely

harmonic oscillator, then the quantum contribution vanishes and the

shift is given entirely by classical normal-mode splitting, as described in

this appendix.



Admittance/susceptibility
formulation of the resonator

shift G
In section 4.1, we showed that the resonator shift is given, up to a prefactor,

by the imaginary part of the weak link admittance. This quantity has been

computed using linear response theory both for zero-length weak links in

the normal and topological regime [140, 136, 141]

[140]: Kos et al. (2013), ‘Frequency-

dependent admittance of a short

superconducting weak link’

[136]: Peng et al. (2016), ‘Signatures of

topological Josephson junctions’

[141]: Kurilovich et al. (2021), ‘Quantum

critical dynamics of a Josephson junction

at the topological transition’

and also more recently

for finite-length weak links in the presence of Coulomb interactions

[64]

[64]: Kurilovich et al. (2021), ‘Microwave

response of an Andreev bound state’

. Let us see that we recover the general result for the resonator shift

(Eq. 4.32) using the expressions for the weak link complex admittance

given in theses references.

G.1 Short superconducting weak link

Kos et al. [140] have derived the expression for the admittance of a single-

channel point contact of transmission � between two superconducting

leads in the presence of quasiparticles. The point contact is assumed to

host a single Andreev level at energy [142, 143] [142]: Beenakker (1991), ‘Universal limit of

critical-current fluctuations in mesoscopic

Josephson junctions’

[143]: Furusaki and Tsukada (1990),

‘A unified theory of clean Josephson

junctions’

��(�) = Δ
√

1 − � sin
2 (�/2). (G.1)

The admittance of the junction is conveniently split in two contributions:

.wl =
9

$!�
+

5∑
8=1

.8 , (G.2)

where the first term describes the $ = 0 admittance of the weak link. It

captures the inductive response of the condensate and can be related to

the curvature of the Andreev level :

!−1

� = − 1

!2

0

�′′�(�). (G.3)

The second term captures the finite frequency admittance originating

from quasiparticle transitions. The admittance exhibits a resonant be-

haviour at frequency $ ≈ 2�� corresponding to the process where a pair

of quasiparticles is created in the Andreev level. The contribution of this

process to the weak link admittance is labelled .3($) and given by the

following expression [140]:

Im.3($)
�

= �
(Δ2 − �2

�
)(�2

�
− Δ2

cos
2 (�/2))

~$�2

�

× (?0 − ?2)
(

1

~$ − 2��
− 1

~$ + 2��
+ 1

��

)
, (G.4)

where ?0 , ?↑,↓ and ?2 are the occupation factors i.e. the probabilities to

have zero, one or two quasiparticles in the Andreev level. To compute

the ground state admittance at the resonator frequency $ = $0, let us fix

?0 = 1, ?2 = 0.
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Introducing the reduced energy &� = ��/Δ, one can rewrite the admit-

tance

$0Im.3($0) =
��
~
Δ2

1 − &2

�

&2

�

(&2

� − cos
2 (�/2)) ×R($,Δ&�), (G.5)

where we identified the resonant form factor R($, ��) = 1

~$−2��
−

1

~$+2��
+ 1

��
, and then simplify the middle factor

&2

� − cos
2 (�/2) = (1 − �) sin

2 (�/2),

which appears in the expression for the matrix element of the current

operator (given in [52, 40] [52]: Park et al. (2020), ‘From Adiabatic to

Dispersive Readout of Quantum Circuits’

[40]: Bretheau (2013), ‘Localized Ex-

citations in Superconducting Atomic

Contacts’

):

M 2 = |〈4 |�̂′F; |6〉|
2 =

Δ2(1 − �)
4

(
1

&�
− &�

)
2

=
Δ2

4

(1 − �) (1 − &2

�)︸   ︷︷   ︸
� sin

2 (�/2)

1 − &2

�

&2

�

. (G.6)

This allows to express the admittance in terms of the current operator

matrix element :

$0Im.3($0) =
��
~�
Δ2�(1 − �) sin

2 (�/2)
1 − &2

�

&2

�

R($,Δ&�)

=

(M
!0

)
2

R($,Δ&�), (G.7)

from which we can deduce the resonator shift, using Eq. (4.19):

~�$ = ~
ℓ 2

2!
$2

0
Im .wl($0)

= ~
ℓ 2

2!

$0

!2

0

[
−�′′�(�) +M 2R($,Δ&�)

]
. (G.8)

One can identify the prefactor of this expression as �2

zp
= ℓ 2

!2

�$0!~
2�!2

0

=

~ ℓ 2

2!
$0

!2

0

, by using !2

0
= ~2

442
=

'&~
2� to rewrite Eq. (4.21) in terms of the

participation ratio and the resonator frequency. This finally yields the

expression for the resonator shift when the point contact is in its ground

state :

~�$
�2

zp

= −�′′�(�) +M 2

[
1

~$0 − 2��
− 1

~$0 + 2��
+ 1

��

]
. (G.9)

One recovers exactly the result predicted from our general expression

given in Eq. (4.32).
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G.2 Finite-length weak link with Coulomb
interactions

In a recent paper, Kurilovich et al. [64] extended the former theory to

a finite-length weak link hosting a single ABS. The main differences

compared to a point contact are that

– both the ABS and the continuum states contribute this time to the

inductive response of the weak link;

– because of its finite length, the weak linkmay accommodate electric

charge and therefore be sensitive to Coulomb interactions.

The weak link is described as a single-level quantum dot coupled by

tunnel junctions to two superconducting leads, which can be viewed as a

generalization of the Anderson impurity model. Because of the proximity

effect, the dot level turns into an ABS, the energy of which depends both

on the phase difference � and the gate voltage +6 .

The authors show that the weak link can be described at small frequency

~$ � Δ by an effective low-energy Hamiltonian, which smoothly in-

terpolates between the one of a quantum dot weakly coupled to two

superconducting leads (Γ � Δ) and the one of a short junction (Γ � Δ):

��(�) =
Δ

Δ + Γ

√
&̃6

2 + |�̃(�)|2 , (G.10)

where &̃6 =
(
1+*

Δ
5
)
&6 , �̃(�) =

(
1+*

Δ
6
)
�(�), |� |2 = Γ2−4Γ'Γ! sin

2 (�/2)

with 5 (Γ/Δ) and 6(Γ/Δ), two complicated functions that describe the

renormalization of &6 and �(�) by the Coulomb on-site repulsion* .

Γ = Γ! + Γ' denotes the total tunneling rate to the leads and we write

�Γ = Γ! − Γ' the asymmetry in the left/right tunneling rates. &6 is the
energy of the dot level and is determined by the applied gate &6 ≈ −4+6 .

The authors provide an expression for the dynamic part of the current-

current response function �"�� of the weak link in its ground state at

frequencies ~$ � Δ:

�"��($) = −
!−2

0

��

(~$)2
4�2

�
− (~$)2

1

|�̃ |2

[
&̃6

2(%���)2 +
1

4

(
Δ

Δ + Γ
)

2
(
1 + 6*

Δ

)
4

�Γ2

(
Γ − |� |

2

Δ + Γ
)

2

]
.

(G.11)

Let us show that we can recover the expected result for the resonator

shift Eq. (4.32) using this expression for the current response of the weak

link. First, one can recognize the prefactor in Eq. (G.11) as the resonant

form factor R($, ��) introduced in the previous section :

1

~$ − 2��
− 1

~$ + 2��
+ 1

��
=

~2$2

��(~2$2 − 4�2

�
)
. (G.12)

For &6 � Γ, one can simplify the expression of the Andreev level energy

G.10:

��(�) ≈
&6�Γ

Δ

1 + Δ
Γ

(
1 + *

Δ
6
)√

1 − � sin
2 (�/2), (G.13)

which coincides with Eq. (G.1) in the limit of strong tunneling Γ � Δ
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and small interaction * � Δ : the wavefunction spreads from the dot

and resides mainly in the leads ; the system is then essentially equivalent

to a short junction.

Moreover, the effective transmission � of the weak link can be expressed

� = 1 − '2 = 1 −
(
�Γ
Γ

)
2

=
4Γ!Γ'
Γ2

, from which we deduce

|�̃ |2 =
(
1 + *

Δ
6
)

2

Γ2(1 − � sin
2 (�/2)) ≈

&6�Γ
�2

�

(
1 + Γ

Δ

)
2

. (G.14)

This allows to rewrite the current-current response in a more meaningful

way :

�"��
&6�Γ
≈ 1

!2

0

R($, ��)

�2

�

(
1 + Γ

Δ

)
2

1

4

(
Δ

Δ + Γ
)

2
(
1 + 6*

Δ

)
4

Γ2(1 − �)
[
Γ − 1

Δ + Γ

(
1 + Γ

Δ

)
2

�2

�(
1 + *

Δ
6
)

2

]
2

=
1 − �
4!2

0

R($, ��)
�2

�

(
Γ

Δ + Γ
)

4
(
1 + 6*

Δ

)
4
[
Δ2 − Δ + Γ

Γ

�2

�(
1 + *

Δ
6
)

2

]
2

=
1 − �
4!2

0

R($, ��)
�2

�

[
Δ2

(
1 + *

Δ
6
)

2(
1 + Δ

Γ

)
2

− Γ

Δ + Γ�
2

�

]
2

=
R($, ��)

!2

0

M 2

∗ ,

(G.15)

where we have defined the modified matrix element

M∗ =

√
1 − �
2

1

��

[
Δ2

∗ −
Γ

Δ + Γ�
2

�

]
, (G.16)

and modified gap

Δ∗ = Δ
1 + *

Δ
6

1 + Δ
Γ

=


Δ + >

(
Δ
Γ

)
Γ � Δ

Γ + Γ
Δ

(
*
� − Γ

)
+ >

(
Γ
Δ

)
Γ � Δ.

