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A Miss Sarriette, mon épice la plus précieuse






"C’est I'inconnu qui m’attire. Quand je vois un écheveau bien enchevétré,
je me dis qu'’il serait bien de trouver un fil conducteur.”

— Pierre-Gilles de Gennes, Le Monde, 1991
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Abstract

We probe experimentally the properties of Andreev states in superconducting weak links
based on Indium Arsenide (InAs) nanowires. Andreev states are localized fermionic
states that appear at the junction (or weak link) between two superconducting electrodes.
They are at the core of the microscopic description of the Josephson effect. InAs
nanowires implement finite-length weak links characterized by spin-orbit coupling and
electrostatically-tunable conduction properties.

By coupling the weak link to a high quality factor microwave resonator, following the
circuit quantum electrodynamics (cQED) approach, the Andreev states can be efficiently
isolated from external noise, and the resonator frequency readout gives access to their
microscopic occupancies. We model this coupling to achieve optimal sensitivity and to
understand in detail the response of the resonator coupled to the weak link.

We have performed the microwave spectroscopy of Andreev states, and measured their
dependence on the superconducting phase difference. The spectra reveal two effects.
The first one is the lifting of the states’ spin degeneracy due to spin-orbit coupling.
This results in spectroscopic lines characterizing the change of the spin state of a single
quasiparticle in the weak link. The second one is the influence of Coulomb interactions
between quasiparticles, reminiscent of the splitting in singlet and triplet states of two
interacting spin-1/2 electrons. Theoretical modeling of finite-length weak links allows to
account for these effects.

We also characterize the Andreev states by time-resolved measurements. Quantum bits
(qubits) are obtained using either the even-parity ground state and a state where a pair
of quasiparticles is excited; or two odd-parity states with a quasiparticle trapped in
different Andreev states. We have measured the lifetimes and coherence times of these
two types of "Andreev qubits".



Résumé

Nous présentons les résultats d’expériences sondant les propriétés des états d’Andreev
dans des liens faibles supraconducteurs a base de nanofils d’Arséniure d'Indium (InAs).
Les états d’Andreev sont des états fermioniques localisés qui apparaissent a la jonction
(ou lien faible) entre deux électrodes supraconductrices. Ils sont au coeur de la description
microscopique de 1'effet Josephson. Les nanofils d'InAs permettent d’obtenir des liens
faibles de longueur finie, caractérisés par un couplage spin-orbite et des propriétés de
conduction ajustables électrostatiquement.

Par la technique d’électrodynamique quantique en circuit (cQED), qui consiste a coupler
le lien faible a un résonateur micro-onde de fort facteur de qualité, les états d’Andreev
peuvent étre isolés efficacement du bruit extérieur, et la lecture de la fréquence du
résonateur donne acceés a leur occupation microscopique. Nous modélisons ce couplage
pour atteindre une sensibilité optimale et comprendre en détail la réponse du résonateur
couplé au lien faible.

Nous avons mesuré les spectres des états d’Andreev, et leur dépendance en différence
de phase supraconductrice. Ces spectres mettent en évidence deux effets. Le premier
est la levée de la dégénérescence de spin des états du fait du couplage spin-orbite. Cela
se traduit par des lignes spectroscopiques caractérisant le changement de 1’état de spin
d’une quasi-particule unique dans le lien faible. Le second est I'influence des interactions
coulombiennes entre quasi-particules, réminiscentes de la séparation entre états singulet
et triplet de deux spins 1/2 en interaction. La modélisation théorique des liens faibles de
longueur finie permet de rendre compte de ces effets.

Nous caractérisons également les états d’Andreev par des mesures temporelles. Des bits
quantiques (qubits) sont obtenus soit en utilisant Iétat fondamental pair et celui o1 une
paire de quasi-particules est excitée ; soit deux états impairs avec une quasi-particule
piégée dans des états d’Andreev différents. Nous avons mesuré les temps de vie et de
cohérence de ces deux types de « qubits d’Andreev ».






Syntheése

Cette these de physique s’inscrit dans le domaine des circuits quantiques. La motivation initiale de ce champ
de recherche, dans les années 1980, était d’explorer la possibilité d"une variable macroscopique obéissant aux
lois de la mécanique quantique. En particulier, il s’agissait de savoir si cette derniére, alors jusque-la restreinte
a I’explication des phénomenes fondamentaux a 1'ceuvre a l’échelle atomique et subatomique, pouvait
également se manifester par des effets visibles & notre échelle, notamment dans des circuits électriques. L'idée
alors était de recourir aux matériaux dits supraconducteurs : ils sont caractérisés par un gap d’énergie dans leur
densité d’états, ce qui confére une protection naturelle contre les fluctuations thermiques et les excitations de
basse énergie de type quasi-particule.

Un des éléments de base des circuits supraconducteurs est la jonction tunnel Josephson, qui consiste en
une fine couche d’un matériau isolant pris en sandwich entre deux électrodes supraconductrices. A tension
nulle, une telle nanostructure a la particularité de pouvoir supporter un courant non-dissipatif déterminé
par un parametre macroscopique : la différence de phase supraconductrice a travers la jonction. En 1985,
Martinis, Devoret et Clarke ont démontré que cette derniére suivait les lois de la mécanique quantique
de sorte qu'un circuit construit autour d’une jonction Josephson pouvait présenter des niveaux d’énergie
quantifiés [1]. Cette découverte a ouvert la voie a un vaste domaine de recherche exploitant la non-linéarité du
supercourant dans les jonctions Josephson pour concevoir des "atomes artificiels" aux propriétés accordables.
Les jonctions Josephson sont aujourd’hui au cceur de nombreuses technologies visant a utiliser les modes
électromagnétiques d’un circuit supraconducteur pour implémenter des "bits quantiques” (qubits) et y stocker
de lI'information [2, 3].

1 Etats d’Andreev : le degré de liberté interne d’une jonction Josephson

Du point de vue fondamental, I'effet Josephson est en fait bien plus riche, et pas une simple spécificité des
jonctions tunnel. Le supercourant qui circule a travers un lien faible entre deux matériaux supraconducteurs
est une conséquence directe et générique de la cohérence de 1'état supraconducteur. Le lien faible peut
étre une fine couche isolante ou métallique, une constriction ou tout autre type de conducteur cohérent :
indépendamment de la nature spécifique du lien, le supercourant est donné par une fonction périodique de
la différence de phase supraconductrice entre les deux électrodes [4]. Une description microscopique de cet
effet a été donnée en terme d’états électroniques localisés qui se forment dans chaque canal de conduction du
lien faible : les états liés d’Andreev (ABS) [5, 6, 7, 8, 9]. Ces derniers peuvent étre per¢us comme les modes
électroniques d'un guide d’onde aux parois supraconductrices : ils résultent des réflexions cohérentes que
subissent les électrons du lien faible & chacune de ses deux interfaces et que l'on connait sous le nom de
réflexions d’Andreev [10, 11, 12]. Bien que cette formulation remonte a prés de soixante ans, ce n‘est qu'il y a
une dizaine d’années que des preuves directes des états d’Andreev ont été obtenues expérimentalement.
IIs ont depuis été révélés grace a des techniques variées et dans divers systémes, allant des nanotubes de
carbone [13] et des contacts atomiques [14, 15, 16] aux nanofils semi-conducteurs [17, 18, 19].

Dans une jonction tunnel, la non-linéarité du supercourant est une manifestation des propriétés de 1'état
fondamental de millions d’états d’Andreev agissant collectivement. Alors que la grande majorité des électrons
de conduction participent a la réponse collective bosonique du condensat supraconducteur, chaque état
d’Andreev constitue individuellement un degré de liberté fermionique, capable d’étre peuplé par des excitations
électroniques connues sous le nom de quasi-particules de Bogoliubov. Si la jonction tunnel a la base des
qubits supraconducteurs actuels contient une densité d’états bien trop importante pour que ces derniers
puissent étre manipulés individuellement, d’autres types de nanostructures, congues de telle sorte a ce que
le lien faible ne conduise qu’a travers quelques canaux bien transmis, n’accommodent en fait qu'un petit
nombre d’états d’Andreev. Comme illustré en Figure 1, ces derniers sont alors suffisamment bien séparés en
énergie pour devenir adressables & 1’aide d’excitations micro-ondes.
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Figure 1: Spectre en énergie des états d’Andreev en fonction de la différence de phase 6, pour un lien faible (a) de longueur nulle, (b)
de longueur finie, et (c) de longueur finie en présence d'un couplage spin-orbite (SO). Dans (a,b), toutes les lignes sont dégénérées
en spin. Dans (c), les lignes en gris foncé et gris clair correspondent aux états d’Andreev avec différents pseudo-spins T, |. Dans 1'état
fondamental, tous les niveaux d’énergie négative sont occupés, a la fois les niveaux discrets d’énergie —A < E < 0 associés aux états
d’Andreev, ainsi que le continuum d’états aux énergies E < —A. Deux types de transitions peuvent se produire : les transitions de paire
(PT), représentées par des fleches rouges et qui créent deux excitations supplémentaires (électron + trou), et les transitions a une seule
quasi-particule (SQPT), en vert, qui consistent a exciter une quasi-particule piégée dans un niveau vers un état de plus haute énergie.

L'intérét de ces systémes est que I'occupation microscopique des états d’Andreev détermine une quantité
macroscopique mesurable : le flot du supercourant a travers le lien faible. Ainsi, en couplant un "atome
d’Andreev" a un résonateur micro-onde, il est possible de détecter son état quantique, car l'occupation
microscopique des états modifie la fréquence de résonance du systéme couplé, qui peut étre sondée par
réflectométrie micro-onde. Le réle du résonateur est double : il permet non seulement de mesurer 1'état
du systeme mais également de l'isoler efficacement du bruit externe. En appliquant un deuxieme signal
micro-onde pour exciter des transitions entre états d’Andreev, on peut en balayant sa fréquence remonter au
spectre d’excitations du lien faible. En effet, des que le signal est résonant, il modifie I'occupation des états, ce
qui se traduit par un décalage mesurable de la fréquence du résonateur. Cette idée est a la base des expériences
dites d’électrodynamique quantique en circuit (cQED) [20]. Elle a été mise en ceuvre précédemment dans
le groupe Quantronique pour sonder la réponse micro-onde des états d’Andreev dans la configuration la
plus minimale possible : un contact ponctuel a un atome entre deux électrodes supraconductrices.

Dans un contact atomique, une seule paire d’états d’Andreev se forme dans le gap supraconducteur, a une
énergie —A < E < +A (cf. Figure 1(a)). En irradiant le lien faible avec des photons micro-ondes résonants,
on peut promouvoir une quasi-particule d’un niveau a l'autre (fleche rouge dans la Figure 1(a)), via une
transition de paire (PT), dénommeée ainsi car elle revient a créer deux excitations microscopiques : une de
type "trou" dans le niveau du bas et une seconde de type "électron" dans celui du haut. La détection et
manipulation de ces paires d’excitations a été démontrée pour la premiére fois dans le groupe Quantronique
dans I'expérience sur les contacts atomiques, donnant lieu a des applications concrétes telles que le "qubit
d’Andreev", dont les propriétés de cohérence ont fait 'objet d'une précédente étude [21]. Dans un lien faible
de longueur finie, plusieurs paires d’états d’Andreev existent et un deuxiéme type de transition micro-onde
peut avoir lieu : une quasi-particule piégée dans un état peut absorber un photon et étre excitée vers un autre
état d’énergie supérieure. Ce processus, auquel on se réfere sous le nom de transition a une quasi-particule
(SQPT), est illustré par une fleche verte dans la Figure 1(b). Comme les états d’Andreev sont en général
dégénérés en spin, l'utilisation de ces transitions pour la manipulation du spin des quasi-particules est
jusque-la restée hors de portée.



2 Observation de la structure fine des états d’Andreev et manipulation
d’un spin unique

Le réle du spin dans les excitations fermioniques est un sujet de recherche trés en vogue dans le domaine
des circuits supraconducteurs hybrides [22, 23, 24] et de la supraconductivité topologique [25, 26, 27, 28].
En 2003, il a été proposé que le spin d"une quasi-particule confinée dans un lien faible possédant un fort
couplage spin-orbite pouvait étre utilisé pour implémenter un qubit [29, 30, 31, 32]. En effet, pour des liens
faibles de longueur finie, la combinaison d"une différence de phase supraconductrice, qui brise la symétrie
de renversement du temps, et d’un couplage spin-orbite, qui brise 1'invariance par rotation du spin, est
suffisante pour lever la dégénérescence de spin des états d’Andreev, donnant lieu & un supercourant Josephson
dépendant du spin, et ce en I'absence d"un champ magnétique externe [33, 34]. Comme illustré dans la
Figure 1(c), on s’attend alors a avoir quatre transitions & une quasi-particule possibles entre deux doublets
d’Andreev résolus en spin. Deux d’entre elles conservent le spin de la quasi-particule, tandis que les deux
autres le renversent. Réaliser de telles transitions reviendrait donc a manipuler le spin d"une quasi-particule
unique piégée dans le lien faible.

Dans ce contexte, le but de cette thése était d’adresser le degré de liberté de spin des états d’Andreev et
d’étudier sa physique. Pour ce faire, nous avons congu une expérience d’électrodynamique quantique basée
sur des liens faibles Josephson définis dans des nanofils d’arséniure d’indium (InAs), connus pour étre le
siége d'une forte interaction spin-orbite de type Rashba [35, 36]. Les nanofils utilisés dans cette thése ont été
fabriqués par croissance épitaxiale & 1'Université de Copenhague au sein du Center for Quantum Devices. A
l'issue de leur croissance, ils sont recouverts sous ultravide d"une gaine nanométrique d’aluminium.
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Figure 2: (a) Lien faible Josephson défini dans un nanofil d'InAs/Al en gravant chimiquement la gaine d’aluminium (gris) couvrant le
crystal d'InAs (vert) sur une longueur L =~ 370 nm. La différence de phase 6 est obtenue en intégrant le lien faible dans une boucle
supraconductrice et en balayant I'intensité d'un faible champ magnétique externe a travers celle-ci. Une tension DC est appliquée sur la
grille électrostatiques (doré) pour controler les propriétés de conduction du nanofil. Cette grille est également utilisée comme antenne
pour envoyer des impulsions micro-ondes a la fréquence f et exciter des transitions entre états d’Andreev. (b) Dispersion en énergie des
états d’Andreev dans un lien faible de longueur finie avec couplage spin-orbite, d’aprés le modéle analytique de A. Levy Yeyati et de
Sunghun Park. (c) Spectre d’absorption micro-onde mesuré sur le dispositif en (a) montrant une série de quatre lignes spectroscopiques
associées aux transitions a une quasi-particule (vert) entre les deux doublets d’états d’Andreev montrés en (b).



Lorsque le matériau est refroidi a température cryogénique (< 1.2 K), I'aluminium devient supraconducteur
et induit la supraconductivité dans le nanofil par effet de proximité. La particularité de ces nanofils repose sur
I'existence d"un contact épitaxié entre le semi-conducteur et la couche d’aluminium, qui renforce l'effet de
proximité et garantit une bonne supraconductivité induite [37, 38]. Cela fait de ces nanofils une plateforme
idéale pour la réalisation de liens faibles Josephson : en gravant la couche d’aluminium sur une région
donnée, on peut ainsi définir localement une jonction Josephson au sein du nanofil, comme illustré en Figure
2(a). Par ailleurs, ces nanofils étant semi-conducteurs, les propriétés d"une telle jonction peuvent étre ajustées
al’aide d’une grille électrostatique déposée a proximité du nanofil. Celle-ci permet, par effet de champ, de
controdler le potentiel chimique du semiconducteur et d’atteindre un régime ot1 la conduction dans le lien
faible se produit a travers seulement quelques canaux de forte transparence [39] ; une condition nécessaire
pour sonder la physique d’états d’Andreev individuels.

Cette these présente deux résultats majeurs, qui introduisent une physique nouvelle par rapport aux contacts
atomiques étudiés précédemment dans le groupe [40, 21]. Premiérement, 'observation a champ magnétique
nul de la "structure fine" des états d’Andreev, qui résulte de la présence d'un couplage spin-orbite dans le
semi-conducteur. Deuxiémement, la mise en évidence d’interactions Coulombiennes entre quasi-particules
piégées dans différents états d’Andreev, indiquant I'importance d’effets de charge dans I’électrodynamique
d’un lien faible Josephson. Nous démontrons également la manipulation cohérente des états d’Andreev par
des mesures résolues en temps, en recourant a diverses transitions observées dans leurs spectres micro-ondes.
Des qubits sont obtenus en utilisant, soit 1’état fondamental et un état ot1 une paire de quasi-particules est
excitée ; soit deux états avec une quasi-particule dans des états d’Andreev différents. Nous avons mesuré les
temps de vie et de cohérence de ces deux types de "qubits d’Andreev".

Pour mettre en évidence la structure fine des états d’Andreev, nous avons réalisé la spectroscopie micro-onde
de nos liens faibles a nanofil d'InAs. Dans la Figure 2(c), nous présentons un spectre micro-onde typique
mesuré sur ce systeme. Ce spectre présente une série caractéristique de quatre lignes distinctes qui se croisent
lorsque la différence de phase supraconductrice 6 a travers le lien faible est nulle ou égale a 7, et que nous
interprétons comme des transitions & une quasi-particule entre états d’Andreev résolus en spin en 1’absence
de champ Zeeman (cf. figure Figure 2(b)). Un modéle analytique simple, supposant un couplage spin-orbite
de type Rashba dans un nanofil & plusieurs bandes de conduction, a été développé par Alfredo Levy Yeyati
et Sunghun Park de 1'Université autonome de Madrid. Nous avons montré qu’il permet de rendre compte de
ces lignes et de leur évolution avec un champ magnétique externe, ce qui supporte leur identification a des
transitions a une quasi-particule et confirme le caractére de spin de ces excitations. Nous avons également
développé une théorie générale du couplage d’un résonateur a un systéme quantique multi-niveaux, en
incorporant les contributions adiabatiques et dispersives au couplage pour rendre compte de l'intensité des
lignes spectroscopiques mesurées. Ces résultats offrent la premiére démonstration expérimentale que le
degré de liberté de spin d'une jonction Josephson peut étre adressé et constituent une premiere étape vers sa
manipulation cohérente.

Parallelement a nos travaux, le groupe de Michel Devoret a 'Université de Yale a réalisé des expériences trés
similaires sur le méme genre de systéme en recourant a un type de résonateur micro-onde et a un schéma
d’excitation différents. Alors que la plupart de nos résultats repose sur la spectroscopie micro-onde des
transitions possibles entre états d’Andreev, 'équipe de Yale s’est davantage concentrée sur leur manipulation
temporelle [19, 41, 42]. En se basant sur notre compréhension des transitions a une quasi-particule, Hays et al.
ont réalisé le contrdle cohérent du spin d"une quasi-particule unique piégée dans un état d’Andreev [41, 42].
Dans ce manuscrit, nous démontrons indépendamment la manipulation d"un spin unique, bien que nous
n’ayons pas pu réaliser une lecture single-shot du spin comme cela a été fait a Yale.

3 Interactions Coulombiennes dans les liens faibles a nanofils

Enfin, nous montrons en combinant une approche expérimentale et théorique que certaines caractéristiques
du spectre d’un nanofil ne peuvent étre expliquées qu’en supposant I’existence d"une énergie de charge au
sein du lien faible. En particulier, notre analyse montre que du fait du temps de vol non nul des électrons
dans le nanofil, deux quasi-particules dans des états d’Andreev différents peuvent interagir et que leur
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Figure 3: (a) Spectre en excitations des états d’Andreev dans un lien faible de longueur finie avec interaction spin-orbite. Les énergies sont
normalisées par une amplitude effective I's, traduisant 'intensité des corrélations supraconductrices. Les fleches colorées illustrent les
différentes transitions micro-ondes possibles, dont la dépendance en phase est représentée dans les cas sans (b) ou avec (c) interactions
Coulombiennes (paramétrées par 1’énergie de charge U). Les lignes de transition sont classées en transitions de paires (rouge), de
paires mixtes (bleu) et en transitions a une quasi-particule inter- (vert plein) ou intra-niveaux (vert pointillé). On observe que 'effet des
interactions est de splitter les quatre transitions de paires mixtes. (d) Spectre micro-onde typique ; les lignes d’absorption principales
sont surlignées avec le méme code couleur qu’en (b,c).

interaction Coulombienne conduit a un splitting des énergies des quatre états possibles de la paire, rappelant
la séparation singulet-triplet de deux spins 1/2 en interaction dans un systéme a faible couplage spin-orbite.
Cet effet est illustré dans la Figure 3(b,c) ot1 nous représentons en bleu la dépendance en phase des transitions
de paires dites "mixtes"”, c’est-a-dire impliquant une excitation dans deux doublets d’Andreev différents, et ce
en présence ou non d'une énergie de charge Coulombienne. Un exemple de spectre expérimental décrivant
cette physique est donné en Figure 3(d). Les transitions de paires mixtes, surlignées en bleu, sont regroupées
en un triplet non dégénéré et un singulet a plus haute fréquence. A noter que leur splitting, aisément mis
en évidence par spectroscopie micro-onde, reste un effet faible (~ 2 ueV) et serait par conséquent difficile a
résoudre au moyen des mesures classiques de transport électrique (DC/audiofréquence), qui offrent une
résolution en énergie plus basse de presque deux ordres de grandeur.

En conclusion, les expériences rapportées dans cette thése ont permis de mettre en évidence plusieurs
phénomeénes nouveaux dans le domaine de la supraconductivité mésoscopique ; une physique traduisant
une compétition complexe entre les degrés de liberté orbital, de spin et de charge d’un électron dans un
lien faible semi-conducteur. Le domaine des circuits quantiques cherche actuellement a exploiter cette
riche physique des semi-conducteurs pour développer des dispositifs hybrides et susciter de nouvelles
applications basées sur leurs propriétés de cohérence quantique. Les liens faibles & nanofils semi-conducteurs
se sont maintenant largement imposés comme nouvelle ressource de base de ces circuits, avec I'idée de tirer
profit de leur degré de liberté fermionique accordable. Dans cette these, nous avons montré comment la
spectroscopie micro-onde permettait de sonder les rouages de ces "atomes artificiels", de la méme maniere
que la spectroscopie UV-visible a permis de comprendre la physique des atomes et des molécules. Nous
envisageons deux expériences futures comme perspectives immédiates a ces travaux. Premiérement, la
spectroscopie des liens faibles a nanofil d’InAs sous fort champ Zeeman, pour sonder la transition vers une
potentielle phase topologique prédite par la théorie [43, 44, 45]. Deuxiémement, la spectroscopie de jonctions
multi-terminales, un systéme censé simuler la physique des semi-métaux de Weyl [46, 47, 48].
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Introduction

1.1 The Josephson effect in terms of Andreev
bound states

The Josephson supercurrent that flows through a weak link between two
superconductors is a direct and generic manifestation of the coherence of
the many-body superconducting state. The link can be a thin insulating
barrier, a small piece of normal metal, a constriction or any other type
of coherent conductor. Regardless of the link specific nature, the super-
current is a periodic function of the superconducting phase difference
between the two electrodes [4]. A unifying microscopic description of this
effect has been achieved in terms of the spectrum of discrete quasiparticle
states that form in each conduction channel of the weak link: the Andreev
bound states (ABS) [5, 6,7, 8, 9].

ABS are formed from the phase-coherent reflections that quasiparticles
undergo at both ends of a weak link, known as Andreev reflections. They
can be viewed as the electronic modes of a box with superconducting
walls. Their existence therefore results from the general properties of
an NS interface and the topology of the weak link, rather than from
the geometric and material properties of the region where they are
confined, which explains the universality of the Josephson effect. While
the connection between ABS and the Josephson effect was predicted
long ago, it was not until rather recently that direct evidence of these
current-carrying states was obtained. ABS have now been revealed with
various spectroscopy techniques and in various systems, ranging from
carbon nanotubes [13] and atomic contacts [14, 15, 16] to semiconducting
nanowires [17, 18, 19]. A few examples are shown in Figure 1.1.

1.2 Quantum information within a single
Josephson junction

Josephson circuits have wide applications in the field of quantum informa-
tion processing [2]. They are currently at the core of most superconducting
qubit technologies being developed, where information is encoded in
bosonic collective electromagnetic modes of the circuits [3]. Compara-
tively, little attention was paid so far to the internal degrees of freedom
of a Josephson junction arising from the microscopic ABS that it hosts,
although such fermionic states could actually be used to store quantum
information within the junction itself. The key point here is that the many-
body occupancy of the ABS determines a macroscopic and measurable
quantity, the supercurrent flowing through the weak link, and therefore
the electrodynamics of the circuit in which the junction is embedded.
This make these microscopic degrees of freedom addressable.

1.1 The Josephson effect in terms of

Andreev bound states . ... ... 1
1.2 Quantum information within a
single Josephson junction .... 1
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Figure 1.1: Spectroscopy of ABS: (a) in a carbon nanotube (tunnel spectroscopy, from
Ref. [13]); (b) on a InAs/InP core/shell nanowire connected to a superconducting Vanadium
electrode (tunnel spectroscopy as a function of plunger gate voltage and magnetic field,
from Ref. [18]), and on atomic contacts: (c) supercurrent spectroscopy (from Ref. [15]); (d)
microwave spectroscopy (from Ref. [16]).

1.2.1 Tunnel junctions vs few-channels weak links

Most existing superconducting qubits rely on tunnel junctions which,
as a collection of many low-transmitted conduction channels, typically
host millions of ABS. The fact that these ABS hardly detach from the
superconducting gap and show only little phase dispersion precludes
their manipulation in such systems. On the contrary, Josephson weak
links tailored in few-channels conductors are characterized by only a few
ABS, which offers a chance to isolate and manipulate them individually.
Since they may disperse deeply in the superconducting gap when they
arise from well-transmitted channels, they may carry substantially more
supercurrent and are therefore easier to couple to a readout probe. For
the same reason, at least part of the associated excitation spectrum
falls in the SHF (3-30 GHz) frequency range, easily explored using well-
established microwaves techniques, in particular those of circuit-quantum
electrodynamics (cQED) [20]. For quantum information applications,
nanowire weak links made out of semiconducting materials appear
particularly appealing due to their gate tunability, which allows to reach
conditions where conduction occurs through only a few high-transmitted
channels [39].

In the present thesis, we investigate the effect of spin and charge on
the physics of Andreev bound states. Our results are based on cQED
experiments which were performed on Josephson weak links tailored
in epitaxially grown InAs/Al core/shell nanowires. In these hybrid
nanostructures, grown in the Center for Quantum Devices, Copenhagen,
by the groups of P. Krogstrup and ]. Nygdrd, the high quality interface
between the InAs core of the nanowire and its aluminium shell (see Figure
1.2(b,c)) induces a "hard" superconducting gap in the semiconductor by
proximity effect [38].

[20]: Blais et al. (2004), ‘Cavity quantum
electrodynamics for superconducting
electrical circuits’

[39]: Goffman et al. (2017), “‘Conduction
channels of an InAs-Al nanowire
Josephson weak link”

[38]: Chang et al. (2015), ‘Hard gap in
epitaxial semiconductor-superconductor
nanowires’
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Figure 1.2: Josephson weak links tailored in InAs/ Al core/shell nanowires. (a) Tilt-view
scanning electron micrograph of an array of epitaxial InAs/Al NWs grown in the [0001]w 7
direction on an InAs (111)B substrate (adapted from Ref. [37]). (b) High-resolution TEM
image from [37] showing that the Al shell forms a perfectly sharp and uniform interface
to the InAs core. (c) Colorized electron micrograph from Ref. [49], showing the ~ 25 nm
full-shell epitaxial Al (blue) grown on the hexagonal InAs core (green) with diameter
~ 140 nm. (d) Josephson weak link obtained from such a full-shell nanowire by etching
away the Al over a length 550 nm (sample named S2 in the thesis).

This makes these nanowires a suitable platform to implement a Josephson
weak link: by simply etching away the aluminium shell over a small
section of the nanowire, one naturally defines a SNSjunction, as illustrated
in Figure 1.2(d).

In parallel to our work, the group of Michel Devoret at Yale University also
performed experiments on InAs nanowire weak links using a cQED setup.
While we were investigating full-shell nanowires, theirs had aluminium
only on 2 facets of the InAs crystals! . They also used another type of
microwave resonator and another excitation scheme. Whereas most of
our results rely on the two-one spectroscopy of weak links, they focused
more on time-domain measurements [19, 41, 42] and detailed analysis of
single-tone spectra [50]. Because of the strong proximity between their
work and ours, we will often refer to their experiments.

We present two main findings. First, the observation at zero magnetic field
of the “fine structure” of the Andreev states, arising from the presence of
spin-orbit coupling in the semiconductor. Second, spectroscopic signa-
tures of electron-electron interactions between quasiparticles trapped in
different ABS. We also demonstrate time-domain manipulation of ABS,
using various transitions observed in the spectra.

1.3 Observation of the ABS fine structure

The role of spin in fermionic excitations like ABS is a topical issue in the
rapidly growing fields of hybrid superconducting devices [22, 23, 24] and
of topological superconductivity [25, 26, 27, 28]. It has been predicted
that for finite-length weak links the combination of a superconducting
phase difference, which breaks time-reversal symmetry, and of spin-orbit
coupling, which breaks spin-rotation symmetry, is enough to lift the spin
degeneracy, giving rise to spin-dependent Josephson supercurrents even

[37]: Krogstrup et al. (2015), ‘Epitaxy of
semiconductor-superconductor  nano-
wires’

[49]: Vaitiekénas et al. (2018), ‘Effective
g Factor of Subgap States in Hybrid
Nanowires’
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Measurement of Andreev-Bound-State
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[50]: Fatemi et al. (2021), ‘Microwave
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many-body Andreev states’

1: Contrary to our nanowires which
have their six facets covered ("full-shell"
nanowires, see Figure 1.2(c)), two-facets
nanowires allow for additional tuning
since the chemical potential in the leads
and their coupling to the weak link may be
tuned by means of supplementary gates,
while in a full-shell nanowire the super-
conducting shell screens any external elec-
trical field.
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in the absence of an external magnetic field [29, 33, 30, 31, 34]. We report
here the first observation of microwave transitions between zero-field
spin-split ABS.

1.3.1 ABS in a multi-channel Rashba nanowire

The phase dependence of ABS levels arising in a weak link with a single
occupied channel is illustrated in Figure 1.3 in the semiconductor picture?
for three cases of increasing complexity:

(a) For a zero-length junction, there is only one pair of subgap, spin-
degenerate ABS levels i = +1 detaching from the gap edge A.
As the superconducting phase difference 6 across the weak link
is increased, the two levels fall deeper in the gap until 6 = 7,
value for which superconductivity is maximally frustrated. Their
energy difference reaches there its minimum value 2AV1 — 7, with
0 < 7 < 1 the channel transparency. This picture describes well
weak links with length L <« &, where £ is the superconducting
coherence length. For ballistic conduction channels, & = hvp/A,
where vF is the Fermi velocity at the weak link.

(b) For finite-length weak links, without spin-orbit coupling, more
spin-degenerate ABS levels arise in the gap. The parameter A = L/&
determines the number of such ABS pairs: depending on 6 and
channel transmission 7, itis 1+ [ 2A/7t] or 2+ [2A /7] (| x| is the inte-
ger part of x). For the parameters of Figure 1.3b (A = 1.7, 7 = 0.97),
the levels are labelled i = +1, +2.

(c) When spin-orbit interaction is present in the weak link, the spin-
degeneracy of the ABS levels can be lifted when 6 # 0, 7T, as the
result of a spin-dependent Fermi velocity which leads to different
values of A for the two spin textures [32]. This is depicted in Figure
1.3(c) where the pseudospin of each ABS is encoded in grayscale.
This regime describes well InAs nanowire weak links that are
investigated in this thesis.

Pair vs. single-quasiparticle transitions

In the many-body ground state, the negative-energy levels are occupied
in the single-particle picture. This includes the negative-energy ABS levels
as well as the continuum of states at energies E < —A. Each level can
be occupied by 0 or 1 quasiparticle. By irradiating the weak link with
photons at the right energy, one can promote a quasiparticle from the
lower (-1) to the upper (+1) level (red arrows in Figure 1.3), which in the
excitation picture amounts to creating both a hole-like and an electron-like
excitation. This process is therefore referred to as a pair transition (PT).
The ground and excited states involved in such transitions were first
observed in atomic contacts : they give rise to the Andreev level qubit,
which was investigated previously in the Quantronics group [21].

In finite-length weak links, a second type of parity-conserving transitions
arises: a quasiparticle trapped in one ABS can absorb a photon and be
excited to another one. We refer to this process illustrated by green arrows

[29]: Chtchelkatchev and Nazarov
(2003), ‘Andreev Quantum Dots for Spin
Manipulation’

[33]: Béri et al. (2008), ‘Splitting of
Andreev levels in a Josephson junction by
spin-orbit coupling’

[30]: Padurariu and Nazarov (2010),
‘Theoretical proposal for superconducting
spin qubits’

[31]: Reynoso et al. (2012), ‘Spin-orbit-
induced chirality of Andreev states in
Josephson junctions’

[34]: Cayao et al. (2015), ‘SNS junctions in
nanowires with spin-orbit coupling’

2: Different representations are generally
used in the literature to describe the energy
spectrum of superconductors: the single-
particle picture, the excitation picture and
the semiconductor picture. Depending on
the context and the type of experiment
being discussed, one representation may
be more convenient than the another. For
a detailed comparison of these representa-
tions, see Ref. [40].

[40]: Bretheau (2013), ‘Localized Ex-
citations in Superconducting Atomic
Contacts’, pp. 16-21

[32]: Park and Levy Yeyati (2017),
‘Andreev spin qubits in multichannel
Rashba nanowires’

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’
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Figure 1.3: Energy spectrum of the Andreev states in the semiconductor picture as a function of the phase difference 6 between the two
superconducting electrodes, as obtained by solving the BAG equations, for (a) a zero-length weak link, (b) a finite-length weak link, and
() a finite-length weak link in presence of spin-orbit coupling. In (a,b), all lines are spin-degenerate. In (c), dark and light gray lines
correspond to Andreev levels with different pseudospins. In the ground state, all levels with negative energy are occupied. Two types
of transitions can occur: pair transitions (PT), leading to two additional excitations, are represented with red arrows crossing the Fermi
energy. Single-quasiparticle transitions (SQPT) are possible when quasiparticles are present in the system. They correspond to atomic-like

transitions between two levels both at either positive or negative energies (green arrows).

in Figure 1.3 as a single-quasiparticle transition (SQPT). When the ABS
are spin-split as a result of the spin-orbit interaction, the spin character of
such excitations becomes relevant. Asillustrated in Figure 1.3(c), there can
now be four transitions of this type between a given pair of spin-split ABS
doublets. Two of them conserve the pseudospin of the quasiparticle, while
the two others flip it. Performing such single-quasiparticle transitions
therefore amounts to manipulating a single fermionic spin trapped at the
weak link, which could be used to implement an Andreev spin qubit.

Probing these spin effects requires to engineer weak links in a few-channel
conductor where spin-orbit interaction is at play. In addition to a good
proximity effect, the InAs nanowires mentioned above are known to
host sizeable spin-orbit interactions [35, 36], which makes them good
candidates to implement spin-active junctions. In the present work, we
performed the microwave spectroscopy of such InAs nanowire weak
links by coupling them to microwave resonators in a cQED setup. The role
of the microwave resonator is two-fold: it allows to efficiently isolate the
weak link from external noise and to read out its microscopic state. Due
to the coupling with the weak link, the resonator frequency is shifted by

an amount that depends on the many-body occupancy of the ABS states.

Probing its frequency with microwaves then gives direct access to the
weak link state. In particular, the excitation spectrum of the latter can be
obtained by applying an additional microwave tone to drive transitions
between ABS. When resonant, this drive changes the occupancies of the
ABS, which reflects in a shift of the resonator frequency:.

[35]: Roulleau et al. (2010), ‘Suppression of
weak antilocalization in InAs nanowires’
[36]: Schertiibl et al. (2016), “Electrical
tuning of Rashba spin-orbit interaction in
multigated InAs nanowires’
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Figure 1.4: (a) Josephson weak link tailored in an InAs/Al core/shell nanowire by etching
away part of the aluminium shell (grey) covering the InAs core (green) over a length
L = 370 nm. A superconducting phase difference 6 may be applied across the weak link by
embedding the nanowire in a superconducting loop and threading it by a small magnetic
field. A DC voltage applied on a side gate (gold) near the nanowire allows to tune its
conduction properties. The gate is also used as a local antenna on which a microwave tone
at frequency f is applied to drive transitions between the ABS hosted by the weak link.
(b) Typical spectrum of spin-split Andreev states and their 5-dependence drawn in the
excitation picture. This spectrum can be understood by considering a finite-length weak
link with Rashba-type spin-orbit interaction in a nanowire containing several transverse
subbands. (c) Microwave spectrum of an InAs nanowire weak link showing a bundle of
four lines corresponding to single-quasiparticle transitions (green) between the spin-split
ABS shown in (b). The two outer transitions 1,4 conserve the quasiparticle pseudo-spin
o € {1, 1}, while the two inner transitions 2,3 flip it.

This is illustrated in Figure 1.4(c), where we present a typical excitation
spectrum of an InAs nanowire weak link. The superconducting phase
difference 0 across the weak link is varied by embedding the weak
link in a loop and sweeping an external magnetic field through it. The
spectrum shows generic features with bundles of four lines crossing
when the superconducting phase difference across the weak link is 0
or 1t. Hence, we interpret these distinctive features as SQPT transitions
between zero-field spin-split Andreev states, as shown in Figure 1.4(b).
A simple analytical model, which takes into account the Rashba spin-
orbit interaction in a nanowire containing several transverse subbands,
explains these features and their evolution with magnetic field. Our
results show that the spin degree of freedom is addressable in Josephson
junctions. They are a first step towards its coherent manipulation.

1.3.2 Trapping a single spin in a superconducting box

Using a similar cQED setup but a different resonator design, the group
of Michel Devoret at Yale University was independently working on
demonstrating such manipulation of an Andreev spin. Following our
understanding of the single-quasiparticle transitions in nanowire spectra,
Hays et al. achieved the coherent manipulation of a single quasiparticle
trapped in the lowest ABS manifold [41, 42].

[41]: Hays et al. (2020), ‘Continuous
monitoring of a trapped superconducting
spin’

[42]: Hays et al. (2021), ‘Coherent
manipulation of an Andreev spin qubit’
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Figure 1.5: (a) Microwave spectrum of an InAs nanowire weak link showing of bundle
of SQPTs (dashed green lines) and a series of PTs (dashed blue). f, = 6.6 GHz denotes
the resonator frequency. (b,c) Rabi flopping of the SQPTs (c) and of one of the PTs (b)
obtained by varying the duration ¢4 of a square microwave driving pulse of frequency fi.
Measurements were performed at the phase values indicated in (a) by magenta and cyan
bars. (d) Linecuts of (c) at the frequencies of the four SQPT (highlighted with black ticks on
the frequency axis) evidencing different Rabi frequencies between spin-conserving and
spin-flipping SQPTs.

Here, we independently demonstrate such a manipulation of a single
spin, although we could not achieve single-shot readout of the spin as was
done in [41]. Figure 1.5 illustrates typical time-resolved measurements
that we performed, evidencing coherent oscillations in the mean value
of a demodulated readout pulse obtained by varying the duration of a
driving pulse resonant with a PT (b) or with each of the four lines of
a SQPT bundle (c). Remarkably, when driving at the same power, the
Rabi frequency associated to spin-flipping SQPTs is shown to be ~ 2.5
times smaller than for spin-conserving transitions, consistent with the
existence of approximate selection rules for the spin®.

* In principle, a microwave drive is not expected to induce spin-flipping transitions. This is
because the magnetic field of the drive is too weak to couple to the spin of an electron; as
for the electric field, it only couples to the motional degree of freedom of the electron
and so cannot flip the spin when it is a good quantum number. In the present case,
spin-orbit coupling in the nanowire partly solves this issue since it hybridizes the spin
and spatial character of the electron wavefunction into a so-called pseudospin. However,
it can be shown that a selection rule still forbids spin-flipping transitions : while the
spin-orbit breaks the rotational symmetry along the nanowire axis, there still remains a
transverse mirror symmetry, such that one spin state of each Andreev doublet would be
mirror-symmetric and the other anti-symmetric (see Ref. [42]). Therefore, if the electric
field of the microwave drive points along the nanowire and respects this mirror symmetry,
it cannot flip the spin. Still, in practice, this symmetry may be broken by the presence of
a side gate, and by any non-ideality in the device, which makes this selection rule only
approximate. All inter-doublet spin transitions can therefore be induced, although the
spin-flipping ones remain a bit harder to drive, as evidenced here.

7
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1.3.3 General theory for the cQED of phase-biased weak
links

While focusing on the understanding of spectroscopy, we evidenced
additional peculiarities in nanowire spectra. First, transitions were ob-
served at frequencies far detuned from that of the resonator. Second,
the response of the resonator appeared to depend on the curvature of
the transition lines. These facts are at odds with the dispersive theory,
which describes the coupling in terms of exchange of photons with the
resonator. To solve this issue, we developed in collaboration with the
group of Alfredo Levy Yeyati, from the Condensed Matter Physics Center
in Madrid, a general theory for the response of a resonator to changes
in the occupancies of a multi-level quantum system coupled to it, as is
the case for ABS systems. We also acknowledge a collaboration with
Leandro Tosi and Andres Reyonoso from Instituo Balseiro in Bariloche,
who contributed to the tight-binding calculations presented in this thesis.
The main result of the collaboration with Madrid is the expression of the
resonator shift due to a single occupied level:

2 1 1
- E; Ej—Ei—hfr Ej—Ei+hfr '
(1.1)
This equation describes the adiabatic and dispersive contributions to the
coupling between an oscillator with resonant frequency f, and a quantum
system with discrete energy spectrum {E;}. When the two systems are
strongly detuned, hf, < |E; — E;| Vi, j , the quantum system mainly
shifts the resonator frequency through an effective stiffness, viewed as the
second derivative of its energy levels E? = 9E;/dq* with respect to the
coupling parameter g (usually a phase difference or an offset charge). At
small detuning, when 3, j | hf, ~ |E; — E;|, the shift is dominated by the
exchange of virtual photons between the two systems, which depends on
the matrix elements of the coupling operator .#j; jo» = [{®i|dH /dq|D;)|,
with H the Hamiltonian of the quantum system.

héfr(i) & E;, + Zj/zz,] E:
j#i )

1.4 Evidence of Coulomb interactions in
nanowire weak links

While most of the features of nanowire weak link spectra can be explained
by means of a non-interacting theory, we show using a combined experi-
mental and theoretical approach that they contain additional features
that reveal the effect of electron-electron interactions. In particular we
demonstrate that, when a Cooper pair is broken into two quasiparticles
residing on different Andreev levels, their interaction leads to a splitting
of the energies of the four possible many-body states, reminiscent of
singlet-triplet splitting in systems with weak spin-orbit coupling. This is
illustrated in Figure 1.6(b,c) where we show with blue lines "mixed" pair
transitions involving two ABS manifolds with and without interactions,
as computed from a minimal four-sites model which will be introduced in
Chapter 8. One of the many spectra showing such mixed pair transitions
is presented in Figure 1.7. Mixed pair transitions, highlighted in blue, are
grouped into a non-degenerate triplet and a singlet at higher energy.

8
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Figure 1.6: (a) Andreev spectrum of a typical finite-length weak link with spin orbit
interaction drawn in the excitation picture. Energies are normalized by an effective singlet
pairing intensity I's. Colored arrows highlight the possible microwave absorption lines, the
phase dependence of which is depicted in (b,c) without and with the effect of Coulomb
interactions, parametrized by an interaction strength U. Transition lines are classified into
pair (red) and mixed pair (blue) transitions and inter- (solid green) and intra-manifold
(dashed green) single particle transitions. Interactions are observed to split the four mixed
pair transitions.

Even if the interactions are strongly screened in these weak links, mi-
crowave spectroscopy is sensitive enough to reveal their effects, which
would otherwise be difficult to identify by means of conventional trans-
port measurements. This illustrates how solid-state devices like Josephson
weak links allow to probe many-body physics at the microscopic scale.

The manuscript is organized as follows. In Chapter 2, starting from the
concept of Andreev reflection and quasiparticles in a superconductor, we
discuss the origin of ABS and review how their energy spectrum depends
on the weak link length and on the presence of back-scattering. We further
investigate in Chapter 3 the effect of spin-orbit interaction, how it arises
in crystalline solids and how it allows for a zero-field spin splitting of the
ABS by giving rise to a spin-dependent Fermi velocity. Using a scattering
approach, we derive the energy spectrum of a finite-length weak link
in presence of spin-orbit interaction when only the lowest band of the
nanowire is occupied.
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Figure 1.7: Spectrum measured on sample S2, with splines to highlight pair transitions
(red), single particle transitions (green) and mixed pair transitions (blue).

The second part, encompassing Chapters 4 and 5, is devoted to the
detection of ABS with the technique of cQED. In Chapter 4, starting from
a general model of the coupling between a resonator and a phase-biased
weak link, we discuss two ways of calculating the resonator shift in terms
of the microscopic occupancies of a multilevel Andreev system. The
derived result is shown to capture well the generic crossover between
adiabatic and dispersive readout of a quantum circuit. First, we relate
the resonator shift to the imaginary part of the weak link’s complex
admittance, which can be expressed in terms of the ABS occupancies
using the Kubo formalism from linear response theory. The second
approach is based on a Hamiltonian description of the coupling. Both
show that the resonator shift scales like the square amplitude of the
zero-point phase fluctuations on the weak link, which we seek to optimize
for a good coupling to the detection resonator. Guided by this result, we
describe in Chapter 5, the design of microwave resonators, in particular
quarter-wave coplanar waveguide (CPW) and coplanar stripline (CPS)
resonators.

In a third part, comprising Chapters 6-8, we present our experimental
results on the microwave spectroscopy of nanowire weak links. First, we
demonstrate how the fine structure of ABS is revealed by the observation
of single-quasiparticle transition lines and their magnetic field depen-
dence, and how the frequency of the transitions can be explained with
the scattering model derived in Chapter 3. We then apply the formalism
developed in Chapter 4 to describe other features of the measured spectra,
in particular the transition lines intensity and the existence of selection
rules associated to the spin, which affect the visibility of some transitions
depending on the type of driving. In addition to the SQPTs, we identify
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in Chapter 7 additional recurring features in our spectra, which evidence
a multichannel situation as well as the presence of Coulomb interactions
in the weak link. In Chapter 8 we introduce a model to incorporate the
effect of such interactions and compare it to the measured spectra.

The fourth part, comprising Chapters 9-11, presents our results on the
coherent dynamics of ABS in nanowire weak links. We start in Chapter 9
by discussing the readout of the weak link many-body state using
time-resolved measurements. In Chapters 10 and 11 respectively, we
demonstrate the manipulation of an Andreev pair qubit and present
preliminary results on the manipulation of an Andreev spin qubit.

The final part, Chapters 12-15, reviews the experimental techniques
used in this thesis, from sample fabrication to low-temperature and
microwave measurements, as well as our setup for data acquisition.
Details on the theoretical models are presented in an Appendix, along
with supplemental microwave data and a discussion on the origin of
spin-orbit in InAs nanowires and a classical derivation of the dispersive
shift of two oscillators.

Some of the results presented in this manuscript are reported in the
following articles:

» [51] Spin-Orbit splitting of Andreev states revealed by microwave spec-
troscopy, L. Tosi, C. Metzger, M. F. Goffman, C. Urbina, H. Pothier,
Sunghun Park, A. Levy Yeyati, . Nygard, P. Krogstrup, Phys. Rev.
X9, 011010 (2019), arXiv:1810.0259

» [52] From adiabatic to dispersive readout of quantum circuits, Sunghun
Park, C. Metzger, L. Tosi, M. F. Goffman, C. Urbina, H. Pothier, and
A. Levy Yeyati, Phys. Rev. Lett. 125, 077701 (2020), arXiv:2007.05030

» [53] Circuit-QED with phase-biased Josephson weak links, C. Metzger,
Sunghun Park, L. Tosi, C. Janvier, A. A. Reynoso, M. F. Goffman, C.
Urbina, A. Levy Yeyati, H. Pothier, Phys. Rev. Research 3, 013036
(2021), arXiv:2010.00430

» [54] Signatures of interactions in the Andreev spectrum of nanowire
Josephson junctions, F. ]. Matute Cafiadas, C. Metzger, Sunghun
Park, L. Tosi, P. Krogstrup, J. Nygéard, M. F. Goffman, C. Urbina, H.
Pothier, A. Levy Yeyati, arXiv:2112.05625
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SPIN-RESOLVED ANDREEV BOUND STATES



Mesoscopic description of the
Josephson effect

In the following sections, we introduce in a nutshell the concept of
Andreev bound states (ABS), while focusing on the physical picture and
keeping the math input as low as necessary. For a detailed mathematical
derivation of ABS using the scattering formalism, we kindly refer the
reader to Part I of Ref. [40]. Starting from the mode conversion process
called Andreev reflection (AR) taking place at the interface between a
normal metal and one superconductor, we extend it to the case of a short
weak link between two superconductors and show how it gives rise to the
ABS subgap states. We then introduce gradually different ingredients to
enrich their physics: the finite length of the weak link, the effect of spin
and finally the effect of spin-orbit coupling in the normal region.

2.1 Andreev reflection

2.1.1 Electron-to-hole conversion

2.1 Andreev reflection
2.2 How do ABS arise? ..... 18
2.3 From short to long junctions 20

[40]: Bretheau (2013), ‘Localized Ex-
citations in Superconducting Atomic
Contacts’, pp. 15-30
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Figure 2.1: The normal metal-superconductor interface is characterized by a spatial variation
of the superconducting order parameter A(x) from A deep in the superconducting region,
X — +oo (grey region), to 0 deep in the normal region, x — —oo (green). As a normal
electron (black dot) moves towards positive x, it converts into a quasiparticle of the
superconductor, with energy Ej and charge q; encoded in blue-white-red color-scale.

Let us analyze what happens at the interface between a normal metal
and a superconductor and how a current carried by normal electrons
is converted into a supercurrent of Cooper pairs. For simplicity, we
will describe this problem considering a 1D geometry. The following
argument is inspired by the textbook discussion from Ref. [55] and will
only require knowledge of the expression for the energy of quasiparticles
in a superconductor. The normal metal-to-superconductor transition is
characterized by an order parameter corresponding to the energy gap
A(x) of the superconductor, which has its maximum A(x — +o0) = A
deep inside the superconducting region (depicted in grey in Figure 2.1)

[55]: Schmidt et al. (1997), The Physics of
Superconductors, pp. 167-174



2 Mesoscopic description of the Josephson effect

and is zero deep inside the normal region depicted in green, A(x —
—o0) = 0. This transition region where the order parameter varies from 0
to A constitutes the NS interface so to speak.

We want to examine what happens to an electron in the normal region
when it encounters such NS interface. We can write the kinetic energy
of the incoming electron as €, = h?k?/(2m) — u, with k its momentum
in the x-direction, m its effective mass and p = h2k12:/ (2m) the chem-
ical potential. Importantly, let us assume that its energy € is smaller
than A, so that no state is available with such an energy in the bulk
superconductor. As illustrated in Figure 2.1, at some point when ap-
proaching the superconducting domain, this normal electron reaches a
place where superconducting correlations already exist but to a small
amount, A(x) < A. At this moment, it converts into an electron-like
quasiparticle of the superconductor, filling the appropriate k-state in
momentum space (positive/right branch of the spectrum), correspond-

ing to its energy Ex = /ei + A(x)?. Tts charge gets also dressed by the

superconducting correlations, evolving from —e to qx = (—e)ey/Ek.

(a)

y :
T—»x A = |A|e®

Figure 2.2: (a) Andreev reflection viewed as a scattering problem at the interface between a
normal metal (green) and a superconductor (grey), characterized by an order parameter A.
(b) Energy dispersion E(ky) of a normal electron in a 1D metal (thick green curve). Density
of states in the superconductor is sketched in grey on the right. A normal electron e; with
excitation energy € < A above the chemical potential u is propagating with momentum
k1 = kp + 0k in the x-direction towards the superconductor. To form a Cooper pair, it pairs
with another electron e> with energy —e and momentum ky = —kr + 0k, leaving a hole h»
behind, whose energy dispersion is shown in thin green lines. It is drawn at the negative
momentum and energy of the missing electron e;. For simplicity, spin indices are omitted
for now.

Then, as the quasiparticle moves closer to the superconductor, it reaches
another point with a larger value of the gap and consequently evolves
in momentum space to another k-state closer to kr, which results in an
increase of the quasiparticle charge . Finally, when approaching further,
its momentum is decreased exactly to kr and the quasiparticle excitation
is left with zero group velocity and zero charge. This happens when it

(8)
E

reaches x = £/, where its energy is equal to the local value of the gap

(we shall derive heuristically the value of cfés) in the next section). At this

15
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point, the quasiparticle is reflected back from the interface, moving to
the left branch of the energy spectrum corresponding to holes. In this
branch, the group velocity is negative and the charge gi<k, positive. But
a positive charge propagating to the left is equivalent to a negative charge
propagating to the right. Therefore, this whole process of conversion
from electron-like excitation to hole-like excitation gives effectively rise
to a charge transfer from the normal metal to the superconductor.

Actually, as it approaches the superconductor, the quasiparticle charge
decreases by being gradually transferred to the superconducting conden-
sate. This means physically that the quasi-electron finds itself a partner
to pair up with and enter the condensate as a Cooper pair, while the
resulting hole goes backwards to the normal metal. This mode conver-
sion process from electron to hole is known in the literature as Andreev
reflection (contrasting with the conventional specular reflection) and
was independently discovered by Andreev in 1964 [10] and by de Gennes
and Saint-James in 1963-64 [11, 12]. It is further illustrated in Figure 2.2.

Now with some math...

If A < u, one can approximate linearly the electronic dispersion around
u, E(k) = p+hop(k —kr), with kr the Fermi momentum and vr = hkp/m
the Fermi velocity, which allows to rewrite the electron excitation energy
as € = pr(k - kp).

We can now formalize Andreev reflection as following, keeping with the
notations from Figure 2.2: a Landau quasiparticle e; from the normal
metal, with momentum k; = kr + 6kj, spin T and excitation energy
€1 = hvrdky, pairs up with another quasiparticle e; with momentum
ky = —kp + 6k, spin | and excitation energy €2 = —hvrdk,. It does so in
order to build a Cooper pair and as such, it leaves a hole behind. To enter
the condensate at the pair chemical potential 2y, it requires €1 = —€> =€,
which imposes 0k, = 0k1 = 0k = €/(hivr). In the excitation picture, this
missing quasi-electron in the spin-| band can equivalently be seen as a
hole-like excitation h, with energy —e; = +€1 propagating backwards
with momentum —k; = kr — 0k, group velocity v, = —vf, and spin T
(a missing spin |). This is illustrated in Figure 2.2, where the energy
dispersion of the hole h; is depicted by the thin green line.

Andreev reflection therefore appears as the scattering of an electron-
like excitation with charge —e, momentum kr + 0k and velocity vr
into a hole-like excitation with charge +e, momentum kr — 0k and
velocity —vr. This electron-to-hole conversion process hence conserves
energy and spin but not charge, and momentum is only approximately
conserved —k; = ki & kr. The charge excess —2¢ and the momentum
Q = 26k are actually transferred to the superconducting condensate ! :
the two quasi-electrons with opposite spins enter the superconductor
to create a Cooper pair with non-zero pair momentum Q, which joins
the condensate. The electron-hole pair of excitations gives rise to a
current density —evr + e(—vr) = —2evr, i.e. twice the current of the
incoming electron, which corresponds to the supercurrent carried by the
transmitted Cooper pair with charge —2e.

[10]: Andreev (1964), ‘The Thermal
Conductivity of the Intermediate State in
Superconductors’

[11]: Gennes and Saint-James (1963),
‘Elementary excitations in the vicinity of
a normal metal-superconducting metal
contact’

[12]: Saint-James (1964), ‘Excitations
élémentaires au voisinage de la surface
de séparation d’un métal normal et d’un
métal supraconducteur’

1: Provided that a Fermi momentum mis-
match exists at the interface, which is
the case when the normal region may
be doped, part of the momentum Q is
thereby transferred to the interface and
the other part to the condensate resulting
into a supercurrent consistent with total
charge conservation.
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2.1.2 A phase-coherent process

During the reflection, the phases of the incoming electron and the re-
flected hole remain correlated, meaning that Andreev reflection is actually
a phase-coherent process. We just showed that during the conversion,
the electron and hole amplitudes penetrate into the superconductor over
a length scale 525), which depends on the energy €y of the incoming elec-
tron. This propagation is therefore associated with an energy-dependent
dynamical phase @(€), associated to the Andreev reflection. We will
need this phase in the next section to understand how Andreev states
arise. Without going into much math, we can retrieve simply the ex-
pression of ¢(e) with the following reasoning, based on expressing the

energy-dependent momentum of a quasi-electron (k,) and quasi-hole
R(k2-K2)

(kn) excitation. Starting from € = —-

U I’z—; — 1) and using that
F

Ex = | /ei + A?, we can rewrite the quasiparticle momentum as a function
of its energy E :

2 _A2\1)2
E A) ) 2.1)

ken(E) = kF<1 + 1e,h SgH(E)T
where 17, ;, = £1 stands for the choice of electron (+1) or hole (-1). This
shows that as long as |E| > A, k., € R and we are dealing only
with propagating states. If |[E| < A, k., € C and we have VE? — A2 =
isgn(E)VA? — E2. When A <, we can Taylor expand Eq. (2.1) to first
order (Andreev approximation), and obtain:

VAZ 2
ke n(E) = kp + ine nx(E) with k(E) = kpAz—”E < k. (2.2)

Therefore, the wave vector k, j, is complex, which means that the asso-
ciated wavefunction is evanescent in the superconductor over a length
scale x(E)™ > k;!, which corresponds precisely to the quantity éés)
introduced before:

ﬁUp

VAZ _E2

&) = (23)

From this we can deduce the time needed for the Cooper pair to enter the
condensate, T‘(ES) = cfés) /vr. This time also determines the delay between
the maximum of the incoming electron wave packet and the maximum of
the reflected hole wave packet. By treating asymptotically the conversion

from electron to hole as a scattering problem and using the method of
stationary phase, one can express it as T;ES) = hdrpp(€). Using Eq. (2.3) for
E(ES) and the useful trigonometric identity arccos’ (x) = —=1/V1 — x2, we
finally deduce the expression for the energy-dependent phase acquired
over an Andreev reflection*:

\ @(E) = —arccos (E/|A]). \ (2.4)

* Another way to guess the expression for TI(SS) is to invoke the energy-time formulation of
the Heisenberg principle, T ~ i/ AE, which can be interpreted (amongst other) as the time
frame 7 needed for two particles in interaction to exchange an energy quantity AE. As the
electron is converted into a hole, its energy is changed by an amount AE ~ |¢| = VAZ — E2

for subgap states |E| < A, from which we recover Eq. (2.3).
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Figure 2.3: Andreev bound states (ABS) in a short weak link between two superconductors.
(a) A Josephson weak link is formed by sandwiching a piece of normal coherent conductor
(green) between two superconducting electrodes (grey). A difference 6 of superconducting
phases is applied between the two electrodes. The normal region is assumed to be short, i.e.
to have a length L < &, with £ the superconducting coherence length of the electrodes.
Local impurities, depicted as a blue star, may limit the junction transparency to a finite
value 0 < 7 < 1. (b) Energy dispersion E(ky) of a 1D electron (black disk) moving in
the x-direction and retro-reflected as a hole (black circle) when undergoing an Andreev
reflection (AR) on the right interface. The Fermi sea in the normal region is denoted in
light grey. Density of states in the superconductors is sketched in darker shades of grey
on the left and right hand sides, evidencing the existence of an energy gap 2A. (c) ABS
emerge as closed orbits of right-moving (full line) and left-moving (dashed line) electrons
confined in the normal region by Andreev reflection (AR). Back-scattering happening with
a probability 1 — 7 connect right and left movers.

The superconducting order parameter is not only characterized by an
amplitude |A|, but also by a macroscopic phase x, such that A = |Ale*.
This phase is also picked by the quasi-electron as it penetrates the
superconductor. Therefore, the phase difference between an incoming
electron and a reflected hole can be written @(E) — x. Conversely, it is
@(E) + x between an incoming hole and a reflected electron. We have
now everything at hand to understand the emergence of ABS.

2.2 How do ABS arise ?

Figure 2.1 illustrates how the spatial variations of the order parameter
A(x) act as a barrier of potential for an incoming electron. By putting two
such barriers on either side of a piece of normal coherent conductor, one
can expect to confine the electronic fluid and give rise to bound states,
similarly to a particle-in-box problem. Let us now discuss this more
formally. We consider the geometry described in Figure 2.3(a), where a
piece of normal conductor (green) is connected on either sides to two
superconducting electrodes (grey), thus forming a Josephson weak link.
We assume that both left (L) and right (R) electrodes have a different
superconducting phase —6/2 and +6/2 2 . As discussed in Section 2.1.2,
this means that the phase difference between an incoming electron and
the reflected hole at the right interface will be pr = —arccos (E/A) - 6/2,
with E < A the excitation energy of the right-moving electron.

2: Such a superconducting phase differ-
ence can be applied in practice by embed-
ding the junction in a superconducting
loop and threading it with a magnetic
flux, see Chapter 4.
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To begin with, let us assume for simplicity that the length L of the normal
region is small enough for the dynamic phase developed by the electron
during its propagation on the length L to be negligible (as we shall see,
this amounts to assuming that L <« &, with & = fivp/L and vf the Fermi
velocity in the weak link). As illustrated in Figure 2.3(b), the reflected hole
will then undergo a second Andreev reflection on the left interface and
be converted back into a right-moving electron, which corresponds to
removing one Cooper pair from the left electrode® . The phase difference
acquired over this second reflection is ¢ = —arccos (E/A) — 6/2 = @r.
Similarly, if considering initially a left-moving electron, the two phases
acquired after each reflection would be ¢, = pr = —arccos (E/A) + 6/2.
Now, if this total phase ¢, + @r acquired over a round-trip in the normal
metal (see Figure 2.3(c)) is a multiple of 27, a stationary mode similar
to Fabry-Pérot resonances in an optical cavity can develop, giving rise
to electronic bound states in the weak link. The energy of such state is
given by the resonant condition:

+0 —2arccos (E4/A) = 0[27]

E
= €= XA ==xcos(6/2) < A,| (2.5)

where the + sign (resp. — sign) corresponds to right-moving (resp. left-
moving) electrons. These states, which are characterized by a subgap
energy € < 1, are known in the literature as Andreev bound states
(ABS). They correspond to a coherent superposition of electron- and
hole-like excitations, which are spatially confined at the junction between
the two superconductors and can be interpreted as a localized Cooper
pair trapped at the junction. Figure 2.3(b) illustrates that over a round-
trip of the incoming electron in the weak link, one Cooper pair has
been effectively transmitted from the left superconducting electrode
to the right one, therefore contributing to a positive superconducting
current’. Therefore, although being localized at the junction, Andreev
states actually mediate the supercurrent flow and can be viewed as the
microscopic mechanism of the Josephson effect [6, 7, 8, 9].

In a real device, the weak link transparency is necessarily limited, ei-
ther due to the presence of impurities in the normal region which are
responsible for some back-scattering, or from a likely Fermi momentum
mismatch between the normal and superconducting region acting as an
effective barrier at each interface [56]. Equation (2.5) can be generalized
to the case of transmission 7 smaller than 1 as follows:

€ = ++/1 - T5in2 (5/2), (2.6)

with € = E4/A the reduced ABS energy. The effect of back-scattering is to
couple the right (thin full line) and the left (thin dashed line) branches of
the spectrum, which opens a gap around 6 = 7, asillustrated in Figure 2.4.
At 6 = m, which corresponds to the phase value where superconductivity
is maximally frustrated, the ABS energy is minimal and equals AV1 — 7.
Because of the symmetry of the spectrum around zero energy, we will
represent from now on only its positive part (excitation picture).

t At equilibrium, and in the absence of a macroscopic supercurrent, this left-to-right current
is exactly canceled by the inverse process where a Cooper pair enters the normal metal
through the right electrode and converts a right-moving hole into a left-moving electron.

3: Notice that we simplified a bit the pic-
ture compared to Figure 2.2. For the pur-
pose of easier notations we represented the
reflected hole in Figure 2.3(b) as the miss-
ing left-moving electron ; this shortcut of
notation may be confusing since it gives
a wrong picture where the hole has op-
posite energy and momentum compared
to the incoming electron, while it has in-
deed same spin, energy and (almost) same
momentum as we argued in Section 2.1.1.

[6]: Kulik (1970), ‘Macroscopic quan-
tization and proximity effect in S-N-S
junctions’

[7]: Beenakker and Houten (1991), ‘Joseph-
son current through a superconducting
quantum point contact shorter than the
coherence length’

[8]: Furusaki and Tsukada (1991), ‘Dc
Josephson effect and Andreev reflection’

[9]: Bagwell (1992), ‘Suppression of the
Josephson current through a narrow,
mesoscopic, semiconductor channel by a
single impurity’

[56]: Prada et al. (2020), ‘From An-
dreev to Majorana bound states in
hybrid superconductor-semiconductor
nanowires’
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Figure 2.4: Energy spectrum E 4 () of An-
dreev states in a short Josephson weak
link as a function of the superconducting
phase difference 0 in the single-particle
picture. Thin lines correspond to a junction
transparency 7 = 1 (full line is for right-
moving electrons, dashed line for left-
moving electrons). Thick lines describe
the case 7 = 0.9.
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Figure 2.5: Effect of the finite length L of the normal region on the ABS spectrum. The
positive spectrum (excitation picture) is shown for three different values, A = 0 (left), A = 0.8
(middle) and A = 2.5 (right). Thin lines give the energy dispersion of the right-moving
(full) and left-moving (dashed) electrons for the 7 = 1 limit of perfect junction transparency.
Thick lines correspond to T = 0.9.

2.3 From short to long junctions

Let us now investigate how the finite length L of the normal region
affects the previous picture. In Section 2.1.1, we wrote the wave-vector of
the right-moving electron as k1 = kr + E/(hvr), and of the missing left-
moving electron as ky = —kr +E/(hvg). The dynamical phase acquired by
these two charge carriers over a round-trip in the normal region can then
be expressed as k1L + koL = 2EL/(hivp) = 2Ae, with € = E/A the reduced
energy and A = L/(hvp/A). The parameter A can be rewritten as L/¢,
where & = fivp /A has the form of a (ballistic) superconducting coherence
for a material with Fermi velocity vr and gap A, but here, vr is the
Fermi velocity in the weak link and A is the gap in the superconducting
electrodes. The resonant condition from Eq. (2.5) therefore generalizes to

+0 —2arccos (€) + 2Ae = 0[27]. ‘ (2.7)

There is no analytical solution to Eq. (2.7), however we may get approx-
imate solutions in the limit € < 1 or A < 1. Restricting to 6 € [0, 2],
Eq. (2.7) may be rewritten:

€ = +cos (/\e + g) =+ cos (A€) cos (g) F sin (Ae) sin(g)

Agl + Cos (g) F Aesin (g), (2.8)
from which we deduce
A<l cos (6/2) ) L LA
Sy peny o Sl 29)

In the A — 0 limit, we recover the result Eq. (2.5) for a short weak link in
absence of backscattering: € = + cos (6/2). To get the exact solution for a
finite length weak link, we can solve numerically Eq. (2.7). The associated
solutions are plotted in thin lines in Figure 2.5 for three illustrative
values of A (solid lines are for right-moving electrons, dashed lines for
left-moving ones).

20
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It shows how, as the length L of the normal region is increased, more
and more ABS levels are fit in the superconducting gap A. By analyzing
Eq. 2.7, on finds that the number of ABS at positive energy is 1 + |21 /7
or 2+ |2A/m] ([ x] is the integer part of x), depending on 6. In addition,
we can investigate the effect of backscattering in the finite-length weak
link [9]. We observe that it opens additional gaps at 6 = 0, = and 27,
where the left and right branches of the spectrum mix, depending on the
value of A.

So far in the analysis we neglected the effect of spin. Since the energy
dispersion of spin T and spin | electrons illustrated in Figure 2.5 is
degenerate, both species have the same Fermi velocity vr and follow
the same resonant condition given in Eq. (2.7). Consequently, we expect
the ABS spectrum shown in Figure 2.5 to be also spin-degenerate. In
Appendix A, we put forward a connection existing between Andreev
reflection and quantum information, suggesting that Josephson weak
links could be seen as confining structures for spin information, and
therefore a suitable platform to implement a spin quantum dot. This leads
to the following question: is there a way to lift the inherent spin degeneracy
of ABSs and build a spin-active weak link where the spin degree of freedom of
the electronic states would matter ? This question, which has already been
extensively investigated in the literature [29, 33, 30], will be the focus of
the next chapter.

[9]: Bagwell (1992), ‘Suppression of the
Josephson current through a narrow,
mesoscopic, semiconductor channel by a
single impurity”

[29]: Chtchelkatchev and Nazarov
(2003), “Andreev Quantum Dots for Spin
Manipulation’

[33]: Béri et al. (2008), ‘Splitting of
Andreev levels in a Josephson junction by
spin-orbit coupling’

[30]: Padurariu and Nazarov (2010),
‘Theoretical proposal for superconducting
spin qubits’



Breaking ABS spin degeneracy

As we have shown in the previous chapter, ABSs are formed from the
coherent Andreev reflections that quasiparticles undergo at both ends of
the weak link. Quasiparticles acquire a phase at each of these Andreev
reflections an also while propagating along the weak link. To lift the
inherent spin degeneracy of ABSs, it is necessary that spin T and spin |
quasiparticles acquire different phases over a round trip in the weak link,
which means that they must have a spin-dependent Fermi velocity. This
may be achieved by means of a possible spin-orbit interaction (SOI) in the
weak link, the effect of which on the Josephson current has been a long
subject of investigation [57, 58, 59, 60]. Similarly to the case of atomic
spectra where the fine structure arises from interaction between the spin
and orbital degrees of freedom of electrons, we show here how the ABS
spectrum is modified in the presence of SOI in the weak link.

3.1 Foreword on spin-orbit interaction

3.1.1 Spin-orbit in vacuum

When a charged particle moves in an electric field E, it experiences an
effective magnetic field that couples to its spin through the Zeeman effect.
The corresponding Hamiltonian is usually written as:

Hso =a- (o x E), (3.1

where E is the electron wavevector, & the vector of Pauli matrices in spin
space and & the spin-orbit coupling, which determines the strength of
the interaction between the spin and the momentum of the electron.
This expression can be easily recovered from the following argument,
writing the effective magnetic field* in SI units as B=—(BXE)/c>withd
the electron velocity and c the speed of light. The Zeeman Hamiltonian
describing the coupling of the electron spin with the magnetic field then
writes H = —[i - B, where i = —gupG/2 is the magnetic moment of
the electron with up the Bohr magneton, g the electron gyromagnetic
ratio, and ¢ the Pauli matrix vector. Rewriting the electron velocity ¥
in terms of its momentum k = m? [k, we recover Eq. (3.1) from the
Zeeman Hamiltonian with @ = —gup hE /(2mc?). Although this rough
derivation gives the correct analytical form for the spin-orbit Hamiltonian,
it predicts a wrong prefactor by many orders of magnitude. In solids,
instead of scaling like the Dirac gap mc?, which is of the order of MeV,

* True in the non-relativistic limit v < c. This result comes from the Joules-Bernoulli
equations describing the transformation of E and B fields between two inertial frames.

The magnetic field B in a frame moving at the velocity ¥ can be expressed in terms of
the E, B fields in the rest frame as B = y(ﬁ - iLzE) -(y- 1)(B - 9)6 with 6 = 3/||3|| and
¥ = 1/4/1 — v2/c? the Lorentz factor from special relativity.

3.1 Foreword on spin-orbit interac-
tion.................. 22
3.2 ABS in presence of spin-orbit 23
3.3 Implementation with semicon-
ducting nanowires ........ 29
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(Review)’
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the denominator of @ contains a combination of splittings in the energy
bands of the crystal, which are rather in the eV range.

3.1.2 Spin-orbit in solid-state devices

There are generally two ways in which an electric field can arise in
a nanostructure. On the one hand, the crystal itself can develop an
intrinsic electric field when its unit cell lacks an inversion center. This
is generally known as bulk inversion asymmetry, which gives rise to a
Dresselhaus kind of spin-orbit coupling. On the other hand, an electric
field may arise when the lack of inversion symmetry is due to an external
potential, which can be due to crystal surfaces, spatial inhomogeneities,
or voltages from external metallic gates. This case is generally referred
to as a structural inversion asymmetry and corresponds to the Rashba
spin-orbit interaction.

In the most general case, the spin-orbit Hamiltonian assumes the form
Hso = E)(l_c)) - 0, with Q(E) the spin-orbit field. Since time-reversal
reverts both spin and momentum, time-reversal symmetry requires that
Q(E) = —é(—E), which imposes the spin-orbit field to be an odd function
of momentum k [61]. This is indeed the case in the Hamiltonian of

Eq. (3.1), which contains only linear terms in k. Time-reversal symmetry
actually imposes stringent constraints on the energy spectrum of a spin
1/2 system, which we are now going to briefly review before investigating
quantitatively the effect of linear SOI on the ABS spectrum.

3.2 ABS in presence of spin-orbit

In Appendix B, we show with symmetry arguments that SOI can split
the Andreev levels, but that the Andreev spectrum must be mirror-
symmetric around the two time-reversal invariant phases 6 = 0, 7, where
the doublets of T, | states must cross.

We consider a normal wire infinitely long in the £ direction. Assuming
that the electric field due to the bulk or structural asymmetry is in the Z
direction, the Hamiltonian of the normal region can be written:

272

hek
H=Hy+Hspo =
2m*

+U(y) - at - (kx3), (3.2)
with m* the effective mass of the electron in the solid and U(y) the

confining potential in the transverse direction.

3.2.1 1D wire

In a first step we consider a purely one-dimensional wire, and are left
with:

h2k2 P (ky = kaoy)* m*a® . m*a
= = - with k, = —,
2m* 2h?2 h?

(3.3)

[61]: Dresselhaus (1955), ‘Spin-Orbit Cou-
pling Effects in Zinc Blende Structures’
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Figure 3.1: Same as in Figure 2.3 but including SOI in the normal region. (a) Schematic of a weak link of length L, with a single scatterer
(blue star) with transmission 7. (b) Dispersion relation for a purely one-dimensional weak link in the presence of SOI (green solid lines,
labels 7] indicate spin in y-direction). Density of states of superconducting electrodes is sketched at both ends of the wire. (c) Andreev
reflections (AR) at the superconductors couples electrons (full circles) with holes (open circles) of opposite spins and velocities, leading to
the formation of ABS. Blue arrows indicate reflections due to a scatterer. (d) Energy of ABS (excitation picture). Thin lines in (d) and (g):
T = 1, ABS formed from right-moving electrons and left-moving holes (solid) or the opposite (dashed). Backscattering (7 # 1) leads to
opening of gaps at the crossings highlighted with blue circles in (d). Resulting spin-degenerate Andreev levels are shown with thick solid
lines. (e-g) Effect of SOI in the presence of two transverse subbands, only the lowest one being occupied. (e) Grey solid lines labelled 17| and
21| are dispersion relations for uncoupled subbands. SOI couples states of different subbands and opposite spins, leading to hybridized
bands (green solid lines) with energy-dependent spin textures. Fermi level u is such that only the lowest energy bands m and m; are
occupied. AR couples for example a fast electron from m; to a fast hole (in black), and a slow electron from m; to a slow hole (in red). (f)
Construction of ABS: black and red loops are characterized by different absolute velocities. Spins pointing in different directions symbolize
spin textures of the bands. Thin red and black lines, solid and dashed in (f,g): ABS at 7 = 1, associated with different spin textures. Thick
black lines in (g): ABS when crossings highlighted with blue circles are avoided due to backscattering (parameters used in the figure:
A1 =08, A2 =2.0, t=0.8and x, =0).
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which describes two energy parabolas shifted around k, = 0 by an
amount k, linear in the spin-orbit strength «. Since the effective magnetic
field causing the SOl is directed along /, spin polarization occurs along
this direction. For spin T electrons, o, = +1, corresponding to the right-
shifted parabola. The left-shifted one corresponds to spin | electrons
with 0, = —1. Therefore, as shown by the green lines in Figure 3.1(b),
SOI splits the parabolic dispersion relation according to the electron
spin direction [62]. We recover the result from Figure B.1(b) that we had
intuited qualitatively reasoning in terms of the system’s symmetries.

Now, as shown in Figure 3.1(c), Andreev reflections (AR) at the super-
conductors couples electrons (full circles) with holes (open circles) of
opposite spins and velocities. When the transmission probability across
the wire is perfect (7 = 1), ABS arise when the total accumulated phase
along closed paths that involve two AR and the propagation of an electron
and a hole in opposite directions is a multiple of 27 [5, 6]. Figure 3.1(d)
shows, in the excitation representation, the energy of the resulting ABS
as a function of 6 for a finite length A = 0.8. ABS built with right- (left-)
moving electrons are shown with thin solid (dashed) lines in Figure
3.1(d). Backscattering in the weak link (7 # 1), due either to impurities
or to the spatial variation of the electrostatic potential along the wire,
couples electrons (as well as holes) of the same spin travelling in opposite
directions, leading to avoided crossings at the points indicated by the
open blue circles in Figure 3.1(d). Given that both spin species still have
the same Fermi velocity, they acquire the same phase over a round-trip in
the weak link, ki1 + k| = kq| + kot. Consequently, the resonant condition
to form bound states is the same for both, and is still described by Eq. (2.7):
one obtains, for this value of A, one or two distinct ABS (thick solid lines)
that remain spin-degenerate, as illustrated in Figure 3.1(d).

3.2.2 Quasi-1D wire

If we now consider that the nanowire has a finite size W in the transverse
directions {j and Z, new terms appear in the normal region Hamiltonian:

hZ
Hyp = %(ki + k; +k)+U(y,z) - a(kyoy — kyoy). (3.4)

Assuming a harmonic confinement U(y, z) = ma)g(y2 + z2) in the trans-
verse section, k, and k, become quantized. We recognize in hz(ki +
k2)/(2m*) + U(y, z) a 2D harmonic oscillator which can be solved exactly
as hawon with n € N* and wp = h/(m*(W/2)?) involving the effective
nanowire diameter W. We are then left with:

R2(ky — kooy)? a2
Hop = % + akyoy + nhwo - n;Tazzr (3.5)
the last two terms being only energy offsets. As illustrated in gray curves
in Figure 3.1(e), the energy dispersion now consists in a series of transverse
bands shifted in energy by E;- = nhwy with n € N*, while each band is
itself spin-split in two ky-shifted subbands. As for the remaining spin-
orbit term ocky Oy, it couples different transverse sub-bands with different
spin, which has the effect to lift the degeneracies at their crossing points.
As a result, the sub-bands become non-parabolic, as shown in green
curves in Figure 3.1(e). Because of this subband mixing, spin is no longer

[62]: Bychkov and Rashba (1984),

‘Oscillatory effects and the magnetic

susceptibility of carriers in inversion
layers’

[5]: Andreev (1966), ‘Electron Spectrum of
the Intermediate State of Superconduc-
tors’

[6]: Kulik (1970), ‘Macroscopic quan-
tization and proximity effect in S-N-S
junctions’
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a conserved quantity and an energy-dependent spin texture arises along
each subband. However, it is still possible to assign a pseudospin index
o € {l, T} for each subband.

We focus on a situation in which only the two lowest subbands (labelled
m1and m2 in Figure 3.1(e)) are occupied. One can derive the following
expression for their energy dispersion [32]:

W2k2  Ef +Ef E+ - Ef ?
Es(ky) = me + 1L 3 2 _ ( ! 5 z_ sakx) +12, (3.6)
where s = —1 corresponds to m; (pseudospin ¢ =T) and s = +1 to m;,

(pseudospin ¢ =|), and where 1 = V2a /W is the strength of the subband
mixing due to the SOI. Linearizing around the chemical potential u, we
obtain the Fermi velocity associated to both modes j =1, 2:

or; = KI:J 1) a (E1 /2 — (—1)]ak1:]') ’ (37)
" h\/(Eij‘/Z—(—l)j(ka]’)z +1?

where kp; are the Fermi wave vectors satisfying Es(kpj) = u. If there
is no subband mixing, i.e. 7 = 0, (gray parabolas in Figure 3.1(e)),
Egs. (3.6) and (3.7) show that kpy — kpy = 2m*a/h? = 2k, and v1 — vy =
(kp1 — kp2)h/m* — 2a/h = 0, indicating that the Fermi velocities are
the same. Importantly, when n # 0, Eq. (3.7) shows that we have now
two modes which are characterized by different Fermi velocities. In
the absence of particle backscattering, the phase accumulated in the
Andreev reflection processes at x = —L/2 and x = L/2, as illustrated
in Figure 3.1(f), leads to the following transcendental equation for the
energy € = E4/A as a function of 6 [32]:

‘ sin (eA; —s0/2 — arccos €) sin (eA; + s6/2 — arccos €) = 0, (3.8)

where Aj-1, = L/&; with & = hopj/A, the (ballistic) superconducting
coherence length associated to both modes with Fermi vg;. It can be
viewed as a two-mode generalization of Eq. (2.7). The two zeros of this
equation are given by:

+56 —2arccos€ +2eA; =0 mod 27 (3.9)

These two families of ballistic ABSs, built from states with different spin

textures, are represented by red and black thin lines in Figure 3.1(f,g).

Approximate solutions are

+cosd/2
(6) = ————12 1
€)= 131 sins)2 (3.10)
for Alej <1, and
2k + 1)t £ 86
ej(6)=—( ubLES (3.11)

2(1 +/\]‘) ’

with k € Z, for € < 1. This last expression accounts well for the quasi
linear dispersion of the Andreev energy (except close to the gap energy)
when A departs from 0.

[32]: Park and Levy Yeyati (2017),
‘Andreev spin qubits in multichannel
Rashba nanowires’

[32]: Park and Levy Yeyati (2017),
‘Andreev spin qubits in multichannel
Rashba nanowires’
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3.2.3 Effect of backscattering

To model backscattering in the normal region, we add a point-like
impurity at the position xo with —=L/2 < x¢ < L/2, described in the
Hamiltonian by a potential barrier Upd(x — xp). Accounting for this
extra boundary condition, one can derive the following transcendental
equation for the ABSs energy [32, 51] :

ABS energies in a finite-length weak link with SOI

T COs [(Al —A)eF 6] + (1 —=1)cos [(/\1 + Az)exr] =

cos [2 arccos () — (A1 + )\2)6], (3.12)

where x, = 2x/L € [-1, 1] indexes the impurity positionand 0 < 7 < 1
is the transmission probability at the impurity. The detailed derivation
of this equation is provided in Appendix E. As before, introducing a
finite backscattering probability 1 — 7 > 0 couples left and right-movers,!
leading to avoided crossings at the points indicated by the open blue
circles in Figure 3.1(e). The resulting ABSs group in manifolds of spin-
split states, represented in thick black lines. Remarkably, this splitting
takes place in the absence of any Zeeman field. A finite magnetic field
would however be needed to lift the residual Kramers degeneracies at
0 = 0 and 7, which hold as long as time-reversal symmetry is preserved
(see Appendix B). When A1 = A, = A, Eq. (3.12) can be expanded up to
second order in €:

(2= 7+ Tcosd) - [2 +AN+ 222 4202021 — ’L’)] =0, (313)

from which we obtain an approximate expression of E4, valid near 6 = 7,
and for not-too-small transmissions:

EA(0) = AetyJ1 — Tsin? (8/2) (3.14)

A el A
with Agg = Ee 2 (3.15)

\/(1 + A2+ (e AVT =102 1+a

It turns out that this expression also accounts correctly for the dependence
near 0 = 7 of the average of the two solutions E 4 and E 4, of Eq. (3.12)
when A1 # Aj. One then takes A = (A1 + A;)/2. Equation (3.14) shows
that at low energy and close to 6 = 7, the energy of the lowest-in-
energy pair transition behaves like that of a zero-length weak link with
a reduced superconducting gap Acg. This approximate result is used at
many instances in the following.

Another model was investigated assuming a more physical situation
where backscattering takes place at the left (x = —L/2) and right (x = L/2)
edges of the wire. It results in another transcendental equation for the
ABS energies, with a slightly more cumbersome expression (see Eq. (A.13)
in Ref. [51] or Eq. (E.49) in Appendix E), but with the same number of
parameters: two transparencies 7r, Tr associated to the left and right
barriers, instead of one transparency 7 and the position x, for the single-

[32]: Park and Levy Yeyati (2017),
‘Andreev spin qubits in multichannel
Rashba nanowires’

[51]: Tosi et al. (2019), ‘Spin-Orbit Splitting
of Andreev States Revealed by Microwave
Spectroscopy’

1: Actually, because spin is no longer a
good quantum number in presence of SOI,
forward scattering should in principle also
be allowed, although it is not treated here
for simplicity. Including other scattering
terms would certainly cause additional
repulsion between levels, but it is not ex-
pected to modify the overall picture.

[51]: Tosi et al. (2019), ‘Spin-Orbit Splitting
of Andreev States Revealed by Microwave
Spectroscopy’
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Figure 3.2: Spin-dependent Fermi velocities for the two lowest transverse modes, as obtained from a discrete tight-binding description of
the normal region. Left plot: Energy dispersion E;; /A as a function of the electron momentum k (normalized by the unit cell size a), when
2D-spin orbit (@x # 0, ay # 0) is taken into account. The curves were computed from Eq. (C.2), see Appendix C for the parameters. The
bands for (ax # 0, ay = 0) are shown in dotted lines to highlight the hybridization points. Middle plot: Inverse Fermi velocities (horizontal
axis) Ayg = L/&ng = LA/ hvyg o< 1[0y, for each subband 1o as a function of the band energy E; /A (vertical axis). Right plot: difference of
normalized inverse Fermi velocities 6A, = A, | — A, 1 as a function of energy E; /A, showing a maximum at the bands hybridization
points.

barrier model presented above. Both models predict similar dispersions
for the spin-split ABSs and can fit the data equally well, as we will show
in Chapter 6.

3.2.4 Spin-dependent Fermi velocities

In the following, we generalize to the situation where the second trans-
verse band may also be occupied. For this purpose, we relabel the model
parameters with the subscripts no, where n = 1,2 is the band number
and o € {], T} is the pseudospin index associated to each subband.
We have just shown that when it comes to ABSs, the figure of merit is
not the Fermi velocity v,, of the subband n with pseudospin o, but
the dimensionless ratio A5 = i with &5 = hv,s /A, which gives the
number of ABS in the window [-A, A] around p. More precisely, the
number of ABS in the gap equals 1 + [2A/7t] or 2 + |24 /7|, depending
on 0 and 7. Also, the quantity 6A, = A,| — A, 1 directly determines the
spin splitting of the Andreev states.

In Figure 3.2, we plot as a function of the band energy E;; both A,
for each of the four subbands no, and 0A,, for the two transverse bands
in the presence of SOI. These quantities were obtained using a two-
channel tight-binding (TB) description of the normal region, as further
detailed in Appendix C. We will make use later of this TB description in
Chapter 7, which provides a simple way to extend the previous theory to
the case of a multimode weak link (not tractable analytically!) and to add
extra ingredients in the normal region like scattering barriers, on-site
Coulomb repulsion, etc. Note that in this discrete model, the bands in
absence of SOI are given by shifted cosine arches. In the continuum
limit, we would recover the parabolic bands described in the previous
section. As evidenced with horizontal dashed lines in Figure 3.2, 64,
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exhibits a maximum close to the band bottom, at the hybridization points
where the band mixing from SOI is the largest. Therefore, to get sizeable
spin splitting for the ABSs, one should operate in a situation where
the chemical potential y lies close to the bottom of a transverse band,
where 01, gets a finite appreciable value. As 1 increases, the subband
hybridization drops and 64 — 0. 2

3.3 Implementation with semiconducting
nanowires

In the previous sections, we have shown how a linear SOI is able to lift
the ABS spin degeneracy except at a few phase values 6 = 0, 7, which are
protected by time reversal symmetry. Now, can such a linear SOI take place
in solids and is the Hamiltonian in Eq. (3.1) a good approximation for it ?

As discussed in Section 3.1, the spin-orbit field in crystals f)(E) can be
shown to generically contain both linear and cubic powers of k, which
can contribute to different extent depending on the crystalline structure
of the solid. Nanostructures made from III-V semiconductor materials
appear as interesting systems to explore spin physics as they benefit for
free from a Dresselhaus SOI due to the inherent inversion asymmetry
of their crystal unit cell. Growing semiconducting nanowires out of
these materials offers even further appeal as the quantum confinement
generated by their typical small transverse dimensions may allow for
an extra Rashba contribution to the overall SOI, which can be further
tuned by applying external electric field using close-by metallic gates. By
controlling their growth conditions, these materials can typically crystal-
lize in the zincblende (ZB) or wurtzite (WZ) phases. In ZB nanowires,
bulk effects are expected to be negligible since they are only cubic in
momentum [63]. On the other hand, WZ crystals are known to exhibit
linear SOI already in the bulk, which is well described by a Hamiltonian
of the from from Eq. (3.1).

As a major breakthrough in material science, Krogstrup et al. demon-
strated in 2015 the growth by molecular beam epitaxy of semiconducting
nanowires made from an InAs core in the WZ phase covered by a thin
aluminium shell [37]. The uniform and perfectly sharp interface of alu-
minium to the InAs core was shown to induce a “hard” superconducting
gap in the semiconductor by proximity effect [38], making such nanowires
attractive systems to implement Josephson weak links. The presence of
linear SOI was confirmed in such InAs nanowires by measuring the weak
antilocalization effect [36]. These two reasons make InAs nanowires good
candidates to explore the spin physics of Andreev states.

Quite remarkably, although many experimental results are consistent
with the presence of significant SOl in these nanowires, its exact origin still
appears (partially) unclear. Indeed, the intrinsic SOI due to bulk effects
is known to depend strongly on the crystal directions and interestingly
in the usual nanowires grown along the [0001] direction, it vanishes by
symmetry for each individual transverse mode in the wires, as discussed
in Appendix D. Therefore, this would point towards an extrinsic structural
inversion asymmetry as being the main source of the linear Rashba SOI
measured experimentally.

2: Until u gets close to the top of a subband
where 01 departs again from 0. However,
the latter is shown for illustrative purposes
only, because in practice the chemical po-
tential never reaches the ionization energy
associated to the top of the bands.

[63]: Campos et al. (2018), ‘Spin-orbit
coupling effects in zinc-blende InSb and
wurtzite InAs nanowires’

[37]: Krogstrup et al. (2015), ‘Epitaxy
of semiconductor-superconductor
nano-wires’
[38]: Chang et al. (2015), ‘Hard gap in
epitaxial semiconductor-superconductor
nanowires’

[36]: Scheriibl et al. (2016), “Electrical
tuning of Rashba spin-orbit interaction in
multigated InAs nanowires’






PROBING ANDREEV LEVELS WITH CQED



In the previous part, we described how ABS generally arise in weak links
between two superconductors and discussed how the spin degeneracy of
ABS can be lifted in weak links where spin-orbit coupling is present. In
this second part, we review how the Andreev spectrum of such systems
is measured using the techniques of circuit quantum electrodynamics
(cQED). This detection technique consists in coupling the phase-biased
weak link to a microwave resonator. The coupling arises through current
fluctuations in the resonator, which induce phase fluctuations across the
weak link. In Chapter 4, we develop a general theory to describe the
resonator-weak link coupling and derive an expression for the resonator
frequency shift as a function of the microscopic occupancies of the ABS
levels. These results guide the design of microwave resonators, which is
the object of Chapter 5.
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Modeling the coupling between
a resonator and a phase-biased
weak link

In cQED, the coupling of a weak link to a microwave resonator shifts
the frequency of the latter. If the coupling is small enough, then the
presence of the weak link does not affect the structure of the resonator
mode and can be treated as a perturbation. In the following I will discuss
two ways of calculating this shift in terms of the microscopic occupancies
of ABS. The first one follows the treatment done by Kurilovich et al.
[64]. The weak link is considered as a circuit element characterized by
a complex admittance. We will see that the resonator shift due to the
weak link will be directly proportional to the imaginary part of the weak
link admittance. By using linear response theory, the admittance of the
weak link, hence the frequency shift of the resonator, are expressed in
terms of the occupancies of ABS. The second approach is a Hamiltonian-
based description of the resonator coupled to the weak link, which we
developed in Refs. [52, 53].

4.1 Resonator shift from an electrical engineer
point of view

4.1.1 Resonator admittance

Following the treatment of Ref. [64], let us treat the weak link as a two-
port black box coupled in parallel to a microwave resonator described
by its admittance matrix Y/**[w], where i, j € L, R label the two ports of
the weak link (see Figure 4.1). The admittance matrix relates the currents
flowing in the resonator to the voltages at nodes L and R,

liw) = X e [wlViw). (1)

j=L,R

For simplicity, let us assume that the resonator is lossless and reciprocal*
(the latter is always true for R,L,C circuits). In this case, Y™ is a purely
imaginary matrix [65]. The condition for a parallel resonance that the
imaginary part of the circuit admittance goes to zero, then translates into
the more general condition of zero admittance. In other words, the bare
frequency of a lossless resonator, i.e. in the absence of the weak link, can
be determined by the frequency at which the equivalent admittance of
the resonator goes to zero. The latter, which we denote Y, is defined as
the admittance seen from one port when the other is open. To compute Y~
in terms of the admittance matrix’s components Yj;, consider the circuit

* If a network is lossless, the net real power delivered to it must be zero: P = Re(VIT) =
%(VTI*+V*TI) = %(V*TI+I*TV) =vT (#) V = 0.Since V is external to the network
and can therefore be chosen arbitrarily, Y + Y*T must be zero for a lossless network, i.e. Y

is anti-Hermitian: Y = —=Y*. If moreover the network is reciprocal (Y = YT), thenY = -Y*
ie. Re(Y)=0.

4.1 Resonator shift from an electrical

engineer point of view ... .. 33
4.2 Hamiltonian description of the
resonator shift . . .......... 41

[64]: Kurilovich et al. (2021), “‘Microwave
response of an Andreev bound state’

[52]: Park et al. (2020), ‘From Adiabatic to
Dispersive Readout of Quantum Circuits’
[53]: Metzger et al. (2021), ‘Circuit-QED
with phase-biased Josephson weak links’

Figure 4.1: Weak link galvanically con-
nected in parallel to a resonator with ad-
mittance Yl.rjes. A magnetic flux ¢ sets the
average phase difference ¢ across the weak
link, and a gate voltage V tunes the charge
density profile in the junction region.

[64]: Kurilovich et al. (2021), “‘Microwave
response of an Andreev bound state’

[65]: M.Pozar (2011), Microwave Engineer-
ing, 4rd Ed
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depicted in Figure 4.2. Applying Eq. (4.1) gives

I = YinVi + YioRo o Yy v
I = Yn Vi + YaRolp 2T 1-YpR,
from which we get, by definition of Y*:
I I
Y =+ =Yy + YRy —
1 1Ry —00 V1 Ry—0
RyYoq
=Y+ ——— Y;
1 1- Y22R2 Ry—o0 12
Y12Y21
= vy - 2t
-y

The condition Y* = 0 then amounts to Y11 Y2 — Y12Y21 = 0ie. detY = 0.
Therefore, the bare frequency wy of the resonator can be found as the
solution of the characteristic equation:

detYl.;.eS [wo] = 0. (4.2)

This implies that the admittance matrix Y™ has zero as an eigenvalue,
that is to say there exists a non-trivial voltage mode Vs, such that
Y™ V,es = 0, i.e. I;es[a)o] = Zj:L,R Yil}.es[a)o]vres,]' = 0 from Eq (41), and

we are indeed looking at a current (parallel) type of resonance’ .

4.1.2 Resonator shift

Let us now investigate the resonance frequency wy, of the coupled system.
Since the weak link and resonator are connected in parallel (see Figure
4.1), the total admittance of the coupled system is given by the sum
of their two contributions Y*! = Y™ + YWl The resonance condition
obtained from Eq. (4.2) therefore changes to det(Yi?es[a)(/)] + YZ‘]NI[a)a]) =0.
For a weakly coupled system, we expect the resonator frequency to be
shifted by only a small amount |[dw| < @y, such that wj = wg + d6w. The
structure of the mode Vi ; is then given by

Z VT (Y.r.es[a)g + 6&)] + Yi‘]{\]l[wo + 6&)]) Vres,j =0.

i
AR res ij
Expanding this equation to first order in § and using that V.L Y™ [w] Vies =
0 by definition of wy, one is left with:

2|

VT ‘6a)(Yi;'es /[wO]Vres,j + VT 'Y‘Wl[wO]Vres,j) =0.
i,j=L,R

res,i res,i " if

from which we deduce:

_
K
\ i

Yi]' EE R,—00

1

vy
v

Figure 4.2: From two-ports admittance
matrix Yj; to equivalent admittance Y*.
Note that we have defined Y* as the admit-
tance seen from one port when no current
flows at the other.

I I
vy = 4 I
A Y =7 oo Vi

=Y
V=0

1: In the general case, for a parallel (=cur-
rent) type of resonance, the resonator
impedance equals its resistance Z = R
and the total current is minimal. Here be-
cause we assumed initially that R = 0 (no
photon loss in the resonator), this means
that we have I = 0 at resonance, therefore
detY = 0.
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Resonator frequency shift due to the weak link

Sij=1,r VI Y [@0]Vies,j

res,i = ij

2lj=L,R VI (Yil}es),[C‘)O]Vres,j ‘

res,i

ow =

(4.3)

Note that because the resonator is assumed lossless, its admittance
matrix is anti-Hermitian, which implies that Re(V,L Y™ V,es) = 0 2

and therefore also Re(V,L (Y™)'V,es) = 0. Consequently, Im(Y*"!) has
to be non-zero to give a real frequency shift 6w. We obtain here a
general result: the resonator shift is proportional to the imaginary part
of the weak link admittance, and the magnitude of the shift scales like

-1
(Z VrTes(YreS)’[wo]Vres) , which depends on the resonator geometry,

encoded in its admittance matrix, and on the voltage structure Vs of the
resonator mode used to probe the weak link.

4.1.3 Admittance from susceptibility

One can compute the admittance of the weak link Yl‘]”l using linear
response theory. The weak link is sensitive to two external parameters:
the applied magnetic flux ¢» which tunes the phase difference ¢ across the
weak link and the gate voltage V, which affects the charge in the junction
region. The response of the weak link to weak external drives 6V (t)
and 6¢(t) = @oo@(t) (Where @y = h/2e is the reduced flux quantum)
is captured by its response function to the external biases x, which has
the form of a susceptibility. Given the finite length of a nanowire weak
link, a non-zero charge can develop in the junction region. Consequently,
to capture properly the electrodynamic response of the weak link, its
response function must have the structure of a 2x2 matrix, i.e. both
the current I through the weak link and the charge Q on it have to be
considered, because both quantities respond to the phase and gate biases.
The relation between the external parameters {¢, V,} and the internal
variables {I, Q} is given by the response function x 4p through:

5Q(w)\ _ OVe(w) _(x X
(61@))"([‘”(65@))' X‘(;ﬁs )(?11)’ (44

where 6Q and 61 describe the deviations of the mean charge and current
from their stationary values.

To relate the admittance of the weak link Yl;"l (with i,j € L, R) to its

response function to the external biases xap (Where A,B € I, Q)3
one needs to express {0¢, 0V} and {6Q, 61} in terms of {V, Vr} and
{IL, Ir}, respectively the potentials of the left/right resonator leads and
the current flowing through them. According to the conventions used in
Figure 4.1, one has:

_ (—(IR(w) + I (w))/iw
(Ir(w) = I(w))/2

a~

Ir-11
2

8tQ = _(fR + fL) (6Q(a)))

7= ol(w)

2: For an anti-Hermitian operator A:
xTAx = —xtAtx = —(Ax)Tx = —xT(Ax)
= Re(xtAx) = 0.

3: I and Q refer here to the current flow-
ing through the weak link region and
to its charge, not to the in-phase and in-
quadrature components of a modulated
signal.
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Now, to relate the external biases to the lead voltages, one has to make
some assumptions on the setup. Let us suppose here that the capacitance
C4 between the weak link and the gate is much larger than the capaci-
tances Cr,, Cr coupling the weak link to the superconducting leads. This
assumption can be motivated if the gate is located close enough to the
weak link and if the weak link is in the dot regime, meaning weakly
coupled to the superconducting leads? . If neglecting also the weak link
capacitance to ground (reasonable because the grounded parts of the
circuit are far from the weak link), then the voltage V, (t) supplied to the
gate simply translates into a voltage —V,(t) applied simultaneously on
both leads L and R, so that:

5(w) = LR

§V(w) = _VL(CU) + Vr(w)

2

Substituting into Eq. (4.4), one obtains:

—(Ir(w) + IL(w))/iw) _ (XQQ XQI) (—(VL((U) + Vr(w))/2
(Ir(w) = I(w))/2 xio  xu ) \(Vi(w) = Vr(w))/iw

Then, solving for {I;,Ir} as a function of {Vy, Vr}, one obtains after
identification with Eq. (4.1) the following set of equations relating the
admittance matrix of the weak link to its response function® :

X1 iw 1
yw=_2- 4 — + = -
LL o 4 XQQ 2(XIQ xor)
XI1 1
YR = T —4 XQQ + 2()(IQ + xor)
(4.5)
XiI 1
Ylngl = +— + IXQQ - E(XIQ + xqr)
XU 1
ywl o AL IO = .
ot XQQ 2()(IQ xor)

Because each component of the admittance matrix is a linear combination
of the diagonal and non-diagonal elements of the response function,
it shows that in general the resonator frequency shift reflects both the
current and charge response of the weak link.

Now, because the numerator of Eq. (4.3) depends on the structure of the
mode (i.e. on the voltage on both leads), an important consequence of
these equations appears: by choosing an adequate geometry /symmetry
for the resonator, it is possible to probe particular components of the
response function of the weak link. In particular, if the resonator shows
a left/right symmetry with respect to ground and Vies . = Vies,r = V0,
then:

Vi Y Vw0l V, .
resV—2r€S = 1a)0)(QQ [a)o] o XQQ' (46)
0

On the other hand, if the resonator has a left/right antisymmetry and
Vres,L = _Vres,R = Vo, then:

VrESYWI[ ] res 4iXII[w0]
2 o Xn
Vs wo

(47)

4: Note that this is likely not to be the
case in our experiment. However, this as-
sumption remains a convenient limit as
it simplifies greatly the general form of
the results. So let us first go ahead with
it and then, once the results are derived,
mention how they are affected when a fi-
nite capacitance to the leads is taken into
account.

5: These equations are valid only for
Cg > Cp, Cg. The more general case of
arbitrary ratio between the capacitances
to the gate/leads has been described by
Kurilovich et al. [64].
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Importantly, this means that by probing the weak link either through a
common mode of the resonator or through a differential mode, one can
measure either the charge or the current response of the weak link. In the
more general case where the capacitances Cr, and Cr between the weak
link and the superconducting leads are taken into account [64], which
better describes the system studied in this thesis, one can show that for a
common mode of the resonator:

VrZs v Vies _ ( Cg

V2 Cg+CL+CR

2
) iwoX0Q,
0

which is still proportional to the charge response xog. However, when
probing the weak link through a differential mode of the resonator, one
is no longer measuring purely the current response:

VrZsYWIVreS _ ﬂ 5 Cr—-Cr ( )+ Cr—-Cr
V2w T e e TR T e e v Gr

exceptif Cp —Cr < Cg+Cp+Cg in which case one recovers approximately
Eq. (4.7). This will be the case for any left/right asymmetry in the coupling
between the probe (resonator) and the weak link.

4.1.4 Kubo expression for the current-current
susceptibility xi;

Trif et al. [66] used the Kubo formula from linear response theory to
derive a general expression for the finite frequency current response
(susceptibility) of a nanowire junction® x(¢, ) = iwY(¢, w), where
Y(¢, w) is the junction admittance (see also Refs. [67] and [68] for the use
of this approach on mesoscopic rings). By describing the junction in the
Bogoliubov-de Gennes framework (see 4.20), the response function’ can
be decomposed into three parts, the Josephson (x7), the diagonal (xp)
and the non-diagonal (xnp or Kubo) contributions :

[64]: Kurilovich et al. (2021), ‘Microwave
response of an Andreev bound state’

2
) 1w XQQ

[66]: Trif et al. (2018), ‘Dynamic current
susceptibility as a probe of Majorana
bound states in nanowire-based Joseph-
son junctions’

6: In this section, we omit the subscript I1
and note x = xjj-.

7: See Egs. (29-32) in the suppl. material
of Ref. [66]

o= D3y (f Oy, s TR .
qb @+ iV \ 0P ) ey oen—em €n—€m—hw—ihyu,’
—_—
X XD XND
(4.8)
with I;(¢) = - 3, fnaaiq;’ being the supercurrent flowing for the static (67]: Trivedi and Browne (1988), ‘Meso-

flux ¢, the coefficient f, being the occupancy number of the single-
particle state €, 1 =-0H,, /d¢ the current operator and V., the nm
component of the relaxation tensor’. From this expression, one can
rewrite x(¢, @) = X, X" (¢, w) to identify the contribution from one
Andreev level n:

NI W @9
m#n
2
n) _ P, M) _ _w  (den) o
where X _fn 3(;2 + Xp = a)+ain(8€qb) dey

tIts diagonal elements y,,,; describe the relaxation of the populations f,, due to inelastic
scattering arising from electron-phonon or electron-electron collisions. Non-diagonal
elements 9, capture the relaxation of the coherences due to transitions between levels.

scopic ring in a magnetic field”

[68]: Dassonneville (2014), ‘Dynamics
of Andeev states in a normal metal-
superconductor ring’
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Neglecting the inter-level relaxation rates y,,,, — 0 and writing f,, =
fn — fm and €, = €, — €y, for ease of reading, the non-diagonal part,
which accounts for transitions between Andreev levels, reads:

w [(m|T|n) 2 fam [l Tlm) > fun
—hwz enm—ha)_th

XND = mEn Enm n#m €mn €mn — hw
_ Z}[Wﬂlﬂnﬂ2 —ha fum N [(m|1|n)2 i@ fum ]
oo €Enm  €nm — hw €wm  €Enm + hw
A Em — hw) — & (€ + hw) — €
=Z|<m|1|7’l>|2fnm[( ) ( ) l]
mEn €nm(€Enm — hw) €nm(€nm + hw)
A 2 1 1
= I|n))? (_ - - )
n;n nlEm)E fon( o = e =

Isolating the contribution where level 7 is occupied and the others are not,

ie fu =1, fm =0,onehas )(gl) = 0. Using that dy, = @5, 1= _%BSISU,/

we are left with the following expression for the current susceptibility, to
which the resonator shift due to level 7 being occupied is proportional:

o) = LT 5 |<m|ﬁ;,,|n>|2( 2 1 L)

@y I0? = ©3

€nm  €nm—hw  €um + hw/

(4.10)

4.1.5 Application to practical geometries

The easiest way to implement those considerations is to resort to a circuit
design with two coupled microstrip lines for the resonator, like the one
used by Hays et al. [69]. Indeed, for a configuration with two conductors
and ground, any signal can be decomposed into a differential (odd) and
a common (even) mode component. Both modes can be addressed inde-
pendently because they have in general different boundary conditions,
and also different characteristic impedances and mode velocities and as a
result will resonate at different frequencies. A detailed description of this
coplanar stripline implementation will be given later in Section 5.3.

Coupled microstrips design

To estimate the resonator shift for such a design, let us consider a simple
lumped element analogue of the coupled microstrips, as depicted in
Figure 4.3. The admittance matrix of the resonator can be computed easily
knowing the admittance-to-ground of the left/right nodes y;, yr and
the equivalent admittance connecting them y; r. Those can be identified
from an equivalent circuit after a T — I transformation (see Figure 4.4):

1 1
VL= YR = =
yres — (YL YLR  —YLR iLw+ g o+ g
—YiR YR +YIr)’ 1

YR = Sliw — PCqi?

Solving the characteristic equation (4.2), one obtains the following fre-

i |—\;|-

Figure 4.3: Lumped element model for the
coupled microstrips design, showing the
resonator circuit (orange), the probe lines
(dark grey), the weak link loop (light blue)
as well as the two external parameters
(black): the flux ¢ and the gate voltage V.
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quencies for the odd and even resonator modes:

1 Cqr +2C (1)
g ——) a)eVerl = N ~/T . e .
VC(L+1¥) Ce;C(L+0)

Indeed, when probing the resonator with a differential drive, i.e.Vies 1, =
—Vies,k = V0, the voltage across the ground capacitor Cg, is zero and we
are left with the frequency of two parallel (L + ¢)//C resonators, i.e. of
a (L +£)/2 /] 2C resonator, therefore resonating at the frequency wodq.
Let us now apply Eq. (4.3) to compute the resonator shift of such a circuit.
After some math, one obtains:

Wodd =

Vrz;s(yres)/[wodd]vres _ 41C(L + f)Z
V2 e

Then, using Eq. (4.7):

Odd mode shift

Lt {2

X ® X (4.12)

dbw 12
Wodd _L+f

As expected, the relative shift is proportional to the coupling factor ¢/L
(which is the ratio of the shared inductance between resonator/weak link
to the total resonator inductance) and to the current-current response xr
of the weak link (because of the differential probe).

Similarly, for the even mode:

Vrgs(yres),[weven]vres _ 4ichC(Cgl’ + ZC)(L + Z)Z
V2 - (Cgr —2CL)

Even mode shift

dw (Cgrt - 2CLY ComC 1 (2)2 »

Shunted CPW design

In this thesis, we used quarter-wave coplanar waveguide (CPW) res-
onators. They consist in a short-circuited transmission line of length 1 /4,
which can be modeled at resonance by a parallel LC circuit (see Figure
4.5). In a galvanic coupling scheme® , the nanowire weak link can be
simply put across the gap of the CPW, acting as a shunt-inductance to
ground for the CPW mode.

Now, because the weak link is grounded on one side, it is no longer
excited purely in charge or in current, as described by Egs. (4.6)-(4.7),
and its response is a linear combination of both the diagonal x11, Yoo and

. . . Vi
non-diagonal xjo, xor response functions. By construction, Vyes = 00)

Figure 4.4: T — I1 transformation for ad-
mittance matrix extraction.

8: The nanowire weak link can also be
inductively coupled to the resonator, in
which case the same description applies
by just replacing the shared inductance
{ by the mutual inductance M between
the resonator short-circuit and the loop
in which the weak link is embedded for
the phase bias. This equivalence will be
detailed later in Figure 5.4.
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and so:
VrT(;sYWl [wO]Vres XII iw 1
—_ ==+ — - - ) =Y. 414
V2 ot XQQ+2(X1Q X0i) = YiL (4.14)

Again, by identifying the admittance-to-ground vz, yr of the left/right
nodes and the admittance y;r coupling them (see equivalent circuit
Figure 4.6), one can easily write the admittance matrix of the resonator:

1 1
L=T———=/, YrR=-—"
yres — YLt YLR —YLR ! iLw + 1CLm / lew
—YLR YR+ YIRr)’ 1
YIR = T1a-

Solving the characteristic equation det(Y™®) = 0, one obtains the follow-
ing expression for the resonance frequency, as expected for a LC circuit:

1 e—0 1

— .
VC(L+€+¢) >t JLC

The inverse coupling factor is then:

(4.15)

VI (Y™) [w0] Vies _iC(L+ 0+ €)2U(L+0) +3le + €?)