(G.17)

When the tunneling between the dot and the leads is strong i.e. Γ � Δ,

the ABS wavefunction spreads into the leads and the effect of interactions

is diluted : Δ∗ ≈ Δ and the * correction appears only in second order

in Δ/Γ. On the other hand, when the tunneling is weak, the ABS stays

mainly localized on the dot, the effect of interactions is stronger and

Δ∗ ≈ Γ at leading order.

Note that M∗ has the same functional form and reduces to the matrix

element of the current operator for a short junction, Eq. (G.6) in the limit

Γ � Δ � * :

M = |〈4 |�̂′F; |6〉| =
Δ
√

1 − �
2

(
Δ

��
− ��
Δ

)
=

√
1 − �
2

1

��
(Δ2 − �2

�).

Although the expression for the normalization function 6(Γ/Δ) is cum-

bersome (see Eq. (B15) in [64]), it assumes simple asymptotic expressions
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in the limits Γ � Δ and Γ � Δ:

6(G) =
{

1

�G2
(2 − ln 2G) + >(G2) Γ � Δ

1

� − G Γ � Δ
,

from which we deduce a final expression for the matrix element in the

limit &6 ,Δ � Γ:

M∗ ≈
√

1 − �
2

1

��

[
Δ2(

1 + Δ
Γ

)
2

(
1 + 1

�
*

Δ

(
Δ

Γ

)
2

(2 − ln

2Γ

Δ
)
)

2

− Γ

Δ + Γ�
2

�

]
.

(G.18)

At first order in Δ/Γ, the Coulomb interaction* no longer plays any role

and one (almost) recovers the result for the short junction:

M∗ =
Δ
√

1 − �
2

[
Δ

��
− ��
Δ

(
1 − Δ

Γ

)]
+ >

(
Δ

Γ

)
≈
Γ�Δ

M . (G.19)

Finally, using Eq. (4.18), we obtain the following expression for the

resonator shift when the dot weak link is in its ground state:

~$ =
~ℓ 2

2!
$0"��

= �2

zp
!2

0

(
%2

)�6()) + �"��($0)
)

= �2

zp

(
�′′6 (�) +R($0 , ��)M 2

∗

)
, (G.20)

with

�6(�) = �cont − ��(�) +
*

(
Δ
2Γ

)
2

Γ � Δ

*
4

Γ � Δ

~�$
�2

zp

= �′′6 (�) +M∗
2

[
1

~$0 − 2��
− 1

~$0 + 2��
+ 1

��

]
. (G.21)

Once again, one recovers exactly the result predicted from our general

expression, Eq. (4.32).



Resonator shift in zero-length
weak links H

H.1 Calculation of the resonator shift

The case of zero-lengthweak links is the simplest, as the BdG equation can

be solved analytically. For a single conduction channel of transmission �,
there is only one pair of Andreev states within the gap (see Figure 4.7(a)),

with energies �±1,� = ±��(�) = ±Δ
√

1 − � sin
2(�/2) [7, 8, 9] [7]: Beenakker and Houten (1991), ‘Joseph-

son current through a superconducting

quantum point contact shorter than the

coherence length’

[8]: Furusaki and Tsukada (1991), ‘Dc

Josephson effect and Andreev reflection’

[9]: Bagwell (1992), ‘Suppression of the

Josephson current through a narrow,

mesoscopic, semiconductor channel by a

single impurity’

, which are

coupled through the matrix element of the current operator �̂′
F;

[144, 16]

[144]: Zazunov et al. (2014), ‘Quasiparticle

trapping, Andreev level population

dynamics, and charge imbalance in

superconducting weak links’

[16]: Janvier et al. (2015), ‘Coherent

manipulation of Andreev states in

superconducting atomic contacts’

,

given by:

M = M−1�,1� =
Δ
√

1 − �
2

(
Δ

��
− ��
Δ

)
. (H.1)

From these two subgap levels, labeled ±1, there are only 3 possible many-

body states for the weak link, depicted in Figure 4.7(a): the ground state

|6〉 where the negative level −1 is occupied as well as all negative states

from the continuum ; the odd parity state |>〉 obtained by creation of one

quasiparticle of either spin in the upper level +1, |>〉 = |1�〉 = �†
1� |6〉 ;

and the doubly-excited state with even parity |4〉 = |1↑1↓〉 = �†
1↑�
†
1↓ |6〉.

The space spanned by the two states of even parity, |6〉 and |4〉, allows to

implement an Andreev pair qubit, the frequency of which being given by

5� = 2��/ℎ.

Let us now compute the resonator frequency shift when the weak link is

in each of these 3 many-body states. The results are illustrated in Figure

H.1 for the case of a resonator at 5A = 0.2Δ/ℎ in two emblematic limits:

the adiabatic regime, where the Andreev pair qubit frequency 5� is taken

far from 5A (� = 0.8), and the dispersive regime, where 5� crosses the

resonator frequency 5A (� = 0.999) therefore allowing for exchange of

virtual photons.

For each many-body state of the weak link, the associated resonator

frequency shift (dashed red line in Figure H.1) results from the sum of

four contributions. The first one corresponds to the contribution of the

curvature �′′|Ψ〉 of the many-body state |Ψ〉 (green lines in Figure H.1).

The second one (blue lines) is associated with virtual transitions between

the Andreev levels -1 and +1, coupled by the matrix element M−1�,1� and

reads:

V−1�,1� =
M 2

ℎ

(
2

5�
− 1

5� − 5A
− 1

5� + 5A

)
, (H.2)

The third type of contribution (orange lines), is associated with virtual

transitions between an Andreev level and states in the continuum C −

at energies � < −Δ or C + at energies � > Δ. Using the expressions for

the matrix elements of �̂′
F;

given in Refs. [145, 144], and introducing a

broadening of 10
−3Δ, one finds that the associated shift grows positive

from � = 0, presents a maximum, and exhibits a negative dip when

Δ − �� = ℎ 5A . This is characteristic of a threshold behavior associated

with the continuum, also discussed in Ref. [140].
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Figure H.1: Zero-length one-channel junc-

tion. (a-e) Resonator frequency shifts (in

units of �2

z?Δ/ℎ) for two values of the

channel transmission �, and (f,g) transition

energy 2�� with color-coded frequency

change when driving the system from |6〉
to |4〉, all as a function of the phase �. The
bare resonator frequency, shown as a black

line in (f,g), was taken at 5A = 0.2Δ/ℎ. In
the left panels, � = 0.8, and the transition

frequency is always larger than ℎ 5A ; in
the right ones, � = 0.999, and 2�� crosses

ℎ 5A . Total frequency shifts � 5
|6〉,|>〉,|4〉
A in

state |6〉 (a,b,b’), |>〉 (c) and |4〉 (d,e) are
shown with dashed red lines. They are de-

composed into three contributions: states’

curvature �”|6〉,|>〉,|4〉 (green lines), virtual

transitions among Andreev levels (blue

lines) and virtual transitions from An-

dreev levels to continuum levels (orange

lines). The resonator shift � 5 JCA obtained

from the Jaynes-Cummings approxima-

tion is shown in black dashed lines.

The last contribution, which results from virtual transitions from states

in C − to states in C +, is negligible.

Shift in |6〉

In the ground state, the level −1 and all levels in the negative continuum

C − are doubly occupied, so that the factor 1/2 in Eq. 4.35 cancels out

with a factor 2 for the spin, and

ℎ� 5
|6〉
A

�2

zp

= �′′|6〉 +
∑
8<0

9>0

V8 , 9 , (H.3)

where we dropped the spin indices since �̂′
F;

conserves the spin for

zero-length junctions. In the zero-length limit, the energy of the states

in the continuum does not depend on phase [73] [73]: Levchenko et al. (2006), ‘Sin-

gular length dependence of critical

current in superconductor/normal-

metal/superconductor bridges’

, and �′′|6〉 = −�
′′
�
. The

second term reads∑
8<0

9>0

V8 , 9 = V−1,1 +
∑
8∈C−

V8 ,1 +
∑
9∈C+

V−1, 9 +
∑
8∈C−
9∈C+

V8 , 9 . (H.4)
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Since V8 , 9 = −V9 ,8 and V8 , 9 = −V−8 ,−9 , one obtains, neglecting virtual

transitions from C − to C + (last term in Eq. (H.4)),

ℎ� 5
|6〉
A

�2

zp

≈ −�′′� + V−1,1 + 2

∑
9∈C+

V−1, 9 . (H.5)

The computation of the shift in |6〉 can be summarized graphically as

follows:

E<−∆
+ ∑

E>∆
+∑

+
'E >∆

+∑

Identical terms

''
|g Af Eδ > = − +

Identical terms with
opposite signs

'E E<−∆ >∆

+ ∑ ∑ 2
E>∆

+ ∑
negligible

2 is for spin in ABS and in continuum

(1/2) for double counting,

0Efδ <−∆ = +

''
AE Af Eδ − = − +

|
1 2 2
2 Ag E E

E
f f fδ δ δ> −

<−∆

 = + 
 

∑

Shift in ⟩|𝒈𝒈

curvature ABS continuum Cg

''
|g Af Eδ > = − + 2

E>∆
+ ∑

In practice, because of the large energy �−1, 9 > �� + Δ for a transition to

C +, the last term in Eq. H.5 can always be neglected and one is left with

ℎ� 5
|6〉
A

�2

zp

≈ −�′′� +
M 2

ℎ

(
2

5�
− 1

5� − 5A
− 1

5� + 5A

)
. (H.6)

When 5� � 5A , the three terms from V−1,1 compensate and the frequency

shift is entirely due to �′′
�
, as shown in Figure H.1(a) and far from � = � in

Figure H.1(b). When | 5A − 5� | � Δ there is a compensation between −�′′
�

and M 2 2

ℎ 5�
(green and blue lines in Figure H.1(b,b’)), i.e. the contribution

due to �̂′′
F;

vanishes [52]

[52]: Park et al. (2020), ‘From Adiabatic to

Dispersive Readout of Quantum Circuits’

, and the frequency shift is essentially the one

that can be derived from the Jaynes-Cummings Hamiltonian [146, 71] [146]: Johansson et al. (2006), ‘Readout

methods and devices for Josephson-

junction-based solid-state qubits’

[71]: Zueco et al. (2009), ‘Qubit-oscillator

dynamics in the dispersive regime’

� 5
|6〉,JC
A = −

(
6(�)
2�

)
2
(

1

5� − 5A
+ 1

5� + 5A

)
, (H.7)

with 6(�) = M �zp/~. At the scale of Figure H.1(b’), � 5
|6〉,JC
A (shown in

black dotted line) and the exact � 5
|6〉
A coincide within the linewidth. The

rotating-wave approximation (RWA), which consists in neglecting the

second term:

� 5
|6〉,RWA

A = −
(
6(�)/2�

)
2

5� − 5A
, (H.8)

overestimates the little bump of � 5
|6〉
A at � = � by a factor ∼ 2. Altogether,

if when 5� > 5A 5
|6〉,JC
A remains a rather good approximation for the total

shift (see black dashed line in Figure H.1(a)), but it fails to capture the

smooth inductive contribution to the shift away from � = � arising from

the states’ curvature.
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Shift in |>〉

The odd parity state |>〉 = �†
1� |6〉 has energy �6 + �� = 0. The shift of

the resonator in this case is

� 5 |>〉A = � 5
|6〉
A + � 5 (1)A . (H.9)

Using

ℎ� 5 (1)A
�2

zp

= �′′� + V1,−1 +
∑
9∈C−

V1, 9 +
∑
9∈C+

V1, 9 , (H.10)

and V1, 9 = −V−1, 9 , one obtains

ℎ� 5 |>〉A ≈
∑
9∈C+

(
V−1, 9 + V1, 9

)
. (H.11)

Although the odd state does not disperse with � (�′|>〉 = 0), one obtains

a finite shift associated to transitions from Andreev states to contin-

uum states, which becomes sizable when �� approaches Δ (see Figure

H.1(c)).

The computation of the shift in |>〉 can be summarized graphically as

follows:

Shift in ⟩|𝒐𝒐

''
AE Af Eδ + = +

E<−∆
+ ∑

E>∆
+∑

''
|g Af Eδ > = − + 2

E>∆
+ ∑

Identical terms
Identical terms with
opposite signs

| | Ao g Ef f fδ δ δ> > += +

continuum 
Cg/2

continuum 
Ce/2

|ofδ > =
E>∆
∑ +

Shift in |4〉

The excited state |4〉 = �†
1↑�
†
1↓ |6〉 has energy �6 + 2�1� = ��. The shift in

this state (shown in Figure H.1(d,e)) is

� 5 |4〉A = � 5
|6〉
A + 2� 5 (1)A , (H.12)

and one gets

ℎ� 5 |4〉A
�2

zp

≈ �′′� − V−1,1 + 2

∑
9∈C+

V1, 9 . (H.13)

When �� � Δ the continuum contributions can be neglected and

� 5 |4〉A ≈ −� 5 |6〉A . This is no longer the case when �� approaches Δ, a

situation in which both 2

∑
9∈C+ V1, 9 and �

′′
�
contribute to the shift, as

shown in Figure H.1(d,e).

The computation of the shift in |4〉 can be summarized graphically as

follows:
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Shift in ⟩|𝒆𝒆

| | 2
Ae g Ef f fδ δ δ> > += +

''
AE Af Eδ + = +

E<−∆
+ ∑

E>∆
+∑

''
|g Af Eδ > = − + 2

E>∆
+ ∑

curvature ABS continuum Ce

''
|e Af Eδ > = − 2

E>∆
+ ∑

Identical terms
Identical terms with
opposite signs

CPW resonator 

φ

Atomic contactSuperc. loop

(a)

(b)

(c)

Figure H.2: Setup of the atomic contact ex-

periment. (a) Themeasurement (frequency

50) and drive (frequency 51) signals are

routed to a microwave CPW resonator. Af-

ter amplification, the reflected signal at 50
is homodyne detected by an IQ mixer and

its two quadratures (I and Q) are digitized.

(b)Opticalmicrographof thequarter-wave

CPW resonator, inductively coupled at its

shorted end to an aluminium loop con-

taining the constriction where the atomic

contact is formed. (c) Detailed view of the

loop.

Finally, note that the shifts predicted by Eq. (H.5, H.11,H.13) verify

the following half-sum rule, (� 5 |6〉A + � 5 |4〉A )/2 = � 5 |>〉A , as expected for

non-interacting many-body states [64, 50] [64]: Kurilovich et al. (2021), ‘Microwave

response of an Andreev bound state’

[50]: Fatemi et al. (2021), ‘Microwave

susceptibility observation of interacting

many-body Andreev states’

.

Shift for a |6〉 → |4〉 transition

Now that we have expressed the resonator frequency shift associated

to the three possible many-body states of a zero-length weak link, we

can estimate the frequency shift when the system is externally driven

with microwaves, in particular when it is driven from |6〉 to |4〉, which

is what we probe in our two-tone spectroscopy measurements. The

frequency shift that governs the measured signal is given by Δ 5A =

�? |4〉
(
� 5 |4〉A − � 5

|6〉
A

)
, with �? |4〉 the population change in the excited

state due to the microwave excitation.

In Figure H.1(f,g), the quantity � 5 |4〉A − � 5
|6〉
A is encoded in the color of the

line showing the phase dependence of the pair transition energy 2��(�).
For � = 0.8, it is dominated by the curvature term 2�′′

�
, except when

�� approaches Δ and virtual transitions to the continuum enter in � 5 |4〉A .

For � = 0.999, close to � = �, the terms associated to virtual transitions

between ABS causes a change of sign of Δ 5A when 2�� crosses ℎ 5A , as

expressed by the dispersive approximation (Eq. (H.7)).

H.2 Revisiting experiments on atomic contacts

The zero-length limit for the weak link was tackled in a previous experi-

ment [16], dealing with atomic contacts between two superconducting

aluminium electrodes hosting a small number of transport channels.

The microwave spectroscopy of such system was performed near phase

� ≈ � and allowed to reveal the phase dependence of the pair transition

frequency associated to the |6〉 → |4〉 process.

In Ref. [16], the superconducting loop containing the atomic contact

was coupled to a microwave resonator at 5A = 10.1 GHz measured

in reflection (see Figure H.2). Atomic contacts with various channel

transmissions were formed and probed with the same sample. Two

types of measurements were performed, which we are now going to

compare with the resonator shift theory that we just developed. The

first type of measurement consists in a single-tone continuous-wave (CW)

spectroscopy of the resonator. It gives direct access to the resonator shift

for the different many-body occupations of the weak link. The second
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type of measurement is a two-tone spectroscopy of the resonator, for which

an additional microwave tone is used to drive transitions between ABS.

In this case, as will be explained below, the resonator frequency is only

indirectly monitored, since the detection scheme relies on a homodyne

detection at a fixed measurement frequency. Although this time the

recorded signals are the two quadratures of the measurement field

reflected by the resonator, not its frequency, it is still possible by means of

some calibrations to retrieve the associated resonator shift and compare

it with theory. This is possible for example when the resonator shift is

small enough so that the two quadratures can be linearized around the

resonator frequency (see Section 6.5).

Single-tone CW resonator spectroscopy

Let us first discuss single-tone continuous-wave (CW) spectroscopy data

taken on seven different atomic contacts, as shown in Figure H.3. To

acquire these data, the microwave response of the resonator is probed

with avectorial network analyzer (VNA) as a functionof flux! = 2�Φ/Φ0,

with no drive applied on the weak link. Over a small flux range around

! = �, the amplitude of the reflection coefficient |(11 | displays up to

three distinct local minima (in dark) as a function of frequency, as shown

in Figure H.3(a-g). The positions 51,3 of these minima were extracted by

fitting |(11 |( 5 )with the linear combination

∑
3

8=1
?8 |(0

11
|( 5 , 58)of resonance

lines |(0

11
|( 5 , 58) corresponding to a single resonance centered at 58 . The

extracted 58 are shown with symbols in Figure H.3((a’-g’). These data

can essentially be understood by considering the contribution of just

one dominant channel of transmission �1 such that the corresponding

Andreev frequency 5�1 comes very close to the resonator frequency 5A
(a,b) or crosses it (c-g). The data are ordered with increasing �1 from

(a) to (g). The three resonances are attributed to partial occupancy of

ground |6〉, odd |>〉 and excited |4〉 states for the corresponding channel.

As shown in Eqs. (H.5,H.13), and since, according to the analysis of

Section H.1, contributions of the continuum can safely be neglected

for phases close to �, the frequency shifts associated with ground and

excited state are opposite (Figure H.3(a,b)), and the frequency shift

associated with the odd state is close to zero (Figure H.3(a,e)). Note

that in order to explain a small residual global shift, it is necessary to

consider the contribution of one or two additional channels with smaller

transmissions, as explained below.

The resonator frequency shift is obtained from Eqs. (H.5,H.11,H.13),

adding the contributions of all channels. The bare resonator frequency 5A
was determined from measurements of the resonator with open contacts.