V2 0l + €)?

0
— 2 2
= iclL ;f) E= 2iC(L) ,

(4.16)

and the resonator shift using Eqs. (4.3) and (4.14):

2 ,
b _ _1 (f’)(_ﬂ+@

= ([— il
wg 2iCawo \L+/{ iwy 4 XQQ 1m(X1Q))

02 W] .
) Xi+ -7 XQQ + wo m(x10)

Lz)@ [2 + 52 " fz
LM T 5CI2M R T e

Im(x1q). (417)

For a mirror-symmetric weak link, it is known [64] that for any ¢ and V,
Im(x7g) = 0 and we are left with a linear combination of the diagonal
responses only:

Figure 4.5: Lumped element model for
the shunted CPW design, showing the
resonator circuit (orange), the probe lines
(dark grey),the weak link loop (light blue)
as well as the two external biases (black):
the flux ¢ and the gate voltage V.

VL Vi
l

L e—>0

C==

1l

Figure 4.6: T — IT model of the resonator
for the shunted CPW design. The right
node is normally grounded. To compute
the shift without any divergence in the
admittances, a small inductance € is added
and the limit € — 0 is taken at the end.

[64]: Kurilovich et al. (2021), “‘Microwave
response of an Andreev bound state’
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Resonator shift (Shunted CPW design)
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» The factor 1/2 in the result comes from the fact that in this geometry
the shared and total inductances are ¢, L while they were effectively
2{¢ and 2L in the coupled microstrip design (Figure 4.3): ; (22‘; = %

» Using Eq. (4.5), the relative shift can be rewritten in a more general

form: )
ow { |
a)_() = iﬂ)o Im(YL“i [a)o]). (419)
> Im(Yi"f[wo]) can be seen as the effective inductance of the weak

link at the resonator frequency: YWl = which allows to

recover the expected classical result: MUJ = 1 M with 6L = ‘}21

OL is the change of resonator inductance when L1 is connected
in parallel to a fraction ¢/L of the total resonator inductance:
L—>L—-—{+(//Ly)=L+06L.

» The assumption of a mirror-symmetric weak link can be no longer
valid for non-fullshell nanowire weak links, for which the nanowire
is only covered on 2 or 3 facets by superconducting aluminium.
Lateral back gates can then be used to tune the chemical potential
in the superconducting leads and this may also affect the height of
the barriers at the left/right interfaces and so modify the coupling
to the leads I', # I'r. This can break the mirror symmetry and
eventually allow for Im(x;o) # 0.

1
]L ](U[]

4.2 Hamiltonian description of the resonator
shift

In the previous section, we reviewed how, using an electrical engineer
approach, the resonator frequency shift can be related to the imaginary
part of the weak link admittance, and how this admittance can be calcu-
lated. Here, we follow an alternative approach: we introduce a quantum
description of both the weak link and the resonator as well as of their
coupling. Starting from the microscopic Bogoliubov—de Gennes (BdG)
equations for a weak link of arbitrary length, we derive the expression
for the resonator shift as a function of the microscopic occupancy of
individual Andreev levels. This second derivation, which yields the same
final expression for the resonator shift, highlights how the latter scales
with the strength of the phase fluctuations of the resonator and has the
benefit of being more compact and straightforward. It also provides a
general framework that can be applied to compute the frequency shift of a
resonator weakly coupled to any generic quantum circuit, not necessarily
to an ABS system and also whatever the coupling scheme.
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4.2.1 Model for resonator — weak link coupling

Assuming that the microwave resonator is characterized by a single mode
of frequency w;, it can be described by the Hamiltonian A . = hwrata,
where we have introduced the photon annihilation (creation) operators
a (a*). Let us denote by H.1(5) the Hamiltonian of the weak link. For
simplicity, we do not address the pi—dependence of Hy1. As for the weak
link, its Hamiltonian can be written in the form

Flui(s) = / dx W () ()P (),

5 (4.20)

where W(x) = (wT(x), Yy (x), lpI(x), —I/J}L(x))T is the Nambu bispinor
field operator and x is the position along the weak link. We denote
by |¢is) the eigenstates of the Bogoliubov-de Gennes (BdG) equation
H1(0)|¢is) = Eislis), which correspond to Andreev states when
|Eis| < A, where A is the superconducting gap in the leads. In this
notation the subscript io refers to the level i with spin ¢ and levels
labeled with positive i are above the Fermi level.”

The coupling between resonator and weak link occurs through current
fluctuations in the resonator (assumed to be in its ground state), which
induce phase fluctuations across the weak link, so that 6 — 0¢+0,, where

b, = 8,p(a + a’) with §,, the amplitude of zero-point phase fluctuations.

The zero-point energy of a LC resonator is given by [70]:

ho, _ (8 (6% _ ()
2 2 2L L'

where the brackets (.) denotes the average over the resonator ground
state. The second equality follows from equipartition of energy between
quadratic degrees of freedom!” . From this, one can express the zero-point
phase fluctuations of the resonator from the RMS fluctuations of its flux:

51‘85 —

e (4.21)

b NP 2e \/ hLw, \/2e2zr _ |nz,
®o ®o h 2 h RQ !
where we introduced the resistance quantum Rg = h/4e* ~ 6453 Q)
and the resonator impedance Z, = 4/L/C. These phase fluctuations
occur over the inductance L of the resonator. Because only a part ¢/L
of the total inductance is shared with the weak link loop! , one has to
multiply Eq. (4.21) by the geometric participation ratio p = ¢/L to get the
zero-point phase fluctuations across the weak link:

Zero-point phase fluctuation across the weak link

bup = poiss = £ |2

Ry (4.22)

In accordance with experiments where ¢/L is kept small, we assume
0zp < 1, which allows us to expand the weak link Hamiltonian up to
second order'? in §,, and identify the coupling Hamiltonian:

9: Due to the electron-hole symmetry im-
plicit in the BAG formalism, each state i
is associated to a state with opposite spin
at opposite energy —iG. Notice that when
spin-orbit interaction is at play, as can be
the case in a nanowire weak link, spin is no
longer a good quantum number and ¢ has
to be understood as a pseudospin index.
Keeping this in mind, we will continue to
denote spin textures as ¢ =T, |.

[70]: Vool and Devoret (2017), ‘Introduc-
tion to quantum electromagnetic circuits’

10: The average energy in the inductor is

2 2
% - # = %(dth). Since the sys-

tem’s energy oscillates between L and
C at a period w, = 1/VLC, {(d;Q?) ~
w?Q? = Q?/LC, from which we deduce
(¢?)/2L = (Q?)/2C.

11: For an inductive coupling scheme, re-
place ¢ by M, the mutual inductance be-
tween the resonator short-circuit and the
weak link loop.

12: As will be explained in Chapter 6, ex-
panding up to second order was necessary
to be able to understand the measured
signal in our spectroscopy data, namely
the change of sign in the line intensities
of single particle transitions far from the
resonator.
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w

3 3 0 8% 1
Hui(6) = Hui(80) + 0,H;, (80) + —Hij (60) + 0(67,),

where we have adopted the notations I:Iz’vl = dI:le/ ddé and I:IZ’;I =

dZI:le /d5?. The total Hamiltonian describing the resonator, the weak
link and their coupling is therefore:

A N . 62 .

A ~ haw,ata+ Hyi(50) + 0,5H.,(80)(a + a) + == A (60)(a + a™)?.
N—— — 2
resonator weak link

coupling

(4.23)
If the weak link was described as a two-level system and the term

involving A 7, was neglected, this model would correspond to the Jaynes-
Cummings Hamiltonian [52].

To compute the second order correction of the energy levels of this
Hamiltonian we introduce a basis set {|®;n) = |®;) ® |n)}, where |®;)
corresponds to the eigenstates of I:Izul with eigenvalue E; and |n) to a
state with n photons in the resonator. Assuming that the |®;) states are
non-degeneratet, the lowest order correction to the combined system

energy levels can be written as O0E; , = 6El(.17)l + (SEZ(,ZI)Z where

52 R n 1
oE!" = L (@A, (Za*a + 1) |Din) = 62,(D;|FLZ, |D;) (n + E)
(D;n'|H, (a +a®) |Din)|?
SEP) = -82, > — a | ; ) |: (4.27)
’ jEin E]'+ha)r(71 —Tl)—Ei
~ n+1 n
= -5 O;|H,, |D;)| +
ZP;K j1Hu @] (Ejmw,—Ei E]-—hwr—Ei)

A more compact expression for the energy levels shifts can be obtained
by relating the mean value (®;|H]) |P;) to E/ = d?E;/d5?. The Hell-
mann-Feynman theorem establishes that

E; = (®;|H, |D;).

}In the presence of degeneracy, the derivatives A 7, and A 7’1, may, or may not, break the
degeneracy. When a degeneracy is preserved (for example the spin of Andreev levels in
a weak link), this perturbation result remains valid. This can be seen by expressing the
current matrix element in an alternative way as,

(@i|H, |1 0)) = E} 6 + (Ej — E)(Di|P)), (424)

wl

leading to

(|17 |0;) 2

wl

(A7) =E/ +2 -
] 1

— . . . 2
2. =E} +2 3 (Ej - EDK®|@)?,  (4.25)

fr
which exhibits no singular behavior in the degenerate case. If there exists a g-fold
degeneracy (for example, orbital degeneracy) at energy E = E; with degenerate states,

{|®iz)} witha = 1,2, ..., g, and if the states |®;,) do not diagonalize I:I;ul and I:I;:l, we

need to solve the following secular equation to obtain 6E1(.lz in Eq. (S1),

A | _
Det| = Nij(2n +1) = 0E; )| =0, (4.26)

i

where M; is the g X g matrix whose elements are given by (]\711-)”’1, ={(Dj, |IL\IZ’(']I|CIJib).

[52]: Park et al. (2020), ‘From Adiabatic to
Dispersive Readout of Quantum Circuits’
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Taking the derivative on both sides gives

E! = (0| H! |®;) + (Di| H, |D;) + (Di| L, |9). (4.28)

From ﬁwl|®i) = Ei|®;), one can express |P)) = d|®;)/db as |D)) =
—Gi(Gi_l)’|®i) where G; = (E; — Hy) L. Substituting this into Eq. (4.28)
and using the closure relation Y; |®;){(®;| = 1, one obtains a relation
between the diagonal matrix element of H v, and the curvature E7 of the
energy level i, which allows to simplify the expressions for the shifts:

2

(| A7, |0;) = EY + 22
j#i

4.29
EE (4.29)

where we have introduced the notation .#j; = |<(1>]|H’ ||®@i)| for the
modulus of the matrix element of the current operator.

A similar sum rule was used to derive the expression given in Section
4.1.4 for the susceptibility of a junction based on linear response theory.
Substituting in Eq. (4.27), we get finally the expression for the shift 6E; ,
of the energy of the coupled system when the circuit is in state |®;) and
the resonator contains n photons:

1 n+1 n 2n+1
SEiw =62 VE! (n+ 2| =>4 * B
in zp{ i (n 2) Z 1] (E]»—Ei-{—ﬁ(ur Ej—Ei_hwr Ef_ i }

J#1
(4.30)
or, equivalently as

zp 1 1
6E1n—h6w7’l(n+ ) Z z](E]—Ez-i-ha)r E]'_Ei_hwr),

j#i
(4.31)
from which we finally identify the resonator frequency shift:
Resonator frequency shift for weak link in state |D;)
hdwy,; 1 1
=E/+ >, M -
5%}) ; '—E E]'—Ei+ha)r Ej_Ei_hwy
where ;= |((I)]|H’ D). (4.32)

» The w,-independent terms on the right-hand side of Eq. (4.32) are
the contributions involving ICIZ’; ; that arise from Eq. (4.29), while
the w,-dependent terms correspond to those obtained from a
multi-level Jaynes-Cummings Hamiltonian.

» It can be seen from Eq. (4.32) that all transitions which couple a
given state i with other states j via I—AI;U ; are relevant to calculate the
shift Ow,,; of the resonance frequency. The equation includes the
contribution from both, virtual transitions that do not depend on
the resonator and other mediated by the absorption and emission
of photons. Note that Eq. (4.32) only holds far from resonances,
i.e. when all transitions between Andreev states have energies that
differ from w, by much more than the coupling energy.
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» In the so-called adiabatic limit where hw, < |E — E;| for all
transitions, Eq. (4.32) simplifies to dw; ; = 6a)curv = E” /I corre-
sponding to a frequency shift proport10nal to the phase curvature
of the Andreev level i. Noting that ¢? (9*E;/ 862) is the effective
inductance L ; due to level i, this limit finds a simple interpre-
tation: the resonator inductance obtains a contribution from that
of the weak link, which is given by the phase curvature of all

populated levels. Using (32 (pg 2 h;)r éL from Egs. (4.21) and (4.22),

we can rewrite 0wV = L X L and recover the same expression
for the resonator shlft as the one derived classically in the previous
section (see Eq. (4.18)). In addition, we also interpret the weak
link inductance as directly arising from the phase curvature of the
Andreev levels.

» Another interesting regime can be identified: the so-called disper-
sive regime when hw, ~ |E; — E;| for a set of 7, j. In this case, the
terms involving the exchange of virtual photons dominate and
one recovers the result that can be derived from the generalized
Jaynes-Cummings Hamiltonian [71, 72].

» Although Eq. (4.32) derives from a quantum description of the
resonator, the result is the same as the one deduced from the
susceptibility in Trif ef al. (Eq. (4.10)), where the resonator is treated
classically.

Cl.ll‘V

4.2.2 Many-body configurations

In the previous paragraph, we had written |®;;) the eigenstates of the
Bogoliubov-de Gennes (BdG) equation I:le(6)|(13,-a> = E;;|D;s), which
correspond to Andreev states when their energy satisfies |Ei;| < A,
where A is the superconducting gap in the leads. In Figure 4.7(a) and
(b), we now show a typical spectrum of Andreev states for two cases
of interest: zero- and finite-length weak links. Due to the electron-hole
symmetry implicit in the BAG formalism, each state io is associated to
a state with opposite spin at opposite energy —iG. Note that we have
chosen here to represent the states in the semiconductor picture, which
makes the intrinsic particle-hole symmetry explicit. This representation
is better suited for the computations of the resonator frequency shift and
also better illustrates the nature of the two possible families of transitions
between ABS that we had distinguished in the introduction'® : pair
transitions (PT) vs. single-quasiparticle transitions (SQPT).

Writing explicitly the spin indices o, 0’, Eq. (4.32) for the resonator
frequency shift reads:

héf(la) E” Z ’ . , .
6%p Y jo'#io w/]g, Eisjor  Eigjor = hfr Ez’o,]'o’ + hfy
= E;’O + Z %a,jo’/ (4'33)
jo'#io

where we introduced the transition energies E;; j;» = Ejor — Eis. The
coupling strength ¢i; jo is related to s jo» by hgisjor = OzpMic,jo,
and we have noted ¥}, o, the term associated to virtual transitions from
io to jo'.

[71]: Zueco et al. (2009), ‘Qubit-oscillator
dynamics in the dispersive regime’
[72]: Kohler (2018), ‘Dispersive readout’

13: As was illustrated in Figure 1.3, PT are
viewed as transitions crossing the Fermi
energy, i.e. from negative energy states to
positive energy ones, while SQPT corre-
spond to atomic-like transitions between
positive energy levels.
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Figure 4.7: Low-lying many-body states for (a) zero-length weak links and (b) finite-length weak links with spin-orbit coupling. A typical
spectrum of ABS levels is shown for both cases in the semiconductor picture. The ground state |g) at a given phase difference 0 is obtained
by filling all levels of negative energy with quasiparticles, represented as black dots. We depict the level occupancies associated to the
three lowest-lying many-body states above the ground state, which are obtained by adding one quasiparticle of either spin in the lowest
non-occupied ABS (states labeled |o T) and |o |)) or by adding two of them to form a doubly-excited state (labeled |e)). As shown in the
red boxes, one can alternatively view the latter as being obtained from promoting the quasiparticle filling the highest occupied state to
the lowest unoccupied one. For single-channel zero-length weak links, these four many-body states are actually the only possible ones,
as the Andreev spectrum comprises only one pair of states, labeled +1 in the leftmost plot. As they are spin-degenerate, [0 T) and |0 |)
actually coincide. The space spanned by the two states of even parity, |¢) and |e), allows to implement what is known as an Andreev pair
qubit. Alternatively, finite length weak links with spin-split levels should in principle give rise to an Andreev spin qubit, using the two lowest

energy states of odd parity |o T) and |0 |).

The resonator frequency shift, however, is determined not by a single
but by all Andreev levels which are populated in a given many-body
state of the weak link. Let us first consider the ground state |g), which
is obtained by filling up all negative energy levels. The frequency shift
associated to |g) is then given by

1 .
6% =3 )61, (4.34)

i<0,0

where the factor 1/2 compensates for the redundancy of the BdG de-

scription. Note how we differentiate in the notation the shift 6 fr(m) (with
parentheses) associated to the occupancy of a single level ig and the shift

o frl\y> (with a ket) associated to a many-body state |\V).

When combining Eq. (4.33) and Eq. (4.34), and taking into account

that %i; jo» = —7js i, only virtual transitions to positive energy levels
contribute: o
ho f,® 1
——=E' + = > Yisjor (4.35)
2 0,]j0%r
6Zp ) 2 i<0,0
j>0,0’

where E|¢y = (1/2) Xi<0,0 Eio is the energy of the ground state. Further
simplification occurs in the absence of a magnetic field and in the presence
of a mirror symmetry, where the operator /] does not mix opposite
pseudospins (o and 6) [32], so that ¥4 jz = 0.

[32]: Park and Levy Yeyati (2017),
‘Andreev spin qubits in multichannel
Rashba nanowires’
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Once 6 f,‘g> is known, one can compute the shift associated to any many-
body state [W), as the latter can be built by creating appropriate electron-
like y?g |g) (i > 0) or hole-like y, |g) (i < 0) excitations from the ground
state. Here y;rg (yis) stands for the Bogoliubov quasiparticle creation
(annihilation) operator. Notice also that yiia = —sYj, due to double
counting in the semiconductor picture that we are using, where s = 1(—1)
for ¢ =T (]). The frequency shift in [W¥) is then given by

o™ = 0/ + 3 [modf - (1= n) 670 @36)

i>0,0

where n;; = 0,1 is the occupancy of the state io. More generally, ;4
has to be understood as the average occupancy of the state ig. The
number of fermionic quasiparticle excitations in the weak link given
by Njwy = Xis0,6 [ic + 1 —1_j5] can be even or odd, but states with
different parity are not coupled by photons.

In Appendix H, we use these results to revisit data taken in the group
prior to this thesis on atomic contacts, which implement zero-length
weak links. The case of finite length weak links is the object of the next
paragraph.

4.2.3 Resonator shift for finite-length junctions
Importance of the continuum

As compared to the simple situation of zero-length junctions (Figure 4.7(a)
and Appendix H), the case of finite-length junctions is richer due to their
multilevel structure (Figure 4.7(b)) and the role played by the continuum
of states. In particular, the weak link inductance has contributions of
the continuum, in addition to that of the ABS. This is because any
state with energy € smaller than the Thouless energy € < Etn = hivp/L
may exhibit sensitivity to the superconducting phase difference 6 and
therefore carry some phase curvatureS. In the long junction limit L > &,
the Thouless energy is small compared to the superconducting gap,
En = AE/L < A, therefore all the current-carrying states are at subgap
energy € < Emn, < A, ie. only ABS carry the Josephson current. For
zero-length junctions, it is also established analytically that the entire
current is still given by the ABS, as an artefact from the limit E;, — oo
[73]. However for the intermediate situation corresponding to finite-
length junctions, as is the case for our nanowire weak links, the situation
is more complicated because E1, > A. Consequently, one expects that
the extended states in the range A < € < Efy, also have some phase
dependence and thus contribute to both the Josephson current and
inductance. Furthermore, when the coupling between the weak link and
the superconducting leads is strong — as is the case in our nanowire weak
link due to the high quality epitaxial contact between the aluminium
shell and the InAs nanowire — the effect of the extended states from
the continuum can become comparable to that of the ABS, as shown in
Ref. [64] .

§ This expression for the Thouless energy is valid for a ballistic junction for which & = hvg /A
and L < I,, where [, stands for the elastic mean free path. For a weak link made out of a
diffusive conductor, i.e. when L > I, the Thouless energy would read Ety, = A(&/ L? =
iiD/L?, with D the quasiparticles diffusion coefficient.

[73]: Levchenko et al. (2006), ‘Sin-
gular length dependence of critical
current in  superconductor/normal-
metal/superconductor bridges’

[64]: Kurilovich et al. (2021), “‘Microwave
response of an Andreev bound state’
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This effect can make the quantitative fitting of single-tone resonator
spectroscopy quite challenging, as the curvature of the continuum and
of all other subgap levels (which may be numerous when L/& 2 1) will
contribute to adding a smooth phase-dependent background to the total
resonator shift. This means that depending on the phase range where
the data is to be fit, it may no longer be enough to merely add a small
constant offset to the overall shift, as done to account for the contributions
of unknown low-transmitted channels in the case of atomic contacts in
Appendix H. Although it is well established that two-tone measurements
canreveal the phase dispersion of pair transitions involving low lying ABS,
from which one can deduce their associated curvature, this technique is
in our case limited to the 0-40 GHz range and therefore does not allow to
access the phase curvature of higher ABS. Consequently, a quantitative
fit of the resonator shift, as we did in Figure H.3 and H.5 for the atomic
contact single-tone spectroscopy data, may in general not be within reach
for finite-length weak links, since it would require the knowledge of the
phase curvature of all subgap levels and of the continuum, which is not
experimentally accessible. A recent work by Fatemi et al. [50] shows that
in the adiabatic regime achieved with a low resonator frequency and the
specific limit of small L/& such that essentially a single ABS level exists in
the gap, the adiabatic contribution from the continuum assumes a simple
form and it is still possible to describe quantitatively the state-dependent
resonator shift.

Note also that for differential measurements like two-tone spectroscopy,
the measured signal reflects differences of resonator shifts due to the
drive, and not absolute shifts. Therefore, it does not involve the unknown
curvature from all other states, although the latter may still have a
dispersive contribution through virtual transitions (see Eq. (4.33)). This
contribution can even become sizeable when some transition frequencies
between ABS are close to the resonator frequency. This is even more likely
as L/& is large and many ABS are present. In general, this would prevent
any fitting of the line intensity of nanowire two-tone data, as it would
require knowledge of the phase-dispersion of possible higher ABS levels
that are out of the experimentally accessible frequency range. However,
two limiting situations may still allow for quantitative local comparisons
within restricted frequency windows. First, when the resonator frequency
is low enough compared to all possible transition frequencies, so that the
state-dependent shift is merely given by the adiabatic curvature of the
states. Second, when the line intensity that we seek to fit is associated to a
transition anticrossing the resonator line or coming very close to it, such
that the dispersive shift associated to this single transition dominates
all other contributions. Those two cases will be detailed in the next
paragraph and illustrated with experimental results in Section 6.5.

Spin-resolved levels

Let us now review in detail the case of finite-length junctions with
spin-orbit coupling. As already mentioned, the situation becomes richer
when there are several Andreev levels within the gap as in Figure 4.7(b).
Furthermore, in the presence of spin-orbit the subgap states are spin
split, which gives rise to a larger number of possible transitions between
all spin-split levels. The term 7_;; j; in Eq. (4.35) depends on the matrix

[50]: Fatemi et al. (2021), ‘Microwave
susceptibility observation of interacting
many-body Andreev states’
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Figure 4.8: Resonator frequency shift for finite-length junction with spin-orbit coupling (same parameters as in Figure 4.7(b)). (a-e) Resonator
at f, = 0.07A/h; (£) fr = 0.18A/h. (a,f) Spectrum of Andreev states at positive energies, with vertical bars in (f) indicating places where
energy difference between levels of same spin is equal to /1 f;. (b,g) Energy of transitions from state |g); (c,h) idem from state |1 T). The color
of the lines encodes the resonator frequency difference between initial and final state (colorscale on y-axis of (d) and (e)). (d,e) Resonator
frequency shift difference between |g) and |1 T 1 |) (pair transition), and contribution of the states’ curvature (dashed line). (e;j) Idem for the
transitions from |1 T) to |2 T) or |2 |) (single-quasiparticle transitions). The resonator shifts are calculated from matrix elements obtained
with a tight-binding model.

elements of H v, Which do not have analytic forms in this case. However,

they can be obtained by solving numerically the BAG equation, for

which we use two complementary approaches: the scattering model of

Ref. [51], discussed in Section 3.2, and a discretized tight-binding model [51]: Tosi et al. (2019), ‘Spin-Orbit Splitting
of the nanowire (see Appendix C). As these methods rely on different of Andreev States Revealed by Microwave
approximations one cannot expect a one-to-one correspondence of their Spectroscopy

results. For instance, the scattering method is based on a linearization

of the electrons and holes dispersion relations around the Fermi level

(Andreev approximation) which is not assumed in the tight-binding

model. On the other hand the tight-binding model used here includes

only two sites to describe the nanowire cross-section. We have checked,

however, that the methods yield qualitatively similar results for the limits

where their approximations are both valid.

In Figure 4.8, we show the predictions for the frequency shifts in the
typical case of a weak link with three spin-split manifolds of Andreev
levels (same parameters as for Figure 4.7(b)), at zero Zeeman field. Two
values of the bare resonator frequency are considered: f, = 0.07A/h
(panels (a—e)) and f, = 0.18A/h (panels (f—)). The frequency shift in the
ground state |g) is first evaluated using Eq. (4.35). All matrix elements
are computed with the tight-binding model. We assume that scattering
takes place only in the longitudinal direction, and hence does not mix the
subbands. Thus, in absence of a magnetic field, the matrix elements of PAIZ’U ;
are zero for all pseudospin-non-conserving transitions [32]. Frequency
shifts in the other states are found from Eq. (4.36). Transitions from |g)
create pairs of excitations (pair transitions), leading for example to the
state yhy_lllg> = —)/L)/ng} =—|17T1 |). Because of the redundancy
between negative- and positive-energy states, we use here only labels
corresponding to positive energies (Figure 4.8(a,f)).
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The states accessible from |g) and involving only the two lowest subgap
levels are therefore those shown in Figure 4.8(b,g). We also consider the
closest-in-energy states that can be reached from the single-particle
state |1 T) (Figure 4.8(c,h)). On the one hand, states with a single
quasiparticle are accessible through single-quasiparticle transitions, like
2 T = y;TleH T), or |2 ]). On the other hand, the same fermion
parity is also maintained with pair transitions that lead to states with
three quasiparticles: [1 71 [ 2 1) = _VLV—zlll ™ 11110 2]), and
|1 727 2]). For all these possible states, frequency shifts are given by
Eq. (4.36), which simplifies to

off" = 0fF + 3 migd (4:37)

i>0,0

Figure 4.8(b,c,g/h) shows the transition energies from |g) and |1 T), with
line colors encoding the resonator frequency shift for each transition
(color scale in (d) or (e)). The phase asymmetry of the transition energies
shown in panels (c) and (h) comes from the fact that we consider an
initial state with a given pseudospin (|u)). The mirrored spectra about
0 = m would be obtained when considering transitions from |1 |). The
situation is the simplest when the resonator photons energy / f; is smaller
than the energy of all the virtual transitions entering in the calculation
of 6 f,(ig). Alld fr(ig) are then dominated by the curvature term, and the
resonator frequency shift for each transition is essentially related to the
curvature of the transition energy. This is seen in Figure 4.8(b,c) with the

red color (0 frl\lj> -0 frlg LN 0) of the transition lines when they have
positive curvature, blue for negative curvature. Detailed comparisons
of the total shift with the curvature contribution are shown in Figure
4.8(d) for the pair transition [¢) — |1 T 1 |) and in Figure 4.8(e) for the
single-quasiparticle transitions [1 T) — [2 Ty and [1 T) — |2 |).

The results look more complicated in Figure 4.8(g,h), with many sign
inversions of the frequency shift when sweeping 6. Sign inversions
occur when the energy of one of the virtual transitions entering in the
calculation of the frequency shift in the initial or the final state coincides
with } f,. These coincidences are marked in panel (f) with small vertical
bars linking levels of same spin and distant by / f,. For example, there
is one of them at 0/m =~ 1.92, where Ey; — Eqy = hf,. Correspondingly,

0 fr(m and 6 frm) present abrupt changes of sign at this phase, which
is seen in all the lines involving 1 T or 2 T in Figure 4.8(g,h). Similarly,
there is another such coincidence at /7 ~ 1.27, where E3q — Ey| = hfy,
leading to color changes in the transition lines |[g) — |...2 |). Detailed
plots of the frequency shift for pair and single particle transitions are
shown in Figure 4.8(i,j), with divergences when energy differences match

hf,.
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In the preceding chapter, we showed that the shift of resonator frequency
when coupled to a weak link is proportional to a dimensionless parameter,
the square amplitude of the zero point phase fluctuations on the weak

link 62, = (%)2 7;{2* (see Egs. (4.21),(4.33),(4.37)). In order to be sensitive
to the many-body states of the weak link, the phase fluctuations must
be sufficiently large, thus there must be a current anti-node at the
coupling region. Here, we discuss two types of distributed quarter-wave
transmission lines: shunted coplanar waveguide (CPW) as we have used,
and coplanar striplines (CPS) resonators, as have been used by our

colleagues at Yale [19, 41, 42, 50].

5.1 Quarter-wave resonators

5.1.1 Short-circuited A /4 line

One can show that a short-circuited transmission line hosts a current type
of resonance when it is excited by a signal which wavelength matches
4 times the length of the line. At frequencies near resonance, the line
can be modeled by a parallel RLC lumped-element equivalent circuit.
This allows to model with a simple circuit the coupling with the weak
link and estimate the expected frequency shift associated to the given
geometry. The following derivation of this property is largely based on
the textbook description from Pozar [65].

Consider a length of lossy transmission line, short-circuited at one end,
as depicted in Figure 5.1(a). The line has a characteristic impedance
Zy, a propagation constant § and an attenuation constant «. Let us
define w = wy, the frequency at which the length of the lineis £ = 1/4,
where A = 27/B. The input impedance of a line loaded at its end by an
impedance Zj, is:

Z1 + Zotanh((a + jB))

Zin =12y Zo+ Zrtanh((a + jp)0) |

(5.1)

In our case, the line is short-circuited, so Z; = 0 and we are left with:

Zin = Zo tanh((a + ]ﬁ)f)
tanh(af) + jtan(g?)
7+ jtan(B¢)tanh(af)
1 — jtanh(af)cot(BY)
tanh(al) — jeot(Bl)

(5.2)

When B¢ = 1t/2, i.e. cot(f¢) = 0, this input impedance is maximal and a
parallel type of resonance occurs. This condition defines the frequency

5.1 Quarter-wave resonators .. .51
5.2 Shunted CPW design . ... 54
5.3 Coplanar stripline design . . 67

[19]: Hays et al. (2018), ‘Direct Microwave
Measurement of Andreev-Bound-State
Dynamics in a Semiconductor-Nanowire
Josephson Junction’

[41]: Hays et al. (2020), ‘Continuous
monitoring of a trapped superconducting
spin’

[42]: Hays et al. (2021), ‘Coherent
manipulation of an Andreev spin qubit’
[50]: Fatemi et al. (2021), ‘Microwave
susceptibility observation of interacting
many-body Andreev states’

[65]: M.Pozar (2011), Microwave Engineer-
ing, 4rd Ed, pp. 281-282

(a) 1(z)
IO

/=4 0

Figure 5.1: (a) Short-circuited transmis-
sion line and current distribution for the
A/4mode. (b) Lumped element equivalent
circuit at resonance.
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of the A/4 mode:

o

YK (5.3)

ﬁf:—:%:}—:g le Wy =

where v is the phase velocity of the transmission line, assuming a TEM
mode.

5.1.2 RLC equivalent circuit near resonance

Lets us now expand Z;, close to the resonance frequency w = wg + dw
with 6w < wy:

! © mndw
Bl = (wo 50))v TR
which allows to rewrite
n Tow T ow. dw<wy T OW
= —_—t ——) = - _— I~ _———
cot(BY) co’c(2 5 wo) talrl(2 wo) 2 oo

Assuming also small loss coefficient @, we have tanh(af) = af, from
which we get the input impedance of the line close to resonance:

1+ jatndw/2wy Zy
Cal+ jndw/2wy | al + jndw 2w

Zin = (5.4)

It has the same form as the impedance of a parallel RLC circuit near
resonance (see Figure 5.1(b)):

1 1 . -1
Zric = (— + JoL +]a)C)

R
N 1 1-dw/wy . )_1 . o1 ¥l
~ (R + Tl + j(wo + 6w)C using (1+x)" '~ 1-x

1 . 0w . -1 2 _
= (E +]@ +](Sa)C) since wy = 1/LC
1. -1 R

= T+ 2j6wRC (5.5)

Identifying Eq. (5.4) with Eq. (5.5), we obtain the parameters of the
equivalent RLC circuit for the quarter-wave line near resonance:

ZO 4Zo Tt
R=— L= C= .
al Tty 4ZOCL)0

(5.6)

This allows to express the total impedance Z, of the quarter-wave line:

Z, = é = wz_C = %ZQ ~ 1.27 X Zy, (5.7)
where Z is the characteristic impedance of the line. Note that Z, # Z,.
This is because the line is not matched: as it is short-circuited (Z; = 0),
magnetic energy is stored at the line’s end due to the return currents
flowing in the ground, so that the line effectively gains more inductance,
hence Z, %, Zo' .

1: Similarly, for an open-circuited A/2 line,
one would have Z, = %Zo < Zo because
of the extra capacitive contribution due to
the open end.
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5.1.3 Practical implementations

The transmission-line topologies generally used for microwave appli-
cations include the microstrip (MS), coplanar waveguide (CPW) and
coplanar stripline (CPS) geometries. All three have in common to belong
to the family of coplanar transmission lines for which all conductors lie
on the same plane, namely, on the top surface of a dielectric substrate.

The CPW geometry is advantageous in many respects. First, it allows for
a wide range of line impedance, simply by tuning the spacing between
the central microstrip and the lateral ground planes. When this spacing
is only a few microns tight, one can reach as low as a few tens of Q
impedance; as it is increased, so does the impedance: the lateral grounds
have less and less effect and when the spacing is high enough, the central
conductor of the CPW starts resembling electrically to a microstrip circuit.
Due to their strong ground structure, CPWs are also capable of lower-
loss performance at higher frequencies than microstrip circuits. This is
because for microstrips, the EM fields are contained mainly within the
dielectric material between the strip and the bottom ground plane below
the substrate, while for CPWs the circuit’s effective dielectric constant is
reduced, as part of the EM field resides in the vacuum above the circuit
rather than in the substrate’s dielectric material. Finally, as they are a
planar version of coaxial cables, CPWs also allow gradual transitions
towards the Printed circuit board (PCB) connectors.

The fundamental difference between the CPW and CPS topologies is that
the CPS is a balanced line, meaning that it consists of two conductors, each
having the same impedance to the surrounding ground planes. Therefore,
a CPS allows to carry microwaves in two possible modes: an odd mode,
where both conductors oscillate in opposite phase, and an evenn mode,
where the two conductors oscillate together in phase with respect to the
ground potential. Since these two modes resonate at different frequencies,
this topology has the advantage that one can independently explore (see
Section 4.1.5) the current-current susceptibility xr (encoded in changes
in the odd frequency mode) and the charge-charge susceptiblity xog
(even mode). The CPW on the other hand is an unbalanced line consisting
in a single planar conductor surrounded on both sides by ground planes,
which act as return lines. It is the 2D version of a coaxial cable and as
such, it is also the easiest to implement since it can be directly routed
to external coaxial cables delivering microwaves to the PCB. However,
connecting in series one end of an unbalanced line to the weak link
does not allow to probe it differentially: the measured response will be
sensitive to a combination of both x;; and xgg.

If targeting a differential drive, one needs in this case to implement a
balun to convert the unbalanced readout signal into a balanced one. This
can be done either using discrete microwave components like a 180°
hybrid coupler, or by directly integrating such a device on-chip [74, 75,
76]. Still, there may be other designs in which unbalanced lines may
actually do the trick, like for example by placing the weak link in the
middle of a half-wave CPW line, but ultimately this may just be seen as
an unfolded version of a quarter-wave balanced line connected at its end
to the weak link.

MS
[ 1 [ 1

.. CPs
[

| CPW

]

Figure 5.2: Transmission line topologies:
microstripline (MS); coplanar stripline
(CPS) and coplanar waveguide (CPW). Yel-
low: conductor. Grey: dielectric substrate.
Cross-hatched yellow: ground plane.

[74]: Baek et al. (2009), ‘94-GHz Log-
Periodic Antenna on GaAs Substrate
Using Air-Bridge Structure’

[75]: Dehollain et al. (2012), “Nanoscale
broadband transmission lines for spin
qubit control’

[76]: Vasylchenko et al. (2008), ‘A very
compact CPW-to-CPS balun for UWB
antenna feeding’
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5.2 Shunted CPW design

During this thesis, two generations of CPW resonators have been used
— the main difference lying in the coupling scheme with the nanowire
weak link. In the first generation, represented by sample S1 (Section 6.3),
the coupling was achieved through a mutual inductance between the
weak link loop and the strip shorting the CPW at its current antinode.
We gained about two orders of magnitude in the coupling by later
implementing a galvanic coupling scheme (section 5.2.2), in which the
shorting inductance was physically shared by the resonator and the weak
link loop. Sample S2, on which all the data except these of Section 6.3
were obtained, belongs to this generation. Recently, we further adapted
this geometry towards a gradiometric design suitable for microwave
spectroscopy under magnetic field (see Appendix J). The recipes for the
fabrication of samples S1 and S2 are given in Chapter 12. Let us review
here the different steps that guided the design of these three generations
of resonators.

5.2.1 Inductive coupling

The first experiment on InAs nanowires that we designed was similar
in principle to the latest one realized on atomic contacts in the group,
namely: a CPW resonator inductively coupled to the phase-biased loop
containing the weak link (see Figure 5.3(a)). In the experiments with
atomic contacts, with a resonator impedance2 Z, =90 Q), a resonance
frequency f, = 10 GHz and a mutual inductance M = 27 pH between
the loop and the resonator, the inductive coupling scheme provided
zero-point fluctuations of about 6,, = 2nf, M1t /Z:Rg = 0.004 (see
Eq. (4.21)), which for an Andreev pair transition energy frequency fa =

8GHzat 6 = m, gavea typical coupling factor of g = 6,55 (1—( fal 2A)2) X
100 MHz [21]. With such a high coupling, the typical dispersive shift

experienced by the resonator, x = ¢?/(f; — fa) ~ 5 MHz, was high
enough to resolve well the states of the Andreev pair qubit.

(a) (b)

=
Slii

If the same design had been used to probe Andreev states in nanowires,
similar considerations would have held but the coupling factor g would
have been weaker, as the effective superconducting gap A* is lower due
to the finite length of the weak links (see Eq. 3.14). Also, compared to the
atomic contact experiment, it would have been necessary to adapt the
design of the resonator end so as to bring a DC gate close to the nanowire.
To avoid the complexity of having the gate bridging the ground plane, we

2: The resonator was made out of a 1/4
CPW line with characteristic impedance
Zop = 70 Q on a kapton substrate (e, ~
3.2). Using Eq. (5.7), this gives a resonator
impedance Z, = 4Zy/m ~ 90 Q.

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’, p. 61

Figure 5.3: (a) Resonator design for the
atomic contact experiment [21]. The phase-
biased loop containing the atomic contact
is located in the gap of the CPW resonator
and the coupling between the two occurs
through a mutual inductance M. Super-
conducting film is shown in grey and cur-
rent as a red arrow. (b) For the nanowire ex-
periment [51], a DC gate has to be brought
close enough to the weak link, the loop is
therefore placed outside the CPW gap of
the resonator and a trumpet-like shape is
needed for the resonator end to achieve
similar coupling with the loop.
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initially chose to put the superconducting loop containing the nanowire
outside the gap of the CPW resonator (see Figure 5.3(b)). This lowers the
mutual inductance M as the return current through the ground plane
no longer contributes to the coupling. In order to compensate this effect
and keep the mutual inductance as high as possible, the end of the CPW
was given the shape of a trumpet, which maximizes the length of the
current path that couples to the loop (see Figure 5.3(b)). To affect as little
as possible the resonator mode, this termination was designed such that
the aspect ratio of the CPW remains constant at the same time as the
gap is gradually increased. Reducing the spacing s between the loop and
the resonator short-circuit also increases the coupling, but because of
fabrication constraints this spacing can not be arbitrarily small and we
chose s =~ 2 um. Another difference with the atomic contact experiment
was the target frequency f, for the resonator. For the nanowires, the
initial goal of the experiment was to make evident intra-manifold spin-
flip transitions, the frequency of which would go as the energy splitting
of the ABS. As this splitting was expected to be weak [32], we targeted
a low frequency resonator around f, ~ 3 GHz. This also decreased the
overall resonator-nanowire coupling, because 6 < f;.

Estimation of the mutual inductance

The coupling between the weak link and the resonator mode depends on
the mutual inductance M between the resonator and the loop containing
the weak link. To compute M, the following trick is used. We use SoNNET
to estimate with the finite-element method the loop inductance Lioop as
well as the resonator’s inductance to which the loop is coupled, which
we write £ when there is no loop and £’ when the loop is coupled. Then,
the following formula yields the mutual:

M = \|Ligop(£ = £7). (5.8)

Indeed, using the convention from Figure 5.4, we can compute the input
impedance Z;, seen by the resonator:

Zin = jo(t+ M) +jw(-M) [/ (€ +M + Ligop — )
M

:ja)(€+M)—ja)L (Lioop + M)
loop
2
=jwl’ with{' =1{- M , (5.9)
loop

from which we deduce Eq. (5.8). For this inductive coupling design, the
resonator’s short-circuit to which the loop is coupled was designed to be
100-pm-long, similar to the experiment on atomic contact for which this
design value had proved to provide a high-enough coupling [21]. The
loop itself was designed a posteriori, because the rudimentary nanowire
deposition technique that we were using at the time was not precise
enough to deposit a unique nanowire at a given location (see Section
12.2.2). The shape of the loop had to be adapted so that it would connect
to the nanowire. Therefore, its exact shape was not known before the
nanowire deposition, and so a SONNET simulation was run a posteriori
with the exact shape of the loop to determine the loop-resonator coupling
(see Figure 5.5(b)).

[32]: Park and Levy Yeyati (2017),
‘Andreev spin qubits in multichannel
Rashba nanowires’

Figure 5.4: A loop of inductance Ligop is
inductively coupled to a wire of induc-
tance ¢ through a mutual inductance M.
Equivalent circuit useful to compute the
input impedance Zj, viewed from the left.

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’, pp.61-63
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Figure 5.5: (a) False-color scanning-electron-microscope image of the experimental device with inductive coupling (sample S1), showing on
the right hand side the 100-pm-long inductive wire shorting the resonator’s end to which the nanowire loop is coupled. (b) Simplified
geometry of the loop used for the SonNET simulation. (c) Full simulation geometry comprising the CPW resonator (meander) coupled to a
2-port transmission line. Measuring the transmission coefficient S»1(f) along this lines allows to extract the resonator’s frequency fo and its

quality factor.

Using Sonner , the following values were obtained: Lioop = 113.4 pH,
¢ = 539.9 pH and ¢’ = 536.3 pH. From this, Eq. (5.8) gives a mutual
inductance M = 20.9 pH, not far from the 27 pH which were achieved in
the experiment on atomic contacts with a slightly different loop geometry
[21]. This value is consistent with the simple estimate from the analytical
result for the mutual inductance of a rectangular loop of size L X W
coupled to an infinitely thin straight wire at a distance s:

Mt = By (221,
27 s

The loop fabricated for the experiment was almost rectangular, made
from a d = 2 pm-wide strip with a length L = 84 um and a width
W =10 um (see Figure 5.5(a)). Using the nominal spacing s = 2 um, we
get M™ = 30 pH. However, this simple model assuming infinitely thin
wires and given that the strips were 2 ym wide, we should rather use
s = 4 ym for the distance between the inner part of the loop and the
center of the straight wire, which gives M = 21 pH, quite close to the
value simulated with SONNET.

Resonator frequency shift

L' (/ L]mvp_ l

The resonator frequency shift due to the coupling with the loop induc-
tance Ljoop through the mutual M can be computed by expressing the

Figure 5.6: LC resonator coupled through
a mutual inductance M to the weak link
loop modelled by the inductance Lioop. We
call Zjn, the input impedance seen from
the coupling capacitance C.
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total resonator impedance Z;, seen from the coupling capacitance C,
(see Figure 5.6):

Zin = [jcw * (j‘”(L +M) - jw%op(Lloop + M))_l]_l

o jell- 15

=|iCw + = .
[] jo(L - %)] 1-Co?(L- 4

loop

The circuit exhibits a parallel type of resonance when Ziy(w,) — 0, from
which we identify:

wo M/L<1 2

1+

Wy = — =~ o -

T 2 LigopL
LloopL

), with wg = 1/VLC. (5.10)

Using the frequency fy = wo/2m and impedance Z, = 4/L/C of the bare
resonator, its frequency shift due to the coupling with the weak link loop
can be re-expressed as

_ Aw, _ M2f02

_Awr _ . 511
= o T " Z e 1)

The only unknown here is the resonator impedance Z,. Using SONNET , we
simulate the input impedance near resonance of the bare CPW resonator
and model it with Eq. (5.5) for a parallel RLC circuit. The simulation
geometry which we use is the one of sample S1 presented in Figure 6.3(c)
and Figure 5.7(b). Fitting of the resonance yields fy = 3.213322 GHz,
C =767fFand R > 20 M() (the metal layer in the simulation was assumed
lossless and no dielectric losses were included for simplicity, so we expect
R to be unbounded). From this, we deduce the equivalent inductance
of the resonator, L = 1/(Cw?) = 3.19 nH, and its equivalent impedance
Z, = 1/(Cwp) = 64.6 Q. Assuming a perfect quarter-wave line for the
CPW resonator, we can independently estimate Z, from the characteristic
impedance Zg of the CPW with Eq. (5.7). Using the transmission-line
calculator TXLine from Cadence™ Inc. [77], we estimate Zy = 47.6 Q
for a "CPW-Ground" topology with silicon as a dielectric (€, = 11.9, no
dielectric loss for simplicity), a width S = 12 ym for the central conductor,
a gap W = 6 um and a substrate thickness-to-ground / = 700 ym. From
Eq. (5.7), this gives Z, = ‘% = 60.6 Q), not far from the above value,
obtained independently by fitting the resonator input impedance with a
RLC model.

We have now everything at hand to estimate the expected zero-point
phase fluctuations 6., for this design. Note that for the participation
ratio in Eq. (4.22), we should use M /2 instead of M. Indeed, in the
design shown in Figure 5.3(b), the current I, flowing through the CPW
is effectively split in two at the short-circuit, so that only ~half of the
current contributes to phase-fluctuations in the loop® . The flux induced in

! tot —

the loop would then read @joop ¥ M7+ = %(Dtot, so that the participation

. Do, * : * .
ratio would be % ~ MT with M* = M/2. From this, we get both the

phase fluctuations 6, and the frequency shift due to the coupling with
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Figure 5.7: (a) Amplitude and phase of
the resonator input impedance Zj, for the
inductive design, simulated using Son-
Net. Fit with Eq. (5.5), shown in red line,
gives C = 767 fF and fo = 3.213322 GHz,
from which we deduce the equivalent in-
ductance L = 3.19 nH. (b) Zi, was sim-
ulated using a pair of two co-calibrated
internal ports: port 1 being connected to
the CPW central conductor and port 2
to the ground plane in front. To ensure
that the impedance seen from port 1 in-
deed corresponds to Zj,, we define both
ports as "floating" calibrated ports, which
means that during the EM analysis, Son-
NET will add extra metal to connect both
ports (shown in green), which will act
as a local ground for both. This metal is
then removed during the de-embedding
process.

3: Since M2 [Lioop < €, with { the bare
inductance of the short-circuit in Eq. (5.9),
¢’ ~ { and the CPW current splits al-
most equally in both ¢ and ¢’ to which
the loop is coupled (we showed that the
two inductances vary by only 3.6 pH).
Exactly, the current flowing in the short-
circuit where the loop is coupled would be

_ ¢ — 1 ~
I(g/ = Wlmt = m ~ 0.50 X Imt.
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the weak link loop inductance:

M* InZ . 16 _
dp =T RQr =2mfoM /Z,RQ =56x107%,  (5.12)

M*Z f02
Zy loop

Af,=m =450 kHz. (5.13)

Using again SoNNET , we can independently estimate this shift by simulat-
ing the resonance frequency of the bare resonator and of the one to which
the actual loop (sample S, see Figure 6.3(b)) is coupled. By fitting the
simulated amplitude and phase of the transmission coefficient S»1(f), we
obtain fy = 3.203433 GHz for the bare resonator (with an external quality
factor Qext = 176 x 10%) and a shift A fr = 545 + 0.5 kHz when adding
the loop, which is about ~ 16% away from (5.13). This small discrepancy
is likely traced back to our estimation of the mutual inductance: had
we chosen M* = 11.1 pH, slightly different from the 10.1 pH value,
Eq. (5.11) would have given Af, ~ 540 kHz. Finally, to confirm that the
simulated mode indeed corresponds to a current resonance, we verified
the associated current distribution, which does show the structure of a
A/4 mode (see Figure 5.8).

As we will review in Chapter 9, the zero-point fluctuations associated to
this inductive design provided too weak a coupling to the nanowire to
allow single-shot readout of the weak link many-body states. Although
this design was ill-suited for any time-domain applications, we could still
well detect the ABS, due to the high total quality factor Qi ~ 170 X 10,
which allowed for the resolution of very small frequency shifts. Provided
long integration times (~ 10-100 ms), we could evidence single-particle
transitions between ABS by performing two-tone spectroscopy with this
sample. This will be the focus of Chapter 6.

5.2.2 Galvanic coupling

Moving to a galvanic coupling scheme was the natural extension to
achieve higher coupling between the resonator and the weak link. The
easiest way to implement it was to build on the existing resonator
geometry by simply depositing and contacting the nanowire weak link
across the gap of the CPW, thus acting as a shunt-inductance to ground
for the CPW (see Figure 5.9). This design, which was suggested to us by
Emmanuel Flurin from the Quantronics group, has the advantage that
the central conductor of the CPW and its return path-to-ground naturally
define a DC loop in the gap area, which can be used to phase bias the
nanowire weak link.

Transmission line model

The sCPW geometry can be described as a series association of two pieces
of transmission line, with a given characteristic impedance each (see
Figure 5.9(a)). The terminating piece of line located after the nanowire
behaves like a stub, as it is shorted to ground to make the resonator
quarter-wave. Let us denote by Z; the characteristic impedance of the
stub and by Zg the one of the main transmission line forming the resonator.

(b) uxy Magnitude
Amps/Meter

150000
||

Lloop |

Figure 5.8: (a) Current distribution simu-
lated with SonNEr for the geometry shown
in Figure 6.3. It shows the structure of the
A/4mode at frequency fo = 3.203433 GHz
with an antinode at the shorted end of the
CPW, where the weak link loop is coupled.
(b) Enlargement on the short-circuit region
showing the induced current in the loop. ¢
refers to the partial bare inductance of the
short-circuit wire and ¢ to its inductance
when the loop is added. M denotes the
mutual inductance between the wire and
the loop and Ligop, the loop inductance of
the latter.
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7. Crot

Figure 5.9: Shunted CPW resonator. (a) Transmission line model of the sCPW. (b) Scheme of the physical implementation corresponding to
the end part of the resonator, highlighted by the dashed box in (a). The grey area depicts the superconducting thin film deposited on the
substrate. The nanowire weak link is shunting the central conductor of the CPW to the ground, naturally defining a loop used to control the
superconducting phase difference across it.

Using the impedance transformation rule from Eq. (5.1), one can see
that for a lossless piece of line (@ = 0) with characteristic impedance Z
and terminated by a short Z; = 0, the input impedance reads simply
Zstub = jZs tan (Blstub), with lsyp the length of the stub.

Resonance is achieved when Ay = 4f,,;, where ¢, stands for the total

length of the resonator. This allows to rewrite Eq. (5.3): flstub = 5 [Z—:t" % =
3 g;:—:f’ o S0 that close to resonance (w ~ wp), the tangent can be approxi-

mated by its argument when the stub is small compared to the total length
of the resonator line ({sup << liot). We are then left with Zsuyp ~ jwLstup,
where Ly, = Zs 2”70[;:—::’ < 1 stands for the stub inductance. In short,
if the stub stays short compared to the resonator length, it essentially
behaves near resonance like a pure inductor Lgy,. Therefore by adding
a stub with Z; > Z, one expects to increase the total inductance of the
resonator and as a result, to decrease its frequency. This can be modeled
using a transmission line description of the resonator. Introducing the
length ratio € = fsup/liot < 1, one can express the input impedance of
the sCPW resonator:

Zgwb + jZo tan (B(1 — €)lior)
1+ 48 tan (B(1 - €)ior)
Z= tan (Belior) + tan (B(1 — €)lior)
‘1 %—; tan (Belior) tan (B(1 — €)biot)
B tan (B4t C) + tan (B(1 — €)fior)
~ 7 Tan (BliotC) tan (B(1 — €)tot)
= jZotan (Bbot(1 — € + C)). (5.14)

Zin =

=]'Z

To get the above simplification, we needed to enforce the following
expression:
% tan (ﬁeftot) = tan (ﬁftotC).

0

When € = lgp /biot < 1, this is true to first order in € if we set C = e%—g.

From this expression, we deduce that a parallel type of resonance is
achieved when Bliot(1 — € + C) = (2n + 1)t/2 with n € N, which defines
the resonance frequencies of the sCPW:
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sCPW resonance frequencies

b s g% o1)] wimp =&
f‘f’l_e(l—é—;)eloﬁ[l ez, -1)] wiens =T
(5.15)

As a check we see that either by removing physically the stub € — 0 or by
equating Z; = Zy, we recover f = f;, the bare resonance frequencies of
the quarter-wave line. Also, when Z; > Z, the renormalized resonator
frequency is smaller than its bare value f, and as expected, increasing
the stub length further decreases the resonator frequency.

In section 5.1.2, we showed that near resonance a lossless quarter-wave
resonator can be modelled by an equivalent LC circuit. By comparing
the impedance and frequency of an ideal LC circuit with the ones of the
quarter-wave line (Egs. (5.3,5.7)), one can express the equivalent discrete
elements Lscpw, Cscpw in terms of the line parameters: the inductance
and capacitance per unit length, respectively £, and C;:

4 4 L, | Lscpw
Z = —Z = — _— =
TR Ve, Cscrw
v 1 1

fro= 4ot 4l VL C, " on VLscrwCscrw

Solving this set of equations for {Lscpw, Cscpw }, one deduces the equiva-
lent discrete model for the A/4 resonance of the shunted CPW resonator:

8ﬂ’co’c
2

{
Cscrw = %Cr-

Ly

Lscrw =
(5.16)

From this, one can now estimate the coupling between the resonator
and the nanowire weak link using Eq. (4.22). First let us express the
participation ratio, i.e. the ratio of the inductance shared between the
resonator and the weak link loop (=the stub inductance here) to the total
resonator inductance:

Tt Estub
Letub = Zs—
stul *2w0 ot - Lstub — n_zé bstub (5.17)
L _ Zy 574Z Licow 8 Zo biot '
sCPW = -
21fr o TT Wo

from which we deduce the phase fluctuations induced in the weak link
loop:

Lstub nzr — n_zestub Zg
Licrw | Ro 4 bt \ ZoRg'

o5 = (5.18)

» The coupling to the resonator of a pair transition arising from a
single finite-length (L/& £ 1) channel of transmission T would be
given at phase 6 = m by

sCPW

__* A T sCPW
g(n) = nITLjE2 o 6zp . (5.19)

60
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Therefore, in this shunted CPW geometry, the coupling increases
linearly with the length ratio of the stub to the resonator’s total
length. This provides a simple means to tune the coupling by
adjusting the length of the stub, remembering that it still needs to
be small compared to ¢, so that our perturbative approach remains
valid and 6,p < 1. Increasing the stub length {,, provides a better
coupling, but on the other hand, one also has to keep its inductance
low compared to the weak link’s inductance, so that the relation
between the phase drop 6 across the weak link and the applied
flux ¢ through the loop does not become hysteretic (see discussion
on the loop inductance in Section H.2). This means the stub length
should be chosen as a trade-off between a good coupling and a
proper phase biasing.