The phase � across the contact actually differs slightly from ! = 2�Φ/Φ0

due to the phase drop across the loop inductance. Indeed, when a weak

link is placed inside a superconducting loop with geometric inductance

ℓ threaded by a magnetic flux Φ, the screening current due to the weak

link leads to a phase drop across the loop inductance. This leads to the

following relation between the reduced flux ! = 2�Φ/Φ0 and the phase

� across the weak link:

� = ! − �8 |Ψ〉(�), (H.14)

with the screening parameter � = ℓΔ/!2

0
, !0 = Φ0/2�, and 8 |Ψ〉 =
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Figure H.3: Fit of single-tone continuous-wave spectroscopy data taken with a vector network analyzer (VNA) on a series of atomic contacts

obtained from the same sample (described in Ref. [16]), with resonator at 5A = 10.1 GHz . (a-g) Raw data, with reflection coefficient of

the resonator (11 coded with gray scale. By fitting (11( 5 ) at each flux with the sum of shifted resonance curves, up to three values of the

frequency shift could be extracted ((a’-g’) and (g"), symbols). They are associated with the shifts in states |6〉, |>〉 and |4〉 of the channel
with the largest transmission. Solid line are fits with complete theory, using �zp = 0.0042 and Δ/ℎ = 44.3 GHz. Blue: � 5A,|6〉 , green: � 5A,|>〉

(with respect to 1st channel), red in (a’,b’): � 5A,|4〉 . Fit parameters are given in Table H.1. In (g”), the dashed line corresponds to � 5
|6〉
A in the

rotating wave approximation (Eq. H.8).

!0�|Ψ〉/Δ = (1/Δ)%�|Ψ〉/%� the reduced current associated to the weak

link in state |Ψ〉. For a single-channel zero-length weak link, one expects

the following currents: 8 |6〉 = −%
√

1 − � sin
2(�/2)/%�, 8 |4〉 = −8 |6〉 and

8 |>〉 = 0. In practice, due to its small geometric inductance, the phase

drop along the loop is negligible compared to the phase drop � across

the weak link. However, when the weak link hosts highly transmitted

channels, as was the case here with atomic contacts, the supercurrent

carried by the weak link can become large enough so that � no longer

varies linearly with the applied flux Φ and the correction due to the

loop inductance comes into play
∗
. From the estimated loop inductance

ℓ ≈ 0.1 nH [21], we obtain the screening parameter � = 0.03 used to fit

the data.

In a first step, the value of �z? = 0.0042, common to all contacts, was

determined by fitting Figure H.3(d), taken on a contact for which a fit

of the two-tone spectroscopy yielded �1 = 0.992 [16]. This value agrees

well with the nominal value expected from the mutual coupling design

(see Section 5.2.1). This two-tone spectrum will be later presented in

Section 21 (see Figure H.4). For the other contacts, the fitting parameters

are the transmissions �8 of two or three channels. All parameters are

given below in Table H.1.

The transmission �1 of the most-transmitted channel is the essential fit

parameter, as it determines the overall shape of the spectra. In the last

column of Table H.1, we indicate the minimal value of the Andreev

frequency associated to this transmission 5min

�1
= 5�1(�) = 2Δ

√
1 − �1.

When 5min

�1
< 5A (c–g), one observes an avoided crossing.

∗
For finite length weak links, this effect is expected to manifest to a lesser extent, since

the current carried by the ground state is to be smaller by at least a factor 1/(1 + !/�)
[32], where ! is the length of the weak link and �, the superconducting coherence length.

Indeed, we did not need to invoke any finite loop inductance effect to model the data

measured on the nanowire weak link experiment, as we will see in Section 6.5.
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contact run 5A (GHz) �1 �2 �3 5min

�1
(GHz)

(a) I 10.1345 0.9850 0.9428 0.9428 10.85

(b) I 10.1345 0.9856 0.9468 0.9468 10.63

(c) III 10.1091 0.9890 0.9 - 9.29

(d) I 10.1345 0.9922 0.8783 - 7.82

(e) III 10.1091 0.9945 0.6561 - 6.57

(f) II 10.1364 0.9967 0.9692 - 5.09

(g) I 10.1345 0.9996 0.8497 - 1.77

Table H.1: The data of Figure H.3 were

taken during different cooldowns (runs)

of the same sample, labelled I, II and III.

In runs I and III, the bare resonator fre-

quency 5A wasmeasured when the contact

was open, whereas for run II it was a fit

parameter.
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Figure H.4: Two-tone spectrum measured

on the same atomic contact as for Figure

H.3d. Left: experimental data. Colorscale

corresponds to the change of amplitude of

a quadrature of the reflected signal. Right:

calculated spectrum, where the color en-

codes the change in (11, scaled in order to

fit at best the data.

A second channel with transmission �2, and for Figure H.3(a’,b’) a third

one with transmission �3 taken equal to �2, are taken into account. In the

small phase interval considered here, the effect of these other channels is

simply a constant overall shift of the order of a MHz.

The predictions for � 5A assuming the most-transmitted channel to be in

|6〉, |>〉 or |4〉 are shown with blue, green and red lines in Figure H.3.

The �− and �− dependence of the coupling constant 6 is an essential

ingredient to obtain a consistent fit of all the data at once. The difference

between the full theory and the JC contribution is very small at the

scale of Figure H.3. In Figure H.3(a–c), since | 5�1(�) − 5A | � 5�1(�) + 5A ,
the counter-rotating term ∝ 1/( 5�1 + 5A) can also be neglected, and the

RWA is sufficient. When �1 is closer to 1 (Figure H.3(d–g)), 5�1 becomes

significantly smaller than 5A near � = � and the counter-rotating term

must be taken into account, as illustrated in Figure H.3(g”) where the

RWA prediction shown with a dashed line departs clearly from the

data. Overall, this series of single-tone CW spectroscopies show that

the measured resonator shift associated to the many-body occupancies

of the atomic contact weak link can be well described by our theory

for zero-length junctions. Let us now extend it to model the two-tone

spectroscopy measurements that were performed on the same system.

Two-tone spectroscopy

To further illustrate the agreement with our theory for the resonator

shift, let us now focus on the two-tone spectrummeasured for the atomic

contact of Figure H.3(d) [16] that is shown in Figure H.4. A single pair

transition is observed in the measurement window, corresponding to

a channel with transmission � ≈ 0.992. To acquire this data a strong

microwave pulse is used to drive the {|6〉, |4〉} two-level system, during a

time exceeding its relaxation and dephasing times, immediately followed

by a microwave tone probing the resonator. The two quadratures of the

signal reflected by the resonator are measured by homodyne detection,

as depicted in Figure H.2. In Figure H.4, the color scale represents

the change of amplitude �� of one of these quadratures, relatively to

its value in the absence of excitation. It depends on the steady state

occupancy of the states after the excitation pulse and on the frequency

shift of the resonator in each state. For this data taken on a very high-

transmission contact and around � = �, the resonator frequency shifts

are dominated by the dispersive shifts, with negligible effects from the

states in the continuum, and therefore the rotation wave approximation

(Eq. (H.8)) applies: � 5
|6〉
A ' −� 5 |4〉A ' −

(
6(�)/2�

)
2 /( 5� − 5A)with 6(�) '

6(�)��(�)/��(�) (from Eq. (H.1), when �� � Δ).
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As mentioned earlier, in our two-tone spectra, the measured quantity is

not the resonator frequency shift. Therefore, to make contact with our

theory, one needs first to relate the amplitude of the signal reflected by

the resonator to the frequency shift of the latter. When the resonator

frequency is 5A + � 5A , the complex reflection coefficient of a measurement

tone at frequency 5A + � 5< is known to be given by [16] [16]: Janvier et al. (2015), ‘Coherent

manipulation of Andreev states in

superconducting atomic contacts’, p. 38

(11(� 5A) = 1 − 1

1 +&ext/&int

(
1 + e

8� ) , (H.15)

with

� = −2 arctan

(
2&C(� 5A − � 5<)/ 5A

)
, (H.16)

where one recognizes the equation of a circle of radius 1/(1+&ext/&int) in
the complex plane. In this expression, &int , &ext and &C are the internal,

external and total quality factors of the resonator. When driving the

system, if it is in an even state (probability 1− ?>), the occupancies of the
ground and excited states change by �?6 and �?4 = −�?6 , resulting in a

change of (11 by �(11 = �?6((11(� 5 |6〉A ) − (11(� 5 |4〉A )). Putting everything

together, one gets, for � 5< = 0,

�(11 = �?6
88

1 + &ext

&int

D

1 + 4D2

= 8�&, (H.17)

with D = &C� 5
|6〉
A / 5A . We have now almost all the pieces to compare the

two-tone spectrum with the theory for the resonator shift, except the

expression for the population transfer �?6 , due to the driving tone. To

compute �?6 , one can use the steady-state solution of the Bloch equations

[93] [93]: Palacios-Laloy (2010), ‘Superconduct-

ing qubit in a resonator’, p. 111

adapted for the presence of the odd state:

�?6 =
?0

4 −
1−?>

2

1 + 1+()2�$)2
)1)2$2

'

, (H.18)

with )1 and )2 the life time and coherence time, �$ = 2�( 51 − 5�) the
detuning between the drive frequency 51 and the Andreev pair qubit

frequency 5�, and $' the Rabi frequency. For simplicity, we assume

here that )1 and )2 are constant: )1 = 4 �s and )2 = 38 ns (values

measured at � = �). Since the excitation acts on the phase across the

contact, the Rabi frequency depends on �: $' ∝M 2
(see Eq. H.1). The

drive tone being sent through the resonator, its amplitude is filtered:

$' ∝ (1 + &2

t
( 51/ 5A − 5A/ 51)2)−1/2. In the fitting of the data, $' is set to

2� × 4.2 MHz at � = � in order to reproduce the measured line width.