» To maximize the coupling, we see from Eq. (5.18) that the charac-
teristic impedance of the stub Z; should be as large as possible
as compared to the geometric mean of the resonator’s characteristic
impedance Zj and of the resistance quantum Rg.

L.6z L.6z L6z
OO
C,6z C,6z C 6z —— —
—1 -
L, L
CPW resonator 7z, = C—’ Stub z, = F‘

Figure 5.10: Equivalent LC circuit of the shunted CPW line near resonance.

Resonator shift

Using the equivalent LC model of the resonator that we just found we can
easily recover the expression for the classical resonator shift, in accordance
with the general derivation done in section 4.1.5. Following the notations
of Figure 5.10, we can express the total equivalent inductance Leq of the
circuit and deduce the change of resonator inductance 6L when the weak
link is coupled to it:

Lz b L2 b
Leq = (Lscpw—Lstub)+(Lstub//Lw1) = Lscpw———r— = 6L ~ — 2.
eq ( sCPW stub) ( stub/ / wl) sCPW Lot + Letab Lot

The resonator shift 6w due to the coupling with the weak link inductance
L1 is then given by:

5 1 oL L2 1
00 = N stub o = (5.20)
wo 2Lscpw  2Lscpw L

Finally, combining Eqgs. (5.17) and (5.20), one can express the resonator
shift due to the inductive response of the weak link as a function only of

61
Lscpw
(]l)zp
Lstub g ®
Cscpw ¢
_ i Lstub (/)_/P
¢O L.\‘(IP\\’ ¢0

= 60 + 57})
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the geometric parameters of the sCPW:

6w _ s ;1 _ (7”]5*—“*’)2—2g (5.21)

Of = — == .
f 21 ho#PTw 8 ot ! ZoLw

Design parameters

In experiments on atomic contacts [21], the loop in which the weak link
was embedded was chosen to be 90 x 20 um?, which proved to provide a
good phase bias of the weak link. We set the stub length to {5, = 100 um
so as to get in a similar loop size for our nanowire experiment. As for the
lengths of the resonators, they were chosen between {o¢ = 3.9 — 4.2 mm
for the resonances to fall in the 6 — 7 GHz range below the dispersive
feature of our TWPA amplifier used for detection. Within this frequency
range, the TWPA typically gives ~20 dB amplification.

The characteristic impedances of the two CPW parts (resonator and
stub) were chosen to maximize the coupling. According to Eq. (5.21), this
means having a low impedance resonator Zg and a high stub impedance
Zs so0 as to maximize the phase fluctuations over the loop region. The
CPW topology is well suited for that, as it allows to easily tune the line
impedance in a wide range by simply adjusting the gap width. Reducing
the gap width decreases consequently the impedance. But it is limited by
the spatial resolution of optical lithography system used to pattern the
resonators in superconducting thin films, which lies typically around
1 pm. Optical lithography allows to reach minimal structure size as low
as half a pm. However, to keep the recipe reliable on the whole resonator
area, we prefered to set the CPW gap to W =2 um.

In Figure 5.11 we show the evolution of the CPW line impedance Z, with
the gap W (a) and the width S (b) of its central conductor, as estimated
from a two-port SonNET simulation of a piece of line. The simulated results
show good agreement with the simple theory for a CPW of negligible
thickness on top of an infinitely thick substrate (I — o) obtained by
conformal mapping techniques [78]:

30t K'(k) . S
zerw o T thk=—2,
0 —a Kk S+2W

2

(5.22)

where K is the complete elliptic integral of the first kind and K'(k) =

K(V1-K2).

Taking S = 30 um gives a characteristicimpedance Zo = 27.9 Q. Using the
transmission-line calculator TXLine from Cadence™ Inc. [77], we recover
the same value within +0.1 Q for this "CPW-Ground" geometry (lossless
metal on a 700 pym thick silicon substrate with €, = 11.9, assuming no
loss for simplicity). For the stub region, we set a width S; = 14 um,
resulting in a gap of Wy = 10 um to keep the same total distance between
the ground planes. From a SoNNET simulation, we expect this second
piece of CPW to have a nominal characteristic impedance of Z; = 52.7 QJ,
again in agreement with the prediction from TXLine.

With this geometry, we checked the validity of Eq. (5.21) giving the
resonator shift due to the coupling with the weak-link inductance. To

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’
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Figure 5.11: CPW  characteristic
impedance Zg as a function of the gap
W (a) and the width S (b) of the CPW
central conductor. The values highlighted
by black and red disks correspond to
the design values for the CPW resonator
and its stub termination used in the
experiment. Simulation points shown
in disks and theory from Eq. (5.22) in
continuous lines.

[78]: Gupta et al. (1979), Microstrip Lines
and Slotlines, pp.261-262
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Figure 5.12: Current distribution of a
sCPW resonator simulated in SoNNET
showing the structure of the 1/4 mode
with an antinode at its shorted end where
the weak link is coupled.
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Figure 5.13: Frequency shift of a SCPW resonator as a function of the stub length. (a) Model used for the SonNET simulation, comprising a
sCPW resonator connected in a notch geometry to a two-port transmission line. The weak link is modelled by an ideal inductor Ly, = 5 nH
shunting the CPW gap before the stub region terminating the A /4 resonator. The CPW gap was set to s = 2 ym and the central width to
W = 30 um. For the stub region, the gap is increased to s = 10 um, leaving a width of Ws = 14 um for the central conductor. The parameters
for the substrate layers (material, thickness, dielectric constant) are given in the table above. (b) Resonance frequency f; and its shift when
the shunt inductance Ly, is added, as extracted from a SonNET simulation of the S»1(f) along the transmission line. Simulation points

shown in solid circles and best fit with Egs. (5.21,5.15) in solid lines.

do so, we ran a parameter sweep varying the stub length and, for each
simulation, extracted from the Sy;(f) data the resonance frequency with
and without the weak link, which was modelled by a L;,; = 5 nH to
get an idea (this corresponds to the expected inductance for a perfectly
transmitted channel and with Ax; = 45 GHz [40]). Looking at the
simulated distribution of current, shown in Figure 5.12, we confirm the
A/4 nature of the investigated resonator mode, showing a node of the
current at its open end coupled to the transmission line and an antinode
at its shorted end. Figure 5.13 shows both the expected linear decrease of
the resonance frequency and the quadratic behaviour of the frequency
shift as a function of the stub length. The simulation data was fitted with
Eq. (5.21), while fixing the parameters L, = 5 nH and i+ = 3966 um.

Note that the shift is not identically zero when the stub length is reduced
to {swup = 0. This is because the inductor modelling the weak link was
not put exactly at the discontinuity delimiting the beginning of the stub,
but a few microns away to mimic the actual geometry of sample S2.
A global offset of 0.45 MHz was therefore added to account for this
residual shift. The best fit of both the resonance frequency and its shift
yields the following values for the resonator and stub characteristic
impedances: Z{* = 18.4 Q and Zfit = 51.5 Q. Those values fall a few
ohms away from the nominal values given above, which are expected for
infinite lines. Note that a perfect agreement with the model is not to be
expected, because the latter considers two ideal pieces of transmission

[40]: Bretheau (2013), ‘Localized Ex-
citations in Superconducting Atomic
Contacts’, pp. 4 & 40
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lines connected in series and does not account for spurious effects like
the extra capacitance-to-ground arising from the step discontinuity in
the width of the CPW’s central conductor at the stub transition. The
microwave engineering literature provides semi-analytical formulas to
estimate such a capacitance [79], but the fine modeling of these extra [79]: Sinclair and Nightingale (1992), ‘An

non-ideal effects was not the purpose of the present work. equivalent circuit model for the coplanar
waveguide step discontinuity’

From Eq. (5.18) and using those values of th =18.4Q, Zgit = 5150
along with {ot = 3966 um and {5, = 100 um, we estimate the zero-point
phase fluctuations associated to this coupling design to be:

2 f Z2
sscrw _ TU Bstub S ~93x107°, 523
7 1 o \| ZoRg (5.23)

Fitting of a single-tone spectroscopy measurement of a resonator with
this design (sample S2) gives a result quite close to this nominal value
Ogp =1.2X 1072 (see Section 6.5.2). Note that compared to the inductive
design from sample S1 (Section 5.2.1), we gained a factor X16.6 in 9,
(see Eq. (5.12)), which means a factor ~ 275 for the nanowire-resonator
coupling. Compared to the mutual coupling design used for the atomic
contact experiment [16], a factor X3 in 6, was also achieved. Given that
for finite-length junctions, the coupling factor g is further reduced by a
factor 1/(1 + L/&) (see Eq. (5.19)), this new design is expected to offer
a globally similar coupling for pair transitions in L/ ~ 2 weak-links
compared to what was achieved with atomic contacts implementing
L — 0 weak links.

From Figure 5.13, we see that a stub length of {5, = 100 um yields a
sizeable resonator shift of almost 4 MHz when L,,; = 5 nH. Using again
Eq. (5.21), one can now compute by how much the resonance frequency
would change when the shunt inductance modeling the weak link is
varied from Ly to Ly + 6Ly (see Figure 5.14). This is precisely the
quantity that we want to optimize: in the spectroscopy measurements

that we seek to perform, the microwave drive induces transitions between o) 6 -
Andreev states which result in a change of inductance of the weak link f: !
and therefore shift the resonance frequency. Following our illustrating ° Al = -
case where L, = 5 nH, we see that a change of weak link inductance of B . . .

+1 nH typically shifts the resonator in the range +700 kHz. To optimize -2 -1 0 1 2
the detection one requires this shift to be comparable to the resonator O (nH)

linewidth Af,. For a resonance at f, = 7 GHz, this means a total quality Figure 5.14: Change of resonance fre-
factor of typically Q = f,/A ff ~ 10000. Then, assuming low internal loss ?ﬁ‘:gﬁnf{;;éciaiffgog‘zﬁﬁzttogevjv};i
Qint > Qext, We need to design the external coupling of our resonators link is varied by an amount 5Ly,

to the feedline so as to target Qex =~ 10 X 108.

5.2.3 Coupling resonators to a readout transmission line

Contrary to the experiments on atomic contacts [21], where the resonator [21]: Janvier (2016), ‘Coherent manipu-
was probed in reflection, we read out the resonators using a notch-type lation of Andreev Bound States in an
. - . . . atomic contact’
coupling to a common transmission line (TL). This allows to implement
relatively weak resonator-feedline coupling without perturbing signifi-
cantly the off-resonant modes propagating in the feedline. Because of this
property, notch-port couplers enable frequency multiplexing schemes,
where many CPW resonators of different frequencies can be coupled
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Figure 5.15: Dependence of the sCPW frequency and external quality factor on the length of the coupler region and distance to the
transmission line, obtained from a 2-port SoNNET simulation. Same simulation geometry as for Figure 5.13.

to a single feedline in a so-called hanger geometry. This offered us a
convenient possibility to fabricate and probe multiple resonators on a
single chip to maximize the fabrication success rate and end up after the
fab process with a least one working nanowire resonator (see Section 12.2
for details about the weak link fabrication). Finally, using our currently
available 6-ports PCBs, we could fit up to four resonators on a single
chip: two ports for the transmission line and one port to address the gate
of each resonator (see Figure 12.1 and 12.2).

Using a transmission line coupling scheme also allows to measure easily
the internal losses of a resonator, simply by connecting the TL to a vector
network analyzer (VNA) and measuring the scattering parameter Sy; as
a function of the probe frequency f. For a two port network, the complex
scattering parameter can be written in the form [80, 81]:

ei(pQ/Qext
1+2iQ(f/f, -1V

S (f) = ae2mifra [1 - (5.24)

with f, the resonance frequency and Q, the loaded quality factor of
the resonator. The additional parameters a,Tq, ¢ are introduced to
model the transmission through the cables and other components of the
measurement system? .

For high quality resonances, losses are perturbatively small and the
total loss rate can be decomposed as a sum of partial loss rates over the
different loss channels. For a TL-coupled resonator, the external losses
related to the emission of radiation into the TL can be separated from the
dissipative losses occuring inside the resonator (in particular dielectric
losses): Q7! = Ql;lt + nglt. For most applications, one wishes for the

internal quality factor Qi to be as high as possible and for the external
quality factor Qex to fall close to the design value.

To tune the coupling of the resonators to the transmission line, described

by Qext, one can play with two geometrical parameters (see Figure 5.16(a)):

the length /. of the notch coupler parallel to the transmission line and
its distance w, to the line. To check how they affect the coupling, we ran
two-parameter sweeps in SoNNET. For each simulation, we fitted with
Eq. (5.24) the amplitude and phase of the transmission coefficient S»1(f)

[80]: Khalil et al. (2012), ‘An analysis
method for asymmetric resonator
transmission applied to superconducting
devices’

[81]: Deng et al. (2013), ‘An analysis
method for transmission measurements
of superconducting resonators with appli-
cations to quantum-regime dielectric-loss
measurements’

4: Note that in realistic circuits, the reso-
nance line shape may be asymmetric due
to impedance mismatches at the TL ports.
This phenomenon is well described and
modelled in Refs. [80, 81].
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as a function of frequency to extract the resonance frequency f, and the
external quality factor Q. (see Figure 5.15).

Using conformal mapping techniques, Besedin et al. [82] have derived
analytical expressions for the external quality factor Qcy: and frequency
shift Af, of a TL-coupled CPW resonator. In the general case, when the
input and output ports of the TL are not matched, the quality factor
depends crucially on the position of the resonator along the line. This is
because standing waves arise in the feedline due to impedance mismatch,
thus making the coupling position-dependent. For matched ports, the
quality factor has no leading-order dependence on the position of the
coupler section and its expression assumes a simple form. Let us note I,
the length of the coupling region and /, the total length of the resonator.
Assuming that the resonator is coupled to the TL at its open end and that
it is shorted at the other end, we then have:

32 I,
Afr = —Efr sm (T(E)
n (5.25)

202 (nlk)
2K4 sin (217)

Qext =
These expressions result from a perturbative expansion in the coupling
strength x and describe only the leading order terms for the quality
factor and frequency shift. Although they reproduce the trend of the data
simulated with SonneT (Figure 5.16), they yield a systematically higher
estimate of the quality factor. This discrepancy can be attributed to the
spurious couplings between the resonator and the feedline, mainly arising
from the conductor arcs attached to the notch coupler (see simulation
geometry in Figure 5.13), which lead to a larger effective coupler length.
Note also that the small dimensionless parameter x characterizing the
strength of the coupling does not have any analytical expression, in
particular its dependence on the TL-resonator separation w. is not
explicit and therefore such theory cannot be used for synthesis, only for
analysis. Fitting jointly with Eq. (5.25) the f; and Qext data obtained from
SonnNer simulation, one obtains a coupling coefficient ¥ = 0.18. Note
that compared to Eq. (5.25) a global offset of +340 MHz was added to
fr to fit the data. This agrees with the qualitative remark above that the
model underestimates the coupling and therefore also overestimates the
resonance frequency. Therefore it cannot be used to predict quantitatively
the coupling and to assist the design. For completeness, it would be
interesting to improve the agreement with theory, but this lies beyond
the scope of this work; for our purpose it was enough to run microwave
simulations to get a quantitative estimate of the external coupling and
tune the design accordingly.

Finally, note that for this method to work, the simulated transmission
S21(f) data needs to be fine enough in frequency, so that the resonance
curve is well-sampled to be fitted and to extract reliably Qext. In practice
this often means to run iteratively several simulations over successively
smaller frequency ranges. Designing microwave resonators in this manner
can be time consuming since it requires many simulation runs. Note that
there exists a smart alternative method allowing to retrieve accurately and
much faster f, and Qex from a single simulation with a wide frequency
sweep [83]. It consists in adding an internal (virtual) port in the SONNET

[82]: Besedin and Menushenkov (2018),
‘Quality factor of a transmission line
coupled coplanar waveguide resonator’
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Figure 5.16: (a) SONNET geometry used to
tune the coupling of the resonator to the
TL. The two parameters are the length I.
of the notch coupler and the width w, of
the electrode separating it from the TL.
A small gap of 2 um was put between
this electrode and the close-by ground
plane in order to avoid a second closed
DC loop that could perturb the phase bias
of the weak link. (b) External quality fac-
tor Qext and resonance frequency fr of a
TL-coupled CPW resonator vs the length
I¢ of the notch coupler. Data points from
SoNNET simulations are compared to ana-
lytical predictions obtained by conformal
mapping techniques [82].

[83]: Wisbey et al. (2014), ‘New Method
for Determining the Quality Factor and
Resonance Frequency of Superconducting
Micro-Resonators from Sonnet Simula-
tions’
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model and examining the input impedance viewed from this added port.
The latter should be placed near a current maximum so as to represent
the impedance near resonance of a an equivalent series RLC circuit. By
looking at the slope and zero-crossing of Im(Z;y), one can directly extract

fr and Qext-

From Figure 5.15, we deduce the length of the coupler and its distance to
the TL to choose, so as to implement the Qext = 10 X 10° value that we
had targetted. In practice, to maximize SNR for states discrimination, we
require the resonator shift to be comparable to the resonator linewidth,
which is directly determined by Qext when Qext << Qint- This condition
cannot be unconditionally implemented, because the resonator shift is
not a design parameter but depends on the weak link’s microscopic
inductance, which may be tuned by the external flux ¢ and the gate volt-
age V. More importantly, pair transitions between Andreev states may
couple differently to the resonator that single-quasiparticle transitions.
Indeed, current matrix elements between odd states were estimated to be
a hundred times smaller than for states of even parity, therefore making
their observation in microwave experiments challenging [32] as they
would shift the resonator by a much smaller amount than states of even
parity.

Therefore, to check a posteriori which coupling was best, we fabricated
resonators with various coupler lengths to cover a wide range of external
coupling to the feedline, with four target values for the quality factor:
Qext = 10%,4 x 10%,10 x 10% and 40 X 10° (see Figure 12.2). Ideally,
designing the resonators to have an in-situ tunable coupling to the TL
would allow to optimize the SNR and state discrimination depending on
their parity. Some tunable coupling schemes have been proposed using
either SQUIDs and an external magnetic field as the tuning knob [84] or
relying on the intrinsic non-linearity of superconducting thin films due
to their kinetic inductance and using a DC current to tune it [85]. For our
first experiment on nanowires, implementing such a tunable coupling
scheme would have added complexity to the design and so we decided
not to go ahead with this option.

5.3 Coplanar stripline design

In the course of this thesis, another resonator design was investigated,
following the works of Hays et al.. It consists in a differential pair of
two coupled microstrip lines (see Figure 5.17(a)), known also as coplanar
stripline (CPS). This appears as the simplest design to implement a
differential excitation of the weak link, using the odd mode of the two
coupled lines. As reviewed in section 4.1.5, measuring the weak link
through the differential mode of the resonator allows to probe only the
diagonal current component of the weak link susceptibility matrix, which
in principle should make easier the resolution of the spin states. This
strategy was chosen by Hays et al. and allowed them to demonstrate the
manipulation of a nanowire-based Andreev spin qubit [41, 42]. We came
to understand rather late the relevance of such a design compared to a
simple CPW implementation, and why the intrinsic left/right symmetry
of the resonator mattered at all.

[32]: Park and Levy Yeyati (2017),
‘Andreev spin qubits in multichannel
Rashba nanowires’

[84]: Wulschner et al. (2016), “Tunable
coupling of transmission-line microwave
resonators mediated by an rf SQUID’

[85]: Bockstiegel et al. (2016), ‘A tunable
coupler for superconducting microwave
resonators using a nonlinear kinetic
inductance transmission line’
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Figure 5.17: (a) Two coupled coplanar mi-
crostrip lines over a dielectric substrate of
thickness h and relative permittivity €.
(b) Distributed-element model of the cou-
pled lines. Coupling elements are shown
in grey.
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To test this idea of a differential pair to probe the weak link, we designed
similar resonators at the end of this thesis. The motivation was twofold:
(1) trying to reproduce the published results from Hays ef al. on a slightly
different platform, using fullshell nanowires instead of partially-covered
ones (2) performing not an indirect (Raman) manipulation of the spin
states as in [42], but a direct manipulation through the intramanifold SQPT
that we had identified in [53]. At the time of writing this manuscript,
the sample was cooled down. Let us review in this section the basics of
differential pairs in PCB transmission lines and how to design them.

5.3.1 Even & odd modes

All the properties that we derived in the previous section 5.2 for the
sCPW resonator design depend on the characteristic impedance Zy of
the single-ended transmission line from which the resonator is made.
This impedance relates the voltage and current at any point z on the
line through the relation V(z) = Zyl(z). For an almost lossless line,
this impedance reads Zy = +/L/C, where £ and C are respectively the
inductance and capacitance per unit length of the line.

However, for a differential pair, the relation between current and voltage
can no longer be described by a single characteristic impedance. This is
because the two lines of the pair may be coupled electromagnetically if
close enough to each other. Therefore, a current flowing in line 1 may
also induce a voltage in line 2 of the pair through a coupling or mutual
impedance. In this situation, the relation between voltage and current
for the coupled system is now described by a 2x2 impedance matrix:

(V1) _ (Zn le) - {Vl =Zsehh + Znlp (5.26)

Va Zn Zxn Vo = Zselo + Z 14,

where we have labeled Z;, = Z11 = Zj; the characteristic impedance of
a single-ended line, and Z;, = Z1» = Zj; the mutual impedance between
lines 1 and 2. We assume here that both lines of the pair are identical and
uniform, with a fixed separation along the whole length of the lines.

The mutual impedance Z,, arises due to coupling between the two lines,
which can be modeled in the general case by a coupling capacitance Cy,
and a mutual inductance L, per unit length (see Figure 5.17(b)). Relating
the voltage V(z) to the current I(z) on an infinitesimally small length
of line 6z allows to write the set of coupled equations describing the
propagation of time-varying signals along the line:

Maxwellian form Physical form

9V1 E %_{_E aﬁ (9‘/1 £¢911+£ (912

oz oz S ot mot
9V2 £21 ol + £22 dlr 8V2 Em ol + Es I,
dl V. 91 AV V;
azl C11 81‘1 +C12 - = (C +C ) =t Cm af

81 V; I IV, IV
2 =Cn 3tl +622 2 __2 = —Cmn gtl +(Cn +Cs) 2‘

[53]: Metzger et al. (2021), ‘Circuit-QED
with phase-biased Josephson weak links’
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Voltages and currents on both lines of the pair are related through 2x2
inductance and capacitance matrices L;; and C;; with i,j € {1,2}. To
make contact with the circuit model in Figure 5.17(b), one can rewrite
the set of equations in terms of their physical parameters {L;, Cs} and
{Lm, Ci} (Table 5.1), describing respectively the properties of the isolated L11 = Lo = Lo
lines (subscripts, for self) and of their coupling (subscript m, for mutual).

Table 5.1: Correspondence between physi-
cal & Maxwellian parameters

Lip=Ln =Ly
Although itis enough to solve numerically this set of differential equations
to get the time-evolution of a propagating signal at each point of the two Cii=Cn=Cs+Cn
lines, one can get further physical insight by introducing the concepts Cpo = Coy = —C)y
of even and odd modes. Indeed, any two arbitrary signals V; and V>
can always be expressed in terms of their average value and of their
difference: v
Vi = Veom + 5 = Ve + Vo
Vi
V2:Vcom_$ =Ve-V,,
where we have defined Vo, = (V1 + V32)/2 = V,, the common mode
or even signal, and Vgig = Vi — Vo = 2V, the differential signal or odd
mode. Those are actually the normal modes of the system, as they allow to
diagonalize the inductance and capacitance matrices: even and odd mode
currents can be seen as the eigenvectors of the symmetric impedance
matrix. Likewise, even and odd mode voltages are the eigenvectors of
the associated admittance matrix.
EVEN mode ODD mode
a) 0dd mode
—%e = (L1 + L) e —2 = (L — L12) %2 ®
—% =(Cn+ Clz)% —% =(Cn - C12)% I Lsoz
+V,; et Zws |\ -_—
Ve =3(Vi+V2) = Veom Vo = 3(Vi = V2) = Vaist/2 !
I = 31 + I) = Leom/2 Io = 3(L ~ b) = Lais P
ZL’ = E = ZVcom = 2Zcom Zg = E = Vdiff = —Zdiff O==d=======} : _(:7_1?7;-___
I, Leom I, PART 2
_ [Lu+ Lo _ [Ln—-Ln Cbz —— ——
-V Cu+Cn -V Cu—C 2C 6z
m ’
V"< ~ Ve +20, 1 Lsbz
B 1 B 1
= o =
V(L1 + L12)(C11 + C12) V(L1 = L12)(C11 — C12) (b) Even mode
_ 1 _ 1 [ Ls6z
= = ) L
V(Ls + L)Cs \/(Es = Ln)(Cs +2C) +Vie— fm J_ -
Using the above notations, one can easily express the wave impedance of L. 6z (562 ——
both modes {Z,, Z,} and their propagation velocities {v,, v, }. :;1
3 ===
— Oddmode: V, = —Viand I, = —I;
Therefore, no current flows in the return path Iy + I = 0. It is Cs6z ——
convenient to make the 1/2 antisymmetry explicit and unfold both
lines with respect to the symmetry axis of the pair, which coincides Vi I: ,m -
with a zero equipotential line (See Figure 5.18(a)). 'C,, 6z’ can then 1 Lsbz
be split in two series capacitors of value 2C,, 6z each (because of the Figure 5.18: Equivalent circuits for the odd
potential division between two equal capacitors). This equivalent (a) and even (b) modes of two coupled

. . . i . t ission lines.
drawing allows to identify the effective inductance and capacitance ransiission nes
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per unit length of each line in the odd mode. The inductive voltage
in line 1is due to current I flowing through £s6z and to current
I, = —I; flowing through £,, 6z, which can be equivalently stated
as due to I flowing through the inductor (£s — £,,)0z. Therefore,
Ly, = Ls — Lyy. As to the effective capacitance per unit length
between line 1 and the zero potential line, it reads C, = Cs + 2C,,,
from which we deduce the wave impedance of the odd mode,

Zo =+/L,/C,, and its propagation velocity v, = (L,Co) N

— Evenmode: Vo, = Viand L, = 14

Therefore, the two lines are identical and the coupling capacitance
Cm6z is shunted, because the voltage on each side is the same
Vi = V3 (See Figure 5.18(b)). It can therefore be ignored and we are
left with C, = Cs for the effective capacitance per unit length of
either line in the even mode. With the same reasoning as for the
odd mode, one can identify the effective inductance of either line
as L. = L + L, because I = I,.

5.3.2 Equivalent LC circuit

Knowing the impedance and velocity of the two modes, one can now
build an equivalent lumped-element model for the common- and differ-
ential-mode resonances. At this point, it may be important to stress an
important subtlety in the notations, namely the factor 2 in the definitions
of odd/even vs differential/common modes ° . Therefore, to compute
the impedance Z, gif of a resonator made from a differential pair, one
has to use Zgi and note Z, as the characteristic impedance of the line.
Indeed, Z, represents the wave impedance of a single transmission line,
while Z 4i¢ refers to the impedance seen by a differential signal across the
pair of lines. With this in mind, one can identify the equivalent LC circuit
for both modes from the expression of their impedance and frequency
(we note £ the physical length of the resonator, i.e. of each of the coupled
microstrips):

— Differential mode

[L L [L i _ 2 [

Z cep — iZ e — &Z — § S o= Zdiff £S EW _ I Lgig

r,diff T £ diff o '\ Cs+2Cy, Caitt — Cs+2C, — 64 Casf
1

(Ls = Lu)(Cs +2Cn) = 7 LaseCaite

_ 0o _ 1 -
fo 4z 42 \/(cs =Ly)(Cs+2Cy) 2V LaiteCaiti

— Common mode

_ 4 _2 _ 2 [Ls+Lw — L 2
Zy com = Ezcom = Eze = E"C—sm = ﬂﬁ —’ngﬁ"‘ = ”T Lcom
= s
1 — 1

CCOm
Cs (ES - »Cm) = %Lcomccom

= D = -
fe = 4 ’\/(55 +£m)Cs 277‘/Lcom Ceom

Solving these equations for {Laist, Caitf} and {Lcom, Ccom }, we deduce the
equivalent LC model for the two types of resonance:

5: The odd (even) mode impedance is the
impedance seen by a wave propagating
through one of the transmission lines when
the pair is excited with a differential (com-
mon) drive. On the other hand, the dif-
ferential (common) impedance is defined
as the impedance between the two lines
when the pair is excited with a differential
(common) drive.

7
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COMMON mode DIFFERENTIAL mode
Leom = 25 (Ls + L) = 25(L11 + L12) | Lai = 159 (Ls = L) = 2E (L1 — L)
Ceom = ZCs = Z(Cn1 +C12) Caif = =(Cs +2Cp) = £(Cn1 — C2).

Knowing the LC equivalent circuit, one can now easily express the zero-
point phase fluctuations over the shared inductance ¢ using Eq. (4.22).
We are interested in the case where the resonator is driven differentially,
hence we should use Zy = Zgit = 2Z,, as the resonator is made from a
differential pair:

0 |AZaw _ 7 L |Zaw
4

diff ! 7-(Zr,diff T
8

P Lag | Rg

(5.27)

Lloop RQ Lloop RQ !
where we have introduced Lioop =22 (Ls — L) = %Ldiﬁ ~ 1.2 X Lgis,
the geometrical loop inductance of the differential pair.

5.3.3 Design parameters

The target parameters are the frequency and the impedance of the res-
onator, the impedance determining the phase fluctuations and therefore
the coupling with the weak link. For a given geometry {W, s, I, €, }, it
is possible to estimate the even/odd mode impedances of the coupled
microstrip lines, using a closed-form expression obtained by the method
of conformal transformation [78]:

nW nW+s
. 301 K(k,,) kg—tanhzﬁtnh I
Zg/e: ? —, Wwhere W AW +s
Vier+1)/2 Roe kg—mMV——cth————y

h 4 h
(5.28)

with K(k) and K(k’) the complete elliptic function of the first kind and its
complement®. There exists simple expressions for the ratio K/K’, given
by [78], which are accurate to within 3ppm:

I/\
—

11n[21+ﬁ] for - <
1-vVk V2
for0 <k

Kk) ™

K(k) ~ = =
+Vk’

In Pivw] V'

These analytical expressions however are only approximations, valid
for infinite lines and for geometries where the slab of vacuum above
the microstrip is exactly as thick as the substrate layer. To compute
better estimates of the even/odd mode impedances, one may resort to
microwave finite-element simulations.

* Most of the programming languages (Python, Matlab, etc) use arithmetic—geometric
sequences to compute efficiently elliptic functions. I noticed that for small k < 1078,
due to convergence issues, the ratio K(k)/K(k’) may be ill-estimated numerically with
this method, giving rise to significant errors as much as a few tens of percent. One
way to bypass this issue and estimate correctly the half-period ratio K’'/K is to re-

K/
sort to the concept of elliptic nome g = e K, from the Jacobian elliptic function the-
ory. For example in Matlab: use K/K'=-pi/log(ellipticNome (k"2)) instead of
ellipke (k"2) /ellipke (1-k"2), which suffers from the convergence issue.

[78]: Gupta et al. (1979), Microstrip Lines
and Slotlines, pp. 322-323

k? =1-k?
k?=1-k2,

[78]: Gupta et al. (1979), Microstrip Lines
and Slotlines, p. 275
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SoNNET simulations

In SonNET 17.54, there are several ways to extract the line impedance.

The easiest possibility is to add a port on the box side and look at the
result of the SONNET port calibration. As a part of the EM analysis, the
solver analyzes different calibration standards and plots as a side result
the resulting line impedance and effective dielectric constant.

SoNNET is also well suited for the simulation of differential lines [86]. One
can simulate a general case with 4 independent ports (labelled 1,2,3,4),
or one can enforce specifically the differential or common mode by using
multiple ports with the same number, with respectively opposite polarity
(+1,-1 and +2,-2) or same polarity (+1,+1 and +2,+2).

If the ports are labelled according to the differential or common mode
convention, the value of line impedance computed by SoNNET during
the port calibration will be the differential (common) impedance Zg;
(Zcom), instead of the somewhat confusing Zoqd (Zeven) definitions. This
is because, for a microwave engineer point of view, the value that matters
is Zgifr, since to have matched circuits one requires: port impedance =
source impedance = load impedance = differential line impedance and
not the odd mode impedance.

140
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Figure 5.19: Dependence on the line geometry of the differential and common mode
impedances of two coupled microstrip lines. (Left) Gap s is varied for W = 50 um.
(Right) Width W is varied for s = 10 um. Theory (Eq. (5.28)) is shown in dashed lines.

In Figure 5.19, we show the differential and common mode impedance
values extracted from a SonNEer simulation of a . = 3 mm piece of
coupled microstrips on top of a stack of 300 pm of sapphire substrate and
400 pm of Rodgers TMM 10 (see Figure 5.20(a)), as a function of the gap
and width of the lines. The simulation results show reasonable agreement
with the approximate theory (Eq. (5.28)). The comparison is quite good
for the common mode, but for the differential mode, the theory shows a
global negative offset of about 5 () compared to the simulation results.
This error may come from the value of effective dielectric constant used

to compute the theory curves® .

As an illustration, let us analyze a geometry similar to the differential
pair of microstrip lines used by Hays et al. [69]. We fix W = 50 pm,
s = 10 pm and . = 3 mm. The distance from the microstrips to the
bottom ground plane is i = 300 (sapphire) + 400 (Rodgers) = 700 pm.
Sapphire is an anisotropic medium with €, = ¢, = 9.3 and €, = 11.5.
Here for simplicity, we treat it as a homogeneous substrate with an

[86]: Sonnet Software Inc. (2020), Using
Even and Odd Mode Parameters

6: As an approximation, it is estimated
from the average value of the sapphire and
air dielectric constants, therefore assum-
ing that the field lines are equally spread in
the substrate and in the slab of air above it
(this would be true for a stripline geometry,
where the line is buried in a homogeneous
substrate with a top and bottom ground
plane, but not exactly for a microstrip on
top of a substrate). Second, sapphire does
not have an isotropic €, and we took here
an average of its x and z values. It is rea-
sonable to assume that for the odd mode,
the electric field lines are mainly directed
in the x direction, perpendicular to the mi-
crostrips and so €, = 9.3 should be taken,
instead of 10.4.

[69]: Hays (2020), ‘Realizing an Andreev
Spin Qubit’, pp. 84-93
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effective €, ~ (9.3 + 11.5)/2 = 10.4. We assume a kinetic inductance
microstrip thin films of Lx = 0.6 pH/U, which was the value used by
Hays et al. in their design, and also close to what we measured for our
Nb films.

For this geometry, the port calibration gives the following estimates
for the even/odd mode impedances at 10 GHz: Zgiy = 74.6 Q and
Zcom = 89.0 Q (Figure 5.20(b)). This means Z, = Zgif/2 = 37.3 Q and
Ze = 2Zcom = 178 Q. The odd mode is quite insensitive to frequency:
its impedance varies by less than 0.05 (2 over the 20 GHz range of the
simulation. The even mode however varies a bit, by about 1.5 Q.

(a (b) 95F T T T 7
o Zzdiff
® Zcom
QOM
<)
8
2 85+ ~
]
" ‘ :
[34]
V: £
' Sapphire © 80~
o
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. 754 —
Level Thl.ckness Mat. Iso  Erel
(microns) Name
0 1000.0 Air x=y=z 1.0
1 3000 sapphie 7Y B3 0L é 1'0 1'5 2})
GND 000 Rogers TMM 10 | x=y=z 936 Frequency (GHz)

Figure 5.20: (a) SonNET simulation of two coupled microstrip lines. (b) Differential and

common mode impedances extracted from SonNEr port calibration for a 3x3mm? simulation box.

These values compare reasonably well with the simple analytical estimates
from Egs. (5.28): Z!" = 32.8 Qand Z" = 175.1 Q. Actually, those formula
do not take into account the possible kinetic inductance of the microstrips.
Conducting again the simulation but with Lx = 0, we find this time,
Z, = 35.1Q and Z, = 176.6Q), which are in better agreement with
Zy,.

Note that to simulate well the properties of a transmission line, the size
of the simulation box has to be well chosen. Indeed, the box walls are
grounded. This means that for small boxes, if the walls are too close,
they can modify the capacitance per length of the line. One has to make
sure then that the distance of the line to the lateral and top walls is way
larger than the substrate thickness, so that the only contribution to the
line capacitance is the one to the bottom ground where return current is
supposed to flow. In Figure 5.21 we show how the extracted impedance
of both modes is affected by the choice of the box size. When the box
is taken too small, the capacitance to ground from the lateral walls can
become sizeable. As the box increases, this parasitic capacitance becomes
negligeable and the extracted impedance increases towards the nominal
value for the line. As one may expect, the odd mode is quite insensitive
to this effect because the em fields is mainly localized between the two
strips. On the other hand, for the even mode, the field lines are directed
mainly to the grounded box and so the parasitic capacitance to ground
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affects significantly the line properties, which can give rise to an error
in the estimation of the impedance as high as 50%. From this study, we
see that by taking a box size of 3x3 mm?, the extracted impedance no
longer varies with the box size and corresponds well to the nominal
mode impedance of the isolated line.
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Figure 5.21: Differential and common mode impedances extracted from SoNNET port calibration

as a function of the size of the square simulation box.

Another possibility to access the mode impedance is to use the N-coupled
Line Model tool from SoNNET, which allows to extract the RLGC parameters
from an EM simulation of a short section of transmission line. These
parameters can then be used to model any length of line having the same
cross-section. It also computes for free the impedance of the even/odd
modes and the associated propagation constants. For the aforementioned
geometry (with Lx = 0.6 pH/O), this method yields the following
inductance and conductance matrices:

£11 = £22 = 886 nH/m C11 = 622 =136 pF/m
Elz = £21 =571 nH/m C12 = C21 =-90.3 pF/m

from which we deduce:

Zo = A /M =373Q v, =1/V(L11 — L12)(C11 — C12) = 1.18 x 108 m /s
Ciu—Cn2

Ze = 4 /M =179Q v, =1/\(L11 + L12)(C11 + Cr2) = 1.23 x 10° m/s.
Ci1 +Ci2

These values coincide with the ones extracted from the port calibration
method. Using Eq. (5.3), we can now evaluate the resonance frequency
of a line of length . = 3 mm excited differentially or with a common

mode:
v

fo= 4} =9.88 GHz
0
fo= 49; =10.2 GHz.

These two resonances can be modelled with an equivalent LC circuit,
using the notations from Sec. 5.3.2:

74
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La = 1.53 nH Leom = 1.77 nH
Caitt = 0.170 pF Ceom = 0.137 pF
Zr,diff =4 % = %Zdiff =95.0Q Zr,com = é‘iﬁ = %Zcom =114 Q.

Another important parameter for the design is the length of the inductive
wire shared between the resonator and the weak link loop, as it directly
determines the magnitude of the phase fluctuations over the weak link,
and so the nanowire/resonator coupling.

There exists an analytical formula for the per-unit-length loop inductance
Lms of a microstrip line of width W lying on top of a dielectric substrate
of thickness / and a ground plane below. Assuming zero thickness for
the microstrip, it reads [87]:

0 (81, ) or Y <
roo=lc W 4h h — H/m
ms — -1 7
@ E +1.393 + 0.667 In (% + 1.444)] for % >1
(5.29)

where ¢ ~ 3 x 108 m/s is the speed of light in vacuum. This expression is
a simplification of a more general formula for narrow strips derived by
Wheeler using conformal transformations and the concept of effective
dielectric constant [78]:

60 8h 1/W\2 1le,-1 T 1 4
ﬁms—7[1“(w)+§(ﬁ) ‘ae,+1(1“5+—1“—)]- (5.30)
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Figure 5.22: (a) SonNET simulation of a piece of microstrip line. (b) Comparison between the

loop inductance per unit length of a microstrip extracted by SonNer (markers) with the
approximate theory from conformal theory in Eq. (5.30) (dashed).

Using SoNNEr, it is easy to simulate the properties of a piece of mi-
crostrip and extract its loop inductance by modeling the response with
an equivalent series inductor in a two-port circuit. Figure 5.22 shows the
evolution of this inductance with the width of the microstrip, revealing a
good agreement with the theory from Eq. (5.30). For a W = 5-pm-wide
microstrip, we find a loop inductance of about Lns = 1.35 pH/pm. If
a kinetic inductance of Lx = 0.6 pH/UO is added, the loop inductance
slightly increases to 1.48 pH/pm.

[87]: Paul (2011), Inductance: Loop and
Partial, p. 181

[78]: Gupta et al. (1979), Microstrip Lines
and Slotlines, p. 11
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Putting all the pieces together, we can now estimate the phase fluctuations
induced in the weak link loop for the above geometry with a 100-pm-
long microstrip for the coupling inductance (W = 50 pm, s = 10 ym,
£ =3 mm, { = 148 pH):

4 s /an g 100X 1.48 [3.14x 95
odiff — _— S ~0.020 < 1. (5.31
P Lag | Ro 1.53 x 103 6453 (5-3D)

This value is still small enough compared to 1, so that a perturbative
treatment of the resonator/weak link coupling is valid (see Sec. 4.2.1),
but high enough to be in the strong coupling regime with the weak
link. As an example, with this geometry, the coupling to the resonator’s
differential mode of a pair transition arising from a single finite-length
(L/& = 1) channel of transmission T = 0.98 would be at phase 6 = 7

diff
I 450.98
_ 2 T 20.02x 2228 L 930 MHz.
8 =515 e2 - 02X 75 z

The frequency of the pair transition at 6 = 7 would be f4 = 2A"V1 -7 =
6.4 GHz with the effective pairing A* = A/(1 + L/&) = 22 GHz (see
Eq. (3.14)), meaning 9.8 — 6.4 = 3.4 GHz detuned from the resonator

2
mode, which gives a dispersive shift of about y = 2 ug_ 7, ~ 15 MHz.
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Observation of the fine structure
of Andreev levels

Most of the results presented in Section 6.3 were published in Ref. [51], and
those of Section 6.4 and 6.5 in Ref. [53].

In this chapter we report the experimental observation in InAs-Al
nanowire weak links of single-quasiparticle transitions between zero-field
spin-split ABS, which represents one of the main results of this thesis
as it demonstrates that the spin degree of freedom can be addressed in
Josephson junctions. First, building on the theory presented in Chapter 3,
we review the parity-conserving transitions expected to show in the
microwave absorption spectrum of multi-channel Rashba nanowire weak
links. In section 6.2, we describe the device and microwave setup used
to perform the microwave spectroscopy. Then we present in section 6.3
two typical microwave spectra measured on this device, which show
distinctive features with bundles of four lines crossing when the super-
conducting phase difference across the weak link is 0 or 7. We interpret
these features as arising from zero-field spin-split Andreev states. In
section 6.3.3, we show the evolution with magnetic field of such features
and confirm the spin nature of the underlying single-particle transitions.
Finally in section 6.3.2, we discuss the comparison with the analytical
model of Chapter 3 and show that taking into account the Rashba SOI in
a nanowire containing several transverse subbands is enough to explain
these features and their evolution with magnetic field.

6.1 From ABS levels to absorption spectrum

In section 3.2, we showed that due to SOI and the presence of transverse
subbands in the semiconductor, the ABS are expected to group in mani-
folds of spin-split states, which in the absence of a magnetic field, remain
degenerate at 6 = 0 and 7. In Figure 6.1(a), we show two such typical
Andreev doublets, as predicted by the non-interacting theory developed in
section 3.2. Note that for simplicity, we chose here an excitation represen-
tation, rather than the semiconducting picture, which, although redundant
because it both shows the symmetric negative and positive energy states,
still has the advantage to provide a better physical insight on the nature
of the transitions. At a given phase difference 6 # 0, = denoted by the
dashed blue line, there are four possible states with distinct energies. In
Figure 6.1(b), we classify all possible parity-conserving transitions be-
tween these four states that can be induced by absorption of a microwave
photon. We distinguish two families of transitions, depending on the
parity of the number of associated excitations. Red arrows correspond to
pair transitions (PT) in which the system is initially in the ground state,
and a pair of quasiparticles is created either in one manifold or in differ-
ent ones. Green arrows correspond to single-quasiparticle transitions
(SQPT) where a trapped quasiparticle — denoted by a black dot in the
figure — already occupying an Andreev state is excited to another one,
which can belong to the same or to another ABS doublet.

6.1 From ABS levels to absorption
spectrum .............. 78
6.2 Device & microwave setup . 79
6.3 Experimental evidence of zero-
field ABS splitting . ....... 80
6.4 Modeling the resonator shift in
spectroscopy measurements . . 87
6.5 Understanding resonator shifts
in nanowire weak links . . .. .. 91
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Figure 6.1: (a) Phase dependence of two
typical spin-split Andreev doublets (ex-
citation picture). (b) All possible parity-
conserving transitions between the ABS
shown in (a) at the phase denoted by the
dashed blue line. They are grouped in two
families: Pair transitions (PT) for which
a pair of quasiparticles is created from
the ground state, either both in the same
manifold (solid) or not (dashed) ; Single-
quasiparticle transitions (SQPT) for which a
quasiparticle already present in one ABS
(solid dot) is excited to another ABS, either
in the same (dotted) or in another (solid)
manifold.
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The phase dependence of the transition energies in the absorption
spectrum for both the pair and single-particle cases is shown in Figure
6.2(a). Pair transitions that create two quasiparticles in the same energy
manifold do not carry information on the spin structure. On the contrary,
pair and single-particle transitions involving different energy manifolds
produce peculiar bundles of four distinct lines all crossing at 6 = 0 and
1t. We stress here that they are a direct signature of the spin splitting
of ABS. Finally, single-particle transitions within a manifold give rise to
bundles of two lines, shown with dotted green lines in Figure 6.2(a).

Figure 6.2(b) shows a two-tone microwave spectrum that we measured
on an InAs nanowire weak link coupled between Al electrodes. The
results corresponds to sample S1 (see Chapter 12 for fabrication details).
The greyscale contrast shows at which frequencies f; microwave photons
are absorbed, as a function of the phase difference 6 across the weak
link. The spectrum appears quite complex, with many transition lines
amongst which we highlight with color lines two typical features on the
right-hand side of the figure (not fits). The red line, with extrema at 6 = 0
and 71, likely corresponds to a pair transition. Note that the frequency
f1(6 = 0) = 26.5 GHz is much smaller than twice the gap of aluminum
2A/h ~ 88 GHz, which is indeed expected for a junction shorter than the
coherence length. Second, we highlight in green a bundle of four lines
showing clear crossings at 6 = 0 and 6 = 7, which shows all the expected
features of the single-particle transitions shown in Figure 6.2(a) that
we expect to measure in InAs nanowire weak links. Their observation
constitutes one of the main results of this thesis. Let us now review how
the experiment was performed.

6.2 Device & microwave setup

The measurements are obtained using sample S1 in the circuit QED setup
shown in Figure 6.3(d), the design of which was presented in section 5.2.1.
The experiment was performed at approximately 40 mK in a pulse-tube
dilution refrigerator. Details on the sample holder and fridge wiring
are provided in sections 13.1 and 13.2 of Chapter 13 whereas details
on fabrication are presented in Chapter 12. The superconducting weak
link of sample S1 is obtained by etching away, 370 nm-long section, the
25 nm-thick aluminum shell that fully covers a 140 nm-diameter InAs
nanowire (see figures 6.3(a) and 6.3(b)). A side gate allows to tune the
charge carrier density and the electrostatic potential in the nanowire, and
therefore the Andreev spectra. The weak link is part of an aluminum
loop of area S ~ 10% um?, which has a connection to ground to define
a reference for the gate voltage (see Figure 6.3(c)). The phase difference
0 across the weak link is imposed by a small magnetic field B, < 5 uT
perpendicular to the sample plane: 6 = B,S/¢@o, with ¢ = 7i/2e the
reduced flux quantum. Two additional coils are used to apply a magnetic
field in the (x, y) plane of the sample. Their effect on the spectrum will
be discussed in section 6.3.3.

The loop containing the nanowire weak link is inductively coupled
to the shorted end of a A/4 microwave resonator made out of Nb,
with resonance frequency fy = 3.26 GHz and internal quality factor
Qint 3 X 10°. A continuous signal at frequency fj is sent through the
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Figure 6.2: (a) Energies Ecyc of the possi-
ble transitions between the ABS shown
in Figure 6.1 as a function of the phase
difference 6 across the weak link. (b) Mi-
crowave absorption spectrum measured
on sample 1 at a gate voltage Ve = —0.89 V.
The gray scale represents the frequency
change f — fo of the resonator coupled
to the weak link when a microwave ex-
citation at frequency fi is applied as a
function of the phase difference 6 across
the weak link. In the right half of the fig-
ure, some transition lines are highlighted.
Red line corresponds to a pair transition;
green lines are single-particle transitions.
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Figure 6.3: Experimental setup. (a) False-color scanning-electron-microscope image of the InAs-Al core-shell nanowire. The Al shell (gray)
is removed over 370 nm to form the weak link between the superconducting electrodes. A close-by side electrode (Au, yellow) is used to
gate the InAs exposed region (green). (b),(c) The nanowire is connected to Al leads that form a loop. This loop is located close to the shorted
end of a coplanar wave-guide (CPW) resonator. (d) The CPW resonator is probed by sending through a bus line a continuous microwave
tone at its resonant frequency fo = 3.26 GHz and demodulating the transmitted signal, yielding quadratures I and Q. Microwaves inducing
Andreev transitions are applied through the side gate (frequency f1) using a bias tee, the dc port being used to apply a dc voltage Vg.

coplanar transmission line coupled to the resonator (coupling quality
factor Qext = 1 .7><105), and the two quadratures I and Q of the transmitted
signal are measured using homodyne detection (see Figure 6.3(d)).
Andreev excitations in the weak link are induced by a microwave signal
of frequency fi applied on the side gate, which is chopped by a square
waveform at 3.3 kHz. The resulting modulation of the circuit response
on the two quadratures I and Q is detected using two lock-in amplifiers,
with an integration time of 0.1 s (see Chapter 14.2). We interpret these
modulations as arising from shifts of the resonator frequency f — fy. To
calibrate this effect, we measure how the dc values of I and Q change
for small variations of the measurement frequency fy around 3.26 GHz.
With all of the measurement chain being taken into account, we find
dI/dfy = —40.3 yV/Hz and dQ/dfy = 34.4 uV/Hz. This calibration
allows us to express the response of the circuit encoded in I and Q in
terms of the corresponding frequency shift f — f; in the resonator, which
is plotted in gray scale in the two-tone spectra (see e.g. Figure 6.2).

6.3 Experimental evidence of zero-field ABS
splitting

The fact that single-particle transitions are observed means that during
part of the measurement time, the weak link indeed resides in an odd
occupancy state with Andreev doublets being occupied by a single
quasiparticle. This is in agreement with previous experiments on InAs
nanowires in which the fluctuation rates for the occupancy of Andreev
states by out-of-equilibrium quasiparticles were found to be in the
10 — 100 ms™! range [88, 16, 19]. We are indeed integrating the response
of our lock-in amplifiers over ~ 100 ms, i.e. on a duration longer than this
typical parity-switching time.

[88]: Zgirski et al. (2011), “Evidence for
Long-Lived Quasiparticles Trapped in
Superconducting Point Contacts’

[16]: Janvier et al. (2015), ‘Coherent
manipulation of Andreev states in
superconducting atomic contacts’

[19]: Hays et al. (2018), ‘Direct Microwave
Measurement of Andreev-Bound-State
Dynamics in a Semiconductor-Nanowire
Josephson Junction’
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Figure 6.4: Two-tone spectrum measured on sample Sl at Vg = 0.5 V. (a) Large-scale spectrum at zero magnetic field. (b) Enlargement of
the same data with fits of the main bundle of single-quasiparticle transitions. (c) Dependence of the spectrum near 6 = 0 and 7 on the
amplitude B of an in-plane magnetic field applied at an angle of —45° with respect to the nanowire axis. Green lines are fits using the
parameters obtained for B=0, g ||= 8 and gL = 12 see section 6.3.3

6.3.1 Observation of single-particle transitions (B = 0)

Figure 6.4(a) presents another two-tone spectrum which was measured at
at Vo = 0.5V and zero magnetic field (apart from the tiny perpendicular
field B, < 5 uT required to phase bias the weak link). Contrary to the
spectrum shown in Figure 6.1(b), pair transitions are hardly visible in
Figure 6.4(a). A trained eye will notice however a very faint line around
fi ®22.7 GHz at 6 = 0 and 21 GHz at 6 = 7, with the typical shape
for a pair transition, but showing surprisingly only very little phase
dispersion. The associated current is therefore expected to be small,
leading to a weak coupling to the resonator, hence a small dispersive shift
resulting in a weak signature in the two-tone spectrum. On the other
hand, one observes clearly at least 3 bundles of 4 lines, corresponding
to single-particle transitions with crossings at 7.1, 14.0, and 22.4 GHz
at 6 = 0and 9, 21.5, and 26.0 GHz at 6 = m. Note also the presence in
the spectrum of some spurious lines, corresponding to duplicates of
transitions lines shifted by f; (see for example the bundle of lines near
fi = 11 GHz around 6 = 0). Those replicas correspond to transitions
between ABS involving the absorption of a photon from the resonator. We
do observe them in our two-tone spectra because we probe continuously
the resonator with a microwave tone at the frequency fy. Because in
this experiment the resonator frequency f, = 3.26 GHz is particularly
low compared to the range of excitation frequency 5 < f, < 32 GHz,
numerous replicas of this type are visible and complicate the spectra.
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Remarkably, the sign of the response appears correlated with the curva-
ture of the transition lines. Indeed, in Figure 6.4(a), the resonator shift
associated to the main bundle of 4 lines in the 13-23 GHz window varies
continuously from negative to positive values. This suggests that the
signal is mainly associated with a change in the effective inductance of the
nanowire weak link. From the theory presented in Section 4.2, this is to be
expected since the resonator frequency f; = 3.2 GHz is far detuned from
the transition lines between ABS that we are exciting: we are probing the
resonator deep in the adiabatic regime and the frequency shift is therefore
expected to be dominated by the phase curvature of the Andreev levels’
energy (see Eq. (4.32)). This also explains why we measure frequency
shifts of the resonator in such a broad frequency window. Transition
lines which are strongly detuned from the resonator, like the bundle
of 4 lines around f; = 22 — 26 GHz, would not show if the response
was purely dispersive, as the resonator shift due to such transitions
would decay like the inverse of their detuning to the resonator frequency
Afy o< (g/2m)?/(f1 — fr)- This will be further detailed in Section 6.4 where
we will revisit these data and provide a quantitative comparison with
the expected theory for the resonator shift.

6.3.2 Fit with theory

To support the identification of the measured transition lines in Figure 6.4
with SQPT processes, we compared their phase dependence with the one
expected from theory. We focus on the bundle of lines between 13 and
23 GHz, for which the effect of a magnetic field B is also later explored
(Section 6.3.3). The green lines in Figure 6.4(b) are fits of the data at B = 0.
They were computed with the simple continuum model presented in
Chapter 3.2, Eq. (3.12). The fit in Figure 6.4(b) corresponds to A; = 1.3,
Ay =2.3,7=0.295, x, = 0.525 and we take A = 182 peV = h x44 GHz for
the gap of Al. These values can be related to microscopic parameters, in
particular to the intensity « of the Rashba SOI entering in the Hamiltonian
of thesystemas Hr = —a(ky0,—k,0y), with 0, ,, the Pauli matrices acting
in the spin [32]. Assuming a parabolic transverse confinement potential,
an effective wire diameter of W = 140 nm and an effective junction length
of L = 370 nm, the values of A, ; are obtained for y = 422 eV (measured
from the bottom of the band) and a = 38 meV.nm, a value consistent
with previous estimations [89, 36].