Using &C = 2200, &int = 4800, 5A = 10.13 GHz, and 6(�)/2� = 72 MHz,

one obtains the fit shown on the right hand side of Figure H.4, with

the color scale of �& adapted to match the data. Not only does the

change in the & quadrature reproduce the changes �� in the measured

quadrature on the resonance line 5�(�), but one also predicts a signal

at 51 = 5A , which has its origin in the very large Rabi frequency when

the drive signal is not filtered by the resonator. At this precise frequency,

the strong detuning �$ is compensated by the large $' in Eq. (H.18),

and �?6 is non-zero even if the drive is far from the resonant frequency

5�. This feature is clearly visible in the data, although not as strong as

in the calculation for 5� > 5A perhaps due to an effect of the resonator

non-linearity not included in the model.
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Figure H.5: Two-tone spectrum of an atomic contact with several highly transmitted

channels. On the right half of the figure, calculated spectrum with identification of three

Andreev transitions with frequencies 5�1,2,3. Lines color corresponds to the calculated

change in & quadrature of (11. (b) Grayscale encodes the reflection coefficient amplitude

|(11 |. Lines on the right-hand side are theoretical resonator shifts depending on the states

occupancy: black (ggg): all channels in ground state; Red: first channel in odd state (ogg);

Green: 2nd channel in odd state (gog); Blue: first and second channel in odd state (oog). A

global shift of −3.4 MHz was applied to the theory curves, which can be attributed to the

effect of several low-transmitting channels that are not visible in the two-tone spectrum.

One can play a similar game and fit an even more complex spectrum

from an atomic contact with more than one highly transmitted channel.

In Figure H.5, we show the two-tone spectroscopy and the single-tone

CW data of such a contact, obtained with the same sample and showing

a double avoided crossing. In the two-tone spectroscopy (Figure H.5(a)),

one observes three Andreev pair transitions (labeled 5�1, 5�2 and 5�3)

corresponding to channels with transmissions �1 =0.998, �2 =0.992 and

�3 =0.980, with minimum transition frequencies (at � = �) of 4.1, 7.7,
and 12.6 GHz. Out of the three, two transition lines 5�1 and 5�2 cross the

resonator at 10.1 GHz.
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Figure H.6: Representation in the �&
plane of (11 at ! = 1.04�, for the states

involved in transitions on the third chan-

nel (see dashed line in Figure H.5(a)). De-

pending on the state of the two first chan-

nels, the change of & takes very different

values, the largest change corresponding

to |>>6〉 → |>>4〉 (in magenta). In Fig-

ure H.5(a), �& for the four transitions

is further scaled by the probability of

each initial state, e.g. ?>1?>2(1 − ?>3) for
|>>6〉 → |>>4〉. Among the four transi-

tion lines, only this one is clearly visible in

Figure H.5(a).

The experimental data (left half of Figure H.5(a)) show split transition

lines at � ≠ �. This splitting comes from the fact that the phase across

the contact can take several values at a given applied magnetic flux Φ,

depending on the occupancies of the ABS associated to each channel.

Indeed, due to the finite loop inductance and the relevance of the

superconducting phase, the channels are not strictly independent. As

already mentioned in Section H.2 on single-tone spectroscopy, the phase

� across the contact, which is shared by all the channels, is in general

not proportional to the reduced flux ! and depends on the loop current,

due to the finite loop inductance. In the presence of several channels

which can be either in the ground or the odd state (we neglect the

occupancy of the excited states), this current can actually take several

values, depending on the occupancies of the Andreev dots associated

to each channel. If the current in one channel is modified (because the

Andreev dot changes state), the phase across the contact changes for

all dots, leading to an effective coupling between the channels. This

effect was already discussed qualitatively in [21] [21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’, p.165 (Appendix C)

, but here we provide an

additional quantitative modeling of this splitting.

To calculate the spectrum from theory, we use Eq. (H.15) (with � 5< =
−0.4 MHz) for each state |Ψ〉, and compute the weighted average

(11 =
∑
|Ψ〉 ? |Ψ〉(11(|Ψ〉) using the probabilities ? |Ψ〉 for each state. The

probabilities to find each channel in the odd state were taken constant,

?>1 = 0.55, ?>2 = 0.5, ?>3 = 0.4, determined by fitting the phase depen-

dence of (11()) at an excitation frequencywhere no transition is observed

( 51 = 16 GHz). In presence of the excitation pulse, the change in each

? |Ψ〉 was obtained from Eq. (H.17). For simplicity, we assumed )1 = 4 �s
and )2 = 38 ns at each phase and for each state. Depending on the state

of the other channels, a transition from |6〉 to |4〉 in one channel leads

to different changes in (11, as illustrated in Figure H.6. The resulting

calculated spectrum is shown in the right half of Figure H.5(a), in which

we represent the changes �& in the & quadrature. Fainter lines in the

data are multi-photon transitions (at 5�8/=), or transitions involving two

channels ( 5�1+ 5�2 and ( 5�2+ 5�3)/2), not included in the theoretical plot.

They appear because the spectroscopy was performed at a particularly

strong drive power. Despite the crude simplifications in the analysis, the

changes �� in the amplitude of the reflected signal in Figure H.5(a) are

well reproduced by the calculated changes in the & quadrature of (11.

Similar agreement is found on the other quadrature.

In Figure H.5(b) we show the single-tone spectroscopy of the resonator.

The resonator frequency shift calculated under the assumption that the

three channels are in the ground state is shown as a black solid line.

Features associated with configurations in which one (red and green

lines) or both (blue line) of the two most-transmitted channels are in the

odd state are also observed. Horizontal shifts of the red and green lines

with respect to the black ones result from the phase drop across the loop

inductance, different in each configuration. The analysis of the data of

Figure H.5 illustrates how, in a multi-channel weak link, the frequency

shift associated with a transition in one channel can depend strongly

on the occupancy of the Andreev states in the others, therefore adding

further complexity in the modeling of a two-tone spectrum.
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I.1 Single sideband mixing

To obtain the microwave pulses at the frequency of interest, we use a

single sideband mixing technique based on IQ mixers. In this method, a

continuous microwave at frequency $LO is applied to the local oscillator

(LO) port of the mixer, and AC-modulated signals at an intermediate

frequency $IF in the 0 − 100 MHz range are applied on both the I and Q

ports to translate the frequency to the targeted value and define the pulse

envelope. The output microwave pulse is then picked on the RF port of

the IQ mixer, resulting from the combining of the I and Q signals mixed

with a respectively in-phase and in-quadrature LO tone. A functional

diagram of the mixer is depicted in Figure I.1.

Ideally, to generate a microwave pulse (in(C) at the frequency $RF =

$LO + $IF with a slowly-varying envelope �in(C) and phase !in, one

would use a LO carrier !$(C) = �! cos ($LOC) in addition to I and Q

signals at the intermediate frequency $IF with the same envelope �in(C)
andphase!in, but at a�/2 phase difference fromeach other. The resulting

RF signal at the mixer output would then take the following form :

(in(C) = !$(C) · �(C) + !$(C +
�

2$LO

) · &(C)

= �!�in(C)
[
cos ($LOC) cos ($IFC + !in) − sin ($LOC) sin ($IFC + !in)

]
∝ �in(C) cos ($RFC + !in), (I.1)

which corresponds up to a prefactor to the targeted waveform for the RF

pulse. However in practice, as any microwave components, IQ mixers do

suffer from some imperfections. In addition to their operation bandwidth,

generally limited to a few GHz, and their RF saturation power around

a few dBm, they are characterized by a finite amplitude and phase

imbalance between the I and Q branches. This means that contrary to

the ideal case of Eq. (I.1), the IQ mixing rather takes the form !$(C) ·
�(C) + (1+ 
)!$(C + �

2$LO

+ �) ·&(C), where 
 is typically 1− 2 dB and the

phase imbalance � is at best a few degrees. These imperfections result in

the following mixing :

(in(C) ∝ cos ($LOC) cos ($IFC + !in) + (1 + 
) cos ($LOC +
�
2

+ �) sin ($IFC + !in)

=
1

2

[
cos

(
($LO − $IF)C − !in

)
+ cos

(
($LO + $IF)C + !in

)
+ (1 + 
) sin

(
($LO + $IF)C + !in +

�
2

+ �
)

− (1 + 
) sin

(
($LO − $IF)C − !in +

�
2

+ �
)]
.
(I.2)

Defining $+ = $RF ≡ $LO + $IF and $− ≡ $LO − $IF for the frequencies
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Figure I.2: (a) A microwave pulse is de-

scribed as a slowly varying waveform

�in(C) on a fast-oscillating carrier at the

frequency $RF and phase !in. (b) Any

such signal can be decomposed into its in-

phase (I) and quadrature (Q) components

in a frame rotating at frequency $. !in is

counted clockwise to keep with the minus

sign convention in Q.

of the upper and lower sidebands, we get :

(in(C) ∝
1

2

[
cos ($−C − !in) + cos (($+C + !in) (I.3)

+ (1 + 
)
[
cos ($+C + !in) cos (�) − sin ($+C + !in) sin (�)

]
− (1 + 
)

[
cos ($−C − !in) cos (�) + sin ($−C − !in) sin (�)

]
≈

��1

(
1 + 


2

)
cos ($+C + !in) −



2

cos ($−C − !in)

−
�

2

(1 + 
)
[
sin ($+C + !in) + sin ($−C − !in)

]
. (I.4)

This shows that for small but finite imbalance 
, � � 1, in addition to

the desired RF signal, the IQ mixing gives also rise to a spurious signal at

the lower sideband frequency $−. These mixer imperfections are known

to decrease with increasing LO power, therefore the initial LO tone

generated by a microwave source is generally first amplified to typically

15 − 20 dBm before entering the mixer. Even under these conditions,

the amplitude and phase imbalances remain significant and corrections

are needed to suppress or at least minimize the lower sideband signal.