However, we stress that this estimation is model dependent: very similar
fits of the data from Figure 6.4(b) can be obtained using the double-barrier
model presented in Chapter 3.2, which assumes scattering barriers located
at the left x = —L/2 and right x = L/2 edges of the wire. Using this time
the values A1 = 1.1 and A, = 1.9, we obtain with the same reasoning the
value a = 32 meV.nm for the intensity of the Rashba SOI. Crucially, both
models only give two Andreev doublets in the spectrum, and therefore
account only for the four SQPT that were fit. Within this minimal model,
they are the only transitions expected in this 5 — 32 GHz window, as
intra-doublet transitions would all fall below 3.5 GHz, due to the small
spin splitting of each Andreev doublet. Therefore this model does not
account for all the other observed bundles of transitions, which are likely
attributed to other conduction channels. Indeed, although we considered
so far only one occupied transverse subband, the same effect of spin-

[32]: Park and Levy Yeyati (2017),
‘Andreev spin qubits in multichannel
Rashba nanowires’

[89]: Fasth et al. (2007), ‘Direct Measure-
ment of the Spin-Orbit Interaction in a
Two-Electron InAs Nanowire Quantum
Dot’

[36]: Scheriibl et al. (2016), “Electrical
tuning of Rashba spin-orbit interaction in
multigated InAs nanowires’
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Figure 6.5: (a) Data from Figure 6.2 at Vy = —0.89 V, with yellow arrows pointing to transition lines that are replicas of lines appearing
exactly f, = 3.26 GHz above. (b) Same data superimposed with predictions of the single-barrier model using parameters corresponding to

the spectrum of ABS shown in (c). To account for all visible SQPT lines, three sets of fitting parameters {z®, /lgl), /\g ), x£1)}ie{1,2,3} had to
be used, which can be understood as the contributions from three independent channels. They are summarized in Table 6.1. The ABS
spectrum associated to each channel is plotted in the excitation picture in panel (c) with different colors. Green lines in (b) correspond to
single-particle transitions between the two or three ABS manifolds arising for each channel. Note that all possible SQPT between the ABS
shown in (c) that are supposed to fall in the frequency range probed in (b) are indeed observed in the experimental data. Red line in (b) is

the pair transition leading to two quasiparticles in manifold 1 of the ABS depicted in black in (c).

dependent velocities is still found if several subbands are to cross the
Fermi level. Eventually, a more elaborate model together with a realistic
modeling of the nanowire bands is required to treat this situation and
obtain a quantitative fit of the whole spectra. This will be the focus of
Chapters 7 and 8, in which we will try to develop a better description of
realistic multi-channel weak links based on tight-binding simulations.

Before moving on, let us pause for a moment and illustrate the success of
the single-barrier model in rationalizing a complex spectrum like the one

measured at V, = —0.89 V, which was already presented in Figure 6.2.

Indeed, it seems that most of the transition lines visible in this data can be
accounted for by assuming three independent channels. This is illustrated
in Figure 6.5, where we compare the experimental spectrum with the
theory results from the single-barrier model using three sets of fitting
parameters, summarized in Table 6.1. The Andreev levels associated to
these 3 sets of parameters are shown in Figure 6.5(c) with a different
color for each set. The spectrum comprises :

— three manifolds 1, 2 and 3 arising from the parameter set #1 encoded
in black, which accounts for the lower bundle of 4 lines between
5—-10 GHz (1 — 2 SQPT), the ones around 16 — 21 GHz (2 — 3)
and 23 — 27 GHz (1 — 3) (all highlighted in green in Figure 6.5(b)),
and for the PT in red between 23 — 26 GHz ;

— three manifolds labeled 1’, 2" and 3’ arising from the parameter set
#2 encoded in blue, which accounts for the observed bundles of 4
lines between 14 — 18 GHz and around 9 — 13 GHz, corresponding
respectively to the 1’ — 2’ and 2" — 3’ SQPT (highlighted in dark

Table 6.1: Fit parameters used in Figure
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6.5
# T A Ar Xy Color
1 025 281 47 017 Black
2 018 1.4 3.2 0.535 Blue
3 0.085 071 26 0.36 Red
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Figure 6.6: ABS spectrum inferred from the fit of SQPT lines in Figure 6.5. (a) Spectrum deduced by fitting the visible SQPT lines in Figure
6.5(a) with three sets of parameters given in Table 6.1 in the single barrier model. (b) Reconstructed ABS spectrum obtained from (a) by
shifting some levels in energy to identify manifolds 2” with 3 and manifolds 1 and 1’. All the possible SQPT transitions involving any two
doublets of this spectrum are depicted in (c) and compared to the data. The color of the lines encodes the manifold from which the SQPT is
initiated. Amongst them, we highlight in two enlargements the 2 — 3 (blue) and 3 — 4 (green) SQPT lines, which seem to correspond
to faint features of the measured data indicated by small arrows. White areas correspond to regions where unfortunately no data was
measured.

green in Figure 6.5(b)) ;

— two manifolds labeled 1” and 2” corresponding to the parameter
set #3 encoded in red, which was used to fit the bundle of lines
around 10 — 14 GHz, interpreted as the 1” — 2” SQPT (highlighted
in light green in Figure 6.5(b)).

Altogether, these fitting parameters allow to capture well the main
features of the measured spectrum. However on second thought, in
view of Figure 6.5(c), the picture of three independent channels — the
contributions of which merely adding linearly in the spectrum — does
not seem very physical as it results in overlapping Andreev states (e.g.
manifolds 2 and 1” touching at 6 = 7, or 2’ and 2” almost superimposed)
which are spaced in energy in a very irregular manner. As we will see in
Chapter 7, tight binding simulations show that even in a multi-channel
scenario when the chemical potential crosses several subbands, the spin-
split doublets still repel each other and never cross. A second cause of
worry is that one would naively expect to observe all possible SQPT lines
between any two doublets of the spectrum, i.e. transitions like 1’ — 2 or
1" — 17, etc should also appear. This is not observed in the experimental
data in Figure 6.5(b).

More striking about this ABS spectrum, which was inferred from the
SQPT fits, is that doublets 2” and 3 have almost the same shape ; same also
for 1 and 1’ (see Figure 6.5(c)). Actually, in this picture of independent
channels, nothing fixes the absolute energy of the states: only energy
differences between manifolds define the SQPT frequencies. Therefore,
manifold 2” could be identified with 3, provided that manifold 1” is
pushed upwards to keep the same energy for the 1”7 — 2” process, which
is visible in the spectrum. Similarly, it would be tempting to identify 1
with 17, and manifold 2” should then be pushed downwards to keep
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the right relative energy spacing between 1’ and 2’. This transformation
is illustrated in Figure 6.6, where we show in (a) the ABS spectrum
obtained from the SQPT fit and interpreted as resulting from three
independent channels, and in (b) the reconstructed ABS spectrum obtained
after performing those 2 identifications between manifolds. The latter
shows a significantly more regular structure, with no overlapping features.
All possible SQPT transitions between any two manifolds of the spectrum
in (b) are shown in Figure 6.6(c) and superimposed to the data.

Interestingly, this second picture seems to describe well and in a self-
consistent way the experimental data, because if the manifolds are now
relabeled from 1 to 5, then the expected 2 — 3 and 3 — 4 processes
would predict lines at locations where very faint features of some SQPT
can indeed be observed (see lower green and blue bundles of 4 lines in
Figure 6.6(c)) and that were not predicted by the ABS level structure
from Figure 6.6(a) deduced from the fit. The signal-to-noise ratio being
~ 1, this requires a trained eye to be observed. Also, the full dispersion
of the bundles of 4 lines can unfortunately not be compared as there
are missing data in this frequency region (depicted as white areas in
the spectra). However, in Figure 6.6(c), we provide two enlargements
pointing out to some features in the data, highlighted with arrows, that
likely correspond to the 2 — 3 (blue) and 3 — 4 (green) SQPT processes
expected from the reconstructed ABS level structure. In particular the
crossings at 6 = 27 of the four lines of each bundle seem to fall at the right
frequency. One also observes faint features in black near the 1 — 2 SQPT
that seem reminiscent of these SQPT lines. Finally, notice that because
1 and 1’ were identified despite their slightly different shape, the fit of
the SQPT lines involving manifold 2’ (now labeled 4) is slightly worse
than in Figure 6.5(b). To complete the analysis one should therefore fit
again with this new shape for manifold 1’ and a better agreement with
the data would probably be obtained.

6.3.3 Spin character of ABS (B # 0)

The splitting of the ABS in the absence of a Zeeman field and the resulting
SQPT transitions reveal the difference of Fermi velocities associated to
different spin textures, arising from the SOI in the nanowire. To confirm
that the measured splitting is indeed a spin effect, we probed the ABS
spectrum under a finite magnetic field and, in particular, its dependence
on the field orientation with respect to the nanowire axis.

We consider a magnetic field lying in the xy-plane. The y-component
By (parallel to the spin states of the transverse subbands without SOI)
Zeeman-shifts the energy of the subbands depending on the spin states
and modifies the Fermi wave vectors as illustrated in Figure 6.7(c). On
the other hand, the x-component B, mixes opposite-spin states and
therefore contributes to opening a gap at the subbands crossings points,
as illustrated in Figure 6.7(b). For both, B || x and B_Lx cases, the resulting
ABS and the corresponding transition lines are shown in the middle
and bottom rows of each panel in Figure 6.7. Let us now compare this
qualitative picture with the experimental results. Figure 6.4(c) shows the
spectrum in the presence of an in-plane magnetic field with amplitudes
B =0,2.6, and 4.4 mT applied at an angle of -45° with respect to the
nanowire axis. We observe that the left/right symmetry of the SQPT lines
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Figure 6.7: Effect of an in-plane parallel (b)
or perpendicular to the wire (c) magnetic
field on the band structure (top row), the
Andreev levels (bottom row, left) and the
excitation spectrum (bottom row, right)
shown in (a) for no field. The field effect
on the bands is exaggerated for clarity.
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around 6 = 0 and 6 = 7 is lost. Provided that an anisotropic g factor is
assumed (explained below), this effect can be quantitatively accounted
for, using the extension of the single-barrier model at finite magnetic
field, which is reviewed in Section E.3 of Appendix E (green lines).

The specific effects of an either parallel or perpendicular magnetic field
on the ABS are now shown in Figure 6.8. When a field perpendicular
to the nanowire is applied (B_Lx), we observe in Figure 6.8(b) and (d)
that the ABS spectrum becomes asymmetric, as illustrated in Figure
6.7(c)). The stronger the field, the bigger this asymmetry. Indeed, the
magnetic field is directly acting in the quantization direction of the
spin-split transverse subbands from which the ABS are constructed,
leading to Zeeman shifts of the energies. On the other hand, when
the applied field is parallel to the nanowire axis (B || x), and therefore
perpendicular to the spin quantization direction, it mixes the spin textures
and lifts partly the degeneracies at 6 = 0 and 7. This modifies the ABS
spectrum, although the latter remains this time symmetric around 6 = 0
and 7t (see Figure 6.8(a) and (c)). As the parallel field is increased, we
observe a gap opening more and more between the two outer lines of the
SQPT bundle, as predicted by theory (see Figure 6.7(b)). This agreement
with theory, both qualitative and quantitative, of the field orientation
behaviour therefore confirm that the bundles of four lines observed in our
spectra indeed correspond to SQPT transitions between ABS - eventually
revealing their fine structure.

In order to fit these data and reproduce accurately the lines” evolution
with magnetic field, we realized that in addition to the parameters
determined at zero field (see Figure 6.4(b)), an anisotropic g factor had
to be taken ¢, # g|. Using the data taken with field in the parallel and
perpendicular directions, we calculated for both series the correlation
function between images of the measured spectra (taking the absolute
value of the response f — fy) and theory using various values of ¢, and
8- Figure 6.9 shows the dependence of the correlation functions with
g1 and g)|. We observe that the best agreement is found for g = 8 and
g1 = 12, which are within the range of values reported in the literature
[90, 91, 92, 49]. Green lines in Figure 6.8 show the theory result, using
these two values for the ¢ factor and the fitting parameters at zero field
estimated from the fit of Figure 6.4(b). Note that the determination of
8| is less accurate, and that overall, g = 4 gives a similar correlation
as g|| = 8, but agreement is worse at the largest values of Bj where the
effect is the strongest.

6.3.4 Absence of intra-doublet transitions

Initially, the experiment was designed with a low f, because we were
targetting a dispersive readout of the intra-doublet transitions (depicted
in dotted green lines in Figure 6.2) and this, without anticipating that
single-quasiparticles transitions to higher ABS doublet could actually also
fall in the accessible frequency range ! Eventually, those SQPT lines proved
to be easier to evidence experimentally, as we saw in Figures 6.2 and 6.4,
and turned out to provide equally well a signature of the underlying spin-
splitting of the ABS. Despite many efforts, intra-doublet transitions could
never be observed on this sample, probably due to a too low coupling
between the resonator and the weak link. This process, corresponding
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Figure 6.8: Effect of an in-plane mag-
netic field on the ABS excitation spectrum
around 6. This series of spectra were mea-
sured at Vg = 0.5, the same gate voltage
as in Figure 6.4. Field is applied parallel
[(a),(c)] or perpendicular [(b),(d)] to the
nanowire axis. Green lines are the result
from the theory using ¢, =12and g = 8.
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Figure 6.9: Correlation (normalized to
maximum value) between finite magnetic
field data and theory as a function of the
g factor, for field direction parallel (blue)
or perpendicular (red) to the nanowire.
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to the spin-flip of a single quasiparticle, was not only predicted to be
strongly suppressed compared to the usual pair transition involving
even parity states, but actually to also vanish in absence of parallel field
[32]. In Section 6.4, we will discuss the existence of approximate spin
selection rules and show that the intra-doublet transitions can actually
be allowed at zero field, provided that the transverse spatial symmetry
of the nanowire be broken. This can be achieved a posteriori by exciting
the weak link through a lateral gate, but cannot happen if the microwave
drive is sent through the resonator : in this case, the RF electric field is
longitudinal and couples only to the phase difference across the weak
link. Note that in a real device, the transverse symmetry may actually
be broken a priori, for example by the superconducting shell itself (in
other-than-fullshell nanowires) or by the presence of metallic gates and
their applied voltages (see Supplemental of Ref. [42]).

Furthermore, as we noticed in Section 6.3, transition lines can be evi-
denced even when strongly detuned from the resonator frequency;, i.e.
far away from the dispersive regime. Indeed, if the zero-point phase
fluctuations 6, are high enough, thus providing a good resonator-weak
link coupling, the phase curvature of the ABS can itself contribute to a
still-small-but-measurable resonator shift, therefore allowing for their
detection. With hindsight, this means eventually that the resonator fre-
quency value does not matter that much, as long as it falls in the typical
2 — 30 GHz range that we are probing. The constraint of a low f; to
detect the intra-doublet transitions can therefore be lifted. Increasing the
resonator frequency is actually helpful in two ways: fewer replicas are
present in the same frequency range and the coupling with the weak
link is also higher (see discussion in Section 5.2.1). This motivated the
fabrication of a new sample with a higher resonator frequency (this time
around f, = 6 GHz) and a galvanic coupling with the phase-biased loop,
which altogether allowed to detect intra-doublet spin flip transitions, as
we will see in Section 6.5.2.

6.4 Modeling the resonator shift in
spectroscopy measurements

Using the two-subband scattering model developed in Chapter 3.2 we
have shown that both the position and shape of the PT and SQPT
lines observed in our two-tone spectroscopies can be accounted for (see
Figure 6.11(d")). However, understanding the lines” intensity appears
more challenging. When transition lines are crossing the resonator
frequency f;, like the PT measured on atomic contact depicted in Figure
6.11(c’), the signal is characterized by a change of sign typical from a
measurement in the dispersive regime where the resonator shift varies
like Af, o (¢/21)?/(fa — fr), with f4 the frequency of the pair transition.
Surprisingly, when it comes to the nanowire weak link data, similar
changes of sign can be seen along the bundle of SQPT lines (see Figure
6.11(d")), although they are far detuned from the resonance frequency,
which lay around f; =~ 3.2 GHz. This was attributed qualitatively to the
resonator being probed in the adiabatic regime, where the frequency shift
is expected to be dominated by the phase curvature of the ABS levels.

[32]: Park and Levy Yeyati (2017),
‘Andreev spin qubits in multichannel
Rashba nanowires’

[42]: Hays et al. (2021), ‘Coherent
manipulation of an Andreev spin qubit’
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Figure 6.10: Schematics of a supercon-
ducting weak link (light green) placed in
a superconducting loop and inductively
coupled to a microwave resonator, repre-
sented as a lumped elements LC circuit.
Transitions between Andreev states can
be driven by an ac signal either through a
gate (V) or a flux line (Ig).
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Figure 6.11: (a) Atomic contacts (AC) vs. nanowire (NW) weak links. Typical Andreev spectrum are shown both for AC (c) and NW (d) in
the single-particle picture. In addition to pair transitions (PT), depicted in red, nanowire weak links allow, due to the multilevel structure
of their ABS spectrum, for a new family of transitions, the so-called single-quasiparticle transitions (SQPT), shown in green. (c’,d") Typical
two-tone microwave spectrum for both cases, as a function of the superconducting phase difference 6, evidencing a PT close to 6 = 7 for the
AC (data from [16]) and a bundle of SQPT for the NW weak link (data from [51], also shown in Figure 6.4). Fits are superimposed in dashed
lines on the left half of the data. The bare resonator frequency fr is indicated for both experiments on the right axis of the spectra (c’,d").

Still, to understand quantitatively the lines’” intensity, one needs to use
the theory for the crossover between dispersive and adiabatic regimes
(Section 4.2.2), and to describe the response of the resonator to changes
in the occupancies of the Andreev states induced by a drive. Here, we
introduce a model to describe the driving through either an AC flux or
an AC gate voltage [51] (see Figure 6.10). The AC flux can be applied
either through an AC current in a conductor placed nearby the loop [19],
or with an excitation applied directly through the resonator coupled to
the superconducting loop [16, 41] (in this case, the excitation is filtered by
the resonator and therefore this scheme only allows to drive the weak
link in a restricted frequency window). We find under which conditions
spin-non-conserving transitions can occur (Section 6.4.2), like the intra-
doublet spin transition which was mentioned in Section 6.3.4. Finally, in
Section 6.4.3 we derive the resonator frequency shifts in the presence
of driving fields and compare in Section 6.5 the predictions from this
theory to experimental data on superconducting atomic contacts and
nanowire weak links.

[51]: Tosi et al. (2019), ‘Spin-Orbit Splitting
of Andreev States Revealed by Microwave
Spectroscopy’

[19]: Hays et al. (2018), ‘Direct Microwave
Measurement of Andreev-Bound-State
Dynamics in a Semiconductor-Nanowire
Josephson Junction’

[16]: Janvier et al. (2015), ‘Coherent
manipulation of Andreev states in
superconducting atomic contacts’

[41]: Hays et al. (2020), ‘Continuous mon-
itoring of a trapped superconducting spin’
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6.4.1 Spin-conserving vs. spin-flipping transitions

In the model of two Andreev doublets, used to fit the data in Figure
6.4, the SQPT lines divide in two families: those between states with
the same pseudo-spin (spin-conserving transitions), and those between
states with opposite pseudo-spin (spin-flipping transitions). It turns out
that driving through a flux modulation only allows for spin-conserving
transitions between ABS levels. This observation is supported by a series
of measurements performed on nanowire weak links by Hays et al. [41].
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Using a similar ¢-QED setup, they were also able to evidence SQPT
transitions, however only the two outer transition lines corresponding
to spin-conserving processes were clearly visible at low drive power.
This is illustrated in Figure 6.12(a), adapted from Ref. [41]. The two inner
lines, associated to spin-flipping transitions, started to be faintly visible
only when driving at much higher power (see Figure 6.12(b)) and still
remained substantially dimmer at maximum power (-115 dBm) than the
outer two spin-conserving transitions at the lowest power (-140 dBm).
This tends to show that some spin selection rules are at play in the system
i.e. that depending on the way it is driven, all transitions may not be
allowed by their associated matrix elements. To understand this effect,
one needs to model first the effect of the drive.

6.4.2 Gate vs flux drive: spin selection rules

To account for the driving at a frequency wg = 27 fy, the following term
may be added to the system Hamiltonian given in Eq. (4.23)

A 1 .
At) =3 3 (Aiojorrlyjpe +he), (6.1)

io<jo’

In the case of a flux driving, which acts on the phase 6, Ajsjor
(D |I:I;)l |®jo). In the absence of magnetic field and for a ballistic model
which preserves the transverse spatial symmetry [32], the current operator
I:le does not mix the transverse channels of the weak link and thus only
pseudospin-conserving transitions are allowed. Notice, however, that
whenever the driving field or the scattering breaks the transverse spatial
symmetry, spin-flip transitions can take place [41].

In the case of a gate driving, the AC signal induces a displacement
SV (7) in the electrostatic potential experienced by the electrons in the
junction region. The corresponding matrix elements in the driving Hamil-
tonian are thus Ay jor = (Dis |0V (F)1:|Djo), where 7, is a Pauli matrix

Figure 6.12: (adapted from Ref. [41]) (a)
Two-tone spectroscopy of a nanowire weak
link revealing four SQPT lines at high drive
power. (b) Visibility of the bundle of SQPT
at a given flux @ as a function of the drive
power sent through the resonator.
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in electron-hole space. As discussed in Section 3.2, the pseudospin of
the Andreev states comes from nanowire’s transverse modes with dif-
ferent spins hybridized by Rashba spin orbit coupling. A perturbation
6V (¥) = 6Vp uniform in the transverse direction does not couple dif-
ferent transverse modes and therefore pseudospin flip transitions are
not allowed, i.e. Ajy,jg = 0. Only a non-uniform perturbation couples
transverse modes and allows pseudospin flip transitions. The fact that all
possible transitions between two Andreev manifolds have been observed
in the experiments (see Fig. 6.4 and 6.5(a)) indicates that the non-uniform
component of the induced potential 6V by the gate electrode was signifi-
cant. More insight into the possibility of engineering the selection rules
using gate driving can be obtained by considering the model of Ref. [32]
for the nanowire’s transverse channels. Within this model, the nanowire
confining potential is assumed to have cylindrical symmetry. Thus, the
modes in the lowest subband have zero angular momentum along the
nanowire axis (I = 0) and they have | = 1 on the first excited subband. A
lateral gate would impose a perturbation 6V (¥) which typically breaks
the rotational symmetry and therefore would couple states on different
subbands, naturally leading to both pseudospin flip transitions and
pseudospin conserving transitions.

One could think, however, of a more general gate configuration like the
one in Figure 6.13(a), where two lateral gates can be set such that 6V (y) =
-6V (-y) (or 6V(y) = 6V(-y)) in an anti-symmetric (or symmetric)
configuration as indicated in panel (b). In the anti-symmetric case, the
OV matrix elements vanish for states on the same subband, but are
finite for states in different subbands. As a consequence we would
have Ajp jp = Ajjji = 0. The allowed transitions between spin-split
ABS are indicated in Figure 6.13(c) with arrows of different colors for
symmetric (blue), anti-symmetric (green) or an intermediate (magenta)
configuration. We also plot in Figure 6.13(d) the phase-dependent matrix
elements, which were calculated for each case with the scattering model
of Section 3.2 and for the parameters that give the spectrum in (c). The
latter corresponds to a fit of the data in Figure 6.4 evidencing SQPT lines,
which were discussed in Section 6.3. Those matrix elements show that
indeed the symmetric and anti-symmetric potentials lead to respectively
pseudospin-conserving (dashed arrows in (c), dashed lines in (d)) and
pseudospin-flipping (dashed-dotted and full arrows in (c), dashed-dotted
and full lines in (d)) transitions, and that the mostly anti-symmetric
potential results in both transitions with similar amplitudes. Note that
for a transversally symmetric drive, which is also the case when driving
in flux, the matrix elements squared are 3 orders of magnitude higher for
spin-conserving transitions (Figure 6.13(d) top panel) than they are for
spin-flipping transitions when the drive is purely anti-symmetric but of
still similar magnitude (Figure 6.13(d) middle panel). This rationalizes the
observation in Figure 6.12 that spin-flipping transitions corresponding
to the inner two lines of SQPT bundles are strongly suppressed when
the drive does not break the transverse symmetry of the nanowire. Note
also that the matrix elements for the intra-manifold pseudospin-flipping
transitions (solid lines) are also generally much lower than the one for
inter-manifold transitions. In addition, the square matrix elements for
intra-manifold transitions are ~ 15 times larger in the second manifold
than in the first one, which at the scale of Figure 6.13(d) is barely visible.
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Figure 6.13: (a) Schematic of a nanowire
weak link with local side gates. (b) In-
duced driving potential in the transverse
(y) direction of the nanowire in various
situations: symmetric (blue line), anti-
symmetric (green line) or mostly anti-
symmetric (magenta line) profiles can be
obtained by controlling Vg1 and Vg, ap-
plied to the gates. (c) Allowed transitions
in the weak link with spin-split Andreev
levels. Each color indicates the transitions
induced by the driving potentials illus-
trated in (b). The associated matrix ele-
ments are shown in (d).
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6.4.3 Weak driving of a multi-level system

In order to obtain the frequency shift for the resonator coupled to the
driven weak link, we need a theory for the steady-state dynamics of
a driven multi-level system. While the Bloch equations do well the
work for the case of a driven two-level system [93], to our knowledge
no generalization to the multi-level case seemed to be available. To
keep it tractable, Sunghun Park and Alfredo Levy Yeyati developed
such a theory by analysing the resonator spectral function DR (w) =
—i fooo dte“t([a(t),a?(0)]) for the case of a weak drive. First, they make
use of the interaction picture in which the time evolution of both the
resonator and the weak link are provided by solving master equations
including dissipation, and then treat the resonator-weak link coupling
and the drive as small perturbations. The perturbation terms up to second
order are calculated in both 6,, and Aj; jo (see Appendix A in Ref. [53]
for details).

The frequency shift for a single-quasiparticle transition from |igoy) is
found to be given by

S PT _ |Az o ]J| (j i
552 T (077 = o), 6.2)
]a>0 i000,j0

where D, , = hwg — |[E; — Ep| + i(Ts + Ip)h/2. wy is the driving field
frequency and I';(;) are phenomenological parameters to account for the
finite linewidths in the transition spectrum, which are associated to the
states relaxation. The 6 fr(] ?) terms still refer to the resonator shift due to
single levels (jo), as given by Eq. (4.33).

For a pair transition from the ground state |g), one obtains

|A ](7 ka ( ko’
5fFT=2 3 TR (5fo +5f}“>), (6.3)

{joko’} |D—]U ko’

where {jo, ko’} means a set of indices jo and ko’ corresponding to
positive energy levels ordered in energy, and does not contain a permu-
tation of the indices. jo and —j& are for a pair of particle-hole symmetric
Andreev levels. With these two equations at hand, we can now attempt
to model our two-tone spectroscopy data.

6.5 Understanding resonator shifts in nanowire
weak links

In this section, we reproduce figures from Ref. [53] where the x-axis of the spectra
is the applied (reduced) flux phase ¢. Neglecting the inductance of the loop in
which the weak link is enclosed, the phase  across the junction is equal to .

6.5.1 Two-tone spectra of sample S1 (mutual coupling)

In Figure 6.2 and 6.4, we presented two microwave spectra measured on
sample S1 at two different gate-voltages. We noticed that the measured
signal could not be qualitatively explained by purely dispersive effects,

[93]: Palacios-Laloy (2010), ‘Superconduct-
ing qubit in a resonator’, p. 111

[53]: Metzger et al. (2021), ‘Circuit-QED
with phase-biased Josephson weak links’
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in particular that the intensity of SQPT lines was rather reflecting an
adiabatic shift of the resonator frequency, which also explained why
signal could be measured at frequencies much higher than the resonator
one. Now that the equations are set, we can provide a quantitative
comparison of those spectra with the theory for the resonator shift due
to driving near a PT frequency (Egs. (6.3)) or near a SQPT (Eq. (6.2)). In
Figure 6.14 and 6.15, we compare the intensity of the main measured
lines of Figure 6.2 and 6.4 with a full calculation of their associated shift,
taking into account that the transitions were induced by microwaves
applied on the gate. Both spectra correspond, like in Figure 4.8(a-e), to
a situation in which the resonator frequency f, = 3.26 GHz is very low
as compared to most of the observed transition lines, meaning that the
resonator shift is mainly given by adiabatic contributions.

A PT and several SQPT are clearly recognized in the spectrum of Fig. 6.14.
From the analysis illustrated by Figure 4.8(a-e), one understands that the
frequency shifts corresponding to transitions above the resonator bare
frequency are essentially given by the curvature of the transition lines:
with the color scale of Figure 6.14, lines are red when they have positive
curvature, and blue when negative. For a more quantitative comparison
with theory, we make use of the scattering model from Chapter 3.2 that
we had used to fit the position of the bundle of SQPT appearing in the
range 3-10 GHz (fitting parameters are those corresponding to #3 in
Table 6.1). The calculated SQPT lines shown in the right half of Figure
6.14 reproduce well the observed SQPT energies, but the pair transition
predicted from the same Andreev levels is observed to disperse less than
in the experimental data. Using these parameters, we then calculate the
matrix elements for H Z’U 1 which are needed to estimate the associated
resonator shift.

Since the two-tone spectroscopy data was taken at very small power, the
theory of weak-driving presented in Section 6.4.3 is fully applicable. We
evaluate the matrix elements for the weak-driving through the gate and
compute the resonator shift shown in the figure, using Egs. (6.3,6.2).
Globally, the shifts calculated for the four SQPT reproduce quite well
the observed ones. However, some details differ, notably for the highest
single-quasiparticle transition, with shifts near ¢ = 0 larger in the data
than in the calculation. Also, the shift for the PT is reproduced only
at a qualitative level. Finally, note that the value of zero-point phase
fluctuations deduced from this "fit", 6Zp = 1.2 x 107°, is about a factor
45 lower than the nominal one obtained from microwave simulations
(see Eq. (5.12)). Indeed, the magnitude of the frequency shift depends
strongly on the estimated matrix elements which are known to be model-
dependent. It would not be surprising to obtain a different order of
magnitude using a different model for the matrix elements.

A similar procedure was used to fit the data in Figure 6.15. The fitting
parameters for the main SQPT were given in Section 6.3.2. In this case,
the calculated PT lies outside the frequency range of the graph and only
the bundle of four SQPT lines is clearly recognisable (transitions in the
range 13-23 GHz). For this set of SPQT lines, theory captures most of
the measured features. Note that in the experimental results reported
in Figure 6.14 and 6.15, the resonator shift was remarkably low (tens of
Hz) as compared to that observed for atomic contacts (tens of MHz) [16].
There are two reasons for this. On the one hand, the geometry of the
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Figure 6.14: Fit of the nanowire two-tone
spectroscopy shown in Figure 6.2. Left:
experimental data obtained with sample
S1. Colorscale represents the resonator fre-
quency shift (sign corrected compared to
Ref. [51]). A pair transition (PT) and a bun-
dle of single particle transitions (SQPT)
are pointed at. Right: calculation for a
single occupied channel (see text). Col-
orscale is the difference in frequency shift
between initial and final state. Solid line
at 3.26 GHz indicates the resonator fre-
quency. In the calculation, it was assumed
that 6,p = 1.2 X 1075 and the dissipation
rate is I'g + I'zo» = 0.62 GHz. The sign of
the frequency shift in the experiment has
been corrected compared to Ref. [51].
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Figure 6.15: Fit of the nanowire two-tone
spectroscopy shown in Figure 6.4. The
measured transition lines are compared
with a full calculation of the shift taking
into account that the transitions were in-
duced by microwaves applied on the gate.
The parameters for the calculation are
those that allowed fitting the spectrum and
the matrix elements for the microwaves
shown in magenta in Figure 6.13(c) are
used. The same values of 6, and the dis-
sipation rate are used as in Fig. 6.14.
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circuit, which determines the phase fluctuations the resonator induces in
the loop. It can be optimized with the circuit design. On the other hand,
and more fundamental, the reduction of the matrix element of I:I;) ;in the
long-junction limit [32]. As a rough approximation (see Eq. (3.14), the
matrix element is that for a short junction with an effective gap Acgs = % ;
this contributes to a (1 + A)? reduction in the coupling.
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Figure 6.16: (a) Two-tone spectrum measured on sample S2 (L ~ 550 nm). The color-coded
quadrature of the measured signal shows many sign changes along the transition lines,
qualitatively in agreement with the behavior illustrated in Fig. 4.8(g,h): the sign changes
are attributed to situations where the energy of some virtual transitions matches /1 f;. (b)
Associated single-tone spectrum.

6.5.2 Two-tone spectra of sample S2 (galvanic coupling)

We present now two-tone data obtained with sample S2, in which
the nanowire is coupled to the resonator through a shared inductance
(see Section 5.2.2). The resonator frequency was also increased from
fr = 3.2 GHz to 6.6 GHz and we diminished its impedance by about a
factor 2, leading altogether to an enhanced coupling by about two orders
of magnitude (a factor X275 in 6%10, see Eq. (5.12) and Eq. (5.23)). An actual
picture of the device is shown in Figure 10.1. Importantly, the coupling
being much larger than in sample S1, the measured signal cannot be
easily converted in a resonator shift, and we show in Figure 6.16 the

change in one quadrature, 6Q.

In the range between 5 and 10 GHz of the otherwise very busy spectrum
of Figure 6.16, one recognizes three PTs and a bundle of SQPTs. The color-
coded quadrature shows many abrupt sign changes along the transition
lines, like the behavior illustrated in Figure 4.8(g,h): the sign changes
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are attributed to situations where the energy of some virtual transition
matches the resonator frequency (as indicated by the black dashed lines).
This spectrum has other remarkable features, like the occurrence of sets
of PTs very close in energy. Moreover, the shape of several other lines
in the spectrum does not correspond to what our simplistic scattering
model predicts. These features will be the focus of Chapter 8.

(8) 20
oQ(mV)
—_ 0.2
N
T 0.1
Q/ 0.0
[ -0.1
-0.2
(b)
sQ(mV)
—_ 0.1
N
T
g 0.0
-0.1
© 7 1
~ 1
3 S14(dB)
S o I
“I_ -1 T T T T T -10
0.0 0.5 1.0 15 2.0

o/m

Figure 6.17: (a,b) Two-tone spectrum measured on sample S2 (L ~ 550 nm) for a different
gate tuning compared to Fig. 6.16. The color-coded quadrature of the measured signal
shows sign changes along the transition lines, qualitatively in agreement with the behavior
illustrated in Fig. 4.8(gh): the sign changes are attributed to situations where the energy
of some virtual transitions match / f,. For example when the lowest transition line of the
second group of single particle transitions (underlined with black splines in (a)) crosses the
resonator, the sign of frequency shift along the transition lines in the lowest group of SQPT
changes. In (b), same data as (a) but stronger contrast and other colorscale, intra-manifold
spin-flip transitions are visible. The red lines that superimpose on the data are obtained as
differences between the inter-manifold transition energies underlined in black and labeled
a,b,c,d. (c) Single-tone spectrum.

Observation of direct spin-flip transitions

In Figure 6.17 we show data measured in a different cooldown. In this
case, changes of sign of the displayed quadrature occur when the lowest
transition of a SQPT bundle (drawn in black based on the signal of both
quadratures) crosses the resonator line. The resonator shift measured
in the CW single-tone spectroscopy (Figure 6.17(c)) shows a dominant
contribution from the pair transition that lies at 12 GHz at 6 = T,

94
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but the anti-crossings expected at the position of the dotted lines in
Figure 6.16 (a) are not visible, indicating the very small occupancy of the
initial state for the corresponding transition. This is in agreement with
the difference in intensity between the transition lines in the two-tone
spectroscopy. A remarkable feature in this spectrum is the presence of
two very low-frequency lines (below 2 GHz), better seen in Figure 6.16(b).
By analyzing their position in energy, they can be identified as spin-flip
intra-manifold transitions, which were discussed in Section 6.3.4 on
spin selection rules. The lines labelled a,b,c,d correspond to transitions
between the first and the second manifold, at energies Ey) 1|, E>1,1y, E2| 11,
E»1,11. Their differences, labelled a-c, b-d, a-b and c-d, coincide two by
two. They are shown with red lines and perfectly match the observed
low-frequency transitions. The two first ones correspond to a transition
energy Eq7 1, the two last ones to E| »1. The lines are dimmer at low
frequency because the matrix elements go to zero at phases 0 and
(see Figure 6.13(d)), and because the difference in occupancy of the two
spin states diminishes when their energy difference is comparable to
temperature: kT /h ~ 0.8 GHz. Note that such transitions have been
recently driven indirectly through Raman processes [42, 94].
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Figure 6.18: (a) Two-tone spectroscopy of sample S2, showing a pair transition f4 anticross-
ing the resonator at fr = 6.60762 GHz. Red line on the right-side is a fit of this transition
(parameters given in Table 6.2) with its two replicas at f4 + f, shown in dashed gray. (b)
Single-tone spectroscopy. (Left) Transmission coefficient amplitude S»1; measured with a
VNA. (Right) Comparison with theory. For each phase value, the resonator frequency is
extracted from the raw data ; the shift from its bare value is shown with gray disks and
compared to the calculated shift due to a single channel (dashed red), whose pair transition
towards the lowest Andreev manifold fits the transition line f4 shown in (a). Blue dashed
line: contribution of an effective second channel (parameters given in Table 6.2); because of
its low transmission, the corresponding pair transition does not fall in the frequency range
of (a)). Black line: total shift due to both channels.

[42]: Hays et al. (2021), ‘Coherent
manipulation of an Andreev spin qubit’

[94]: Cerrillo et al. (2021), ‘Spin coher-
ent manipulation in Josephson weak links’
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A complete fit of the often complex spectra found in nanowire weak
links is in general not possible with a simple modelling of the weak link.
However, in the absence of a drive, the frequency shift of the resonator is
often dominated by the contribution from a single channel, which allows
for a simpler description. Before concluding this section dedicated to the
modelling of the resonator shift in nanowire devices, let us flash a quick
example of such situation where the resonator shift in the ground state
is dominated by the contribution from one main PT transition.

In Figure 6.18(a) and (b), we show the two-tone spectroscopy and single-
tone measurement of the same nanowire weak link as in Figure 6.17, again
from another cooldown. Among the observed transition lines, there is a
high-contrast PT that crosses the resonator at ¢ = 7t(1 +0.12). Within the
scattering model of Section 3.2, it can be fitted as a PT towards the lowest
of three Andreev manifolds arising from a high-transmission channel
(T = 0.996). In Figure 6.18(a) we indicate this fit with a red line on the right
hand side (parameters in Table 6.2), as well as two replicas shifted by +f;,
also visible in the data and associated to a strong measurement tone. The
corresponding shift of the resonator, fitted with Eq. (4.33) and (4.34) with
0zp = 0.012 and using f, = 6.60762 GHz (bare frequency measured when
the nanowire is fully depleted), is shown in dashed red in the right hand
side of Figure 6.18(b). This value of the zero-point phase fluctuations
obtained from the fit falls close to the nominal value &35" = 9.3 x 1073
expected for the shunted CPW design and estimated in Section 5.2.2
from Eq. (5.18). From this value of 6., and the fit parameters given in
Table 6.2, we can deduce using Eq. (5.19) the coupling factor at 6 = ©
with the pair transition, ¢(r) = 92 MHz, which is close to the 100 MHz
coupling that was achieved in the atomic contact experiment [21].

Although the resonator shift contains contributions from both the con-
tinuum and the three Andreev manifolds, it is mainly dominated by the
IA{;JZ contribution at energy E_,; associated to the transition to the lowest
manifold. Therefore it can be well approximated within a simplified
Jaynes-Cummings description, taking Eq. (H.7) with a renormalized gap
Aegi/h = 15.4 GHz and fa = 2E_1 1 (not shown in the figure for clarity,
because it coincides almost exactly with the full theory for the channel
shown in dashed red). Although it does not fit perfectly, it offers a simple
analytical form that captures well the main features of the data around

the anticrossing.

The small discrepancies with the experimental data are attributed to
contributions from other possible channels. Many other transitions are
indeed visible in the two-tone spectroscopy, which we model with an
effective second channel (parameters in Table 6.2). Its contribution, shown
with a dashed blue line in Figure 6.18(b), produces the smooth phase-
dependent background that, added to the shift from the main transition,
quantitatively accounts for the data at all phases (black line). Finally,
let us stress once more that a rigorous fit of the resonator shift would
require the knowledge of the continuum’s curvature and of the phase
dispersion of all subgap levels, which is not accessible given the restricted
frequency range of our two-tone spectroscopies. By encompassing these
other contributions into an effective second channel, we only seek to
illustrate here that higher energy levels are indeed contributing to the
total resonator shift by an extra phase-dependent offset, the detailed
origins of which being inaccessible experimentally.

Table 6.2: Fit parameters used in Figure
6.18

# T A A>»  x, Color

Chl 099 186 186 0 Red
Ch2 026 095 095 -1 Blue

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’, p. 61



Need for a multi-level
description of the weak link

So far we have relied on a simple model of the Andreev spectrum
consisting in only two spin-split doublets, as illustrated in Figure 6.1(a).
As was shown in Chapter 6, such a minimal description is successful
at explaining some features of the measured data, in particular the
existence of single-quasiparticle transitions (SQPT) as a signature of the
spin-splitting of Andreev levels in InAs weak links. However, as we shall
now discuss, several features found regularly in nanowire spectra remain
unexplained within such a minimal model. Using a galvanic coupling
(sample S2, see Figure 10.1(a)), we improved significantly the quality
and resolution of the spectra, allowing for better line identifications and
an improved understanding. From these data, we could start drawing
systematics in the phenomenologies of observed lines, which eventually
allowed to rationalize the typical structure expected for a nanowire weak
link transition spectrum in the 0 — 30 GHz frequency window.

7.1 Unidentified spectroscopic lines in
nanowire spectra

7.1.1 Long junction regime

A typical two-tone spectrum obtained with the galvanic coupling device
is shown in Figure 7.1(a), where we highlighted the main transition lines :
a PT (red), a set of four SQPT lines (green) and slightly above, a group
of four unidentified lines (blue) sharing some similarity with PTs. At
this stage, several remarks can already be made. First, the full phase
dispersion of the pair transition is accessed at frequencies below 25 GHz,
which is about half the measured value of the superconducting gap of
aluminium. Contrary to atomic contacts where only a small part of the
PT dispersion could be probed, this is made possible here because of
the finite length of the weak link, which reduces the amplitude of the
dispersion of the first ABS*.

We showed in Section 3.2.3 that at low energy and close to 6 = 7, the
lowest ABS manifold can be approximated by the expression for a zero-
length junction with a reduced gap Aegr = A/(1 +A), withA = (A1 +1,)/2
(see Eq. (3.14)). The frequency of the lowest pair transition is then
well captured close to 6 = 7 by f4(8) = 2Aegy/1 — Tsin? (5/2). This is
illustrated in Figure 7.1(b) where we show in red solid line a fit of the
lower pair transition close to 7, which is obtained for T = 0.934 and
Aeff = 11.9 GHz. This indicates that we are indeed in a long junction
regime with A ~ L/& ~ 45/11.9 — 1 ~ 2.7. As expected, this approximate
dependence is less accurate away from 6 = 7.

* A finite coupling to the superconducting leads, or a finite dwell-finite in the weak link
region for any other cause, can also reduce the dispersion [64, 50].

7.1 Unidentified spectroscopic lines

in nanowire spectra . ...... 97
7.2 Incorporating multi-channel ef-
fects ........ ... .. ... 100

[64]: Kurilovich et al. (2021), “‘Microwave
response of an Andreev bound state’
[50]: Fatemi et al. (2021), ‘Microwave
susceptibility observation of interacting
many-body Andreev states’
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Figure 7.1: (a) Two-tone spectrum measured on sample S2. Main transition lines are highlighted by colored splines on half of the plot: a pair
transition (red), a set of four single-particle transitions (green) and four lines (blue) sharing some similarity with pair transitions. Note
that at least three other sets of SQPT are visible at higher frequencies (around 17.1, 20.9 and 25.4 GHz at 6 = 0). (b) Fit of the lower pair

transition with the short junction formula f4(8) = 2Ag1 — 7sin? (5/2) (solid red line), yielding a transparency 7 = 0.934 and effective
gap Aeff = 11.9 GHz. The four transition lines highlighted in blue in panel (a) seem to be well fit around 6 = 7t by f4(6)/2 plus a constant
offset (dashed red lines), indicating that these processes involve the creation of one quasiparticle in the lower ABS manifold and another
quasiparticle in some level that disperses only little with 6 around 6 = 7.

7.1.2 Evidence for mixed pair transitions

With L/& ~ 2.7, one would expect that mixed pair transitions involving
the creation of one quasiparticle in each of the two lowest Andreev
doublets would be visible in the frequency range of Figure 7.1. They
would display a set of four lines crossing at 6 = 0, 7 similarly to SQPT
lines and above the lowest PT. This is not observed. Instead, as a recurring
feature in many measured two-tone spectra, we often observe a group
of four transitions lines which show almost parallel phase dispersions
close to 6 ~ , like the ones highlighted in blue in Figure 7.1(a). It would
be tempting to classify these lines as PTs, since their phase dispersion
always features a local minimum at 6 = n. This interpretation can be
discarded for at least two reasons: firstly, their behavior near 6 = 0 is
more complex than PTs, with local kinks and avoided crossings. Secondly,
on would need to invoke at least four extra channels with very similar
transparencies, which is very unlikely. And if this was to happen for a
certain value of the gate voltage, one would expect that the transparencies
of these four channels would evolve differently with V, and the lines
should move away from each other. Instead, the four lines evolve together,
as illustrated in Figure 7.2. The fact that such sets of four lines, not more
or not less, are routinely observed above the PT in various regimes of gate
voltage indicates that they are generic features of low-energy spectra.
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Figure 7.2: Evolution of the low-energy spectrum over a wide gate voltage region. (a) Two-tone spectrum showing in gray-scale one
quadrature of the measurement field as a function of Vg and taken at 6 = 0.797 to reveal the splitting of the SQPT away from the
n-degeneracies. (b) Same spectrum but with the main lines highlighted: the lower PT (red), the lowest set of SQPTs (green) and the
four unidentified lines (blue), interpreted as mixed PTs between the two lowest ABS. As expected, PT and SQPTs evolve with Vg in an
out-of-phase manner: when the PT exhibits local maxima (minima) in Vg, then the bundle of SQPTs shows local minima (maxima). As
they shift the resonator in opposite manners, SQPT lines therefore appear as white lines, while pair processes give rise to rather black
lines. The four blue lines evolve more or less parallel with V, and follow the same global trend as the PT, which indicates that they may be
associated to processes involving pairs of quasiparticles. In some gate voltage regions, indicated by light orange areas, the line contrast
vanishes for SQPTs as they drop to low frequencies. This makes the line tracking unreliable and therefore the highlighted splines in these
specific regions should be taken only as illustrative not quantitative, as some liberty was taken when drawing them. For this reason, they
were also drawn with much thicker lines to stress the inherent uncertainty in their precise location. The two-tone spectrum shown in Figure
7.3 was taken at Vg = 2.012 V, highlighted by a dashed orange like and an asterisk. As for the spectrum from Figure 7.4, it was taken at
Vg =2.087 V which is highlighted by a magenta asterisk.

Strikingly, it is observed that close to 6 = 7, these four lines are well
approximated by fa(0)/2 plus a constant energy offset, with f4 the
transition energy of the pair transition. This is illustrated in Figure 7.1(b),
where the dashed red lines were obtained as f4/2+offset. This is also
observed for the blue lines in Figure 10.5. This tends to indicate that those
lines may be associated to mixed processes involving the creation of one
quasiparticle in the lowest ABS doublet and another quasiparticle in a
level that disperses only little with 6. As we shall demonstrate in the next
chapter, these transition lines can be attributed to the expected mixed
PTs involving the lowest two ABS doublets, with their degeneracies at
0 = 0, 7 being lifted due to Coulomb interactions.

In Appendix K, we present a collection of two-tone spectra that have
been measured on sample S2 in many different conditions. Most of them
share the same common characteristics at low frequencies as Figure
7.1(a), including a PT, one or severals sets of SQPTs and four other lines
similar to PTs that run more or less parallel as phase is varied and that
are interpreted as mixed PTs involving the lowest two ABS manifolds.
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Figure7.3: Spectrum measured at Vo = 2.012 V (orange asterisk in Figure 7.2(a); reciprocally,
we highlight here with the same asterisk the phase value 6 = 0.797 at which the gate map
from Figure 7.2 was measured). Main transition lines are highlighted by colored splines on
half of the plot: a PT (red), a set of four SQPTs (green) and four unidentified lines (blue)
sharing some similarity with PTs transitions. Two other sets of SQPTs are visible at higher
frequencies. The PT can be well fitted by the short junction formula with T = 0.9486 and
Aegs = 8.6 GHz. As a remarkable feature of this spectrum, the energy Esgpr at 6 = 7t of the
lowest bundle of SQPTs is higher than the energy Ept at 6 = 0 of the lowest PT.

7.2 Incorporating multi-channel effects

7.2.1 Hint of a second channel

In Figure 7.3 another two-tone spectrum measured on sample S2 is
presented, measured at the gate voltage value indicated by an orange
asterisk in Figure 7.2(a). This spectrum illustrates another instance of
these four unidentified lines (blue) sitting above the low-lying PT (red).
Here, the four blue rather show a more regular phase dispersion close
to 6 = 0. However, sweeping V, we observe that at another close-by
value of the gate voltage, indicated by a magenta asterisk in Figure 7.2(a),
they show again a phase dispersion similar to the one from Figure 7.1(a),
see Figure 7.4: the upper line is separated from the other three by a few
GHz and presents a "camelback'-like dispersion around 6 = 0. This clear
separation of the four transition lines into a triplet and singlet is observed
in all three spectra from Figures (7.1, 7.3, 7.4) and is reminiscent of an
exchange interaction effect, as will be further explained in Chapter 8.

As aremarkable feature of the spectrum from Figure 7.3, the energy Esgpr
at 6 = 7t of the lowest bundle of SQPTs is observed to be higher than the
energy Ept at 6 = 0 of the lowest PT. Such an ordering is not compatible
with the predictions of the minimal two-band model of Chapter 3.2,
indicating that another effect is at play.

20

15

f1 (GHz)

10

0 * 19 2
§/m

Figure 7.4: Two-tone spectrum measured
at Vg = 2.087 V (magenta asterisk in Fig-
ure 7.2(a); Reciprocally, the same asterisk
highlights in this plot the phase value
6 = 0.797 at which the gate map from
Figure 7.2 was measured). This spectrum
is the same as in Figure 6.17 but extends
to higher frequency. Full data is shown in
Appendix K.
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Figure 7.5: Hint of multichannel effects. (a) Same spectrum as in Figure 7.3 with the main features highlighted with splines on the right half
of the plot : the lower PT (red) and three bundles of SQPTs (green) likely associated to transitions from the first to the second, third and
fourth ABS manifolds. On the left half is overlaid the result of a tentative fit with the transcendental equation given by Eq. (3.12) with the
following parameters adjusted to best reproduce the lower PT: A1 = 5.0, A = 5.5, T = 0.93 and x, = 1.0. The topmost red line, showing the
dispersion expected for the PT to the second ABS manifold, does not seem to correspond to any feature in the data. (b) Associated ABS
spectrum in the excitation picture, obtained either from the PT fit with the transcendental equation (dashed lines) or reconstructed for the
lowest two manifolds from the measured phase dispersion of the lowest PT and SQPT (solid lines).

Discrepancies with this model are made clearer when trying to fit the
PT using the transcendental equation given by Eq. (3.12) (see left half of
Figure 7.5(a)). Reproducing well the bottom of the phase dispersion at
0 = T requires to set the transmission rather high, T = 0.93, but doing so
we miss the rounded shape of the PT around 6 = 0 and the fit remains off
by a few GHz even. The ABS spectrum that comes out of this fit comprises
four manifolds with alternating curvatures, as illustrated in dashed lines
in Figure 7.5(b) using the excitation picture. The two-tone spectrum
features three bundles of SQPTs at around 18.5, 22.5 and 30.8 GHz at
0 = m. Although their respective shapes is not well reproduced, the
tentative fit suggests that they likely correspond to SQPT transitions
from the first to either the second, the third or the fourth ABS manifold,
therefore supporting a long-junction scenario with at least 4 manifolds.
The SQPTs between the lowest two manifolds that are expected from
the fit fall at the right frequency at 6 = 7, but are about 12 GHz too
low at 6 = 0, showing a much bigger amplitude compared to what is
observed in the data. To improve the match, one would need to reduce
the energy of the first manifold around 6 = 0, but this would in turn
reduce the phase dispersion of the PT and be incompatible with the data,
or to increase the energy of the second manifold.
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One can actually play the reverse game and reconstruct the lowest two
manifolds from the measured dispersion of the lowest PT and SQPT,
the mean energy of the first manifold being given by half the frequency
dispersion of the measured PT, while differences between the inner and
outer lines of the SQPT bundle provide the size of the ABS splitting. The
deduced ABS spectrum is plotted in thick solid lines in Figure 7.5(b) and
shows an unusual feature : both manifolds have a positive phase curvature
around 6 = 7, a feature not accountable by the continuum model which
assumes that the chemical potential crosses only a single band. Precisely,
this is because such feature actually suggests the presence of a second
conduction channel being open in the weak link, meaning that at least
two transverse bands are populated in the semiconductor. Unfortunately,
none of the analytical models developed so far take explicitly into account
such a second band. We may however gain valuable insight on what
happens in such a regime by resorting to tight binding simulations, for
which it is easy to incorporate finite-length and multi-channel effects.

7.2.2 Tight binding modeling

The continuum model presented in Chapter 3.2 focused on a single-
band description of the weak link". Extending this analytical model to a
multi-band scenario presents some challenging difficulties. On the other
hand, it is straight-forward to discretize it in a tight-binding model (TB),
which can be adapted at will and solved numerically. In such a model,
illustrated with Figure 7.6, the weak link region is described by a chain
of longitudinal sites between which electrons can hop. Including many
longitudinal sites therefore allows to easily model the case of a finite-
length weak link. Similarly, one can add extra transverse chains of sites,
which then directly accounts for the multi-channel nature of the weak link.
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Figure 7.6: Sketch of the extended tight-binding models for a nanowire junction.

The TB Hamiltonian of this system can be written in full generality as

— t t
HO = (ei,’( - )C' Cit,o + th' Ci+l,7,0
1,7,0 1,T,0

1,7,0
+
+ 00xC; ¢ sCitl,1,6 + E [Aici,T,lCi,T,T
i,7

t . t
+ Z tyci,T,ac,-,Hl,g +iayC; o Ciael,s + h.c., (7.0
i,7,0

t At least 2 transverse bands are required so that SOI gives rise to spin-dependent Fermi
velocities and ABS spin splitting. However the deduced transcendental equation only
describes the case where the chemical potential u crosses a single band. It also enforces
linearization around p, which may not be valid when y lies at the bottom of a band.



7 Need for a multi-level description of the weak link | 103

where CL , creates an electron with pseudospin o on the longitudinal

site i belo’r{ging to the transverse chain 7 ; €; ; denotes the onsite potential,
u the chemical potential which is only changed in the normal region,
try and ay, are spin-conserving and spin-flip hopping amplitudes
in the longitudinal and transverse direction respectively, and A; is the
pairing amplitude which we choose to be zero for the sites describing
the wire and Ae*"/2 for the left and right superconducting electrodes,
respectively. To incorporate the effect of scattering, we proceed as in
the single-barrier model introduced in Chapter 3.2 by adding a local
impurity at a given site i. This amounts to choosing at this specific site a
different onsite energy ef;p compared to the bulk one €; ;. Note that such
a single-barrier model gives qualitatively similar results to a more physical
two-barrier model where scatterers are localized at the two interfaces with
the superconducting leads, as was the case in the continuum model.

The parameters for the TB model are related to the ones from the
continuous Hamiltonian through the following discretization:

h2
2m*’

tx:%, y:%; ax:%,ay:% with tg =
where a is the lattice spacing in the x-direction, W the width of the
normal region and & ~ 1030 meV.nm is the spin-orbit coupling constant
appropriate for InAs. In the following, we use a = 12 meV.nm, m* =
0.023m, and A = 190 peV. In Appendix C, we illustrate the dispersion of
the two lowest energy bands associated to this TB Hamiltonian and detail
how transverse spin-orbit coupling gives rise to an energy-dependent

spin texture responsible for the splitting of ABSs.

Chemical potential dependence of ABS

The continuum model from Chapter 3.2 describes well the case where a
single band is crossed by the chemical potential 11, when it lies far above
the band bottom. This situation leads to analytical results after lineariza-
tion of the bands around p. As a first generalization, we are interested in
what happens both in low-density regime when u approaches the band
bottom, and conversely when i increases and gets close to or crosses the
second band. As this second band also hybridizes with the next one when
ay # 0, we need to consider at least three chains of sites 7 € {1,2,3} to
incorporate the third band and treat well the effect of the second one.

In Figure 7.7 (a-c), we show a typical ABS energy spectrum for 6 = 0, 7t/2
and 7t as a function of 1, as obtained by numerical diagonalization of the
TB Hamiltonian from Eq. (7.1) with three transverse chains made of 13
sites for the normal region of length L = 560 nm and width W = 100 nm,
and 11 sites in each superconducting lead. The associated bulk bands of
the normal region are depicted in panel (d) with the same x- (energy)
axis. For simplicity, in order to illustrate the minimal physics at play, we
choose the onsite energies to be uniform and constant for all three chains,
except at a single site of the normal region where a repulsive impurity is
introduced to incorporate the effect of scattering. This is done by setting
there a higher onsite energy ™.

Starting from the insulating state where p lies much lower than the first
conduction band, we observe two ABS states detaching from the gap
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Figure 7.7: (a-c) Evolution with the chemi-
cal potential j1 of the ABS energy spectrum
of a three-channel weak link for 6 = 0, 7t/2
and 7, as obtained by numerical diagonal-
ization of the TB Hamiltonian (Eq. (7.1);
parameters in Table 7.1). (d) Bulk bands of
the normal region.
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edge A as u approaches the bottom of the first band, u ~ —2A. Although
these states are initially spin-degenerate and carry low supercurrent,
the amplitude of their phase dispersion increases as p rises above the
band bottom, as shown in Figure 7.7(a-c). When u ~ —A, i.e. when the
chemical potential lies deep in the first band and is higher than the
band bottom by at least A, the Andreev approximation is verified and
we recover the typical situation described by the continuum model.
The low-energy spectrum of the weak link then comprises two well-
split ABS manifolds that are properly captured by the transcendental
equation Eq. (3.12) *. As p is further increased, a second pair of ABS
manifolds detaches from the gap edge. Although those states dive deep
in the gap, they initially feature a flat phase dispersion and therefore
do not carry any supercurrent. However, for u ~ 0, when the chemical
potential approaches the second band, the two manifolds of this second
bundle start to split, disperse with phase and eventually contribute to
the low-energy ABS spectrum. The same effect arises when p ~ 2A,
i.e. approaches the third band, which reflects the opening of a third
conducting channel.

Fabry-Pérot oscillations & resonant transmission

Although these TB results illustrate well the gradual opening of the weak
link as u crosses the successive conduction bands of the normal region,
Figure 7.7 also shows a complex non-monotonous dependence of the ABS
energy spectrum with 1, characterized by oscillations of the ABS energies
with . These oscillations of the weak link’s effective transmission can be
understood as Fabry-Pérot resonances in the normal region, which arise
due to the Fermi momentum mismatch between the superconducting
and normal regions. A minimal model describing this effect is the one
of a perfect single mode SNS junction of finite length L [56, 95], which
predicts the following expression for the Andreev energies :

1

1+« sin? (koL)
(7.2)

EA(0) = £Ay/1 - T(ky) sin? (5/2)  with (ko) =

¥ Note that the transcendental equation would incorrectly predict a diverging number of
ABS states as 1 approaches the band bottom, since A = L/& — oo due to vanishing of the
Fermi velocity vrp. However the model leading to the transcendental equation is valid only
in the Andreev approximation, i.e. when u lies far above the band bottom. TB calculations
show that no such divergence occurs: the states continuously collapse to the gap edge as
u is lowered.

Table 7.1: Parameters of the tight-binding
calculations for Figure 7.7 and Figure 7.8.
The number of transverse chains is 3. The
superconducting leads are described with
11 sites each, the normal wire with 13 sites.
The impurity is positioned at site 7 in the
normal region.

[56]: Prada et al. (2020), ‘From An-
dreev to Majorana bound states in
hybrid superconductor-semiconductor
nanowires’

[95]: Cheng and Lutchyn (2012),
‘Josephson  current  through a
superconductor/semiconductor-
nanowire/superconductor junction’
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Figure 7.8: Evolution of the ABS energy spectrum and transitions with the chemical potential y, obtained by numerical diagonalization
of the TB Hamiltonian from Eq. (7.1; parameters in Table 7.1). The reduced energies €, = E;o/A of the ABS states are plotted in panels
(a/b,c) as a function of p for 6 = 0, 7/2 and 7. Throughout the series, the three lowest Andreev manifolds are highlighted in gold (n = 1),
cyan (1 = 2) and purple (n = 3). At § # 0,7, each state 1 is spin-split in two sublevels ¢ =T, |, as exemplified in panel (b) for 6 = /2.
The intensity of this splitting €, — €, is plotted for the lowest three manifolds n = 1,2, 3 in panel (d) and shows maxima close to the
energy where the hybridization of the lowest two bands is the highest. (e) Bulk bands of the normal region (dark green lines). Dashed red
lines depict the bands when setting the transverse SO coupling &y, to 0 and illustrate that its effect is to hybridize the transverse subbands.
Vertical dashed gray lines correspond to 9 different values of y starting from below the first band until deep in the second band. For each of
these 9 illustrative cases, the ABS energy spectrum is shown in the excitation picture in (g), with all possible transitions involving the lowest
two Andreev manifolds in (h): SQPT transitions (green), PT transitions to the n = 1 and n = 2 manifolds (red), and the mixed transitions
(blue). (f) Evolution with y of €,(6 = 1) — €,,(6 = 0), which reflects the sign of the phase curvature of ABS manifold .

where « = [(klss)2 - k(z)]/ (Zkg ko) models the effect of momentum mis-
match between the normal and superconducting regions, the Fermi
wavevectors of which being denoted respectively by k' and k?, with

ko = J(k})? + 4k% ; and the SO momentum kso = m*a/h?. This mini-
mal model shows that the kr mismatch acts as an effective barrier at each
interface with transmission 7¢%(kg) = m < 1. Therefore, although
no scattering takes place in the normal region, the weak link acquires
a finite transmission which oscillates with ky and remains smaller than
1, except at resonant values where koL = nn, n € Z. In the general

case, scattering and spin-orbit in the normal region further mix this
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simple picture, making the oscillations less regular and one can no longer
distinguish in the ABS spectrum the contributions from each individ-
ual channel as bundles of state detaching from the gap edge when y
approaches the next band.

Effect of a second transverse channel

Using this TB model, let us now investigate the two-bands limit when the
chemical potential lies close to the second transverse band, reflecting the
opening of a second conduction channel in the weak link. This second
situation is illustrated in Figure 7.8(g-h) where we show, for slightly
different TB parameters than in Figure 7.7, the evolution of a typical ABS
spectrum (g) and the associated transitions between ABS (h) for 9 values
of u crossing successively the first and second transverse conduction
bands of the normal region.

Case 1 corresponds to the tunnel regime where the chemical potential y
lies below the first band: the ABSlevels show almost flat phase dispersions.
As i crosses the bottom of the lowest band, they start acquiring a sizeable
phase dispersion and carry supercurrent, as illustrated in Cases 2 and 3.
For i deep in the lowest band (Case 4), i.e. higher than the band bottom
by at least A, the Andreev approximation is verified and we recover
the typical situation described by the transcendental equation from the
continuum model (Eq. (3.12)). The corresponding transition spectrum in
(h) shows opposite phase curvature for the PTs associated to the n = 1 and
n = 2 manifolds (red), a bundle of well-split SQPT lines (green) crossing
the lower PT and with a maximum at 6 = 7, and a bundle of mixed
PTs (blue) sandwiched between the two lowest PTs. This corresponds
qualitatively to the typical picture described in Chapters 3.2 and 6. When
u ~ 0, close to the energy where the hybridization between the lowest
two bands is maximal (Case 5), the Fermi velocity difference between
the two n = 1 spin subbands is maximal and the transition spectrum
shows large splitting for both the SQPTs and the mixed PTs. Finally, as u
approaches the second band (Cases 6-9), the phase curvature of the PT to
the n = 2 manifold gets inverted, which reflects the opening of a second
channel in the weak link. This inversion is further illustrated in panel
(f) where we plot as a function of u the quantity €,(6 = ) — €,(6 = 0)
which describes the sign and magnitude of the phase curvature of a
given ABS manifold n. While this curvature is always negative for the
lowest manifold (gold), for the second one (cyan) it goes from positive to
negative, canceling close to p = 0 (Case 5).

The cases 6-7, where p lies close to the bottom of the second transverse
band, seem to correspond qualitatively to the situations probed in the
experimental spectra from Figs 7.1,7.3 and 7.4. Indeed, the transition
spectrum in such a regime is characterized by mixed PTs at low energy
lying close to the lower PT and by an almost flat phase dispersion for the
n = 2 ABS manifold. As will be shown in the next chapter, this explains
why the mixed pair transition disperse almost like half the lowest PT.
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ABS in presence of Coulomb
interactions

There is a large overlap between this chapter and our most recent article [54].
The theoretical developments that we reproduce here are essentially due to
our colleagues in Madrid Francisco Matute, Sunghun Park and Alfredo Levy
Yeyati.

In the previous chapter, we presented microwave spectra showing features
consistent with finite-length physics in the weak link and suggesting a
multi-channel scenario. In addition, we evidenced as a recurring feature
of our nanowire spectra a set of four transition lines lying above the
lowest pair transition, which remain grouped together as 6 or V, is
changed, never cross each other, and feature a minimum at 6 = 7 like
pair transitions although they show more complex patterns close to
6 = 0,2m. Besides, they often split spectrally into a low-lying triplet of
lines and a singlet at higher frequency.

Surprisingly, we also noticed that the phase dispersion of those four lines
appears to be generally well fit close to 6 = 7t by half the dispersion of the
lowest pair transition up to a frequency offset, thus indicating that they
are likely related to processes involving the creation of one quasiparticle
in the lowest ABS manifold and a second one into another spin-split level
dispersing only little close to 6 = 7. Because they appear above but still
close to the lowest PT, this level is expected to be low-lying, and as it
does disperse with phase, although little, there is no reason at first sight
why it should be anything than an ABS, in the view of parsimony. On
the other hand, we evidenced with a TB calculation in Section 7.2.2 that
when a second channel is about to open, the second lowest ABS manifold
may indeed show almost flat dispersion around 6 = 7, up to its splitting,
which makes it a possible candidate for this level.

Altogether, this gives hints that those four unidentified transition lines
may correspond to mixed PTs involving the lowest two ABS manifolds,
although they do not show degeneracies at 6 = 0,7 as one would
first expect from non-interacting models. The recurring separation of
those lines into a triplet and singlet further suggests that an exchange-
interaction physics may be at play, and we shall now demonstrate that the
weak Coulomb interactions expected in our nanowires actually resultin a
sizable splitting of the mixed PTs into a group of four lines, which disperse
in phase similarly to the transition lines evidenced experimentally.

To discuss the effect of interactions we will resort in this chapter to
different models ranging from minimal ones, which can be solved exactly,
to an extended tight-binding model compared to the one from Chapter 7,
where the effect of interactions is introduced in a perturbative fashion.
As we will see, this extended model allows to predict spectra that have a
close resemblance to those obtained in the measurements.

8.1 Modeling the effect of Coulomb
interactions . . . . ......... 108
8.2 Comparison with experimental
data.................. 114
8.3 Thoughts on the model & link
with atomic physics . ...... 118

[54]: Cafiadas et al. (2021), ‘Signatures of
interactions in the Andreev spectrum of
nanowire Josephson junctions’
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8.1 Modeling the effect of Coulomb
interactions

8.1.1 Estimations on e-e interactions and their effect

Coulomb interactions in the nanowire weak link are expected to be
strongly screened by the nearby metallic electrodes, by free charges in
the nanowire and by the substrate. They can thus be approximated by a
contact potential

V= 12 / drdd W ()W, (¢ )u (e—t )W o ()W, (1), (8.1)
WL

2 0,0’

where u(r—1’) = 1p0(r—r’) is non-zero only for r, ¥ in the junction region
and W, (r) are the field operators for electrons with pseudospin ¢ in the
wire. The typical junction dimensions (length L ~ 500 nm and diameter
W ~ 150 nm) and the fact that a few conduction channels might be
contributing to transport suggest that a 3D screening model should
be appropriate. Within a Thomas-Fermi (TF) approximation we have
u(7) ~ e 171/ATe /||, where Aty is the screening length and thus

w_ @ [Tt 8.2
u = TT rr = T . .
0 4mepe, ‘/0 7 dnepe, ¥ 8.2)

On the other hand, the TF screening length can be estimated as

ap m
8 m*

Atr = €oer/(e?pF) = €A, (83)
where pr = (2m* | h?)*2\EF /(2?) is the 3D density of states with Er
the Fermi energy, ap = 4rtegh? /(mee?) ~ 0.05nm the Bohr radius, Ar the
Fermi wavelength and €, ~ 15 the dielectric constant of InAs. As the
data presented in the previous chapter suggest, Ar should correspond to
a situation where a second subband starts to be populated,ie. Ap ~ W ~
100 nm, which gives Atg ~ 20nm using Eq. (8.3). Thus, as Atp < W, a
3D model is indeed justified. In our TB calculations however, the wire
was modeled as a planar quasi-1D geometry. This 2D 1 can be deduced
by up = uS’D /W. From Eq. (8.2), we estimate the uy parameter relevant
for our galvanic coupling device (see Figure 10.1(b)) to be of the order of
1y ~ 3 éV.nm?, a value similar to what was estimated in Ref. [96].

Some insight on the effect of interactions on the energy of Andreev
excitations can be obtained by considering the random matrix theory
analysis of Ref. [97] for an isolated mesoscopic grain. In that work it was
shown that an interaction as in Eq. (8.1) leads to an effective exchange
interaction —J §2, where with § is the total spinand | ~ 2uy/A, A being
the area where the states are localized, which is of the order of 0.1 ymz
in our experiments; leading to | ~ 60 eV (i.e. ~10 GHz). As suggested
in Ref. [98], such an interaction would lead to a splitting of the bundle
of four mixed pair transitions at 6 = 0 into a degenerate triplet at lower
energy and a singlet state lying roughly 2] above. This rough analysis
is in agreement with the splitting into a triplet and a singlet seen in the
spectra of Figs. (7.1,7.3,7.4), but it fails in explaining the breaking of the
degeneracy of the triplet lines.

[96]: Manolescu et al. (2014), ‘Coulomb
interaction effects on the Majorana states
in quantum wires’

[97]: Kurland et al. (2000), ‘Mesoscopic
magnetization fluctuations for metallic
grains close to the Stoner instability”

[98]: Padurariu and Nazarov (2012), ‘Spin
blockade qubit in a superconducting
junction’
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8.1.2 Exactly solvable four-sites TB model

The TB Hamiltonian introduced in the previous chapter can be adapted
to include the effect of interactions in the central normal region N
by adding in Eq. (7.1) a Hubbard-like term Hint = Xijen,c Uitti o 1,7,
while assuming perfect screening in the superconducting regions. Here,
Nice = C;T,UC,‘,T/O represents the number of electrons with pseudospin o
onthesite (7, 7). As was done in Section (7.2.2), discretizing the continuous
model and setting a given value a, ,, for the lattice spacings in the x, y
directions allows to get estimates for the model parameters appropriate
for InAs wires coupled to Al leads. Similarly, the U; value, taken for
simplicity as a constant U in the normal region, can be related to the
above 1 estimate by U ~ 19/(axay). To make contact with the standard
jargon commonly used to describe charging effect in nanostructures, one
can also define here an effective charging energy of the normal region
when disconnected from the leads EEH =uy/AN, where Ay denotes its
area.

Unfortunately, this TB model cannot in general be solved exactly in the
presence of interactions. In Refs. [64, 50], the nanowire weak link is de-
scribed in terms of a quantum dot (QD) coupled to two superconducting
leads, which amounts to taking a single site in the normal region, with
adjustable couplings to the superconducting leads. Such a situation is
generally analyzed in the literature by means of an Anderson model
where a single level with Hubbard-like interaction is connected to the
leads. Although this allows to account for some of the observed effects
[50], it is not able to describe the experimental situation tackled in the
present work, where at least two spin-split ABS manifolds are neces-
sary to account for the experimental data. In addition, the coupling of
transverse modes due to spin-orbit interactions is essential to explain
the splitting of SQPTs, as already commented in the previous chapter. In
order to incorporate both the finite-length and multi-channel ingredients,
a minimal model includes 2 sites both in the longitudinal and transverse
directions. We therefore restrict the normal region of our TB model to
four sites only, two in the longitudinal direction and two in the transverse
one.

Figure 8.1: Sketch of the four-sites tight-binding model. The grey shading represents the
effect of the superconducting leads projected into each site. This is achieved through the
effective singlet and triplet pairings I's and I'; (grey arrows and lines) between electrons
(thick, black arrows), which have onsite energy €; ;. Other lines depict the spin conserving
(thin black) and spin flipping (thin green) hoppings. Finally, the interaction is represented
with the gain in energy +U when a site is occupied with two electrons.

[64]: Kurilovich et al. (2021), “‘Microwave
response of an Andreev bound state’
[50]: Fatemi et al. (2021), ‘Microwave
susceptibility observation of interacting
many-body Andreev states’

[50]: Fatemi et al. (2021), ‘Microwave
susceptibility observation of interacting
many-body Andreev states’
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To include the superconducting leads in a simplified manner, one can
take the infinite gap limit* A; — oo, as suggested in several works on the
superconducting Anderson model [99, 100]. By projecting the effect of the
superconducting pairing in the leads into the central four sites (denoted
by @ = L, R (left,right) and T = * (top, bottom)), the infinite system is
mapped onto a simple “superconducting molecule” with a finite number
of electronic configurations and can be diagonalized exactly’. One obtains
the following effective pairing model :

20 Toach qch o+ (8.4)

a,T=%

. P .
! Z I'ta (Ca,+,TCa,—,T Ca,+,lca,—,i) +he,
o

Hpairing

where I's , and T’ , are effective singlet and triplet pairing amplitudes
for the a=L, R sites arising from the combination of s-wave pairing and
spin-orbit interactions in the multi-channel leads. A sketch of such an
effective model is provided in Figure 8.1.

While in the single-level model the infinite gap limit leads to an induced
local singlet pairing in the dot, for the case of the multi-channel spin-orbit
coupled lead one expects both local singlet and non-local triplet pairings to
be induced on the central region, the amplitude of which being indicated
here by I's; and I';. Obtaining their expressions in terms of the bare model
parameters would require the calculation of the leads boundary Green
functions [101] in the A; — oo limit. While this calculation could be
affordable using the techniques of Ref. [101], in the present work we just
consider I's ; as tunable effective parameters.

Splitting of the mixed pair transitions

For this minimal four-sites model, the scaling used to determine the
parameters in Eq. (7.1) is not expected to hold. However, setting reasonable
parameters (e.g. €, /2=I's=—t,=—t, and I''=a,=a,=0.8[), we get the
typical results shown in Figure 8.2. As expected from the previous
considerations, Coulomb interactions do lift the degeneracies of the
mixed pair transitions at 6 = 0 and 7. Moreover, in contrast to the simple
argument based on the emergent exchange interaction, which splits the
transition lines into triplet and singlet [98], we observe here a complete
splitting of the four lines, as illustrated in Figure 8.2(b). This is due to
the presence of a significant spin-orbit interaction which breaks spin
symmetry.

* For finite A, the weak link region is coupled to both the Cooper pairs, which lie at the
Fermi level and are responsible for the proximity effect, and to the quasiparticles in the
leads, which give rise to conduction electrons excitations with energies higher than the
gap. In the large A — oo limit, the quasiparticles are far in energy and their coupling to
the weak link vanishes, which greatly simplifies the physics and makes an exact solution
possible. However, as the weak link is still coupled to the Cooper pairs at the Fermi level,
the proximity effect survives, manifesting as induced pairing terms in the central region
of the weak link. When considering physics at energies E < A, the effective Hamiltonian
that is obtained gives a qualitatively good description of the behavior of the full model,
as will be shown below.

t Although the full four-site model is not quadratic (Eq. (8.4) describes only the pairing
terms, but the total Hamiltonian also contains the onsite Hubbard like terms, which are
quartic in the fermionic operators), one can perform numerically an exact diagonalization.

[99]: Vecino et al. (2003), ‘Josephson
current through a correlated quantum
level’

[100]: Meng et al. (2009), ‘Self-consistent
description of Andreev bound states in
Josephson quantum dot devices’

[101]: Alvarado et al. (2020), ‘Boundary
Green’s function approach for spinful
single-channel and multichannel Majo-
rana nanowires’
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Figure 8.2: Transition lines within the four-
site model without (a) and with (b) the
effect of Coulomb interactions. Within this
model effective singlet and triplet pairing,
characterized by parameters I's and I},
arise by assuming A — oo in the leads.
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ay,,=0.8, I;=0.8,

Figure 8.3: Phase diagrams of the four-sites model in the U—€ and I's—€ planes, with and without SO respectively in the right and left
columns. The white dashed lines in the upper (lower) row correspond to the values of U (I's) used in the lower (upper) row. The white point
in the upper right figure corresponds to the parameters used for Fig. 3 in the main text (hopping parameters ¢y , are fixed to —1).

On the other hand, the inter-manifold SQPT lines do not splitat 6 = 0, 7t
but are rather shifted to higher energy. This is because these crossings are
protected by time reversal symmetry (see Appendix B), which leads to a
Kramers degeneracy for odd states even in the presence of interactions.
As for the shift to higher energy, it can be understood as a consequence
of level repulsion between the lower and upper Andreev manifold
when coupled through Coulomb interaction. In contrast, no Kramers
degeneracy is granted for even parity excitations, which explains the
splitting of the mixed transitions. Finally, notice that the weak link
effective charging energy in Figure 8.2(b) is ESf = U/4 = Ty, i.. of
the order of the pair transition amplitude, therefore much lower than
A. Within this interaction range, the ground state parity is expected to
remain even, meaning no 0—7t transition.

Phase diagrams of the four-sites model

To get an idea of the main properties of this model we show in Figure
8.3 phase diagrams for different parameter choices. If the normal region
of the nanowire was to become more isolated from the leads, we would
expect a QD-like behavior. The most typical feature that arises from the
interplay of the superconducting pairing, the Coulomb interaction and
the coupling with the leads, is the transition to a m-junction behaviour
where the ground state (GS) changes parity. In Figure 8.3 the colors
indicate the phases “0”, where the GS is even for any 6 and the absolute
minimum is at 6=0 (dark blue); “rt”, where the GS is odd for any 6 and
the absolute minimum is at 0=m (red); and “0’” and “7i’” (bright blue
and yellow), which are intermediate phases similar to the previous ones,
but where the parity of the GS is not the same for all 6.

The top row shows diagrams in the U —¢ plane, where a “0” background
develops vertical and diagonal regions with different phase at sufficiently
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Figure 8.4: Evolution of the transitions in the four-sites model with phase difference (white background), SO (pink) and interaction (yellow).
From left to right, it starts displaying the evolution in phase difference 6 without SO nor interaction (a), then it includes interactions at 6=
(b), and evolves again in 6 (c). In (d), it includes SO at 6=0, then evolves in 6 (e) and starts removing the interaction at 6= (f). Finally, in (g)
it shows the evolution in 6 with SO but without interaction. Fixed parameters are €; ;=1.5Is, ty=2t,=—T’s. The higher PT to the second

manifold is not shown because for these parameters it cannot be distinguished from other mixed PTs involving higher manifolds.

high value of U. Their structure is similar to the diagram associated to
linear arrays of quantum dots between superconducting leads [102] when
the number of dots is 4. As discussed in that reference, for a sufficiently
large fixed interaction and weak coupling to the leads, the GS alternates
parity as the dots filling increases (i.e. for increasing —e€). The figures in
the bottom row are diagrams in the I's—e plane, displaying 0’ regions
with inverted “U” shapes that connect odd valleys. As can be observed
in the right lower panel these regions become distorted when spin-orbit
interactions is switched on.

Interplay between Rashba spin-orbit & Coulomb interactions

The rich structure of the transition spectrum, characterized by the 4-fold
degeneracies at phases 6=0, 7t of the odd transitions and the full splitting
of the even ones, emerges from the presence of time reversal symmetry
and the combination of spin-orbit coupling with Coulomb interaction.
Let us describe progressively how these ingredients affect the ABS energy
spectrum. Their consequences on the evolution of the transition lines is
summarized in Figure 8.4.

In the situation without spin-orbit nor Coulomb interaction (Figure
8.4(a)), the four ABSs of lowest energy, which correspond to the odd
states with 1 quasiparticle, consist of two manifolds, which are spin-
degenerate for all 6 (green line). In the even sector, there are 6 states
made of 2 quasiparticles: 2 states where both quasiparticles are in the
same manifold with opposite spin (they give rise to pair transitions from
the ground state, the lowest one being shown in red), and 4 degenerate
states where each quasiparticle is in one different manifold (these give
rise to mixed pair transitions, shown in blue). When the interaction is
introduced (Figure 8.4(b,c)), the odd states remain degenerate, while the
mixed even states split into a singlet and a triplet. This behaviour stems
from the spin rotational symmetry, encoded in [Ho+Hjy:, Si]=0, since
for any state with certain energy and spin, there is another state with
the same energy but with rotated spin (same total spin, different spin
projection) (Figure 8.4(b,c)).

[102]: Bergeret et

al. (2007), ‘Josephson

effect through a quantum dot array’



8 ABS in presence of Coulomb interactions

In the non-interacting situation with spin-orbit (Figure 8.4(g)), relevant
for long multi-channel weak links, spin is no longer a good quantum
number. This allows for a splitting at almost all values of 6. However, time
reversal symmetry imposes some constraints. First, since 6 is 2m-periodic
and ultimately originates from a magnetic flux, we have, respectively,
H(6+2m)=H(6) and 7 H(5).7 "'=H(-0), so the spectrum over § must
be mirror-symmetric around 6=0, 7t (this constraint also applied for the
previous situation without SO). Second, since in the odd states there is
always at least one unpaired spin and .7 reverses it, there must be pairs
of odd states with the same energy (Kramers degeneracy), as already
discussed in Section B. Mixed even states inherit this degeneracy when no
interactions are present, but in presence of interactions, nothing prevents
the splitting (Figure 8.4(d-f)).

8.1.3 Perturbative resolution of the extended TB model

The four-site model is a minimal one that incorporates the multichannel
character and the finite length of the junction while being amenable to
exact diagonalization including the Hubbard terms. While it provides
insight into the effect of interactions on the subgap states, it is based on
the unphysical assumption of an infinite gap in the leads. The calculated
energies not being referred to the gap energy, no quantitative comparison
with experimental data can be reached. To counter this, we now introduce
an extended TB model for which such a comparison becomes possible
using realistic values for all the model parameters and that allows, in
addition, to take higher energy levels into account.

To go beyond the four-site model, we use the eigenstates of the non-
interacting Hamiltonian from Eq. (7.1) to write the interaction Hamil-
tonian Hin¢ in terms of the Bogoliubov operators y;,. This is performed
through the inverse Bogoliubov transformation ¢; r,; = X514 ,”T GVnt

vﬁ’;g y!, where n>1 refers to states with positive energy and (u/ ZJ)I .0 are
the (electron/hole)-like coefficients of the non-interacting wavefunctions.
Assuming weak interactions, we may project Hlm to the subspace of states
with zero (|GS)), one (y}|GS)), and two (y}7},|GS)) quasiparticles on
the Npr lowest energy levels (i.e. n, m < Npr). Due to parity conservation,
we end up with effective Hamiltonians in the even and odd sectors that

can be diagonalized exactly.

The eigenstates @,, of the non-interacting model are calculated by diago-
nalizing the corresponding Bogoliubov-de Gennes Hamiltonian

14 A
HpicPu=E Py, Ho=§‘I’+HBdG‘I’, (8.5)

where ®=(31,1, 61,2, é\2,1, é\2,2, -~-)T, 6i,T:(CiTT/ Citl, C:LTl, - :rTT)T and we
parametrized the eigenstates as (O, )iT=(u’1 oy M?T I I”T " —vZT ). The quasi-
particle operators that diagonalize Hy are related to the e1genvectors by
yp=0!\W & W=3, ®,7,, and the electron-hole symmetry 1mp11c1t in
the BAG formalism, that relates states with opposite energy ()/n—y_n,

E_,=-E;), allows to write it in terms of the quasiparticle operators of
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5V, =0 BV, =-8.9 mV BV, =-13.8 mV BV, =-18 mV BV, =-23.5mV

d5Q(mV)
0.4

0 1 2 0

1 1 1
§/m 8/m §/m §/m §/m

Figure 8.5: Experimental results showing microwave two-tone spectra as a function of phase difference (6) for a sequence of decreasing gate
voltages Vg = 5.563 V+06V,. The gray scale represents the change of one quadrature of the measured signal when the drive signal at f is
applied. Both measurement and drive tones are applied simultaneously. Each pixel corresponds to averaging over 150 ms. The color lines on
the right half of the spectra are guides to the eye indicating what we identify as single-quasiparticle (green), pair (red) and mixed pair (blue)
transition lines. Note that a second group of SQPT is visible around 20 GHz; it likely corresponds to single-quasiparticle transitions from
the first to the third Andreev doublet (not highlighted here).

states with positive energy:

Ho=Egs + D ,Enyhyn, (8.6)
n=1
where Egs=1/23,<-1 E, is the energy of the ground state (GS), in
which all states with negative energy are occupied. Thus, quasiparticle
excitations over the GS of e.g. 1 and 2 quasiparticles are represented by
yIGS) and yiy!|GS) (n, m>1), satisfying y,|GS)=0.

Interactions are then introduced by projecting Hj,; into the many-body
states with zero (GS), one and two quasiparticles excitations of lowest
energy (1, m<Ny,). This requires the calculation of cumbersome expec-

tation values such as (GS|yi, Vi, )/S? )/,(1?7/,(1?)/2))/}1 y}; |GS), which can be
efficiently computed using the QuantumAlgebra. j1 package [103]
written in JuLia.

8.2 Comparison with experimental data

Let us now demonstrate how this extended TB model can be used to
describe complex Andreev spectra measured on sample S2. We concen-
trate here on a series of microwave two-tone spectra taken successively
in a narrow range of gate voltage V, (see Figure 8.5). Over the series, we
recover the same generic features which were observed in the spectra
from Figs. 7.1,7.3, and 7.4%. Namely, there are groups of four lines, such
as the ones highlighted in green, which cross at phase 0 and 7, and are
identified as SQPTs. One also finds regular, almost sine-shaped lines,
highlighted in red, attributed to PTs. Finally, there are groups of four
lines highlighted in blue, behaving similarly to the four unidentified
lines discussed in the previous chapter. We show in Figure 8.6 that, like
Figure 7.1, the dispersion of the blue lines resembles, close to 6 = 7,
half that of the lowest pair transition, plus an offset. The “camel-back"

¥ This series of spectra was measured during a different cooldown of the galvanic coupling
sample and therefore cannot be related to the gate evolution shown in Figure 7.2.
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oVy=0 6Vy =-8.9 mV Vg =-13.8 mV Vg =-18 mV &V, =-23.5mV
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Figure 8.6: Evidencing the mixed PT character of the unidentified lines. Red and blue lines are the splines overlying the data in Figure 8.5.
Dashed red lines are obtained by taking half the frequency of the red lines, and shifting vertically. This shows that, around 6 = 7, the
dispersion of the mixed pair transition has a curvature close to half that of the lowest pair transition.
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Figure 8.7: Evolution with the weak link effective charging energy ES® of the spectral lines as a function of phase difference & as obtained
from the extended TB model with 31 sites in the x-direction (11 in the normal region) and 3 transverse chains, describing a junction with
length ~ 550 nm and width ~ 200 nm (TB parameters are given in the caption of Figure 8.8). Full lines correspond to the main inter-manifold
SQPT (green), lowest PT (red) and mixed PTs (blue). The faint lines correspond to secondary transitions (i.e. from the first to the third or
from the second to the third manifolds, intra-manifold and higher PTs). Excitations up to Npr = 12 are included in the effective interacting
Hamiltonians. Rightmost panel are the data of the central panel of Figure 8.5 shown for comparison.

phase dispersion near 6 = 0, 27 seen in Figure 8.5 for the topmost blue
line at 6V, = —13.8 mV is also very reminiscent of the one observed
in the spectra of Figs. 7.4 and 7.1. The spectra measured at 6V, = —8.9
and —23.5 mV also show a clear separation of these lines into triplet and
singlet, as was observed in Figs. 7.1, 7.4.

We searched for a set of parameters that best reproduce the central spec-
trum of Figure 8.5, in which the full dispersion of the mixed transitions
in blue is visible. The result is shown next to the data in Figure 8.7. Most
features of the spectrum, both for the relative frequencies of the transition
lines and for their shape, are essentially reproduced. In particular, the
camel-back dispersion of the upper mixed pair line around 6 = 0, absent
in a non-interacting model, is well captured here. It should be mentioned,
however, that these spectra are extremely sensitive to microscopic details
in the potential profile, which are completely unknown for an actual
experimental realization. Although an exact fit of experimental spectra
with our extended TB model is not expected, many features of our com-
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Figure 8.8: Transitions from the extended TB model for increasing values of N to include progressively higher states. Parameters are the
same as in Figure 8.7 with E?ﬂ = 19.0 peV: NiitesN = 11, Niitess = 10, 4=0.14 meV (in the N region), A=0.2 meV, L=550 nm, ay=L/NitesN,
ay=100 nm, a/2=11 meV.nm=ayax=ayay, to=h?/2m* (m*=0.023m.), (€1n,€2n, €an)=(1.2,1.1,0.8)-2t0/a2, e1g=€rs=€35=2t0/as—A,
(txN, txs)=(=0.85,~1)-fo /a3, tyn=tys=—to/ay. Impurity position: site 3 of N region, (€impt, €imp2, €imp3)=(0.6,0.75,0.75)-2to /a>.

plex spectra are reproduced. In the other panels of Figure 8.7, we show
how the spectrum evolves when changing only the Coulomb interaction
strength, expressed in terms of an effective charging energy ES for
the weak link. As in the case of the four-site model from Section 8.1.2,
the most remarkable effect of interactions is to lift the degeneracies of
the mixed pair transition lines at 6 = 0, 7. One also observes how the
mixed pair transitions split into a triplet at lower energy and a singlet at
higher energy, reminiscent of the triplet/singlet separation predicted in

Ref. [98]. The inter-manifold SQPT lines are shifted to higher frequency [98]: Padurariu and Nazarov (2012), ‘Spin
without breaking their characteristic shape, which clarifies why they ?locfad,e qubit in a superconducting
junction

could already be identified and fit within the non-interacting theory
previously described (see Chapter 6).

Asasanity check, we show in Figure 8.8 how the results using E¢f=19 eV ~
A/10 converge with the number of states N,, on which the interaction
is projected. Little change is observed for N, > 8. For larger interac-
tion strengths, a larger mixing with continuum states occurs and the
convergence with Nj,, becomes slower.

Assupplemental data, we show in Figure 8.9 the evolution in the excitation
picture of the energy spectrum of quasiparticle states as a function of
E¢ff, as obtained from the extended TB model for the parameters of
Figure 8.7. Green curves correspond to states with an odd number of
excitations, while red ones are associated to states with an even number.
In particular, we highlight in thick lines the states involving the lowest
four ABS, out of which the SQPT, PT and mixed PT lines shown in Figure
8.7 arise. The green lines represent the evolution of the ABS spectrum
as the interaction strength is increased. It shows that the degeneracies
at 6 = 0, 7 are indeed preserved and that the spin-split ABS manifolds
slightly repel each other, resulting in an increase of the SQPT frequencies,
as mentioned previously.

Above the first set of mixed states around Eexc = 0.6A (involving
excitations in both first and second ABS manifolds) the spectrum shows
a very busy structure. In particular, the topmost thick red line around
Eexc = 0.8A corresponds to the state with two quasiparticles in the
second ABS manifold. As interactions are introduced, it starts mixing
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Figure 8.9: Energies of the quasiparticle states in the extended TB model as a function of the weak link effective charging energy

Parameters are the same as in Figure 8.7. (a) States energies in the excitation picture, obtained by diagonalization of the extended TB
Hamiltonian. Green (resp. red) lines correspond to states with an odd (resp. even) number of excitations. The set of green curves therefore
represents the (one particle) ABS spectrum and how it evolves as the interaction strength is cranked up. We show all 12 ABS levels appearing
for this set of TB parameters ; the states involving the lowest four ABS are highlighted with thick lines. Differences between these energies
give the transition spectra shown in Figure 8.7. To keep the same energy axis and compare the spectra, the energy of the lowest state at
0 = 0 was substracted to the spectrum for each value of E‘C’ff . (b) Energies of all many-body states |®) arising by creating excitations in the
12 possible ABS. The spectrum is the same as in (a) except that we added to each curve the energy of the non-interacting ground state
Egs = —1/2¥X,,<=12Eexc,n Obtained by summing the energies of all 12 ABS (green lines in panel (a) for E?ff = 0). The continuum is expected
to add only an offset with a small phase dependence and is therefore not included in the sum.

with other even parity states, resulting in a complex line shape which
makes its identification complicated. In particular, its phase dispersion
is strongly modified compared to the regular one expected from a non-
interacting model, as was shown in Figure 6.2. This illustrates why,
even in microwave spectra associated to long weak links, where the
pair transition to the second ABS manifold is expected to show in the
measured frequency window, it is never identified as such. Only the
lowest PT, SQPT and the first set of mixed PT are generally well visible
and decoupled from the higher sets of transitions.

The energies of the many-body states involving excitations in the lowest
two ABS manifolds are plotted in thick lines in Figure 8.9(b). They were
obtained by adding to the states energies in the excitation picture from
panel (a) the quantity Egs, corresponding to the sum of the energies of
all 12 subgap states being occupied in the non-interacting ground state.
As the continuum is expected to add only an offset with a small phase
dependence, it is not included in Egs. Remarkably, we observe that for
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this TB parameters, a 0 — 7t transition is almost realized for ESf = 7.5 peV:
at this value, the energy at 6 = 1 of the even-parity ground state (lowest
thick red line) almost equals the one of the lowest energy state of odd
parity (lowest thick green line). More work is needed to understand how
such transitions would occur.

8.3 Thoughts on the model & link with atomic
physics

Nanowire weak links offer a remarkable platform to observe in a tun-
able and controlled manner electronics many-body effects beyond what
can be achieved with real atoms. Our microwave spectra reveal a rich
interplay between spin-orbit physics and Coulomb interactions in the
semiconducting region, which shares conceptual similarities with the
spectra of real atoms. While the spectrum of hydrogen can be effectively
modeled with a small number of parameters, we may wonder how many
such parameters are minimally needed here to account for the generic
features of our nanowire spectra.

As discussed above, the ingredients that matter are the finite length, at
least two transverse channels, spin-orbit coupling and interactions. All
these are required to account both for single-quasiparticle transitions
and mixed pair transitions. Therefore, as argued before, a minimal model
should include at least 2 longitudinal and 2 transverse normal sites
between the two superconducting reservoirs, which is precisely the
four-sites model introduced in Section 8.1.2. To incorporate the effect of
disorder in the normal region, including one scatterer in a longer TB
model is the least one can do. By adding more longitudinal sites and
several scatterers, our extended TB model from Section 8.1.3 allows to
reproduce correctly the measured spectra on the qualitative level, which
comforts our understanding. This is at the price of non-analytical results,
but has the credit of grasping the main effects that are relevant to account
for our series of measurements. With additional parameters, one would
probably be able to reach a quantitative fit of the spectra, but one would
not gain more physical insight into the physical phenomena that are at

play.
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State readout & time-resolved
measurements

In Chapter 4 we developed a general framework to model the coupling
of a phase-biased weak link with a microwave resonator. As a result of
this coupling, the resonance frequency of the coupled system depends
on the occupancy of the ABS levels in the weak link. In the limit of
weak coupling, this manifests as a state-dependent shift of the resonator
frequency around its bare value. By probing the resonator, one can
therefore track the many-body state of the weak link, which is encoded
in the resonator frequency shift.

So far, we focused on continuous probing of the resonator, where only
the frequency of the readout microwave is varied. When associated
to a second microwave tone to drive transitions between ABS, this
allows to perform the microwave spectroscopy of the weak link and gain
information on the level structure of the Andreev "atom". In Chapters 6,
7 and 8 we reported such spectroscopy on InAs nanowire weak links
and used it to evidence the fine structure of the ABS levels and the role
of Coulomb interactions. We described a general recipe to compute the
resonator shift associated to any many-body state of the weak link and
applied it to model the resonator shifts in two-tone spectra.

Let us now discuss time-resolved (=pulsed) measurements. As illustrated
in Figure 4.7, the Andreev "atom" hosted by finite-length weak links is
inherently a multi-qubit system, due to the presence of many ABS levels
in the gap, which makes the system very rich. One generally seeks for
simple situations, where the weak link hosts at best one or two high
transparency channels such that the spectrum of excitations exhibits
only a few well-isolated transition lines. Once a given transition has been
identified among the many lines present in the spectrum, one can attempt
to manipulate the states corresponding to the transition as a qubit using
sequences of time-resolved microwave pulses. Those generically involve
a sequence of drive pulses, used to prepare the qubit in a given state,
followed by a readout pulse on the resonator to measure the resulting
state of the qubit. As discussed in Figure 4.7, the four lowest-lying many-
body states of an Andreev "atom", labelled {|g), |0 |}, |o T), |e)}, allow
to implement both an Andreev pair qubit (|g) — |e)), and an Andreev
spin qubit (o |) — |o T)). While the former involves a pair of excitations
and therefore deals with the weak link’s charge, the latter corresponds to
manipulating the spin state of a single quasiparticle trapped in the lowest
ABS level.

After a reminder on state detection and single-shot state readout, we
present in Chapter 10 results on an Andreev pair qubit (APQ) and review
in Chapter 11 preliminary results towards the spin manipulation of a
single quasiparticle.

9.1 State readout from transmission
measurements . ..........
9.2 Time evolution of the resonator
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9.1 State readout from transmission
measurements

Before delving into complicated math, let us start by sketching in a few
words the idea behind state readout. As discussed previously, to track
the many-body state of the weak link, one has to monitor the resonance
frequency of the resonator to which it is coupled. Instead of measuring
explicitly its resonance frequency, another possibility which is quicker
to implement is to couple the resonator to a bus line in a notch-type
geometry (see Figure 9.1(a)) and to measure the transmission Sy;(w)
through this line of a microwave tone at a fixed angular frequency w,
chosen close to the bare resonator frequency wg. The transmitted signal
will therefore depend on wy and whenever the state of the weak links
changes, the associated shift dwq of the resonator frequency will modify
the amplitude and phase of the transmitted signal, which we can then
use as a marker of the weak link state. In the best scenario, amplitude and
phase signatures will be enough to discriminate amongst the different
many-body states of the weak link, so that a single-shot measurement
will allow to unambiguously determine the actual weak link state.

As discussed in Section 5.2.3, Eq. (9.1), the complex scattering parameter
for such a two-port network can be written:

Q/Qext ]
1+2jQ(w/wp—1)V

Sor(w) = ael@™ [1 - ©.1)

with wy the resonance frequency, Q the loaded total quality factor of
the resonator, a > 0 some real-valued amplitude capturing attenuation
and gain factors in the measurement setup and 7./ the electrical delay
in the probe cables. As illustrated in Figure 9.1(b), the amplitude of
the scattering coefficient shows a dip at wp and a jump in its phase.
Introducing the parameter & = Q/Qext = Qex%erm , the reduced frequency
Y = (w — wo)/wp, one can rewrite Eq. (9.1) in a way that makes explicit

the shape of this function in the complex plane:

a
Sa(y) o<1 - T+2j0y 9-2)
_[1=2/Qy  2jQy ]
1+2jQy  1+2jQy
- 2jQy
_ 1 _ i0
=1 “[e "1 +2jQy]’
where 6 = —2arctan (2Qy). Then, rewriting the second term in the
bracket % =1-1/(1+2jQy) =1- (1 - Sz)/a, we obtain:
Sy = 1—6\{(1+€i6)+1—521
=Sy =1- %(1 + 1), 9.3)

One recognizes in Eq. (9.3) the parametric equation of a circle of radius
@ /2 and center 1 — /2 in the complex plane, which is also commonly
called "IQ-plane" in reference to homodyne demodulation technique: the
"In-phase" ("Quadrature") component is the real (imaginary) part of the
complex amplitude of a demodulated signal. This is illustrated in Figure
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Figure 9.1: (a) The quarter-wave resonator
is notched-coupled to a bus line. Its com-
plex transmission coefficient S»1 depends
on the resonator frequency which itself
encodes the many-body state |¥) of the
weak link coupled to it. (b) At resonance,
the transmission coefficient shows a dip
in amplitude and a jump in its phase. (c)
IQ representation of the tranmission coef-
ficient. Each many-body state |¥) of the
weak link is mapped to a point on the
circle.
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9.1(c), where we represent parametrically the I and Q quadratures of
the transmission coefficient Sy;(w) given in Eq. (9.3). If we now measure
the I and Q components of Sy; at the bare frequency of the resonator,
any shift of its resonance frequency will be mapped to a point on this
circle. The resonator and its coupling to the external lines should then be
designed in such a way that the many-body states we want to resolve are
maximally separated on the IQ circle.

Since the circle radius is given by «, to maximize its size, one should
therefore choose Qext < Qint. This condition is generally verified in
practice when fabricating resonators out of superconducting materials:
internal quality factors of several millions [104] have been achieved
with aluminium resonators on low dielectric-losses substrates. The total
loaded quality factor will therefore be limited by the external losses
captured by Qex and determined by the coupling of the resonator to the
external bus line. This coupling should be chosen such that the resonator
linewidth Awp = wo/Qext is comparable to the expected resonator shifts
6a)(|)\y> associated to the weak link’s many-body states |V) that we want
to resolve. These constraints on the design were already discussed in
Section 5.2.3.

Before moving on, let us note that for a reflection type of measurement,
for which the scattering parameter being probed is this time S11, one also
obtains a circle in the IQ plane but with a radius twice larger [21]:

Su(y) =1-a(+e'). (9.4)

This factor 2 gain in the SNR can make reflection measurements more
appealing than transmission ones. However, other difficulties may ap-
pear with reflection measurements, related in particular to the limited
performances of available directional couplers, which are commonly
used to route input/output signals in a reflectometry experiment. Due
to their low directivity, part of the output signal is polluted by the small
leakage through the coupler. This parasitic signal interferes with the one
reflected from the resonator, and does not carry any information.

Physically, this factor 2 can be understood as follows: among the photons
reflected off the resonator, only half of them are effectively routed through
the output port, the other half being back-scattered towards the input
port. In contrast, a reflection measurement only makes use of a single
port, and all the reflected photons are recovered. One way to bypass both
the factor 2 constraint on the SNR for a transmission measurement and
the limitation in directionality for reflection measurements is to perform
an asymmetric transmission measurements, whereby the input/output
ports are asymmetrically coupled to the resonator [105] [106]. Making the
output port very well coupled ensures to recover most of the reflected
photons, while keeping the input port weakly coupled so as to minimize
the perturbations from the environment.

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’, p. 38

[106]: Bienfait (2016), ‘Magnetic resonance
with quantum microwaves’, p. 62

[105]: Heinsoo et al. (2018), ‘Rapid
High-fidelity Multiplexed Readout of
Superconducting Qubits’
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9.2 Time evolution of the resonator fields

To gain insight on the state readout through the resonator, an interesting
situation to describe is the response of the resonator to a square pulse
oscillating at an angular frequency w = wy. For simplicity, we will first
investigate the response to a step-like excitation, which corresponds to
the limiting case of a square pulse of infinite duration.

9.2.1 Step-like excitation: resonator response

Let us model the readout pulse by a step-like excitation of real amplitude
Ap and angular frequency w:

Vin(t) = Age/®" - O(t), (9.5)

where O(t) denotes the unit-step Heaviside function and we use a
complex amplitude notation to simplify the following math. So as to
probe the resonator response, the angular frequency w of this input pulse
is chosen close to the frequency wyg of the resonator, which we are now
going to refer to as "the cavity", as its readout amounts to "load" it with
photons. We introduce the detuning €, counted in number of linewidths
away from the cavity resonance frequency wy, so as to keep it a reduced

parameter: w = wg (1 + 6) The time evolution of the outgoing pulse is
readily obtained by Fourier transform:

Vout(t) = ng_1{Lg.{vm(t)} : SZl(a})}
= (Vin * h)(t), (9.6)
where h(t) = Z{Sy(w)} is the impulse response of the two-port

network and * denotes the convolution operation. This impulse response
is easily computed by inverse Fourier transform of Eq. (9.2):

o F1

Son(w) = 1 > h(t)=o(t) - %e*%efwof e,

- 1+ jt(w — wo)

(9.7)
where we introduced the relaxation time of the cavity T = % = 2, with
« the total loss rate of the cavity given by the full width at half maximum
(FWHM) of the resonator line. In this terms, the angular frequency of
the input pulse reads w = wp + k€. From Egs. (9.6, 9.7), we deduce the
time evolution of the outgoing pulse:

Vout(t) = AOU(t) (9.8a)

o(t) = el [1 -1 +a2],€ (1 - e_%e_f"et)] -O(t). (9.8b)

Writing Vout(t) = (Iout _onut)AOijt -O(t) = (Iout _]'Qout)vin(t)/ we can
identify the time evolution* of the pulse coordinates {Iout, Qout} in the
rotating frame at w, using that —4— = ———¢~/arctan 2¢),

1+2j€ ™ \1+4e2

*The minus sign in Vou comes from the +w convention in e/t This way,
Vin(f) = Re[Age®t] = Agcos(wt) gives Vout(t) = Re[(I — jQ)Agei“’t] =
Ap(I cos(wt) + Qsin(wt)) and we recover the usual definition of the in-phase/in-
quadrature components of a modulated signal.

123



9 State readout & time-resolved measurements 124

Kt

a ae” 2 )
Low(t) =1- I 4€2 T 4 5 [cos (xet) — 2e sin (Ket)]
(9.9)
ew ae
Qout(t) = pn 4(—:2 T a2 [26 cos (ket) + sin (Ket)]

The complex amplitude Aoyt = Iout — jQout can be seen to move at an
angular frequency w —wg = k€ ona circle of center A7, and time-varying
radius R(t), given by Aou(t) = AZ, + R(t)e /<t w1th

a a .
A% — =S =1 ——¢7J arctan (2€)
R
—g (9.10)
R(t) — ae e—j arctan(Ze)‘

V1 + 4¢€2

Afteratimet ~ 7 =2/, R(t — o0) = 0 and the complex amplitude has
converged towards its stationary value:

a ; o 2ae ;
A® e—]arctan(Ze) — (1 _ ) ; — Aooejﬁoo’
out = 1T 1+4e2) "1 ge2
(9.11)

-2
Am=\/1+a(a—2) - 1l-a
with 1+4€% e—0

2a€ ) 50

O = arctan
« (1 —a+4€2” e—0

In absence of detuning € = 0, we recover the expected results:

Vour(t) = Agel®! [(1 —a)+ ae—%] LO(t) (9.12a)

[Vout| e Ap(1 = a) = Ag - |Sa1(wo)l, (9.12b)

which consists in a linear superposition of the stationary response
S21(wo) X Vin(t) and of a transient response ae ™% x Vin(t) decaying over
a time ~ 7 given by the loss rate k = 2/7 of the cavity.

When the input pulse has a finite detuning € to the cavity frequency,
then the output pulse Vout(f) shows transient oscillations at the detuning
frequency ke = w — wy (period Q/e) as illustrated in Figure 9.2(b). The
trajectory in the IQ-plane of the complex amplitude Aoy (t) presents
a spiral-like behaviour around its stationary value A_;,: its amplitude
starts from 1 then decays exponentially at a rate x /2 towards A_, , while
its phase wraps at the angular frequency xe (see Figure 9.2(a)).

For zero detuning, the amplitude stays real and follows a straight line in
the IQ plane from amplitude 1 to amplitude Sy (wp) = 1 — a. As a finite
detuning is introduced, this straight trajectory is deflected clockwise and
swirls around its stationary value. If we were to describe the complex
amplitude Agyu(t) as the position of a point moving in a 2D-plane seen
from a frame rotating at w, this deviation from its straight trajectory
would be understood as the action of a fictitious/inertial force, in a
manner formally similar to the Coriolis force in Newton mechanics,
which acts on objects in motion within a frame of reference that rotates
with respect to an inertial frame.
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Figure 9.2: Time response of the two-
port network to a unit-step excitation
Vin(t) = e/t . O(t) for « = 0.9 and
Q = 100. (a) Time evolution in the IQ-
plane of the outgoing pulse Vout(t) =
(TIout —]'Qout)e]“’t -©O(t) for different detun-
ing € = (w—wp)/x to the cavity frequency
wg. The evolutions of both coordinates
for each value of detuning are shown in
(b). (c) Dependence on the detuning € of
the stationary amplitude A and phase
O of the outgoing pulse Vot as given by
Eq. (9.1).
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Figure 9.3: (a). Measured time evolution of the transmitted signal for an input square pulse of duration 5 ps for increasing detuning
Af = xe/(2m) = 0,0.1,0.2,0.3,0.5,1.0,2.0 MHz to the resonator frequency f, = 6.60752 GHz. The plotted signal corresponds to
\/ZI gut + Qout?), where Iy, Qout are obtained by numerical demodulation at wir of the digitized down-converted signal. The curves in solid
lines are the raw data after coherent averaging of 5000 pulses. The dotted lines are obtained by applying a moving average filter with a time
window of 100 ns. (b) Comparison of the filtered experimental data (dotted) with theory (solid lines) from Egs. (9.9). The plotted theory
curves correspond to the best global fit of all curves with @ = 0.91 and k = 3.3 X 1073 rad.s7!, i.e. a relaxation time T = 2/x = 604 ns. (c)

Single fit of the Af = 0 data giving 7 = 764 + 3 ns.