To do so, we compensate by applying I and Q signals with slightly

different amplitudes and phases obtained from a preliminary calibration,

involving a spectrum analyzer to minimize the power at the unwanted

sideband.

I.2 Demodulation

Now, after routing (in(C) to the sample, we want to detect the outgoing

signal (out(C) = F−1{F {(in(C)} · (21($)} ≡ �out(C) cos ($RFC + !out)
and extract its amplitude and phase, which encode information on the

weak link state. This process of extracting the waveform information

{�out , !out} of a modulated signal is called “demodulation”. As we will

show, it can be thought about as a projection from the waveform space

onto a 2D plane with coordinates I and Q.

For (in(C) given by a square unit-step or a fast-load pulse, the analytical

expression for the outgoing signal was derived in the previous section

using complex amplitude notations (see Eqs. (9.5, 9.13)). To relate to this

complex notation, we can express the real input signal (in(C) in terms of

its I and Q components :

(in(C) = �in(C) cos ($RFC + !in)

= �in(C)
[
cos ($RFC) cos (!in) − sin ($RFC) sin (!in)

]
= �in(C) cos ($RFC) +&in(C) sin ($RFC) (I.5)

with

{
�in(C) = �in(C) cos (!in)
&in(C) = −�in(C) sin (!in)

,

which shows that any signal can be described by a point in a 2D plane,

determined by its amplitude �in(C) and phase !in (see Figure I.2). With

this, we can rewrite the input signal in terms of real and imaginary parts

of a complex amplitude input, for which we know the associated output
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Figure I.3: Frequency representation of

the demodulation and heterodyne de-

tection processes. The output signal

(out(C) = �out cos ($RFC + !out) at fre-

quency $RF = $+ is mixed with a strong

LO tone. After low-pass filtering, the re-

sulting I and Q outputs, oscillating at the

intermediate frequency $IF are digitized

and then demodulated numerically to re-

cover the slowly-varying amplitude �out

from Eqs. (9.8, 9.15):

(in(C) = Re

[
�in(C)4 9$RFC

]
+ Im

[
&in(C)4 9$RFC

]
. (I.6)

By linearity of the response, the real output signal (out(C) is then obtained

by simply adding up the two responses for the real and imaginary

parts.

Once the input signal at frequency $RF has crossed the sample transmis-

sion line, a heterodyne detection is performed (see Figure I.3) by down-

converting the output signal (out(C) = �out(C) cos ($RFC + !out) using
another IQ mixer with the same LO tone that was used for the single-

sideband generation (this ensures that a well-defined phase relation

between input and output signals is maintained). The output signal

picked on the I port is then given by :

�out(C) ∝ �out(C) cos ($LOC) cos ($RFC + !out)

=
�out(C)

2

[
cos ($IFC + !out) +

((((
((((

((((
cos

(
(2$LO + $IF)C + !out

) ]
≈ �out(C)

2

cos ($IFC + !out), (I.7)

where the second term oscillating at 2$LO +$IF is discarded by low-pass

filtering above 2$IF. Similarly, the output signal on the Q port is :

&out(C) ∝ −�out(C) sin ($LOC) cos ($RFC + !out)

= −�out(C)
2

[
(((

((((
(((

((
sin

(
(2$LO + $IF)C + !out

)
− sin (($IF)C + !out)

]
≈ �out(C)

2

sin ($IFC + !out). (I.8)

These two signals {�out(C), &out(C)} are subsequently digitizedwith a sam-

pling period �C in a chosen time window during which their amplitude

�out remains constant:
�out[:] =

�out

2

cos [$IF:�C + !out]

&out[:] =
�out

2

sin [$IF:�C + !out].
(I.9)

Applying the same procedure as for the input signal (in(C) in Eq. (I.5), one

can rewrite the two output signals in terms of their I and Q components

with respect to $IF :


�out[:] ∝

[
�out

2

cos (!out)
]

︸               ︷︷               ︸
�1

cos [$IF:�C] +
[
−�out

2

sin (!out)
]

︸                 ︷︷                 ︸
&1

sin [$IF:�C]

&out[:] ∝
[
�out

2

sin (!out)
]

︸               ︷︷               ︸
�2

cos [$IF:�C] +
[
�out

2

cos (!out)
]

︸               ︷︷               ︸
&2

sin [$IF:�C].
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In practice, these I and Q components are obtained by numerical demod-

ulation of {�out[:], &out[:]} at the intermediate frequency $IF :[
�out,cos
&out,cos

]
≡ 2

#

#∑
:=0

[
�out[:]
&out[:]

]
cos [:$IF�C] ≈

�out

2

[
cos (!out)
sin (!out)

]
=

[
�1
�2

]
,

(I.10)

where the second equality is obtained assuming that the sample size

corresponds to an integer number of periods: #�C × $IF

2� ∈ ℕ. If this is not

verified, a residual error scaling as ∝ 1/# will be present. Similarly,[
�out,sin
&out,sin

]
≡ 2

#

#∑
:=0

[
�out[:]
&out[:]

]
sin [:$IF�C] ≈

�out

2

[
− sin (!out)
cos (!out)

]
=

[
&1

&2

]
.

(I.11)

From this decomposition, we see that by computing the following com-

binations, one can extract the amplitude �out of the outgoing signal :{
�demod ≡ +�1 +&2 = �out cos (!out)
&demod ≡ −&1 + �2 = �out sin (!out),

(I.12)

from which we easily recover the output amplitude and phase :
�out =

√
�2
demod

+&2

demod

!out = arctan (&demod/�demod).
(I.13)

In practice, �demod and &demod are obtained by computing numerically

the real and imaginary part of the following complex amplitude :

�demod =
2

#

#∑
:=0

(
�out[:] + 9&out[:]

)
4−9:$IF�C

=
2

#

#∑
:=0

(
�out[:] + 9&out[:]

) (
cos (:$IF�C) − 9 sin (:$IF�C)

)
=

2

#

#∑
:=0

(
�out[:] cos (:$IF�C)︸                  ︷︷                  ︸

→�1

+&out[:] sin (:$IF�C)︸                   ︷︷                   ︸
→&2

)
+ 9

(
&out[:] cos (:$IF�C)︸                   ︷︷                   ︸

→�2

− �out[:] sin (:$IF�C)︸                 ︷︷                 ︸
→&1

)
, (I.14)

from which we finally deduce :{
�demod = Re[�demod]
&demod = Im[�demod].

(I.15)

Importantly, the advantage of computing the four demodulation products

�1 , &1 , �2 and &2 instead of just performing �demod = 2�1 and &demod =

2�2 is that the particular combinations given in Eq. (I.12) happen to

cancel out any spurious signal possibly transmitted at the lower sideband

frequency$−, resulting from the imperfection of the IQmixers. Indeed, re-

doing the same derivation above for a signal #−(C) = #− cos ($−C + !−),
we would find the following expressions for the two signals at the mixer
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output :


�$−(C) ∝

[
+#−

2

cos (!−)
]

︸              ︷︷              ︸
�1,−

cos ($IFC) +
[
+#−

2

sin (!−)
]

︸              ︷︷              ︸
&1,−

sin ($IFC)

&$−(C) ∝
[
+#−

2

sin (!−)
]

︸              ︷︷              ︸
�2,−

cos ($IFC) +
[
−#−

2

cos (!−)
]

︸              ︷︷              ︸
&2,−

sin ($IFC),

and then : {
�demod,− ≡ +�1,− +&2,− = 0

&demod,− ≡ −&1,− + �2,− = 0.
(I.16)

Note that the above derivation was performed assuming ideal IQ mixers.

The finite imbalance of real components will naturally prevent from

reaching perfect cancellation of the lower sideband. Still, it is good

practice to perform the numerical demodulation this way.
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(a)

Figure J.1: Gradiometric scheme for mag-

netic field noise insensitive devices. (a) If

an external flux )ext is applied, the two

loops pick up the same flux so that not net

superconducting phase difference arises

across the weak link � = 0. (b) The super-

conducting phase difference � across the

nanowire can be generated using a current

bias �1 in a nearby flux line. Because the

left/right loops are symmetric, the cur-

rent bias generates opposite fluxes in both

loops, so that the partial phase drop at

the weak link due to each loop, �! and �' ,
add up constructively.

Towards measurements of ABS
at high magnetic fields J

In this Appendix, I present the progress made towards the ABS spectroscopy

under high axial magnetic field.

During my thesis work, the highest field we applied was a few tens

of mT, which was enough to get a measurable Zeeman shift of the

Andreev levels and confirm the spin nature of the measured transitions

[51]

[51]: Tosi et al. (2019), ‘Spin-Orbit Splitting

of Andreev States Revealed by Microwave

Spectroscopy’

. We did not explore the behavior at higher fields mainly due to

three reasons. First, we observed that the internal quality factor of sCPW

resonators degrades at moderate fields much smaller than the critical

field of the resonators’ material (H22 ∼ 6 T in NbTiN). It is well known

that NbTiN is a type-II superconductor and that even a small magnetic

field (H21 ∼ 1�T) results in the creation of Abrikosov vortices. When

exposed to microwave fields, vortices oscillate causing dissipation. In

order to mitigate this problem and keep internal quality factor high, next

generation of resonators has to minimize the number of vortices (for

example by using a CPS topology instead of CPW and eliminating the

contribution of large superconducting ground planes) and to limit their

dynamics (by introducing pinning centers for vortices into the regions

where microwave currents take place). The last point is discussed in

Ref. [147]

[147]: Kroll et al. (2019), ‘Magnetic-

Field-Resilient Superconducting

Coplanar-Waveguide Resonators for Hy-

brid Circuit Quantum Electrodynamics

Experiments’

. In this work, Kroll et al. reported high-Q resonators under

parallel field up to 6 T by introducing lithographically defined defects to

pin vortices.

Second, the connection between the thin (∼25 nm) Al-shell of nanowires

and the NbTiN of the resonator is made of ∼130 nm thick Al. This

thickness cannot be reduced to ensure a reliable connection and hence

the Al will become normal above ∼10 mT even for parallel fields. In

order to circumvent this problem Al patches must be replaced by a

superconducting layer supporting high magnetic fields like for example

NbTiN. This requires to develop a new nanofabrication step combining

Ar etching to eliminate the Alumina layer on top of the nanowires with

sputtering NbTiN deposition through a PMMAmask.

Third, any small misalignment in the field would contribute to a per-

pendicular flux through the chip and therefore, once the first two issues

has been solved, perturb the phase bias of the weak link. In such condi-

tions, probing the Andreev spectrum by microwave spectroscopy would

become challenging, as the superconducting phase difference � would

need to be continuously readjusted each time the field would be swept.

To avoid such a complication, a straightforward improvement would be

to switch to a gradiometric design [148, 149]

[148]: Pita-Vidal et al. (2020), ‘Gate-

Tunable Field-Compatible Fluxonium’

[149]: Wesdorp et al. (2021), ‘Dynamical

polarization of the fermion parity in a

nanowire Josephson junction’

, where the nanowire would be

embedded in two adjacent symmetric superconducting loops instead of

one (see Figure J.1). Any external uniform field would contribute to equal

fluxes through each of the two symmetric loops and therefore generate

equal currents that are canceled out at the junction, thus rendering the de-

vice insensitive to first order to any misalignment in the parallel Zeeman

field (Figure J.1a). More generally, even when no Zeeman field is to be

applied, implementing such a gradiometric scheme would also have the

advantage to help reducing the sensitivity to the ambient magnetic-field
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𝜙𝜙𝐿𝐿 𝜙𝜙𝑅𝑅
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𝐼𝐼𝑏𝑏

(d)

𝜙𝜙𝐿𝐿 𝜙𝜙𝑅𝑅

𝐼𝐼𝑏𝑏

CPW resonator
(c)

Figure J.2: Comparison between the standard (a) and gradiometric (b) design of sCPW resonators. (c) Sample with the standard design

where the NW shunts the gap of the CPW resonator on one side, therefore closing the left loop. Note that the inductive wire shorting the

CPW has been designed with a wiggly shape to increase its length and crank up the NW/resonator coupling. (d) Sample with gradiometric

loops. The NW is deposited on the central condutor of the CPW between the two symmetric loops. A current bias �1 is applied in a nearby

flux line that generates opposite fluxes in both loops, as described in Figure J.1 and giving rise to a superconducting phase difference across

the weak link. SEM pictures of the nanowire deposited on each device are shown on the right.

noise and therefore likely improve the coherence properties of the device.

Note however that in this gradiometric configuration the nanowire cannot

be phase biased using the homogeneous magnetic flux )ext of an external

coil. One solution is to resort to a local current line to put flux in the

nearby loop (Figure J.1b). Although the gradiometric loops are designed

to be symmetric, the unavoidable imprecision in the manual deposition

of the nanowire would lead to a small imbalance between the effective

area of the two gradiometer loops. Therefore, a compensating coil would

still be required.
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(a)

𝐼𝐼𝑏𝑏 = 1 mA

𝐼𝐼𝑏𝑏/2 𝐼𝐼𝑏𝑏/2

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

(b)

𝐼𝐼𝑏𝑏 = 1 mA

𝐼𝐼𝑏𝑏/2 𝐼𝐼𝑏𝑏/2

𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

Figure J.3: Current distribution in the gradiometric (a) and standard (b) designs when a DC current bias of �1 = 1 mA is applied to the flux

fline (the differences between the two designs are more visible in Figure J.5, note that in (b) the right loop is not closed). Data was simulated

using the 3D-MLSI software for inductance extraction. The direction of the current flow is shown with white arrows and the magnitude of

the current density is encoded in colorscale in mA/µm.
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Figure J.4:Mutual inductance" as a func-

tion of the distance 3 between the current

line and the superconducting loop, simu-

lated using 3D-MLSI for the two geome-

tries described in Figure J.2. The simu-

lated data is fitted with the theory for the

coupling between a straight wire and a

rectangular loop (Eq. (J.1)). The values of

the mutual inductance corresponding to

the geometries (a) and (b) of Figure J.5 are

highlighted by arrows.

To design the current bias line, we need to estimate its mutual coupling

" to the weak link loop in order to compute the current bias �1 needed

to put one flux quantum in it. Indeed, an arbitrarily high DC current

cannot be driven through the flux line, as it could dissipate in the residual

resistance of the bias tee and warm up the mixing chamber of the fridge

(see Section 13.2 for a schematic of the fridge wiring). The bias tee that

we had at hand was measured to have about 1Ω resistance at liquid

nitrogen temperature
∗
. Assuming a cooling power of 17 µWat 20mK, this

means we should not drive a current higher than

√
17µW/1Ω ≈ 4 mA.

With a safety margin of a factor 10, this means that the mutual coupling

should be high enough so that a current of �max

1
= 400 �A could generate

a flux quantum )0 in the superconducting loop, i.e. we should have

" > )0/�max

1
≈ 5 pH.

To guide the design of the flux line, we used the simulation tool "3D-

MLSI" for extraction of inductances of multilayer superconductor circuits

[150]

[150]: Khapaev (2004), 3D-MLSI: Extraction

of Inductances of Multilayer Superconductor

Circuits
. This software allows for 2D magneto-static simulations by solving

numerically the Maxwell-London equations on a triangulated mesh

using the finite element method. As well as extracting self and mutual

inductances for the defined 2D conductors, it also allows to simulate

and visualize the currents flowing in the superconducting films and the

3D magnetic field distribution around them. We used it to simulate two

geometries, corresponding to the standard design with an improved

coupling and the gradiometric design. The two devices fabricated with

these geometries are presented in Figure J.2 and the results of themagneto-

static simulations are shown in Figure J.3. They allow to visualize the

current distribution in the superconducting film arising from a typical

current bias of �1 = 1 mA in the flux line. In Figure J.4, we show for each

geometry the dependence of the mutual inductance" on the distance

3 separating the current line to the superconducting loops. Using the

nominal loop length ! = 93 �m and assuming an effective loop width

Feff = 8.9 �m, it can be well fitted by the simple analytical formula

estimating the mutual coupling between a rectangular loop and a straight

wire assuming infinitely thin wires [21]

[21]: Janvier (2016), ‘Coherent manipu-

lation of Andreev Bound States in an

atomic contact’, pp.61-62

:

" =
�0

2�
! ln

(
3 + F
3

)
, (J.1)

where F is the width of the rectangular loop and ! its length. Results

for the geometries of the two fabricated devices are plotted in Figure J.3

and a zoom-in around the loop is shown in Figure J.5. The simulation of

the standard design — with a 3 = 5 �m gap between the weak link loop

and the flux line — gives a mutual inductance" = 15.6 pH and a loop

inductance !loop = 195 pH (Figure J.5b). The inductance of the flux line

is estimated to !fl = 857 pH. From this, we can compute the associated

coupling coefficient : = "/
√
!loop!fl = 38%. For the gradiometric

design, the presence of a 5 µmwide ground strip between the flux line

and the loop (necessary to short the resonator’s end to ground) makes

the minimal achievable loop-flux line separation necessarily larger. The

mutual coupling between both is therefore expected to be weaker ; the

simulation yields about a factor 2 difference, we get" = 7.8 pH for the

gradiometric design and !loop = 193 pH (Figure J.5a). In this case, the

∗
We later found a better bias tee, SHF’s BT45 B (20kHz-45GHz), with about 5 Ω at room

temperature but only ' ≈ 0.4 Ω at 77 K.
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M = 7.8 pH, 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙= 193 pH M = 15.6 pH, 𝐿𝐿𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙= 195 pH
J (mA/µm) J (mA/µm)

𝑥𝑥

𝑦𝑦

𝐽𝐽𝑦𝑦 = 83 µA/µm
→ 𝐼𝐼𝑏𝑏 = 1 mA

𝐽𝐽𝑥𝑥 = −0.10 mA/µm
→ 𝐼𝐼𝑏𝑏/2 = 0.5 mA

5 µm12 µm

5 µm𝐽𝐽𝑥𝑥 = 4 µA/µm
→ 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 20 µA

𝐽𝐽𝑦𝑦 = 83 µA/µm
→ 𝐼𝐼𝑏𝑏 = 1 mA

𝐽𝐽𝑥𝑥 = −0.10 mA/µm
→ 𝐼𝐼𝑏𝑏/2 = 0.5 mA

5 µm12 µm

5 µm𝐽𝐽𝑥𝑥 = 8 µA/µm
→ 𝐼𝐼𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 40 µA

Gradiometric design Standard design

𝑑𝑑 𝑑𝑑

Figure J.5: Extraction of the loop inductance !
loop

and the mutual inductance" with the flux line for the gradiometric (a) and standard (b)

designs. The current density when a DC bias of �1 = 1 mA is applied to the flux fline is shown in colorscale. The ratio of the current �
loop

induced in the loop to the bias current �1/2 in the left part of the flux line is estimated to 0.02/0.5 = 4% for the gradiometric design and to

0.04/0.5 = 8% for the standard design, which has no ground strip between the loop and the flux line.

coupling coefficient is estimated to : = "/
√
!loop!fl = 19%. For both

designs, the mutual is higher than the 5 pH value that we had targeted,

therefore it should allow to phase bias properly the nanowire while

remaining in a safe mode of operation for the fridge and the device.