In Figure 9.3, we show the measured time evolution of the transmitted
signal for an input square pulse of duration 5 ps and frequency f =
fr + Af, with various detuning Af = 3= =0, 0.1, 0.2, 0.3, 0.5, 1.0 and
2.0 MHz around the resonator frequency f, = 6.60752 GHz. The data
were obtained on the sample with the shunted CPW resonator design
with galvanic coupling (see Section 5.2.2). They were measured near
0 = 0, where we can probe the bare resonator response as it is expected
to be only little affected by the weak link admittance. In Figure 9.3(a),
we present the raw data obtained after averaging ~ 5000 pulses and
overlay a filtered version to better evidence the oscillations of the transient
response at the detuning frequency. The heterodyne modulation setup
used to acquire this data is presented in Section 14. What appears as noise
over the mean level of each curve is in fact a fast oscillation at twice the
intermediate frequency 2w/ (period 10 ns) arising from imperfections
of the IQ mixer used for down-conversion. Indeed, because of the finite
phase imbalance of the mixer, the circle in the IQ-plane is slightly
distorted into an ellipse, which after numeric demodulation at wyr yields
a spurious amplitude modulation at 2aw;r. This could easily be corrected,
either numerically after digitization of the pulses, or directly at the signal
level by applying phase/amplitude corrections to the LO tone. This was
not yet implemented at the time of these measurements.

In Figure 9.3(b), we compare the filtered data with the theory for Aoyt =

V2, + Q2 from Eq. (9.9), while leaving « and « as free parameters, as
well as a global offset and scaling factor. The best fit yields a = 0.91 and
T = 604 ns. Note that although this value of T gives the best comparison
with theory when a global fit of all curves is performed, it remains
~ 100 ns smaller than the value extracted when fitting only the resonant
response (see Figure 9.3(c)). Getting the right stationary values in panel
(b) requires taking a smaller 7 than the real relaxation time. If constraining
7T to the value obtained in panel (c), then the stationary values for the
time evolutions shown in (b) may be off by at most ~ 5%. Still, the values
of a and 7 obtained from the global fit of the transmitted signals compare
well with the estimates obtained by a reciprocal method in the frequency
domain, from single-tone measurements of S»1(f) around the resonator
frequency. As shown in Figure 9.4, a global fit of the amplitude and
phase of the measured transmission coefficient S»1(f) at 6 = 0 gives
Qint ® 93 X 103, Qext = 17 X 103, from which we deduce the loaded
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Figure 9.4: (a) Single-tone resonator spec-
troscopy measured on the device with the
shunted CPW design and galvanic cou-
pling. The magnitude of the transmission
coefficient Sy is plotted as a function of
the probe frequency fo. (b) Amplitude and
phase of Sy1 at 6 = 0 (blue line in panel
(a)). The data is shown in black disks and
a fit with Eq. (9.1) is overlaid in red. An
extra fitting parameter Qasym is added
to capture the small asymmetry in the
resonance line that may arise due to fi-
nite impedance mismatches on both sides
of the transmission line (see Eq. (23) in
[81]). The fit yields Qint = 92800 + 400,
Qext = 16960 £ 40 and f, = 6.607643 GHz,
from which we deduce the total loaded
quality factor Q ~ 14300 and 7 = 690 ns.
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quality factor Q =~ 14X 103, @ = Q/Qext = 0.84 and 7 = 7% = 690 ns.
This measured value of Q falls close to the nominal 10 X 10° value that

we had targeted for this design (see Section 5.2.3).

9.2.2 Time-resolved readout

The different states of the many-body system are characterized by different
resonator frequencies, therefore different responses to the measurement
pulse, i.e. different trajectories in the IQ plane. In practice, one would
send a readout pulse of duration Tpe,s sufficiently long to separate the
trajectories beyond the noise. As discussed in the preceding section, the
maximum separation is achieved, with a square pulse, after a few 7.
Ultimately, states are better distinguished if they correspond to frequency
shifts that differ by ~ ¥ = 2/7. When measuring spectra, one aims
at observing several transitions, and one chooses x as a compromise
between the frequency shifts of the different transitions. When aiming at
manipulating states that cause small shifts [32], like different spin states,
one would take a small %, at the cost of needing a long time to separate
the corresponding trajectories.

To circumvent the difficulty of the slow separation of the trajectories
with square measurement pulses, one can resort to other types of pulses.
For example, McClure et al. introduced so-called "CLEAR" pulses to
demonstrate rapid load and reset of a resonator. Such pulses differ only
slightly from standard square pulses by the addition of extra constant-
amplitude segments designed to “kick” the resonator rapidly from one
steady-state population to another [107]. It was shown that such simple
shaped pulses could reduce the time scale for cavity ring-down by more
than 27.

Similarly, using a first constant segment of high amplitude and short?
duration can allow to speed up the cavity ring-up. Such "fast-load" pulses
can be described by the following functional form:

Vinri(t) = [40- () - (g - Ap)- @t = o) |, (919

where t; denotes the duration of the fast-load pre-pulse and Ay its
amplitude. After this time tg, the pulse amplitude does not decay to zero
but maintains a constant sticky amplitude A; < Ag during which the
cavity readout is performed. When the frequency w of the pulse is tuned
to the cavity frequency wo, the amplitude of the transmitted pulse decays
exponentially at a rate k /2, as illustrated in Figure 9.3(c). Therefore by
choosing a duration f( such that Agexp(—to/7) = Ag — A1, i.e.

Ap
feck = 71 (—) , 9.14
kick = Tln Ao — A A1<<1_l T ( )

Ay

one ensures that at t = tg, the transmitted pulse amplitude has reached
its stationary value A;.

This is illustrated in Figure 9.6, where we show the qualitative shape of
the transmitted pulse for three illustrative values of ty. When the pre-

* Short compared to the relaxation time 7 = 2Q /wy of the cavity

[107]: McClure et al. (2016), ‘Rapid Driven
Reset of a Qubit Readout Resonator’,
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Figure 9.5: Dependence on the ampli-
tude ratio Ag/A1 of the optimal duration
to = tck for the pre-pulse, as given by
Eq. (9.14). The fast-load gives an advan-
tage, tick < T, only in the region where
ﬁ—‘ll > (1-1)7! ~ 1.58, denoted as red
area.
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pulse (red solid line) is shorter than the value given by Eq. (9.14), there is
only small improvement compared to a standard square pulse (dashed
blue line): reaching the stationary value still takes a time ~ 7. Similarly,
when the pre-pulse is too long, there is an "overshoot" and the amplitude
has to relax back, as shown in Figure 9.6(c). For a pre-pulse duration
to = tyick, the transmitted pulse has exactly reached its stationary value
at the end of the prepulse, i.e. over a time tycx < 7. This improvement
over a square pulse provides a simple way to speed-up the readout, but
note that the above considerations only hold for a resonant pulse. Finite
detuning will necessarily introduce oscillations due to the transients,
so that the overall pulse shape would still need to be optimized for the
separation of a given pair of states.

(a) Ao t0<T

O

As(1-a)

(b) Ao- L=T

A,

As(1-0) =

(€) Ao

A, -

As(1-0)

T 1 T

0 Tmeas 0 t0 3 Tmeas

Figure 9.6: Adding a short pre-pulse of high amplitude before the readout square pulse
can allow for faster readout. The transmitted pulse (left column) and the intra-cavity
field (right column) are shown for the resonant case @ = wy in three illustrative cases,
both for a fast-load (solid red) or standard square (dashed blue) input pulse. The input
fast-load /square pulses are depicted in the left column in thinner lines and paler color. (a)
When the pre-pulse duration t( is smaller than fy;ci given by Eq. (9.14), then the transmitted
pulse has not reached yet its stationary value at the end of the prepulse and a further
relaxation over a time ~ 7 still takes place. (b) When tg = tyc, the stationary amplitude is
exactly reached at the end of the pre-pulse: instead of waiting about 37, readout can be
performed already at t = ¢y < 7. The associated intra-cavity field shows an-almost square
shape. (c) If the pre-pulse duration is chosen too long, ty > tick, then the transmitted
pulse amplitude overshoots and has to relax back on a time ~ 7, therefore removing any
advantage of the fast-load.
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To illustrate on real data the effect of a fast-load pulse, we show in
Figure 9.7(a) measurements of one quadrature of the transmitted pulse
for several durations of the high amplitude pre-pulse. The best perfor-
mances are obtained for ¢ty = 200 ns (green curve), which coincides well
with the expected value of tyx for an amplitude ratio Ag/A; = 4 and
T = 764 ns. In Figure 9.7(b), we compare the associated response to
the one obtained without any pre-pulse, which shows that the station-
ary regime is reached about 4X earlier by using a fast-load sequence.

(@) (b)

151 Yick ([;;2)0 121
—_ 800
S U 600
S 104 500 8
—— 400 4
3 300
_§ 5] 200 .
04+
ol
0 1 2 3
Time (us) Time (us)

Figure 9.7: Tuning the pre-pulse duration. (a) One quadrature of the transmitted pulse is
shown after demodulation for several values of fyjck, with Tieas = 5 ps, Ag/A1 = 4 and
f = w/2m = 6.60725 GHz. Each curve results from coherent averaging of 1000 pulses. When
the duration is tuned to ~ 200 ns, the amplitude stays flat after the pre-pulse with no further
evolution ; this value coincides well with the expected fyjck ~* =760 X In (1 — 1/4) = 220 ns.
(b) Comparison of the time responses for an initial pre-pulse of 200 ns (green curve) and
without (red curve). With a standard square pulse, the stationary amplitude is reached after
about 37 = 2.1 ps (red arrow). With a fast-load however, it is reached as early as ~ 0.5 ps
(green arrow).

Similarly as for the square pulse Eq. (9.5), we can derive an analytical
expression for the time evolution of the outgoing pulse when a fast-load
sequence is operated. With the input signal given by Eq. (9.13), we obtain
using Egs. (9.8, 9.7) the following generalization of Eq. (9.8):

Vout, FL(£) = Agv(t) + (A1 — Ag)o(t — to)

o(t) = e/t [1 - (1 _ e—%e—jxet)] LO(b). (9.15)

1+2je

Writing this time Vout pL(t) = (Iout, rL(f) — 1 Qout, FL(t))ej ®t the coordi-
nates in the IQ-plane after demodulation at w are then easily deduced
by linearity of the response:

Iout, FL(t) = AO Iout(t) : ®(t) + (Al - AO) Iout(t - tO) ' ®(t - tO)
Qout, FL(t) = Ao Qout(t) - O(t) + (A1 = Ag) Qout(t — to) - O(t — to),
(9.16)
where Iyt (t) and Qout(t) are the expressions for a square pulse excitation
given by Eq. (9.9). In Figure 9.8, we compare the trajectories with a square

and an optimized fast-load pulse (pre-pulse duration ty = tyick), using
AO =1land A1 =0.3.

In principle, one would use a large ratio Ag/A; to have the pre-pulse as
short as possible. In practice, Ay is limited by the maximum available
voltage of the arbitrary-wave generator (generally ~ 1 V), and A; cannotbe
too small for a good performance of the mixer that combines the fast-load
waveform with the microwave tone. We used typically Ag/A; ~ 3 — 4.

a=09 Q=100

Ay=1 A;=03
0.4 T T T
. .

0 02 04 06 08 1
I

out

Figure 9.8: Trajectories in the IQ-plane
during a fast-load pulse (solid dots) or
a square pulse (open dots), for € = 0.8
(black) and € = -2 (red), using Ap = 1 and
Ay = 0.3. With a square pulse, the trajec-
tory develops from (I, Q) = (A1, 0) (open
circles). During the pre-pulse, one starts
from a large amplitude (I, Q) = (Ao, 0),
and reaches at fyi a larger amplitude
in Qout- When the pulse amplitude is
reduced to A1, the representative point
jumps in Ioyt by A1 — Ap, then spirals to-
wards the asymptotic value, which is on
the circle corresponding to the amplitude
Aq.
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The actual measurement results from an average Fof (Iout, Qout) during
a time Tmeas. This is illustrated in Figure 9.9, which shows how the
pre-pulse allows to separate the states more efficiently. How this is done
in practice is discussed in Section 14 and in Appendix I
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Figure 9.9: (a) Trajectories in the IQ-plane during time Tineas (solid lines) and total trajectory
(thin lines) after an optimized pre-pulse (fo = txick, trajectories starting on the left hand
side) or with a standard square pulse (trajectories starting at Iout = 0.3), for 4 values of the
detuning € = 0.05,0.2,0.4, 1. Without pre-pulse, we use Tmeas = fkick + 7. With pre-pulse,
Tmeas = T. Solid and open dots show the average values of (I, Q) on each trajectory. (b)
Dotted lines show the position of the averages when € is varied.

 More elaborate methods have been reported in the literature to distinguish two states of a
simple qubit [108, 109, 110].
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Manipulation of an Andreev pair
qubit

After this review on state readout, let us present experimental results
on the coherent dynamics of Andreev levels in nanowire weak links
and on the manipulation of a nanowire-based Andreev pair qubit. The
device and experimental setup that were used for these measurements
are depicted in Figure 10.1. The setup is essentially unchanged compared
to the one used in Chapter 6 (see Figure 6.3), except that we moved
to a heterodyne detection scheme to get rid of the slow drifts in the
signal phase that were plaguing our measurements' . As the signal is
now encoded in an amplitude modulation over the slowly-varying drifts,
those are completely discarded after numerical demodulation at the
intermediate frequency wrr.

Readout fo

Figure 10.1: cQED setup used for time-domain measurements. (a) Optical image of the
measured device (sample S2). Left port connected to the gate is devoted to tune the
properties of the NW with a DC voltage V, and to drive microwave transitions between
ABS with a tone at frequency fi. (b) Close view (SEM image), showing the local back
gate placed below the weak link. (c) (optical image) Shorted end of the resonator, with
nanowire in green rectangle corresponding to the area shown in (b). A superconducting
coil placed under the sample allows to control, through the flux ®, the superconducting
phase difference across the weak link. The A/4 CPW resonator is probed by a readout
tone fy through a bus transmission line to which it is coupled in a hanger geometry. The
readout tone fo, generated by mixing a LO tone with I and Q pulses at wir/27 = 50 MHz,
is sent to the bus line, then amplified (triangle) with a TWPA followed by a HEMT and a
room-temperature amplifier (not represented); and finally down-converted with another
IQ mixer in a process known as heterodyne detection. The I and Q outcomes are then
digitized and numerically demodulated at wir (not shown).

The experiments were performed with sample S2. An equivalent electrical
circuit of the device is shown in Figure 10.2. As already mentioned,
moving to a galvanic scheme increased the geometrical coupling to the
nanowire by about two orders of magnitude (factor X275 in 6%10), which
allowed to better resolve the many-body states. In addition, the stronger
coupling to the measurement port (Qext ~ 17 X 10° instead of > 170 x 10
in sample S1) allows faster resonator readout.

10.1 Rates & population dynamics131
10.2 Driven dynamics & coher-

1: Those drifts in phase were mainly due to
periodic changes of the room temperature
due to the cycling of the air conditioning
system used in the experiment room.

Readout

fo @

Drive

:
'”_@:L

1 v,

Figure 10.2: Equivalent electrical circuit
of the cQED setup with galvanic coupling
to the nanowire weak link. The readout
resonator, probed by a microwave tone fo,
ismodeled by a parallel LC circuit (orange).
A part { (light blue) of its total inductance
L is shunted by the nanowire weak link,
symbolized by a green bar surrounded by
two grey triangles for the superconducting
electrodes. This naturally defines a DC
loop through which a flux @ is threaded
to phase-bias the weak link. A bias tee is
used to both gate the nanowire with a DC
voltage V¢ and to apply an AC microwave
drive f; to drive transitions between the
ABS levels hosted by the weak link.
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Figure 10.3: (a) Continuous-wave single-tone spectroscopy of the resonator showing the modulation of its frequency as a function of the
applied gate voltage V¢, close to a sweet spot at Vy = 0.695 V. The color-scale encodes the magnitude of the transmission coefficient Sy; as a
function of the frequency of the probe tone fy. (b) Similar measurement performed at the sweet spot gate voltage showing the modulation
of the resonator frequency as a function of the superconducting phase difference 6, which is controlled by sweeping linearly the magnetic
flux @ in the weak link loop. Close to 6 ~ 71, one observes two dips in the transmission coefficient, corresponding to the resonator frequency
when the weak link resides either in the ground (|g)) or in the odd state (|0)). Same data as the one presented in Figure 9.4, which was used
to characterize the resonator readout dynamics. (c) Histogram showing the outcome of 50000 measurements pulses taken at 5 = 7t at the
sweet spot in gate in absence of any driving. The pulse sequence shown in orange consists of a high amplitude fast-load pre-pulse of 220 ns
duration followed by a 500 ns square pulse for readout. The results gather in two well-resolved clouds, which are identified as the ground
(Ig)) and odd state (|o)) of the weak link. The I and Q values are normalized by ¢, which corresponds to the spread of the gaussian-fitted
clouds.

10.1 Rates & population dynamics

10.1.1 Single-shot readout

We first performed a continuous-wave resonator spectroscopy to choose
a working point in gate and flux. In Figure 10.3(a), we show how the
resonator frequency is modulated with gate voltage around its bare
frequency f, = 6.6076 GHz, in the region of interest for the data presented
in the following. At V, = 0.695 V, the resonator frequency shows a
local minimum in gate voltage: operating in such sweet spot is highly
appreciated as it allows to be insensitive to first order noise in gate
voltage.

Figure 10.3(b) shows the associated modulation in flux of the resonance
around 6 = 7t for the gate voltage value of the sweet spot. Note that this
data is the same as the one presented before in Figure 9.4, which was used
to characterize the resonator dynamics and from which we extracted
the time constant 7 ~ 700 ns of the resonator and its bare frequency
fr = 6.607643 GHz. In this particular situation, one can observe that near
0 = 7, the transmission coefficient features two dips in its magnitude,
corresponding to the resonator frequency associated to the lowest two
many-body states of the weak link. As this measure was performed
in absence of any driving fi, we expect the system to reside mainly
in its ground state. Therefore, the lower dip around fy = 6.6067 GHz
is associated to |g). As a now well-established characteristic of such
nanowire weak link, we know that in some fraction of the time, the
system is poisoned by some non-equilibrium quasiparticles and therefore
resides in an odd-parity state, labelled |o0) [19, 88]. Importantly, note that
contrary to atomic contacts data, the resonator frequency still exhibits a
small shift in the odd state of finite-length weak links. This was discussed
in Section 4.2.3, where we attributed this effect to a contribution from
the continuum.
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To better evidence the two states, we show in Figure 10.3(c) a histogram
of the outcome of 50000 measurement pulses taken at the sweet spot
at 6 = © without any driving. The measurement pulse, which was set
at the frequency of the odd state fy = 6.6075 GHz, consists in a high
amplitude pre-pulse of 220 ns to fast-load the resonator, followed by
a 500 ns square pulse for readout. After down-conversion to the IF
frequency (wrr = 50 MHz), the pulses were digitized and demodulated
numerically, as described formally in Section 14.3 and in Appendix I. For
each pulse record, averaging the demodulated samples over the time
window corresponding to the readout part of the pulse yields one pair
of {I, Q} outcomes. As observed in Figure 10.3(c), the results cluster in
two well-resolved clouds of points. As the system mainly resides in its
ground state, the most intense cloud corresponds to |g). The other cloud,
which is associated to |0), does not split when 6 departs from 7. The
two spin substates [0 T) and |0 |) remain undistinguishable: this will be
discussed in section 11.2. These measurements illustrate how in absence
of any driving, the weak link resides in a steady mixed state, where the
normalized number of points in each cloud of the IQ histogram is a
direct measurement of the states” population. Importantly, because the
two clouds are separated enough, a single measurement pulse allows to
discriminate between the two many-body states |g) and |0) of the weak
link.
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Figure 10.4: Parity switching rates. (a) Evolution of the ground (blue) and odd state (green)
populations P¢ and P, as a function of the time delay between the state preparation by
pre-selection and the readout, for three different cases: no state pre-selection (circle data),
with |g) (triangle data) or |0) (square data) pre-selection. (b) Two-state master equation used
to model the state population evolution. Best fit of the data obtained when pre-selecting
|g), which gives Pg(0) = 0.93,T,¢ = 50 ms~! and Tgo =134 ms~!, is overlaid on the data
in (a), as well as the prediction for Pg(0) = 0.275 (|o) pre-selection) and Pg(0) = 0.65 (no
pre-selection).

10.1.2 Parity-switching rates

We first explored the dynamics between |¢) and |0) by measuring how
the system relaxes to steady state after preselecting a starting point (see
method in Section 14.4). In Figure 10.4(a), we show for three different
cases the evolution of the ground and odd state populations P (t) and
P,(t) as a function of the time delay between the state preparation by pre-
selection and the readout. The first case corresponds to no pre-selection.
In such situation, the system resides in a mixed state with in average
Pg¢ o = 0.65 and Py = 0.35. The two other cases correspond to an
initial pre-selection of either |g) (triangle data points) or |0) (square
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data points). By preparing the state in |g), pre-selection allows to start
with an initial population as high as P, = 0.93. As the delay between
state preparation and readout increases, P, relaxes back to Py « at a rate
I'¢o. Similarly, if |0) is pre-selected, we manage to start with an initial
population P, = 0.74, which relaxes back to P, « at a rate I';¢. We can
model this 2-state dynamics using the following master equation for the
populations P¢ and P,, associated to a normalization condition:

{Pé(t) = —2T g Py(t) + TogPo(t) 101)

Py(t) + Po(t) =1,
where the prime exponent denotes time derivative. Injecting the normal-
ization condition in the first equation, we can rewrite it as a function of

Pg only:
P(’g(t) + (ZFgo + Fog)Pg(t) = Tog. (10.2)

The solution of this first order equation is then easily found:

_ Log

T

Ty = 2, + Tog.
10.3)

Fitting the P¢(t) and P,(t) curves obtained when pre-selecting |¢) yields :

Pg(0) = 093, Tg, = 13.4 ms~! and I = 50 ms~L. The steady state

s = 0.65 and Poes = 1= Pges = 0.35.
The solid lines shown in Figure 10.4(a) correspond to the theory from
Eq. (10.3) applied with the rates obtained from this fit of the data with |g)
pre-selection and for different initial populations : P¢(0) = 0.93, 0.65 and
0.275. The effective relaxation rate for |g) is given by I'y = 2I'gs + Tpg =
76.8 ms~!, which corresponds to a time scale Tparity = 1 / Iy =13 ps. Note
that this lifetime for the odd state is about a factor X10 smaller than what
was found in experiments with atomic contacts [88]. Surprisingly, the
parity switching time measured by Hays et al. on similar nanowire weak
links was also found to be much bigger, around Tparity ~ 160 ps. Finally,
note that the hierarchy I'y¢ > I'y, was also found in atomic contacts weak
links.

,00

Py(t) = (Pg(0) = Pyoo)e T + Pys with

populations are Pg o =

10.2 Driven dynamics & coherence

10.2.1 Evidencing the excited state

Let us now investigate the effect of a drive tone at frequency f;. To do so,
we use the same readout sequence as in Figure 10.3 but prepend before
it a driving pulse at frequency f;. This allows to perform a two-tone
spectroscopy of the weak link at the sweet spot gate voltage V, = 0.695V,
which is presented in Figure 10.5(a). The measured spectrum shows a
parabolic-shaped line with a minimum f4(6 = 7) = 9.28 GHz, typical
of a pair transition (PT) to the lowest-lying ABS manifold, as well as a
set of four single-quasiparticle transitions (SQPT), shown in green, with
vanishing intensity away from 6 ~ .
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Figure 10.5: (a) Two-tone spectroscopy performed at Vg = 0.695 V showing a pair transition (red), labelled PT, and a set of single-particle
transitions (green), denoted SQPT. The dashed blue lines correspond to half the frequency of the PT with offsets 11.8 and 12.5 GHz. The I
quadrature obtained after numerical demodulation at wir /27 = 50 MHZz is plotted as a function of the superconducting phase-difference 6
across the weak link and the frequency fi of the driving tone. Each data point is obtained by averaging the I outcome of 1000 demodulated
pulses consisting of a 220 ns fast-load pre-pulse followed by a 500 ns readout square pulse at fo = 6.6075 GHz. This readout sequence was
preceded by a 10 ps square saturating drive pulse at the frequency fi. (b) Histogram showing the outcome of 10 million measurement pulses
takenat 0 = 7 at the sweet spot in gate with a driving tone (violet pulse) at the frequency of the pair transition (PT) fi = fa(6 = n) = 9.28 GHz.
The pulse sequence shown in orange consists of a high amplitude fast-load pre-pulse of 220 ns duration followed by a 500 ns square pulse
for readout. Compared to Figure 10.3(c), a third cloud is now visible in the histogram, positioned symmetrically to |g) with respect to the
|o) cloud. Because it appears only when driving at f4, this cloud is associated to the excited state, labeled |e).

When driving at the frequency of the pair transition fi = fa(6 =) =
9.28 GHz, we observe a new cloud appearing in the histogram of the
IQ values at 6 = 7 (see Figure 10.5(b)). Because it only appears when
driving at this frequency, we attribute it to the lowest excited state of
even parity, denoted |e), which is obtained by creating two electron-like
excitations in the lowest ABS manifold. This interpretation is supported
by the fact that the clouds corresponding to |g) and |e) are located
almost symmetrically with respect to that corresponding to |0). Indeed,
as demonstrated in Section H.1 for the case of zero-length junctions (and
easily generalizable to the finite-length case), the resonator shifts in |g),
le) and |o) verify the following half-sum rule : ((Sfrlg> + 6f,|e>)/2 = 6fr|0>.
This is a quite general result, true even when contributions from the
continuum are included, but as a key point of Refs [64, 50], it holds only
for non-interacting many-body states, which may explain why a perfect
symmetry about the odd state cloud is not observed here.

10.2.2 Coherent manipulation of the |g) — |e) transition

To confirm the clouds identification, we perform a Rabi flopping ex-
periment at the frequency of the pair transition |g) — |e) at 6 = 7, as
identified from Figure 10.5(a). To do so, we vary the duration ¢; of a
square driving pulse of frequency fi = fa(6 = 1) = 9.28 GHz preceding
the readout pulse sequence. For each value of the drive duration, we
fit with a mixture of three gaussians the associated histogram of the
I, Q outcomes obtained by demodulating 50000 readout pulses. The

[64]: Kurilovich et al. (2021), “‘Microwave
response of an Andreev bound state’
[50]: Fatemi et al. (2021), ‘Microwave
susceptibility observation of interacting
many-body Andreev states’
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Figure 10.6: Coherent manipulation of an Andreev Pair Qubit. (a) Rabi flopping of the |g),|e) populations as a function of the drive pulse
duration t4. The drive frequency is set to fi = 9.28 GHz, which corresponds to the frequency of the pair transition at 6 = = depicted in
Figure 10.5(a). (b) Enlargement on the first 14 ns of the data from panel (a). An asterisk indicates the drive duration corresponding to a 7t
pulse. For each value of the drive duration, the populations of the three states are extracted by fitting with a mixture of three gaussians the
histograms of the I, Q outcomes obtained by demodulating 50000 readout pulses. Such an histogram is shown in panel (c), corresponding

to the situation where a 7 pulse drive was sent. It illustrates the transfer of population from |g) to |e) due to the coherent drive. (d) Bloch
sphere representation of the Andreev Pair Qubit state, describing the effect of the coherent drive as a rotation R’; at the Rabi frequency wr

of the state vector around the % axis. Starting from the north pole, associated to |¢), a pulse of duration ; drives the qubit to a coherent
superposition a|g) + Ble).

normalized height of the three gaussians gives access to the associated
state population, which we can then monitor as a function of the drive
pulse duration. This is illustrated in Figure 10.6(a), which shows coherent
oscillations of the populations with ¢4, with a clear oscillatory transfer
between Pg and P,. This evolution is described qualitatively using a
Bloch sphere representation of the |g) — |e) qubit state (see Figure
10.6(d)), where the north (resp. south) pole corresponds to |g) (resp. |e)).
The effect of a resonant drive is then seen as a rotation R’; of the state
vector around the % axis at the Rabi frequency wgr proportional to the
drive amplitude, with a polar angle 0 = Qrt,, itself proportional to the
drive pulse duration. Starting from the north pole, associated to |g), a
pulse of duration t; then drives the qubit to a coherent superposition
alg) + Ble), with @ = cos (60/2) and = sin (6/2). Subsequent readout
will therefore find the system with a probability |a|* « cos? (Qrt4/2) in
|¢) and a probability 1 — |&|? in |e). In addition to this simple picture,
we also observe a small oscillation in the odd state population P, in
phase with the oscillation in P.. At first sight, this is surprising since
the drive tone being used is resonant with the transition between two
even-parity states, and we do not expect microwaves to couple states
of different parity. This oscillation is understood here as a consequence
of relaxation before measurement: there is a finite delay between the
driving pulse and the readout one, and the duration of the readout pulse
is also finite. In this time interval part of the |e) population relaxes to |o)
or |g) leading to an oscillation of P, in phase with that of P,. Note that
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similar measurements on atomic contacts did not show such an effect [21],
indicating that the rate I',, is significantly larger here. The measurement
of I'’s is described the next section.

The damping of the oscillations is associated both to the relaxation rate
of |e) and to the dephasing rate at the Rabi frequency [111]. In order
to measure these rates independently, other pulse sequences are used.
First, using the measured Rabi oscillations, we define a O = m driving
pulse which sets the qubit into its maximally excited state. From Figure
10.6(b), we see that |e) reaches a maximum for a drive duration ¢, = 3 ns,
highlighted by a black asterisk in the figure. The associated histogram is
shown in Figure 10.6(c), where the population transfer from the |g) cloud
to the |e) one is observed. Once again, this transfer appears uncomplete
because of transitions during the measurement.
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Figure 10.7: Relaxation dynamics. (a) Evolution of the ground, odd and excited states
populations Pg, Po, P as a function of the time delay f4elay after a -pulse. P, decays
exponentially to zero over a typical time scale of 1.5 ps. (b) Schematics of the pulse sequence,
consisting of a square drive pulse (violet) of duration ¢;; = 3 ns to prepare the system in its
maximally excited state, followed by the usual readout sequence (orange) which is delayed
with respect to the drive pulse end by a time fdelay. In a Bloch sphere representation, the
ni-pulse by definition corresponds to a rotation RE of the state vector, which is brought
to the south pole associated to the excited state |e). (c) Three-state model of the system
with six different rates. The associated master equation is solved and the best fit of the
dynamics is displayed as solid lines in panel (a) on top of the experimental data. The
extracted rates are summarized in the given table and represented on the state diagram
with arrows’ thickness proportional to the relative rates. The I'¢, rate which is several
orders of magnitude lower than the others is depicted with a dashed arrow.

10.2.3 Lifetime of the excited state

To access the lifetime of the excited state, we drive the pair qubit into
its maximally excited state by use of a m-pulse, and measure its state
with the same readout sequence as before, but after a delay fdelay- The
relaxation dynamics of the three states’” populations is shown in Figure
10.7(a). As the delay is increased, the population P, of the excited state
decreases because it relaxes back to the ground state. P, is observed
to decay exponentially over a time scale T; ~ 1.8 ps.The relaxation of
the ground state population Py to its steady-state value Pg o = 0.65 is

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’, p. 92

[111]: Tthier et al. (2005), “Decoherence in a
superconducting quantum bit circuit’
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found to be well captured by a double exponential increase with time
scales T¢ 1, Tg2 = 1.8, 15.7 pis. As for the odd state, its population P,
shows a non-trivial evolution characterized by a fast initial increase, a
bump at f4elay ~ 3 s, and finally a long-time decrease to its steady-state
value P, o, = 0.35 over a ~ 14 ps. This relaxation dynamics can be well
accounted for by the following three-state master equation, with six rates
and two initial populations P¢(0) and P, (0):

Pé(t) = Fgepg(t) - (Feg +20e0)Pe(t) + Toe Po(t) (10.4)

Py(t) = —=(Tge + 20 g0)Pg(t) + LegPe(t) + LogPo(t). .

The six rates are defined in the state diagram in Figure 10.7(c). Using the
normalization condition P¢ + P, + P, = 1, we can rewrite this system in
function of P¢ and P, only:
P;(t) = (rge - roe)Pg(t) - (reg + 200 + Toe)Pe(t) + Toe (10.5)
Py(t) = —(Tge + 2T g0 + Tog)Py(t) + (Teg = Tog)Pe(t) + Tog. '

It assumes an analytical solution, but the expressions for P¢(t) and P,(t)
are long and cumbersome and are therefore not given here in extenso. The
solution of the master equation Eq. (10.5) is used to fit the data of Figure
10.7(a) with the six rates as free parameters and the initial populations
fixed by the data. This model is found to fit well the data (see solid lines
in Figure 10.7(a)) and the extracted rates are summarized in the table of
Figure 10.7(c). From Eq. (10.5), we identify the typical relaxation rate of
the excited state I'y = T'pg + 2T, + 6, = 550 ms~!, from which we deduce
the typical lifetime of |e), Ty = 1/T; = 1.8 ps (= 7g,1). The other relevant
rate, associated to the long-time regain of P after the 7 pulse is identified
tol'y =g, +2Ig, + T'pg, which corresponds to 74, = 1/Fg =15.7 ps.

The dominant rate is found to be I'.¢ = 400 ms~!. We can also deduce
the rates I'in, I'oy for getting a single quasiparticle in or out : I'in =
ZTgo =142mstand Ty = l"ag =49.4ms L. Remarkably, the rate T'in2
(resp. T'our2) for getting in (resp. out) a second quasiparticle is found to
be different than Iy, (Toyt) for the first one : Tinp = Tpe = 6.2 ms™! and
Toutz = 2Tep = 144 ms™L. This asymmetry I'ey # I'og (resp. I'go # I'oe)
for removing (resp. adding) a quasiparticle might be interpreted as a
consequence of a Coulomb interaction effect beyond mean-field, which
was the subject of Chapter 8.

As illustrated in Figure 10.8(a), the initial excited state population can be
slightly increased by preparing the system in |g) by state pre-selection,
before applying the rt-pulse. Although pre-selection is demonstrated to
work well and an initial population Py = 0.93 is achieved, only ~half of
this population is at best found in |e) after the measurement sequence:
with a m-pulse one obtains an initial population P,(0) = 0.43 instead
of 0.3 without pre-selection. Using the rates extracted from the dataset
without pre-selection, we capture well the population evolutions of all
data sets by merely changing the populations at tgelay = 0 (see Figure
10.8(c)).
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Figure 10.8: (a) Rabi oscillations at the frequency of the pair transition for 6 = m, at the sweet
spot gate voltage Vo = 0.695 V. The evolution of the populations Py, P, and P, is plotted as
a function of the drive pulse duration ¢4 with (bottom) or without (top) pre-selection of |g)
before manipulation. (b) Schematics of the pulse sequences used for Rabi measurements
(a) and relaxation measurements (c), with state pre-selection. (c) Evolution of the state
populations Py, P, and P, as a function of the delay after a -pulse for three different
cases: no state pre-selection (circle), with |g) (triangle) or |o) (square) pre-selection. The
duration of the m-pulse is determined from (a). Solid lines are predictions from the master
equation model using the rates extracted from the fit of the data without pre-selection, by
just changing the initial populations.

The value of I'y that is found here is about four times larger than what
was measured in experiments with atomic contacts [21] 2 Indeed, both
the direct rate I'.¢ and the relaxation channel through the odd state is
observed to be four times faster than for atomic contacts. Relaxation
through the odd states occurs at a rate I'1 oqqa = % = 30 ms~!,
which is about x4 larger than for atomic contacts, although the rates
ratio for the two relaxation channels rrll'i:fg ~ 13 is similar. This fast
relaxation from |e) to |o) limits the maximal P, accessible with a 7-pulse,
so that even with |g) pre-selection, the maximum P, accessible does not
exceed ~ 0.4. As another remarkable difference with atomic contacts,
we observe that reciprocal processes for poisoning and de-poisoning
events do not have similar rates here: I'gy # I'go and I',o # I'se. The
de-poisoning processes that remove quasiparticles are about x10 faster
than the poisoning processes. The comparison here is done for a given
working point in gate and flux. To complete the analysis, one should
perform in the future similar measurements for the rates as a function
of the frequency of the pair transition to allow for a fair comparison
between nanowire- and atomic contact weak links.

10.2.4 Coherence

To conclude the characterization of this nanowire-based Andreev pair
qubit, we now present the measurements performed to quantify its
coherence properties at 6 = 7. The latter is known to be limited by two
effects: pure relaxation at a rate I'y which we just characterized, and pure
dephasing at a rate I'p, which originates from fluctuations of the qubit

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’, p. 146

2: To perform a fair comparison one have
to consider the rates obtained for an atomic
contact with a similar Purcell relaxation
rate.
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frequency. In particular, since the Andreev energy depends both on 6
and V, noise in flux and gate voltage can directly affect the coherence
of an Andreev Pair Qubit. To minimize these two possible sources of
dephasing, one generally tries to work in so-called "sweet spots", where
the qubit frequency dispersion with the external parameters (here @
and V) exhibits a local extremum. This way, qubit operation remains
insensitive at first order to these possible noise sources. Therefore, for
the best performance we characterized our pair qubit at 6 = 7w and at
Ve = 0.695 V where the pair transition frequency exhibits a minimum
both in flux and gate voltage.
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Figure 10.9: Ramsey experiment and two-tone spectroscopy of an Andreev Pair Qubit,
suggesting the presence of a bi-stable charge fluctuator (BF). (a) Ramsey sequence, consisting

in two 7t/2 rotations Ri P separated by a time delay fdelay- A fdelay-dependent phase ¢

can be added to the second 7/2-pulse to introduce oscillations in the Ramsey pattern and
allow for a more accurate fit. Contrary to the previous data, the drive pulses were this time
designed with a gaussian envelope with FWHM=16 ns. (b) Corresponding Qubit trajectory
on the Bloch sphere for ¢ = 0. (c) Measured evolution of the populations Pg, P, and P,
as a function of the time delay fqelay between the two 71/2-pulses of a Ramsey sequence.
Oscillations in the populations are obtained by setting alternatively ¢ to 0 and 7. Data
without the ¢ rotations are shown with dashed lines. (d) Fit of the P, evolution with
Eq. (10.6) showing an exponential damping of the oscillations with #gelay Over a typical
decay time Tgecay = 13 1 ns, as well as a beating with a half-periodicity in fqelay of about
24 ns, corresponding to a ~ 20 MHz detuning.

Ramsey experiment

To characterize the dephasing time Tp = 1/T'¢ of our qubit, we perform
a Ramsey sequence, with consists in applying two driving 7t/2-pulses
separated by a delay t4elay and measuring the qubit state right afterwards.
The first pulse ideally drives the qubit to an equal superposition (|g) +
le))/V2 ; in the Bloch sphere representation, this amounts to bringing
the state vector from the north pole to the equator, as shown in Figure
10.11(a). If tgelay is short and no dephasing occurs between the two pulses,
the second one then drives the qubit to |e), associated to the south
pole of the Bloch sphere. If dephasing occurs during the delay, then the
state vector will diffuse on the equator, i.e. the state will change from
(Igy+ le))/V2 to (lgy+ e™|e))/ V2. After the second 7/2-pulse, the qubit
will therefore be in {x, y, z} = {sin (¥), 0, — cos (¥)}, corresponding to
the state sin (W/2)|g) + cos (W/2)|e). The second 7t/2-pulse will then
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bring the qubit to |e) with an oscillating probability cos? (W/2) = (1 +
cos (W))/2. If the phase is randomly distributed, then the qubit will
be in a random mixture of |¢) and |e). For a white dephasing noise,
one expects an exponential damping of the P, oscillations with fgelay
over a time scale T}, which is related to the pure dephasing time Top by
(T = Q1) + T [111].

To allow for an accurate fit of this decay, we introduce oscillations by
adding a tgelay-dependent phase @ (f4elay) to the second 7/2-pulse. This
corresponds to turning the direction of the second pulse in the xy
plane. Figure 10.9(a) shows the result of such a Ramsey experiment
performed in sweet spot conditions (Vg = 0.695 'V, 6 = m) for both ¢ =0
and ¢ = 7 X tdelay/ ts with a sampling time f; = 1 ns. For tgelay = 21
with n € N, ¢ = 0 and the driving sequence performs an equivalent
7i-pulse ; indeed a maximum P, = 0.64 is observed at fdelay = 0. For
taelay = (2n + 1)ts, @ = 7 and the second 71/2-pulse is then expected to
bring the qubit back in |g): indeed, Figure 10.9(a) shows a maximum
in Py and a minimum in P, at fgelay = s = 1 ns. This trend extends
further with P, and P, oscillating between local maxima and minima
at each t; increment of f4e1ay. Besides the expected exponential decay of
the coherent signal, one also observes a strong beating pattern with a
half-periodicity in fdelay Of about 24 ns, corresponding to a ~ 20 MHz
detuning. This evolution can be phenomenologically captured with the
following functional form:

tdelay
Po(t) = (Pg(O) —Pg,oo) cos [(p(tdelay)] cos [ZRAtdelay + (1)] e Tdecay +Pg co.
(10.6)
Fitting P, with this expression, we obtain Tyecay = 13 £ 1 ns for the
exponential decay of the Ramsey oscillations and a beating frequency
A =20.6 £ 0.8 MHz, as shown in Figure 10.9(b).

Evidence of a charge bi-stable fluctuator

Further insight on the origin of this beating can be gained from the
two-tone spectroscopy of the transition line with increased frequency
resolution compared to Figure 10.5, see Figure 10.10. It shows a split-peak
structure of the pair transition line close to 6 = w. The linecutat 6 =
shown in Figure 10.10(b) evidences a ~ 20 MHz splitting of the transition
line. This splitting, which is a signature of a discrete environment, seems
to be associated to a fluctuation of the weak link transmission, as the
splitting is maximal at 6 =  and apparently vanishes away from 7. It
could originate from the presence of a charged impurity at the surface of
the weak link behaving as a bistable fluctuator (BF). Such an impurity
can couple to the qubit and if the rate of its incoherent switching is slow
enough, it can result in two discrete frequency values for the qubit, as
observed in the Ramsey pattern.

Effects due to individual BFs have been observed both in spectroscopy
and in time-resolved measurements and their impact on the coherence of
solid state qubit was modelled by Falci ef al. [112]. They showed that even
if the BF is not resonant with the qubit, it can strongly affect it. Indeed,
provided that its switching rate is slower than the induced splitting A
of the qubit frequency, it then makes the working point of the qubit

[111]: Ithier et al. (2005), ‘Decoherence in a
superconducting quantum bit circuit’
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Figure 10.10: (a) Two-tone spectroscopy
of the pair qubit frequency around 6 =
with a finer frequency resolution than in
Figure 10.5, evidencing a split-peak struc-
ture of the qubit transition line. (b) Linecut
of (a) at 0 = m showing a clear 20 MHz
splitting of the qubit frequency around
fa = 9.30 GHz. A gaussian fit of the two
peaks is overlaid in solid blue line. Indi-
vidual contributions to the lineshape are
shown in dashed black lines.

[112]: Falci et al. (2005), ‘Initial Decoher-
ence in Solid State Qubits’,
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bi-stable and amplifies defocusing from high frequency noise during
tdelay- Even if the qubit is initially well prepared by the first 77/2-pulse,
during f4elay the BF may switch it to a different working point, which will
result in damped beats in the coherent oscillations and a split-peak qubit
lineshape in spectroscopy, exactly as observed in Figure 10.9. Although
in our case the origin and nature of this BF is unclear, it would not
be surprising that the quality of the weak link surface had degraded
since these measurements were taken during the 17th cool-down of the
sample.

Now because of this beating in the Ramsey oscillations, the decay time
extracted with the phenomenological equation (10.6) should not be
interpreted as the dephasing time T;. To better evidence the effect of
this beating, we perform a Ramsey experiment at various values of the
driving frequency fi, see Figure 10.11. When f; differs from the qubit
frequency by an amount A/2m, the Rabi frequency changes from wg to

Qg = \/w + A?, and the rotation axis in the Bloch sphere changes from
A A . . . . A
% to &/, which is directed along the unitary vector {8—1;, 0, a5t

Denoting by 6 the angle between £ and %", we illustrate graphically in
Figure 10.11(a) the effect of such a detuning A # 0 on the trajectory of the
qubit state vector in the Bloch sphere induced by a Ramsey sequence. In
absence of drive, wg = 0 and the rotation vector Qp - ¥’ reduces to A - Z,
i.e. during t4elay when the drive is off the state vector rotates around Z,
moving on the Bloch sphere equator at the detuning frequency A. With
the same analysis as above for the effect of a dephasing W during tgelay,
we deduce that a finite detuning results in an oscillation of P, and Py at
an angular frequency A, which evolve with tgelay With the same decaying
envelope as at zero detuning.

Figure 10.11(b) shows the result of such a measurement at 6 = 7 with
the population of the ground state P oscillating with 412y as the drive
frequency fi gets detuned from f4 =~ 9.286 GHz. These experimental
data are compared to calculations taking into account (panel (c)) or not
(panel (d)) the presence of a BF. Those calculations were obtained from a
phenomenological model describing the expected geometrical trajectories
in the Bloch sphere for a Ramsey sequence. The rotation matrix around
£’ by an angle 6 is given by:

2

YR A A
—LE-(1-c)+c ———=s wr—="51-¢)
R A, 0] = e s ﬂ’éZszAz “)—R:'ﬁ; S
lor & 0121 Vow Ve |
A _ wR A? _
wa§+A2(1 c) Ws (U§+A2(1 c)+c
(10.7)

where we abbreviated ¢ = cos (6) and s = sin(0). Assuming that the
71/2-pulse duration ¢, is tuned at a frequency f; o corresponding to a
detuning Ao, i.e. § = Qr(Ao)tr/2, the rotation angle 05 due to a pulse at

another detuning A is then 05 = 8 ;((AAU)) 7.
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Figure 10.11: Effect of a bi-stable charge fluctuator (BF) on a Ramsey measurement of an Andreev Pair Qubit. (a) Qubit trajectory on the Bloch
sphere associated to a Ramsey sequence, consisting in two 7/2 rotations R 1 separated by a time delay fgelay- When the drive frequency fi

has a finite detuning A/2m = f1 — f, to the qubit frequency f,, the qubit rotates at a generalized Rabi frequency Qr = [culz2 + A? and around

amodified axis, denoted £’, which is tilted by an angle 6 = tan (A/wpr) with respect to X. After the first 71/2 rotation, the qubit follows a free
evolution during a time tgelay, corresponding to a rotation at the angular frequency A around the £ axis that dephases the qubit by an angle
W = A - tgelay- (b) Experimental data for ¢ = 0 showing the oscillations of the ground state population P¢ with the drive frequency f; and
the time f4elay between the two 11/2-pulses of the Ramsey sequence. The 7/2-rotations were performed using 16 ns gaussian pulses, the
amplitude of which was obtained by a prior calibration from a power Rabi measurement at the frequency f1,0 = 9.286 GHz. Panel (d) shows
a calculation of the Ramsey pattern for wg /27 = 25.6 MHz and T, = 50 ns assuming a single transition frequency f, = 9.286 GHz. This
calculations reproduces qualitatively the measured pattern but does not capture the damped beating visible in the data. To improve the
comparison, we assume that the transition line is split in two frequencies f; and f; due to the switching of the BF. Panel (c) shows the
expected Ramsey pattern deduced from Eq. (10.10) for an equal weight superposition (a = 0.5) of the responses at the two frequencies. Best
comparison is obtained for f, = 9.28 GHz, f}, = 9.3065 GHz, which are about ~ 20 MHz apart, as was evidenced by two-tone spectroscopy
of the transition line in Figure 10.9(c,d). (e) Linecut at fi = 9.286 GHz comparing data from (b) and the calculation with BF from (c).
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Starting from {x, y, z} = {0,0, 1} associated to |g), the point on the Bloch
sphere reached after the first 71/2 pulse has the following coordinates:

0 2
ZA(L)R .2 QA WR . ZCL)R 2 QA
Rlwg, A, 6,0 = (—),_ 0,), 1- (_) _
[wr Al : {QR(A)2 sin” (= () sin (05) SINE cos® |

(10.8)

During f4elay, the qubit vector then experiences a free evolution, corre-
sponding to a rotation around Z at the angular frequency A, given by
R[0, A, A - tyelay]. Finally, the second 71/2-pulse amounts to applying a
second time the rotation matrix R[wg, A, O4]. The asymptotic state can
be easily found: if felay > 27/ A, then the state vector has diffused all
along the circle of constant latitude reached after the first 77/2-pulse ; the
mean z-coordinate z. after the second 7/2-pulse is then given by :

0
1 21
ze= / d5 R[wg, A, 6a]- R[0, A, 51 - Rlwg, A, 6] - |0
27 Jy 1
1 2 2 2
- —4(A +a? cos(eA)) . (10.9)
QR

The probability to have reached the excited state is deduced from P, =
(1 — zgr)/2, with zg the z-coordinate of the point on the Bloch sphere
reached at the end of the sequence. After some algebra, one finds the
following expressing for P,:

w2
Pe(tdelay) = Pe,(,o+sin2 (%) Q—f [(a)%{+(2A2+a)%{) cos (GA)) cos (Atgelay)
R
— 2AQg sin (64) sin (Atdelay)] , (10.10)

with Py oo = (1 — Zo)/2 and z« given by Eq. (10.9). For A = 0, this
expression reduces to P, = (1 — cos (20))/2 = sin® (0y) = 1, as expected.
Finally we introduce phenomenologically the exponential damping of
the oscillations with

P4, Do) = Peyoo + | Pe(tdelay) = Pe,oo] e~ tady /T3 (10.11)

In Figure 10.11(d) we plot the expected evolution of P?t =1-Pit—p,
for a transition frequency at f, = 9.286 GHz (A¢/2n = f10 — fo = 0),
wr/2m = 25.6 MHz and T; = 50 ns. The odd state population P, shows
only a very weak linear dependence with ¢ 4elay and was first fit to a straight
line. The result shares some resemblance with the data but we miss the
observed beating pattern in the Ramsey oscillations. Considering that
due to the BF there exists two transition frequencies f, and f, withrelative
weight o, we compare the data with a-PE{(A,, Ao o) +(1—a)-PE(Ay, Agp),
where A;/2n = fi — fiand Ag /21 = f1,0— f; withi € {a, b}. This second
calculation now captures rather well the measured Ramsey pattern.
The best agreement with the data from Figure 10.11(b) is obtained for
wR /21 = 25.6 MHz with the two qubit frequency values f, = 9.28 GHz
and f, = 9.3065 GHz, which is consistent with the ~ 20 MHz peak
splitting that was observed in Figure 10.9(d). fi0 = 9.286 GHz is the
frequency at which the 7t/2-pulses were tuned for this measurement.
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We find an exponential decay time of the order Tz* = 50 ns, a value almost
x4 bigger than the Tgecay = 13 ns that we had with the phenomenological
expression Eq. (10.6). A linecut at f; = f19 = 9.286 GHz in Figure 10.11(e)
shows that the measured populations from panel (b) are globally well
captured by the calculation with BF from panel (c).

The effect of the BF can also be seen in a Rabi flopping measurement
where the drive frequency fj is varied. In Figure 10.12(a), we illustrate the
effect of such a detuning on the trajectory on the Bloch sphere. A drive
pulse of duration t; rotates the qubit state vector by an angle Qg - 4

around X’ with Qg = , /a)%2 + A2. As A is increased, the circle described

on the Bloch sphere gets smaller and closer to the North pole, associated
to |g). The {x, y, z}-point on the sphere reached after f, is given by:

WR A? +a)%{ cos (Qrt)

1 2 Qr Q
(10.12)

with the rotation matrix defined in Eq. (10.7). From this, we deduce the
evolution of the ground state population:

0
Rlwg, A, Qr-tg]-{0]| = {Ag;)R (1—COS (QRt)), —— sin (Qgt),

1+z(ty) 1 A?+w%cos(Qrt)
Po(ty) = —— 2 _ 2 : 10.1
g(ta) 2 2 202 (10.13)

As for the Ramsey sequence calculation, this expression does not take
into account the presence of the odd state. As a first approximation, on
can consider its population constant and simply rescale P, accordingly.
Also, we further introduce a phenomenological exponential decay over a

time Tfabi :
ecay

. _ Rabi
PR(wR, Aa, 1) = Pg oo + [Pg(td) - Pg,oo]e {a/Taccay (10.14)

In Figure 10.12(b) we present this detuned Rabi measurement in a
200 MHz window around the pair transition frequency and we compare
it with theory assuming again two possible frequencies for the transitions.
In Figure 10.12(c), we plot « - Pgt(a)R, A, t))+(1—-a)- Pgt(a)R, Ay, tq)
with Pfgit from Eq. (10.14). The calculation was performed using the
same values for the two qubit frequencies deduced from the detuned
Ramsey measurement calculation in Figure 10.11(c), i.e. f, = 9.28 GHz
and f, = 9.3065 GHz. The best agreement with the data was found
with a relative weight @ = 0.65 between the two qubit frequencies,
a Rabi frequency wg/2m = 85 MHz and an exponential decay time
Tiacgi = 170 ns. Importantly, note that the frequency axis range differs
for the data (b) and the calculation (c) by about a factor X1.5. For some
yet unexplained reason, the oscillations frequency was observed to
increase faster with the detuning than Eq. (10.13) predicts. A linecut
at fi = 9.286 GHz is shown in Figure 10.11(d) to compare data and
calculation. It shows in particular that the oscillation period in the
measured data slightly increases with ¢, which is again an effect of the
beating between the oscillation patterns centered in f, and f},. Capturing
quantitatively these fine effects would require a more elaborate model
taking into account the presence of perhaps more fluctuators, which is
out of the scope of the present work.
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Figure 10.12: Effect of detuning on the Rabi oscillations of an Andreev Pair Qubit. (a) A resonant driving pulse (A = 0) of duration t4
rotates the qubit around the £-axis of the Bloch sphere by an angle wg - 4, with wg, the Rabi frequency which is proportional to the drive
amplitude. As a finite detuning A # 0 is introduced, the rotation axis £ — £’ gets tilted by an angle 0 = tan A/wg and the Rabi frequency

is modified to Qg = , /w%{ + A2, which has the effect to lower the amplitude of the P, oscillations with #; as the circle described on the

Bloch sphere gets smaller and closer to the north pole, associated to |g). (b) Measured Rabi oscillations of the ground state population Py
as a function of drive duration ¢4 and frequency fi on a ~ 200 MHz range around the pair qubit transition frequency. (c) Theory from
Egs. (10.13,10.14) assuming the presence of a bi-stable fluctuator, which has the effect to split the qubit transition frequencies in two possible
values f; and f;. Same values were used for f; and fj, as in Figure 10.11. Best fit was obtained here with & = 0.65, wg /27 = 85 MHz and an
exponential decay time for the oscillations of Tcﬁig; = 170 ns. Note that the scale in the fi axis is different compared to (b). (d) Linecut at

f1 =9.286 GHz highlighted by a dashed black line in (b,c). Data is shown in solid lines and open disks and theory for Py from (c) is overlaid
in dashed blue line. For completeness we also show the extracted values of P, and P,. A small oscillation is observed in the P, population,
which likely arises from the fast relaxation from |e) to |o) that may happen in the ~ 200 ns time lapse between the end of the drive pulse
and the readout, due to the measurement pre-pulse used to fast-load the resonator cavity before readout.

Hahn echo experiment

To further characterize dephasing noise, we performed a Hahn echo pulse
sequence. It consists in a Ramsey sequence in the middle of which an extra
ni-pulse has been added, as illustrated in Figure 10.13(a). This has the effect
to filter out the noise at frequencies lower than 1/t 4elay [111, 113], including
the low frequency charge noise arising from the incoherent switching of
the charge BF. Additional oscillations are obtained by rotating the second
7/2 pulse by ¢ = 55 tlde% The beating in the population oscillations is
no longer visible and their decay time is observed to be about a factor
%10 longer than for a Ramsey sequence, see Figure 10.13(b). Fitting the
oscillations with an exponentially damped cosine, a characteristic decay
time Tg = 404 ns is obtained, which although smaller is comparable in
magnitude to the value measured for an atomic-contact-based pair qubit
[21].