When first measuring the devices depicted in Figure J.2, the flux modula-

tion of the resonances was showing a hysteretic and jumpy behaviour.

The effect was present both when applying an external flux using the

small coil or a DC current in the flux line. We later understood that this

was due to a spurious DC loop involving the ground plane around the

resonator and a bonding wire that we had put above the flux line to

connect the ground planes. This extra loop was therefore screening the

external field until the critical current of this loop was reached, at which

point it would let some flux enter the loop (which would manifest as a

sudden jump in the resonance frequency) and decrease the flux focusing,

and so on. Once this bonding wire was removed, the flux bias worked

properly.

For the gradiometric resonator, a regular modulation of the resonance

frequency was measured, with a period of 0.49 mA. This coincides

well with the expected value from simulation, using the "th = 7.8 pH

computed by 3D-MLSI : the current should be )0/"th = 0.26 mA,

hence 0.52 mA to drive in the flux line (factor 2 because the flux line is

left/right symmetric and current is split in two). From the measured

value of the period, we therefore estimate the mutual coupling to be

"ext = 2)0/0.49mA = 8.4 pH.

For the standard resonator,without any gradiometric loops, the resonance

frequency was also modulating regularly with the applied external flux.

For the sample with a galvanic coupling to the nanowire, the weak link

loop had a nominal surface of 1000 µm² and the coil period for the

resonance modulation was about 0.10 mA. For this new sample with an

increased loop surface of 2600 µm², we therefore expected a coil period

smaller by a factor 2.6, i.e. about 0.039 mA. The voltage that we had to

apply on the coil to sweeponeperiodwas about 0.021mA,which is a factor

two away from the expected value. Note that there is likely to be some flux

focusing around the sample due to the bondingwires, the sample box, etc.
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and so an exact agreement with the nominal value was not to be expected.

Interestingly, we still measured a modulation of the resonance frequency

of the gradiometric resonator when an external flux was applied with the

coil, but the coil period was this time measured to be around 0.89 mA,

i.e. about a factor 40 bigger than for the standard resonator, therefore

proving the efficiency of the gradiometric design. Unfortunately this

sample had other issues for the spectroscopy applications and we did

not measure it further.



Gallery of two-tone nanowire
spectra K

In the following we present a collection of various two-tone microwave

spectra acquired over different cooldowns of the sample S2 for many dif-

ferent values of the gate voltage. The grayscale represents the magnitude

of the in-phase (I) and quadrature (Q) components of the demodulated

measurement field. Since some transition lines sometimes appear with a

better contrast one one quadrature rather than the other, we present both

for the sake of completeness. The I quadrature corresponds to the top

plot when the spectra are in portrait format or to the left plot when they

are in landscape format. The associated single-tone spectroscopy of the

resonator is shown below with the same phase axis.

To guide the reading of the spectra, the main transition lines were

highlighted in color : the lowest pair transition (red), the lowest set(s) of

single-quasiparticle transitions (green) and the fourmixedpair transitions

(blue), whenever they were visible. Additional lines at higher frequencies,

showing phase dispersions reminiscent of pair transitions, may have

also been highlighted in blue in some spectra, like in Figures K.22 and

K.24. In some of them, intra-manifold spin-flipping transitions are visible

at frequencies 51 < 5 GHz (see Figures K.4, K.8, K.9, K.13, K.14 and

K.22-K.24). To confirm their identification, their frequency expected from

the observed set of single-quasiparticle transitions was plotted in green

dotted lines. The dashed lines appearing in some spectra correspond

to replicas at ± 5A of some of the transition lines. In some cases, the full

phase dispersion of the mixed pair transitions in solid blue lines could be

recovered from their visible replicas at lower frequencies (dashed blue),

see Figures K.9, K.10, K.13 and K.26.
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Acronyms

AR Andreev reflection.

VNA Vector Network Analyzer.

SNR Signal over noise ratio.

WL Weak link.

NW Nanowire.

AC Atomic contact.

PT Pair transition.

SQPT Single-quasiparticle transition.

SEM Scanning electron microscope.

BdG Bogoliubov-de Gennes.

cQED Circuit quantum electrodynamics.

ABS Andreev Bound States.

APQ Andreev Pair Qubit.

ASQ Andreev Spin Qubit.

BF Bistable fluctuator.

TRS Time-reversal symmetry.

SOI Spin-orbit interaction.

WZ Wurtzite structure.

ZB Zinc-blende structure.

TB Tight binding.

TRIM Time-reversal invariant momenta.

PCB Printed circuit board.

CPW Coplanar waveguide.

CPS Coplanar stripline.

sCPW Shunted coplanar waveguide.

TWPA Traveling wave parametric amplifier.

HEMT High electron mobility transistor.

TL Transmission line.

Physical constants

2 Speed of light in vacuum 2 ≈ 2.99792 × 10
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m/s.

4 Electron charge 4 ≈ 1.60217 × 10
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C.

~ Reduced Planck’s constant ℎ/2� ≈ 1.05457 × 10
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−16
Wb.



Titre : Effets de spin et de charge dans les états liés d’Andreev
Mots clés : Matière condensée, Transport Quantique, Circuits supraconducteurs, Cryogénie, Micro-ondes

Résumé : Nous présentons les résultats d’expériences
sondant les propriétés des états d’Andreev dans des
liens faibles supraconducteurs à base de nanofils d’Ar-
séniure d’Indium (InAs). Les états d’Andreev sont des
états fermioniques localisés qui apparaissent à la jonc-
tion (ou lien faible) entre deux électrodes supraconduc-
trices. Ils sont au coeur de la description microscopique
de l’effet Josephson. Les nanofils d’InAs permettent
d’obtenir des liens faibles de longueur finie, caracté-
risés par un couplage spin-orbite et des propriétés de
conduction ajustables électrostatiquement.

Par la technique d’électrodynamique quantique en
circuit (cQED), qui consiste à coupler le lien faible
à un résonateur micro-onde de fort facteur de qualité,
les états d’Andreev peuvent être isolés efficacement du
bruit extérieur, et la lecture de la fréquence du réso-
nateur donne accès à leur occupation microscopique.
Nous modélisons ce couplage pour atteindre une sen-
sibilité optimale et comprendre en détail la réponse du
résonateur couplé au lien faible.

Nous avons mesuré les spectres des états d’An-
dreev, et leur dépendance en différence de phase su-
praconductrice. Ces spectres mettent en évidence deux
effets. Le premier est la levée de la dégénérescence de
spin des états du fait du couplage spin-orbite. Cela se
traduit par des lignes spectroscopiques caractérisant
le changement de l’état de spin d’une quasi-particule
unique dans le lien faible. Le second est l’influence des
interactions coulombiennes entre quasi-particules, ré-
miniscentes de la séparation entre états singulet et tri-
plet de deux spins 1/2 en interaction. La modélisation
théorique des liens faibles de longueur finie permet de
rendre compte de ces effets.

Nous caractérisons également les états d’Andreev
par des mesures temporelles. Des bits quantiques sont
obtenus soit en utilisant l’état fondamental et un état
où une paire de quasi-particules est excitée ; soit deux
états avec une quasi-particule dans des états d’Andreev
différents. Nous avons mesuré les temps de vie et de
cohérence de ces deux types de « qubits d’Andreev ».

Title : Spin and charge effects in Andreev Bound States
Keywords : Condensed matter, Quantum transport, Superconducting circuits, Cryogenics, Microwaves

Abstract : We probe experimentally the properties of
Andreev states in superconducting weak links based
on Indium Arsenide (InAs) nanowires. Andreev states
are localized fermionic states that appear at the junc-
tion (or weak link) between two superconducting elec-
trodes. They are at the core of the microscopic des-
cription of the Josephson effect. InAs nanowires im-
plement finite-length weak links characterized by spin-
orbit coupling and electrostatically-tunable conduction
properties.

By coupling the weak link to a high quality fac-
tor microwave resonator, following the circuit quan-
tum electrodynamics (cQED) approach, the Andreev
states can be efficiently isolated from external noise,
and the resonator frequency readout gives access to
their microscopic occupancies. We model this coupling
to achieve optimal sensitivity and to understand in de-
tail the response of the resonator coupled to the weak
link.

We have performed the microwave spectroscopy of
Andreev states, and measured their dependence on the
superconducting phase difference. The spectra reveal
two effects. The first one is the lifting of the states’
spin degeneracy due to spin-orbit coupling. This results
in spectroscopic lines characterizing the change of the
spin state of a single quasiparticle in the weak link. The
second one is the influence of Coulomb interactions
between quasiparticles, reminiscent of the splitting in
singlet and triplet states of two interacting spin-1/2
electrons. Theoretical modeling of finite-length weak
links allows to account for these effects.

We also characterize the Andreev states by time-
resolved measurements. Quantum bits (qubits) are ob-
tained either using the ground state and a state where
a pair of quasiparticles is excited ; or two states with
a quasiparticle in different Andreev states. We have
measured the lifetimes and coherence times of these
two types of "Andreev qubits".
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