[111]: Tthier et al. (2005), “Decoherence in a
superconducting quantum bit circuit’
[113]: Bylander et al. (2011), ‘Noise spec-
troscopy through dynamical decoupling
with a superconducting flux qubit’

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’, p.98-99



10 Manipulation of an Andreev pair qubit | 146

(@)
Readout
delay
| fy

Drive ‘ 1 —

p -

/2 RE
(b)
) B d N
O 064 Te=40ans | (4) 400 £
o 05_ i & 3 ’(I? // ‘\
o 0.4 5 300 // \\\
n o /’ \
g 03] § 200- K %
o 0.2k i / .
@© ] o , X
= [ - p <
§_ 0.1 1004 .-
o OO_T T T qD(t)l - T[/32|. tdEIay(nsl) L?’/ : T T T T

0 200 400 600 800 1000 0.693 0.694 0.695 0.696 0.697

tyeray (NS) Vo)

Figure 10.13: Coherence of a nanowire-based Andreev Pair Qubit. (a) Hahn echo sequence consisting for the drive (violet) in two 7t /2-pulses
at frequency fi separated by a time delay tdelay. An extra ri-pulse is added in the middle to filter-out the noise with frequency lower than
1/tdelay- The second 7t/2-pulse may be dephased by an amount ¢(t) with respect to the first one. Once it has finished, the readout sequence
(orange) at frequency fo is played on the resonator. The effect of a 7t/2-pulse is illustrated on the Bloch sphere. (b) Populations Py, P, and P,
as a function of f4elay measured at 6 = 7 at the gate sweet spot Vg = 0.695 V. To allow for a more accurate fit of the decay, we make the
populations oscillate with tgelay With a 64 ns periodicity by dephasing the second 7/2-pulse by an amount ¢(t) = 271/64 - t(ns). The 7— and
1t/2-rotations were performed using 16-ns-long gaussian pulses, the amplitude of which was obtained by a prior calibration from a power
Rabi measurement. The m-pulse was set with a negative amplitude, so as to avoid any saturation of the microwave components at times
tdelay < 16 ns when the pulses overlap. Therefore, when all three pulses fully overlap, the drive is equivalent to a 0-pulse and we measure
the system in |g). Experimental data are shown in circles and a fit with an exponentially decaying sine function is overlaid. In background is
shown in light grey the extracted populations for an other Echo measurement with this time @(t) = 7/5 - t(ns); its fit gives a characteristic
decay time for the oscillations of Trr = 404 ns. (c) Two-tone spectroscopy evidencing the dispersion with gate voltage Vg of the pair
transition frequency fa(Vy) around the sweet spot at 0.695 V. (d) Evolution of the measured characteristic echo time T with V, showing a
maximum of 404 ns at the sweet spot location. Away from Ve = 0.695 V, first-order electrostatic noise contributes to dephasing, causing T>¢
to quickly drop. This can then be modeled using the relation for exponential coherence decay 1/Tor = I'c +2r(df /9V,)* V3, /1Hz. Best fit
is shown in dashed purple line and yields Vims = 3.6 + 0.3nV and T = 2.3 0.1 s,

To quantify the effect of electrostatic noise, we repeated the same mea-
surement away from the gate voltage sweet spot, as shown in Figure
10.13(c,d). We observe a drastic reduction of T>r as one moves away
from Vg = 0.695 V, which corresponds to the minimum of the parabolic
dispersion of the pair qubit frequency with gate voltage. Away from
this sweet spot, first-order electrostatic noise contributes to dephasing,
causing T>¢ to drop. Such behaviour can be modeled using the relation

22
for exponential coherence decay 1/Tor =T'c + 271(%) Yg‘; [114]. [114]: Martinis et al. (2003), ‘Decoherence
g of a superconducting qubit due to bias
From the parabolic-like dispersion of the transition frequency with V, noise’,

evidenced in Figure 10.13(c), we estimate df /dV, = (=0.15 + 0.216 X
V¢) GHz/nV where V, is given in Volts. Best fit of the Tor dependence
with V, is shown in dashed line in Figure 10.13(d); it yields an effective
root-mean-square voltage noise Viys = 3.6+£0.3nV and a Vg-independent
dephasing rate I = 2.3 £ 0.1 us™!. At the sweet spot, we estimate
Pf_

v = 0.22 kHz/pnV?, which makes negligible any coupling to second-

order noise, so that at the sweet spot, T>f is given by I'c.



10 Manipulation of an Andreev pair qubit

To summarize this section, we have demonstrated the realization of an
Andreev Pair Qubit based on a InAs nanowire weak link. Characterization
of its relaxation and dephasing times show slightly smaller although
comparable performances in magnitude as the ones reported for a similar
qubit implemented using an atomic contact junction. As a main difference,
we have observed that nanowire weak links may be significantly more
sensitive to their electrostatic environment. Because of their finite-length,
their performances as a charge qubit may be affected by the switching
of local charge impurities located nearby which, even if non-resonant
with the qubit, can drastically reduce its coherence properties. The fact
that a single impurity on a white noise background causes a substantial
suppression of the coherent signal raises the problem of reliability of
such an Andreev pair qubit as a charge-based device.
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Towards an Andreev spin qubit

In this chapter we now tackle the time-domain manipulation of single-
particle transitions (SQPT). Those involve many-body states with odd
parity differing by the pseudospin of one quasiparticle. Manipulating
SQPTs therefore amounts to manipulating the pseudospin of a single
quasiparticle in the weak link. The lowest-lying SQPTs in our microwave
spectra are understood as transitions from the first to the second ABS
manifolds, i.e. processes of the type [1o) — |2¢”). Unfortunately, with
the present design of our experiment, we could not resolve in the I1Q
plane the two spin states |1 T) and |1 |), differing by the pseudospin of
the quasiparticle trapped in the lowest ABS level, nor could we resolve
|2 7) and |2 |). In Section 10.2 of the previous chapter, we demonstrated
the discrimination of three clouds in the IQ plane, which we interpreted
as the many-body ground state |g), the excited state [e) = |1 T 1 |)
and an odd state, which at least enclosed contributions from |1 T), |1 [).
Therefore, we were not able to track the spin states population, although
we could demonstrate manipulation of SQPTs by looking at the mean I
and Q value of the demodulated readout pulses.

11.1 Manipulation of a single quasiparticle

In Figure 11.1(a) we present a two-tone spectrum measured with sample
52 showing a bundle of four SQPT lines (green) along with four pair
transitions (blue). This spectrum shows an unusual situation character-
ized by a rather flat pair transition dispersing only over < 2 GHz and
by all the lowest transition lines lying below the resonator frequency,
fr = 6.606 GHz. The resulting small detuning between the SQPT lines
and the resonator came along with a strong dispersive shift which, as we
are now going to report, allowed to perform coherent manipulation of
the SQPTs.

11.1.1 Driving a single quasiparticle

The effect of driving the four SQPT transitions with square pulses is
investigated in Figure 11.2 at two illustrative values of the phase, close
to 6 = 0 and 6 = 7, shown respectively as orange and cyan lines
in Figure 11.1(a). By varying the duration f; of the driving pulse, we
induced Rabi flopping of the quasiparticle population between the two
lowest ABS doublets, evidenced as coherent oscillations in the average
Q level of the demodulated readout pulses. These oscillations appear
whenever the frequency f; of the driving pulse is set close to resonance
with one of the four SQPT transitions. As the driving frequency f; gets
detuned, the Rabi frequency Qg increases, which results in a typical
‘chevron’ pattern centered around each of the four transitions, as already
described in Figure 10.12 for the manipulation of a pair transition. Note
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Figure 11.1: (a) Two-tone spectroscopy per-
formed at Vg = 1.07 V (different cooldown
than in Figure 10.5) showing a bundle
of four single-quasiparticle transitions
(SQPT) highlighted in green lines and a
group of four pair transitions highlighted
in blue (likely to be mixed pair transitions).
The resonator frequency, f, = 6.606 GHz,
is indicated in orange on the left axis. The
vertical lines highlight two 6 values of in-
terest, 6 = —0.247t (orange) and 6 = 0.817
(cyan) at which further characterization
was performed (see Figure 11.2). (b) Aver-
agelevel of the I quadrature after a driving
pulse of duration t; and frequency fi, ev-
idencing the effect of driving at a pair
transition frequency, highlighted by the
red dot in (a).
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11 Towards an Andreev spin qubit 149

that in contrast to coherent manipulation of quasiparticle pairs that has
been demonstrated in the previous chapter, these measurements now
demonstrate the coherent manipulation of a single quasiparticle excitation
of a superconductor. Recently, such a manipulation was independently
demonstrated by Hays et al. in Refs [41, 42], who went a step further by
demonstrating single-shot readout of the quasiparticle’s spin trapped
in an Andreev doublet. In Section 11.2, we will discuss possible reasons
why in our case the fine structure of the many-body states could not be
evidenced in our histogrammed time-resolved measurements.
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[41]: Hays et al. (2020), ‘Continuous
monitoring of a trapped superconducting
spin’

[42]: Hays et al. (2021), ‘Coherent
manipulation of an Andreev spin qubit’

Figure 11.2: Driving single-quasiparticle transitions. Rabi oscillations as a function of the drive
duration t4 and frequency f; on a 1 — 1.5 GHz window around the four visible SQPT transitions
for the two phase values highlighted in orange and cyan in Figure 11.1(a): 6 = —0.247 (panel (a))
and 6 = 0.817 (panel (c)). Each data point is obtained by averaging the Q outcome of ~ 500000
demodulated pulses consisting of a 172 ns fast-load pre-pulse followed by a 500 ns readout square
pulse at fy = 6.6071 GHz. The readout sequence is preceded by a square driving pulse of duration
t; incremented by multiples of 1 ns. (b,d) Rabi flopping of each of the four SQPT. The data points
shown in black dots correspond to cuts at the frequencies indicated by black ticks in panels (a,c):
f1 =3.798, 4.289, 4.500 and 4.990 GHz for panel (a) and fi = 5.692, 5.941, 6.151 and 6.425 GHz for
panel (c). Best fits with an exponentially decaying sine function are shown in blue lines on top of the

data with the associated value of the Rabi frequency Qg extracted from the fits.

Spin-flipping vs. spin-conserving transitions

In Figure 11.2(b,c), we observe that the two outer lines, corresponding
to pseudo-spin conserving transitions, show similar Rabi frequencies.
Likewise, fitting the Rabi oscillations of the two inner lines, associated
to pseudo-spin flipping transitions, gives identical Rabi frequencies.
Remarkably, close to 6 = 0 (phase bias shown in orange), the Rabi
frequency associated to the pair of pseudo-spin conserving transitions
is about a factor 4 — 5 larger than the one for pseudo-spin-flipping
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transitions. Close to 6 = 7 (phase bias shown in cyan), the same ordering
is observed but with only a factor ~ 3 between the pseudospin-conserving
and flipping transitions. As the amplitude of the driving pulse was set
constant over the whole measurement, this variation in Rabi frequencies
suggests a quantitative difference in the matrix elements associated to
both families of transitions. This is in qualitative agreement with the
discussion from Section 6.4.2 where we showed that in the general case,
for an almost symmetric drive field in the transverse direction of the
nanowire, spin-flipping transitions are strongly suppressed and hence
harder to drive compared to spin-conserving ones.

Coherent oscillations could also be measured when driving at the fre-
quency of the other four transition lines visible in the spectrum, which
are likely associated to pair transitions as their phase dispersion exhibit a
global minimum at 6 = 7. In Figure 11.1(b), we show a Rabi measurement
performed in a situation where such a transition line was well separated
spectrally from the four SQPTs and close enough to the resonator fre-
quency fr to allow for a strong dispersive shift and a good coupling to the
readout resonator. We observe a typical "chevron" pattern, evidencing
the increase of the Rabi frequency Qg when the drive is detuned from
the transition frequency, as was discussed in detail in Section 10.2.4.

11.1.2 Relaxation dynamics

We then investigated the relaxation dynamics of a quasiparticle of either
pseudospin trapped in the second ABS manifold. For each of the four
SQPT transitions, we measure the relaxation dynamics after a rt-pulse, as
illustrated in Figure 11.3. Compared to the spectrum from Figure 11.1(a),
lines had drifted after a few days: The new spectrum is shown in Figure
11.3(a), which differs slightly from Figure 11.1(a), mainly by the position
of the SQPT lines, which dropped in frequency by about ~ 0.5 GHz.

In Figure 11.3(b), we show a detuned Rabi measurement, varying its
frequency f; in the 5 — 6 GHz range associated to the four SQPT lines. As
observed in Figure 11.2(a,c), the driven dynamics of the two pseudospin-
flipping transitions is again much slower here than for the two pseudospin-
conserving transitions. Note that for this new situation, the detuned
Rabi measurement now shows an extra chevron pattern associated to
an additional transition line close to the top SQPT transition. After
close inspection, this line already appeared very faintly in the previous
two-tone spectrum of Figure 11.1(a) but was lying above the top SQPT
and therefore did not show in Figure 11.2(a,c). As the spectrum drifted,
this unidentified line moved in the frequency range of interest and now
mixes with the chevron patterns associated to the four SQPTs (see Figure

11.3(b)).

To measure the relaxation dynamics, we first performed a Rabi mea-
surement at the frequency of each of the four SQPTs to determine the
duration t4 to set in order to achieve a mt-pulse. This value is highlighted
with an asterisk in Figure 11.3(c) for each of the four SQPTs. We then
measure for each transition frequency the average I level as a function
of the time delay t4elay after such a 7t-pulse. As shown in Figure 11.3(d),
we can fit this spontaneous evolution with a decaying exponential to
extract the inter-doublet relaxation time 755 1, associated to each SQPT
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transition |10’y — |20), with 0, 0’ € {T, | }. All four relaxation times are
of the order 2 — 3 us, which is about the same timescale found by Hays et
al. in Ref. [41]. However, it is puzzling that the relaxation times do not
only depend on the state initially populated, but also from the state from
which the transition was performed: 151 1] # To111, T2y,1) # T2),11- This
could be due to the fact that the transition lines are closely packed, and
that when driving one transition, neighbouring ones are also affected, so
that the initial states are not exactly the same in each measurement.

These spontaneous relaxation times must be interpreted with care since
they encompass decay to both |1 T) and |1 |). Still, Hays et al. observed
that the inter-doublet decay was essentially spin-conserving. We can
therefore suspect that the measured |2 T) — |1 |) decay mainly reflects
the fast |2 T) — |1 T) relaxation and that the spin depolarization
associated to |1 T) — |1 |) and happening on a longer timescale 7,
may in our case not result in a measurable change of the average I level,
given that those spin states could not be resolved in our IQ histograms.
Supplemental data on the coherent manipulation of the measured lines
are provided in Figure 11.4, where we extract the Rabi frequency of the
main transition lines at three different values of 6 close to 7. Although a
clear difference in Qg can be evidenced between SQPTs that are either
spin-flipping or spin-conserving, no systematic trend is visible for the
other transition lines, which resemble PTs. The analysis however is made
more complicated by the fact that in this region of 6 the PTs are closely
packed with the SQPTs, resulting in highly interfering chevron patterns
in the detuned Rabi measurements of Figure 11.4(b,c).

11.1.3 Coherence

Finally, we evaluate the coherence time associated with coherent super-
positions of the type |10) + |20”) by applying a Hahn echo sequence at
each SQPT frequency. The results are reported in column (e) of Figure
11.3. The relaxation dynamics of superpositions «a|1o) + |20) with the
same spin texture are well fitted by an exponential decay that gives a
characteristic time T gcho ~ 150 ns. The relaxation time associated to
superpositions a|10) + $|20) with opposite spin is faster and at the limit
of our resolution. Indeed, in this experiment the Hahn echo sequence
is composed by a m—pulse that lasted 12 ns and 7/2—pulse 10 ns and
hence t4elay started at 32 ns. The values we report here are similar to
those obtained by our colleagues at Yale in a nanowire weak link similar
to ours [42]: they found out a Ty o associated with a|lo) + B|20)
superpositions around ~ 100 ns and for «|10) + B|10), To Echo ~ 50 ns.
Note that the coherence timescale observed in our system is comparable
to the one observed in spin-orbit qubits implemented either in InAs
nanowires [115] or InSb nanowires [116] quantum dots.

[41]: Hays et al. (2020), ‘Continuous mon-
itoring of a trapped superconducting spin’

[42]: Hays et al. (2021), ‘Coherent
manipulation of an Andreev spin qubit’
[115]: Nadj-Perge et al. (2010), ‘Spin-orbit
qubit in a semiconductor nanowire’

[116]: Berg et al. (2013), ‘Fast Spin-Orbit
Qubit in an Indium Antimonide
Nanowire’
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Figure 11.3: Relaxation and coherence dynamics of a single quasiparticle. (a) Two-tone spectrum evidencing the phase dispersion near
0 = 1 of the four SQPT transitions |16) — |20”) between the lowest and second lowest ABS manifolds, encoded in cyan, orange, violet and
magenta lines. The transition lines have drifted by about —0.5 GHz compared to Figure 11.1(a). (b) Average I level of the demodulated
readout pulse as a function of the duration t; of a square driving pulse, evidencing Rabi oscillations whenever the driving frequency
f1 becomes close to resonance with one of the four SQPTs, which central frequency is marked with colored ticks on the frequency axis
f1 =5.83 (cyan), 5.53 (orange), 5.38 (violet) and 5.12 GHz (magenta). Measurements were performed at 6 = 0.857, indicated by a black line
in panel (a). Column (c) Effect of a resonant drive for each of the four SQPTs at 6 = 0.857 as a function of the drive duration t;. Compared to
panel (b), the oscillations show a smaller Rabi frequency, because we set a lower power for the drive so as to better define a 7t-pulse for each
SQPT. For each curve, the best fit with an exponentially decaying sine function is shown in solid lines and the extracted Rabi frequency Qr
is displayed on the graph. Column (d) Average I level as a function of the time fqelay after a -pulse, the duration of which being indicated
with an asterisk on the x-axis of the corresponding graphs in (c) for each of the four SQPTs. The relaxation is well fit with an exponential
decay (solid lines), from which we extract the associated spontaneous relaxation times 71,7 5, for each of the four processes [20) — [10”).
Column (e) Average I level as a function of the time f4elay after a Hahn echo sequence for each of the four SQPTs. The exponential fit allows
to obtain an estimation of T echo-
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Figure 11.4: Coherent manipulation of SQPTs and PTs at different phase values. (a) Two-tone spectrum evidencing the phase dispersion
near § = 1 of the four SQPT transitions |1o) — |2¢”). Same as in Figure 11.3(a) but we now highlight at three phase values 6 = 0.697
(magenta), 0.777t (violet) and 0.857 (blue) the frequencies of the four SQPT transitions (disks) and of some of the pair transitions (triangles)
at which further characterization is performed. (b,c,d) Detuned Rabi measurement performed at each of the three phase values highlighted
in (a). For each case, we show the Rabi oscillations measured when driving at the central frequency of each SQPT lines (denoted with disks
on the frequency axis) and of some PT lines (denoted with triangles). Best fit with an exponentially decaying sine function is shown in solid
lines for each curve, with the associated value of the extracted Rabi frequency Qg. The two spin-flipping SQPTs systematically show a
smaller Qg by a factor ~ 3 — 5 compared to the two spin-conversing SQPTs.
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Figure 11.5: Resonator shift associated to the lowest-lying many-body states of a nanowire weak link, as estimated from a tight-binding
calculation. (a) Typical energy spectrum of spin-split ABS levels as a function of phase 6 (parameters similar to Figure 4.8, but changed
slightly so as to have only 2 ABS manifolds). (b) Energy of all possible transitions between the two ABS manifolds, labelled 1 and 2. Pair
transitions (PT) of the type |g) — |[noma’) with n,m € {1,2} and 0,0’ € {1, ]} are shown in red and single-quasiparticle transitions
(SQPT) |10) — |20”) are shown in green. (c) Energy E |0y of all many-body states |®) involving the two ABS doublets, and neglecting
interactions (see Chapter 8). The ground state |g) corresponds to all negative energy levels being filled, i.e. E|¢y = (1/2)Zi<0,6Eis, where
3040 states were included in the sum to ensure convergence. The ground state energy at 0 = 0 is taken as the reference of the energy ladder.

(d-f) Resonator shift héfrl@ associated to each of the six lowest lying many-body states |®) € {|g),[1T),[11),12T),121),11 T 1 ])} shown
in color in (c), for three illustrative values of the resonator frequency f; = 3, 9 and 20 GHz, highlighted in dashed lines in (b). While the
continuum is taken into account to estimate E|,), its contribution to the shift through virtual transitions was neglected. Enlargement of (d-f)
are provided close to 6 = 0, showing that the separation of all six lowest lying many-body states is only possible in a restricted phase range.

11.2 Spin states could not be resolved

Although coherent manipulation of the pseudospin of a single quasi-
particle could be demonstrated, extended characterization of the spin
dynamics was not achievable, because the readout did not allow to
discriminate |1 T) and |1 |). Sample S2 was measured in many different
conditions of gate voltage and phase, none of which allowed to evidence
clearly more than 3 clouds in the histogram of I and Q outcomes, which
we attributed to |g), |e) = |1 T 1 |) and an odd mixed state |0) probably
encompassing |1 T), |1 |) and perhaps other many-body states. Given
that single-quasiparticle transitions could be routinely observed between
these different spin states, it seems rather puzzling at first sight that our
time-resolved data did not reveal these sub-states as well. However, let us
remember that the signal in two-tone spectroscopy only requires that the
resonator shift changes between the spin states (6 f,|2‘j> #0 f,llw), while
discriminating |1 T),|1 |), |2 T) and |2 |) requires that the clouds in the
IQ plane corresponding to the associated shifts be all distinct, which is a
much stricter condition.
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In Figure 4.8, we had shown the evolution with 6 of the resonator shift
associated to usual transitions for two illustrative cases, where the lowest
SQPTs were crossing or not the resonator line. Figure 4.8(e) showed
in particular that all SQPTs |10) — |2¢”) were contributing to a finite
resonator shift for almost any value of the phase 6, with maxima where
the phase curvature difference between the two manifolds 1 and 2 is
highest. This explains why in the general case, all four SQPTs may be
seen in two-tone spectra over the full range of phase. In contrast, as we
now show, all four substates |1 T),|1 |), |2 T) and |2 |) actually contribute
to four well-distinct resonator shifts only in a small region of phase close
to 6 =0.

We illustrate this effect on a situation with only two ABS manifolds in the
gap (Figure 11.5(a)), which is the minimal scenario to account for both PTs
and SQPTs. The associated transition spectrum is given in Figure 11.5(b),
with SQPTs shown in green lines and PTs in red. In Figure 11.5(c), we plot
the energy E|q) of all possible many-body states arising from creating
excitations in the two ABS manifolds, and focus on the six lowest ones,
corresponding to [®) € {|g), |1 T), (1 1), 12 T),12 1),11 T 1 [)}. Their
associated resonator shifts 0 f,l(Ij> are depicted in Figure 11.5(d) for three
illustrative values of the resonator frequency, f, = 3, 9and 20 GHz, shown
in dashed lines in panel (b). Panel (d) corresponds to a situation deep in
the dispersive regime where both the PT and the SQPTs are crossing the
resonator line. Panel (f) illustrates on the other hand the adiabatic regime
where all transitions are detuned from f,. Finally, panel (e) shows an
intermediate situation, where only the SQPT cross the resonator close to
0 = 0. The shifts were computed from Egs. (4.33,4.34,4.36), which require
knowledge of the matrix elements of the current operator coupling the
different states. They were estimated from a tight-binding calculation
with 60 sites for the normal region and 350 sites in each superconducting
lead*. From Figure 11.5(c), we observe that the energy of |1 T) and |1 |),
shown respectively in light and deep green lines, have about opposite
slopes with 6 around 6 = T, i.e. they carry opposite supercurrents. More
crucially, we further observe that their phase curvature near 6 = 7 is
almost zero, meaning that they essentially do not shift the resonator in
the adiabatic regime, while |g) and |e) = |1 T 1 |) well contribute to
finite and (almost) opposite resonator shifts by their respective phase
curvatures (see Figure 11.5(f)). Close to 6 = 7, we therefore do not expect
to be able to separate well |1 T) and |1 |). However, in a small region
around 6 € [-0.17, +0.17t], the shifts associated to all six many-body
states may actually show distinct values, allowing for their separation in
the IQ plane, as illustrated in Figure 11.5(d-f). When moving away from
0 =0, the shifts for |1 T) and |1 |) start coinciding with the shifts from
|g) and |e). As for the higher states |2 T) and |2 |), they contribute to
almost the same resonator shift as |g) when 9 is close to 7.

* Taking that many sites for the two leads allows to describe properly the continuum,
which actually carries some phase dependence too given the finite-size of the weak
link. Computing the resonator shifts requires estimating first the energy E|¢) of the
many-body ground state, by summing the contributions from all negative-energy states.
The phase-dependence of this quantity is observed to converge slowly with the number
of states in the sum. In practice, we need to include states until ~ 2A to estimate properly
E|¢). The energies are obtained by numerical diagonalization of the system Hamiltonian,
with dimension (700 + 60) X 2 chains X 2 (spin) X 2 (electron/hole) = 6080. Given this
matrix size, such diagonalization is computationally expensive ; it was performed on a
cluster by A. Reynoso from Balseiro Institute in Bariloche.
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From this analysis, we expect to observe only three clouds in the IQ
histograms when operating near 6 = 7t: the middle one, which we denoted
|o), is expected to correspond to |1 |) and |1 T) and the other two clouds
on either side should correspond to |g) and |e). This illustrative analysis
supports the state identification which we performed in Figure 10.6 and
throughout all the time-domain data presented in Chapter 9. It also
shows that |2 T) and |2 |) may collapse on the |g) cloud near 6 = 7. In
this case, driving SQPT transitions would not light up a new cloud in the
IQ histogram, but only change the internal distributions of the 3 clouds.
Since most of the IQ histograms we measured were taken close to 6 = 7,
this could explain our difficulties in evidencing |1 |) and |1 T). On the
other hand, we carried out extensively single-tone spectroscopies of the
resonator on the full 0 — 27t phase range, none of which showing clearly
distinct values of f, that could be associated to a splitting of |1 |) and |1 T)
close to 6 = 0. Note however that for such measurements, the discrete
dips in |S21(f)| associated to the resonator frequencies in each states are
further weighted by the average state populations, which smooths out
the pattern, making the state discrimination possibly harder.

As a final remark, the ordering of the shifts predicted by this analysis for
the six lowest-lying many-body states and illustrated in Figure 4.8(f) is
consistent with the one reported by Hays et al. in Ref. [41]. In this work,
single-shot readout of the spin states was demonstrated in a small phase
range close to 6 = 0. The SQPT lines were about 6 GHz higher than the
resonator frequency, which corresponds qualitatively to the case depicted
in Figure 4.8(f), for which the shift is expected to be dominated by the
ABS curvature. The measured phase dependence near 6 = 0 of |[g), [1 T)
and |1 |) in Ref. [41] also coincides qualitatively with the picture given in
panel (f). One could wonder how this picture would change in presence
of Coulomb interactions in the weak link. As a first step, we showed on
an illustrative case in Figure 8.9(b) how the energies of the lowest-lying
many-body states would evolve for increasing values of the interaction
strength, although it was calculated for different parameters and the effect
of the continuum was not included at the time. Further work is needed
to evaluate properly the impact of interactions on the state-dependent
resonator shift.

Stepping back a little, this analysis illustrates the general difficulty in
implementing an Andreev Spin Qubit at zero magnetic field, given that it
requires fine-tuning the gate voltage V, (to find a situation in which a set
of SQPTs comes close enough to the resonator to allow a good coupling),
and then fine-tuning of the phase 6 to isolate a working point in the
restricted phase range near 6 = 0 where |1 |) and |1 T) show distinct
resonator shifts.

[41]: Hays et al. (2020), ‘Continuous mon-
itoring of a trapped superconducting spin’
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Samples fabrication

Although six samples were fabricated and cooled down at low tempera- ~ 12.1Resonator fabrication . ... 158
ture during my thesis, I only report data taken on two of them, which are ~ 12.2 Nanowire weak link fabrica-
named for simplicity S1 and S2. In the others, the coupling between the Gon............0nnnn 162

weak link and the resonator was either too weak or too large, or no flux
modulation was observed, indicating the failure of either the etching
or the recontacting of the nanowires. Samples S1 and S2 correspond to
two generations of CPW resonators. The main difference concerns the
coupling scheme between the resonator and the nanowire weak link: In
sample S1 it was achieved through a mutual inductance (section 5.2.1)
whereas in sample S2 the coupling was galvanic (section 5.2.2).

Overview of the fabrication of the samples:

» Sample S1: Fabrication of the Nb resonator. Au alignment marks.
Deposition of nanowires. Etching of Al to define the weak link in
the nanowire. Au side-gate. Al loop connected to the nanowire and
coupled to the resonator.

» Sample S2: Fabrication of the NbTiN resonator. Alumina patches.
Au alignement marks and local back-gates. Deposition of a nanowire
above the gate. Etching of Al to define the weak link in the nanowire.
Deposition of Al patches to contact the ends of the nanowire.

The chip design comprises mm-pm-size features as well as small patterns
down to = 100 nm. Therefore fabrication involves both optical and
electron-beam lithography. The process flow starts on a whole 2-inch
wafer with the steps concerning the fabrication of the resonators. The
wafer is then diced into chips (3x10 mm) that are individually processed
to incorporate the nanowires and perform the remaining steps. In the
following we describe the process flows that have been used.

12.1 Resonator fabrication

The starting point in both samples is a 2-inch monocrystalline (100)
intrinsic (p > 4 kQ.cm) Silicon wafer covered with 500 nm of thermally
grown S5i0;. In sample S1, a 150-nm-thick Nb film was deposited by RF
sputtering whereas for sample S2 the superconducting material used
was NbTiN film (80 nm thick) also deposited by RF sputtering but in
another machine. We observed that NbTiN gives higher internal quality
factor resonators but they provide a non-negligible kinetic inductance
(= 0.6 pH/sq) that must be taken into account when designing the
resonators. The recipe to transfer to the wafer the patterns of the optical
masks depicted in Figure 12.1 and Figure 12.2 is the following (all baking
steps are done on hot plates; optical lithography exposures are performed
with Siiss Microlec MJB4 mask aligner):
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» Superconducting deposition:

Sample S1: Nb deposition by RF magnetron sputtering: 150 nm
(rate 2nm/s)

Sample S2: NbTiN deposition by RF magnetron sputtering:
80 nm (rate 0.8 nm/s, sample temperature 600°C)

» Resonator patterning

(a) Photoresist deposition: 1-yum-thick Shipley 51813 (spinning
4000 rpm, baking at 110°C, 1 min)

(b) Optical lithography: UV exposure through the mask shown
in Figure 12.1 or Figure 12.2, in hard contact (dose: 200 mJ/ cm?).

(c) Development: dissolution of exposed resist in Microposit
ME-319 developer for 1 min, subsequently rinsed in DI water and
blown dry with nitrogen.

(d) Etching: Reactive ion etching of unprotected superconduct-
ing material using a gas mixture of CF4 (20 sccm) and Ar (10 sccm)
at a pressure of 50 ybar. The etching process, which lasts between 3
and 5 minutes, is monitored by optical interferometry on a control
sample placed nearby.

(e) Resist removal: in a warm bath (70°C) of Microposit 1165
remover (N-methyl-2-pyrrolidone) for ~ 10 min, subsequently
rinsed in DI water and blow dry with nitrogen.

(f) Cleaning: O, plasma (5 sccm) at 100 W and a pressure of
50 ubar during 2 min.

» Gate dielectric (Alumina) patch (only for S2) In S2, the gate goes
over the ground plane of the resonator. Insulation is provided by an
Alumina layer, deposited at the position of the small pink rectangle
shown in Figure 12.2(c).

(a) Photoresist deposition: 1.7 — um-thick of Microposit LOL-
2000 spun at 4000 rpm and baked at 150°C for 1 min. 5 ym Shipley
51805 spun at 4000 rpm and baked at 110°C for 1 min.

(b) Optical lithography: UV exposure through the mask shown
in Figure 12.2, in vacuum contact (dose: 150 m]J/cm?). (c) Develop-
ment: dissolution of exposed resist in MF319 developer for 1 min,
subsequently rinsed in DI water and blow dry under nitrogen.

(d) Cleaning: O, plasma (5 sccm) at 100 W and a pressure of
50 ubar during 2 min.

(e) Alumina layer: e-beam evaporation of 65-nm-thick film at
arate of 0.1 nm/s, and at an angle of 40 using planetary rotation
of the wafer holder.

(f) Lift-off: the resist stack covered with alumina is finally
removed with a warm (80°C) bath of 1165 remover for ~ 10 min,
subsequently rinsed in DI water and blow dry under nitrogen.

(g) Cleaning: O; plasma (5 sccm) at 100 W and a pressure of
50 pubar during 2 min.

» Coating for dicing & individual chip processing

E-beam resist bilayer deposition: ~400-nm-thick copolymer
MMA (8.5) MAA EL10 spun at 4000 rpm, baked at 150C for 3 min.
~ 270—nm-thick PMMA (950K) ethyl-lactate spun at 4000 rpm,
baked at 150C for 3 min. UV3 coating to protect the bilayer from
debris produced when dicing the wafer: spun at 2000 rpm and
baked at 120C for 2 min.
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After dicing the processed wafer, each chip is ready for the next steps.
Some of them were directly used, without any further processing, for
preliminary experiments devoted to characterize the resonators. In next
sections we explain in detail the integration of nanowire weak links into
individual resonators.

(a) (b)

CEA Saclay / Quantronics / SAQD

Figure 12.1: Optical lithography mask S1 (resonators). (a) The mask includes 44 individual chips of 3 x 10 mm? with different coupling
quality factors, number of resonators and gates. (b) Individual chip view corresponding to the one we used in experiments. The chip
includes 4 resonators with slightly different resonance frequencies. (c) Close view of resonator R#2, highlighted in red in (b) .
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(b)

CEA Saclay / Quantronics / ANTSV3 / Step 1
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Figure 12.2: Optical lithography mask S2 (resonators). (a) The mask includes 44 individual chips of 3 X 10 mm? with different coupling
quality factors, number of resonators and gates. (b) Individual chip view (for the sake of clarity the lattice of 2X2 um squares is not
represented) corresponding to the one we used in experiments. The chip includes 4 resonators with slightly different resonance bare
frequencies. Highlighted in red, the ending region of resonator R#1 where the coupling with the nanowire will take place. (c) Close view of
this region. The nanowire will be deposited with a micromanipulator across the bottom narrow gap region of the CPW, to the right of the
pink rectangle, which corresponds to the optical mask layer for the alumina patches
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12.2 Nanowire weak link fabrication

12.2.1 InAs-Al core-full shell nanowires

The nanowires used in this thesis work were synthesized by Peter
Krogstrup (Copenhagen university). The batch name is QDEV439. It
contains ~10-um-long nanowires with an InAs core diameter of about
140 nm, featuring a hexagonal cross section and covered by an epitaxial
Al shell about ~ 25 nm-thick. They were grown in the wurtzite phase
along the [0001] crystalline direction on a (111)B InAs substrate by the
Au-catalysed vapour-liquid—solid method. An aluminum evaporation
was subsequently performed to cover each of the six facets, following the
recipe of Ref. [37].

12.2.2 Nanowire deposition

High precision alignment marks were defined by means of e-beam
lithography in the region where nanowires are subsequently deposited.
In sample S1, nanowires were picked up and dropped on the sample
using as a tip a Nylon fiber extracted from a cleanroom’s wipe and glued
to the end of a 250-um-diameter needle. The fiber diameter, ~ 9 um,
was about 50 times larger than the diameter of the nanowires. With this
home-made tip, a bunch of nanowires was deposited with a placement
precision of the order of 50-100 ym.

For sample S2, we had set up a micro-manipulation station (see Figure
12.5) and the nanowires were deposited one by one. The station consists in
a Eppendorf 3-axis micro-manipulator (TransferMan® 4r) that controls the
position of a home-made tip holder, to which a 100-nm-radius tungsten
STM tip (72X Tungsten Wire 3 mil from American Probe & Technologies
Inc.) is attached. The micro-manipulator is associated with a digital
microscope (Keyence®) that allows to monitor the transfer process: a
single nanowire is catched with the STM tip from the small piece of wafer
with nanowires, then deposited on the desired region of our sample with
a precision of the order of a few umeters. With some practice, a nanowire
can be displaced on the surface of the sample to better adjust its final
position. Figure 12.3 shows optical images after deposition of nanowires
on sample S1 and S2.

12.2.3 Weak link definition process

After NW deposition, samples are covered with a layer of PMMA (950K)
A6 e-beam resist. After opening small windows over the nanowires,
the aluminum shell is wet-etched to create the weak links. In order to
center the position of the windows, images of the NWs are incorporated
into the e-beam software and positioned using the alignment marks
(Figure 12.4 (a) and (b)). After e-beam lithography and development, and
prior to wet etching of the aluminum shell, the exposed sample surface
is cleaned under a mild O, plasma to eliminate organic residues. The
wet etch process consists in dipping the sample for 15 sec in Al etchant
(Transene-D) at a temperature of 50°C, and immediately rinse it in DI
water for 30 sec. The PMMA is then removed using hot acetone. The wet

[37]: Krogstrup et al. (2015), ‘Epitaxy
of semiconductor-superconductor

nano-wires’

(a)

00
oo~
®0 0.
L = B
®o 0.

(b)

®o0000
00000
o000
®o00
o000

Figure 12.3: (a) Optical image of sample
Sl after NW deposition using a home-
made tip under a binocular microscope
(b) Optical image of sample S2 after NW
deposition using our micromanipulation

station.
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()

(d) (f)

Figure 12.4: Weak link definition process.Top (bottom) row corresponds to sample S1 (S2). (a) and (b) Images of deposited NW are
incorporated into the writing e-beam software and centered with the help of the alignment marks in order to define the etching windows
(red) on top of the NWs. (c) and (d) Close view , for samples S1 and S2 respectively, of the etching window opened over the NW. The image
is blurred since the optical microscope is at its resolution limit.(e) and (f) SEM image of the weak link region after wet etching.

etching process proved to be not 100% reproducible because it relies on
surface chemistry, which is highly dependent on the surface state of the
nanowires and/or the substrate, i.e. on the presence of eventual residues
or contaminants for example. Nanowires processed together on the same
chip and having therefore all witnessed the same chemical treatment,
could be etched quite differently, with variabilities in the size of the weak
link on the order of 50%. For this reason, this step is realized first: in case
of failure, the nanowire can be replaced by another one. Figure 12.4 (e)
and (f) shows the SEM images of S1 and S2, respectively, after the etching
process. The semiconducting region appears clean and the facets of the
NW are apparent.

12.2.4 Nanowire gates

In sample S1, side gates were fabricated after obtaining the weak links.
In order to position them as close as possible to the weak link, high
resolution SEM images were incorporated into the e-beam lithography
software as in the previous step and gates were custom-defined for each
nanowire. The process is the following:
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Figure 12.5: View of the micromanipulation station for nanowire deposition. The station consists in a Eppendorf 3-axis micro-manipulator
(TransferMan® 4r) that controls the position of a home-made tip holder. The control pad with the joystick (upper image on the left-hand
side) allows to move the tip on the X-Y plane whereas the swivel (top part of the joystick) controls the Z -axis. A 100-nm-radius tungsten
STM tip is attached to a home-made holder. The micro-manipulator is associated with a digital microscope (Keyence) that allows to monitor
the transfer process: a single nanowire is catched with the STM tip from the small piece of wafer with nanowires, then deposited on the
desired region of our sample with a precision of the order of a few pumeters.
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» Coating: bilayer of MMA(8.5)MMA EL10 / PMMA (950K)A6 (~
400 / 300 nm thick respectively) baked @ 150°C

» E-beam lithography at 30keV

» Ti/Au deposition: after mild Ar milling, 3 nm thick layer of Tij,
followed by 50 nm of Au is deposited at a rate of 0.Inm/sec and
0.5 nm/sec respectively.

» Lift-off: in hot acetone (60°C) during 15 min. Rinsed in IPA under
mild US. Blow dry under nitrogen.

Limited gate stability was observed on sample S1: two-tone spectra
showed slow drifts and from time to time sudden jumps. Furthermore,
gate sweeps displayed hysteresis. We attributed this behaviour to the
presence of deep charge traps in the nearby silicon dioxide dielectric
substrate determining the electrostatic environment of the semiconductor
weak link. Having in mind this hypothesis, we decided to fabricate gates
differently by placing them underneath the weak link. In sample S2,
gates were fabricated at the same time as the alignment marks. Since
the nanowires were deposited on top of the NbTiN film, and across the
CPW resonator gap, the weak links were suspended typically ~100 nm
above the gates. This way there is no dielectric between the weak link
and the metallic gate, which furthermore screens the charges in the
substrate. With this gate configuration, spectra were much more stable,
and hysteresis in gate sweeps almost negligible.

12.2.5 Nanowire contacts

The last fabrication step consists in contacting the nanowires” aluminum
shell to the loop that allows phase biasing the weak link. The process
flow is as follows:

» Coating: bilayer of MMA(8.5)MMA EL10 / PMMA(950K) EL baked
at 150°C

» E-beam lithography at 30keV

» Alumina dry etch: in order to get superconducting contacts, the
oxide layer on top of the nanowires” Al shell must be removed prior
to Al evaporation. This is done by means of Ar-milling (sequences
of 10 sec of etching / 40 sec of waiting time to avoid overheating
and hence damaging the PMMA mask).

» Al deposition: after Ar milling, 130-nm-thick Al layer is deposited
at a rate of Inm/sec.

» Lift-off: in hot acetone (60°C) during 15 min. Rinsed in IPA under
mild US. Blow dry under nitrogen.

Figure 12.6 and Figure 12.7 show details of the region where the CPW
resonator and the nanowire weak link are coupled, in samples S1 and S2,
respectively.
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Figure 12.6: SEM images of Sample S1. (a) zoom on the shorted-end of the CPW resonator (on the left) coupled to Al loop containing the
NW (inside red box). Note that the Alloop is connected to the ground plane (upper left corner) to provide a reference for the dc voltage
applied on the gate (thin horizontal bright electrode). (b) close view of the InAs-Al core-shell nanowire. (c) Zoom on the weak link. The Al
shell was removed over 370 nm to form the weak link. A close-by side electrode is used to gate the semiconducting exposed region and
drive microwave transitions between ABS.

_ 20.um

Figure 12.7: SEM images of Sample S2 (tilted). (a) Zoom on the shorted-end of the CPW resonator.The nanowire (inside red box) connects
the central conductor of the CPW and the ground plane, thus forming a superconducting loop that allows to control the phase difference
across the nanowire weak link. (b) close view of red box in (a) The Al shell was removed over 600 nm to form the weak link. A local back
gate electrode underneath the semiconductor exposed region is used to control the dc properties of the weak link and drive microwave
transitions between ABS.
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During this thesis, the experiments were performed in two different dry =~ 13.1Sample holder . . . ... ... 168
dilution refrigerators. Most of the spectroscopy experiments (chapters 6 ~ 13.2Wiring inside the dilution refrig-
and 8) were carried out in a CryocoNcerr fridge (base temperature 30 mK), erator. ................ 169

whereas the time-domain data (Chapter 9) were taken in a BLueFors
LD-250 refrigerator (base temperature 10 mK) installed in 2020. Views of
the two room temperature control desks and of the dilution refrigerators
are given in Figure 13.1 and Figure 13.2

Figure 13.1: (a) View of the control desk of the experiment with Cryoconcept refrigerator, shown in (b), with the sample box at
the bottom left.
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Figure 13.2: (a) View of the control desk of the experiment with BlueFors refrigerator, shown in (b), with the sample box on the
right hand side.

13.1 Sample holder

Figure 13.3: (a,b) Views of the sample holder, open and closed. A two-Euros coin gives the scale. (c) Sample wire-bonded
to PCB. (d) Closed sample holder mounted inside a flat superconducting coil (white Teflon tape covers its windings). The
ensemble is enclosed in a double cryoperm/aluminum cylindrical shield, seen in Figure 13.2(b).

The silicon chips are glued on a printed circuit board (PCB), using a
droplet of UV3 resist. As shown in Figure 13.3, wire bonding allows the
connection to the PCB, including many connections to the ground plane
all around the sample. The PCB, which has six SMP connectors soldered
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onto it, is mounted in a cylindrical gold plated copper box. The box is
placed coaxially inside a flat superconducting coil on a copper holder
thermally anchored to the refrigerator mixing chamber. The ensemble is
enclosed in two cylindrical shields, the inner one made of aluminum, the
outer one of Cryoperm.

13.2 Wiring inside the dilution refrigerator

13.2.1 Cryoconcept® fridge

Flux Gate Drive Readout Pump Qutput

] |

Figure 13.4: Schematics of the wiring of the experiments presented in chapters 6 and 8

The wiring of the Cryoconcept fridge is schematically represented in
Figure 13.4. The signals sent to the sample are attenuated by a succession
of XMA attenuators. The measurement signal is amplified first at base
temperature by a TWPA (developed at Lincoln Laboratories and provided
to us by Will Oliver), followed by a HEMT (Low Noise Factory 4—16 GHz,
+40 dB) at the 4K stage. The coaxial line between the two amplifiers is
superconducting (NbTiN), in order to have as little attenuation as possible
but low heat conduction. The circulators between the sample and the
HEMT are from Quinstar 8 — 12 GHz (simple and double), and a Pamtech
broadband insulator. The 6 — 8 GHz bandpass filter is from Microtech.
The DC gate port is a coaxial line, equipped with Mini-Circuit VLEX-80+
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and SLP-2.5 low-pass filters. A bias tee (Anritsu K250), placed at base
temperature, allows to combine DC and AC voltages on the gate. A small
superconducting coil placed next to the sample, biased using a twisted
pair and filtered by the combination of its inductance and a 1 £ resistor,
is used to phase-bias the weak link . Additionally, a two-axis home-made
magnet (not shown in the figure) is used to probe the magnetic-field
dependence of the weak link spectrum. The two Helmholtz coils are
biased through HTc superconducting wires, and filtered with the parallel
combination of their inductance and 9 Q resistors placed at the 77 K
stage.

13.2.2 Bluefors® fridge

Flux Gate Drive Readout Pump Output

100 mK

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 13.5: Schematics of the wiring of the experiments presented in chapter 9

The wiring of the BlueFors fridge was very similar, see Figure 13.5, except
for minor changes like the position of the attenuators. The main differ-
ence concerns the DC gate bias, which is done through a twisted pair
fabricated on long flexible PCBs by our colleague Caglar Girit at Colléege
de France, and includes a low-pass RC filter at base temperature. The coil
on the sample holder (see Figure 13.3) was wired from a 100 um-diameter
NbTiN wire, 800 turns on 10 layers. To avoid short-circuits to ground,
the metallic mandrel (gold plated copper) was covered with blue-tape
on the sides and Kapton tape at the bottom.
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Microwave measurements

14.1 Microwave wiring

For the first spectroscopy measurements performed in the Cryoconcept
fridge we used a rather simple room-temperature microwave setup,
shown in Figure 14.1. Simple mixers are used to pulse the measurement
tone (frequency fp.) In some experiments, we had two measurement lines
allowing to measure resonators around 3 GHz and 9 GHz (blue and red
lines). The corresponding signals were mixed with IQ mixers, filtered,
amplified, then sent to two lock-ins (in the figure, SR830). The drive
signal at frequency f; is chopped with an arbitrary waveform generator
(Agilent AWG 33250) delivering a square signal at a frequency given as a
reference to the the lock-ins.

3 20dB amps
| 2 switches  £oio HVA-
Amplifier Agile dc-5 500M-20B

M1 AMT A0259

@ i Attenuator
S2

Fulsar Microwave

AAT-29-479/55 [5] oc-1.9 Mtz
Agilent 33250
Il |
LI SR830 LI SR830
T (Y (] 0| Al® [©]
fi (W
REF IN REF IN

=

3|GHz  9|GHz
Agilent E8257D l ;: m @

Modulated by
Agilent 33250A Drive -
fl resonator

from
resonator

Figure 14.1: Schematics of the room temperature microwave wiring of the experiment in the lab with Cryoconcept fridge.

In the subsequent experiments, the setup was enriched and modified
so that all the different types of measurements and the different con-
trols could be performed without disconnecting anything. The present
(January 2022) state of the corresponding wiring of the experiment is
shown in Figure 14.2. Several computer-controlled mechanical switches
(Mini-circuit RC-4SPDT-A18), shown as blue rectangles, allow to route the
signals. The green rectangles are microwaves sources (Anritsu MG3292 or
MG3294), a vector network analyser (Keysight PNA-L), a signal analyser
(Rohde and Schwarz FSV), an oscilloscope (Lecroy Waverunner 601). The
Quantum Machine OPX appears split in 3 grey rectangles in the diagram:
analog outputs (left), digital markers (bottom right) and analog inputs
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(top right). The connections to the ports of the experiment at the top
of the dilution refrigerator are symbolized with the purple disks Drive
(drive tone, connects to "Drive" in Figure 13.5), Resonator (connects to
"Readout" in Figure 13.5), Meas (connects to "Output" in Figure 13.5).

VNA

Source Meas

(MG4) 30dB
121C 121D -

QM Analog Inputs

VattMeas
(GPIB13)

QM Analog Outputs

1228

VattDrive
(Yokod)

Source Drive
(MG2)

CH1 CH3

QM Digital Markers

Figure 14.2: Schematics of the room temperature microwave setup. The identification of the different elements is provided by
Figure 14.3.
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Figure 14.3: Caption for Figure 14.2.
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The actual setup is shown in Figure 14.4.
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Figure 14.4: Room temperature microwave setup as of January 2022: (a) General view; (b)
close view on the mixers’ board.

In Figure 14.5, we show the parts of the circuit used in spectroscopy
experiments performed with the Quantum Machine.
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Figure 14.5: Microwave circuit for spectroscopy experiments. The drive tone generated by the VNA in CW mode (on the top of
the figure) is chopped by the rapid switch (on the bottom), commanded by a digital output of the QM (bottom right).
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14.2 Spectroscopy

For measurements of the spectrum, the drive and measurement tones
were applied simultaneously. Two differential methods were used to
measure the effect of the drive tone.

» In the first one, illustrates with Figure 14.1, the drive tone was
chopped using a 3 kHz square voltage signal gating the microwave
source itself. The same signal was used to synchronize lock-in
amplifiers (two Stanford Research LI830, or the two ports of a
Ziirich Instruments UHFLI 600 MHz), which give the amplitude
of the corresponding modulation in I and Q. The time constant of
the lock-ins was set to 10 — 50 ms. One practical advantage of the
Ziirich Instruments Lock-in over the Stanford Research ones is that
it could be addressed through a network port, much more rapid
than the GPIB interface, which makes a difference when the points
of a spectrum are transferred one by one to the computer.

» The second method uses the Quantum Machine: one output of
the QM drives a switch (Analog Devices ADRF5020) on the drive
signal. The signal is a series of 33 us-long pulses with of 10 times
high /low value. Each pulse is demodulated with alternative signs,
so that one directly obtains the difference of (I) and (Q) with drive
on and off.

14.3 Time-domain measurements

14.3.1 Generation of pulses

Microwave pulses were obtained by single side-band mixing low-frequency
pulses generated with a waveform generator and microwave tones from a
microwave source. The principles of single side band mixing is described
in Section L.1. The waveform generator was a Quantum machine® OPX,
which also allowed acquisition of the measurements and demodulation.
The pulse envelope was defined with wir/27 = 50 MHz. The microwave
sources were either Anritsu MG3692 (up to 20 GHz), Anritsu MG3694
(up to 40 GHz), or a Keysight PNA-L network analyser used in CW mode
(up to 20 GHz). IQ mixers are from Marki MMIQ-0218L (for drive tone)
and MMIQ-0520 (for measurement tone).

14.3.2 Demodulation

Demodulation of the I and Q component of each measurement pulse was
performed using a QUA program (QUA is the Python-based program-
ming language used to address the Quantum Machine). The principles
of demodulation are exposed in Section 1.2. A large number of mea-
surements (typically a few thousands) are acquired, then treated using
two method. In the first one, one only takes the average values of I
and Q. In the second one, the histograms of the measured values are
analyzed as a mixture of 1, gaussian components, depending on the
number of clouds that are observed (typically 3). Using the Python
class sklearn.mixture.GaussianMixture from the SciKIT-LEARN
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library for machine learning [117], each measurement is ascribed to one
cloud, and one obtains the populations of the 7. clouds.

14.4 State pre-selection

Most of the pulse sequences that we have used for measurements of
Rabi oscillations, measurements of lifetime and coherence times are
standard. Less standard is the state pre-selection method used in the
experiments described in Sections 10.1.2 and 10.2.3. The way we do it is by
repeating measurement pulses and demodulating the results till a given
state is obtained with a high level of confidence. This is done at reduced
amplitude of the pulse measurement (by a factor 3), otherwise one has
to wait too long for the cavity to empty before the actual manipulation
that follows can be performed. Figure 14.6 illustrates the pre-selection
procedure. In (b), we show histogrammed value of the measurements
with low amplitude and normal pulses. The clouds corresponding to
states |g) and |o) partly overlap with the small amplitude pulses. Dashed
lines indicate the threshold values of I used to decide that a given state has
been measured, with sufficient accuracy. The subsequent manipulation
follows after a dead time of a few us to ensure that the number of photons
in the cavity has sufficiently decreased.

(a) 1g)? Readout
|‘g> ,; (manipulation)

[
Pre-selection

(b) Readout during Readout after
pre-selection manipulation
5 » -
" o) 19)
R 1 -
L 5. b 4
c .
oy | 1 e
= e
4sdlo) i ilg) |
T T T T T T
0 5 10 0 5 10
l/o l/o

Figure 14.6: (a) Pulse: low power measurement pulses are repeated till the required state is
measured. (b) Comparison of the histogrammed output of low amplitude measurements,
like during the preselection, and standard measurements.
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15.1 QuantroLab

Data acquisition

Data acquisition is based on the integrated development environment
(IDE) QuantroLaB, which has been developed in the Quantronics group
since 2012 by Andreas Dewes, Vivien Schmitt, Daniel Flanigan and
Denis Vion. We benefited not only from the IDE itself, under constant
development, but also from the instrument drivers and front panels
written by others in the group.

3126

@ X
|Ja|0 0= WAam &0
Project  Code process' threads | - ~ - =
Instrumentsaloy £ | sweeptgate Manas.py [ run_am mainpy B | muer_caibratonpy [ | measure raw_adc 2oy (1 | 4|
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2817688995890 InstrumentsAll 18312 finished 374 # [(dum, (freq,dum), dum), (dum, (freq, dum),dum)]=gv.vnakl.markerAtMin()
280Nl MR 20N uniing 375 # (dum, (freq,dum),dum)=gv. vnakl.centerAtMin()
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377 X, y = gv.vnaKl.getTrace(channel=1, traces=l, waitFullSweep=False,
frombemory=False, timeOutz60
378 pls, yFit = fitLorentzian(x, y, orientations-1
379
380- if (checkon):
381 drive.turnOn
382
383 freqinGHz = plsi1] / 1e9
384 print(‘resonance frequency is mow ', freginGHz, ° GHz'
385- if (gv.processing == 'LI*):
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3122 set power ANRITSU to 27.
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Working path:S: \ancreev|ANTS W/ 12-1-53yun2

Figure 15.1: IDE main window, with a Python program opened.

QuanTtroLaB allows controlling the experiment with Python programs

(see Figure 15.1) and benefit from three "helpers" (see Figure 15.2):

» The instrument manager, in which all connected instruments ap-

pear, and can be addressed using commands and front panels.

» The data manager, which allows real-time plotting of data (2D or

3D plots)

» The loop manager, which allows to control running loops during
a measurement: loop direction, step, start and end values can be
changed in real time; a loop can be paused and restarted, set to
auto-reverse or auto-restart.
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Figure 15.2: IDE Helpers: from top to bottom, the Data manager, the Instruments manager
and the Loops manager.

15.2 Command files

In the experiments of this thesis, several types of measurements are
performed repetitively, and each type of measurement requires spe-
cific tunings. We used an interface written with Icor Pro software
(Wavemetrics®) that allows setting up graphical interfaces and program-
ming, as shown in Figure 15.3. In this interface, one chooses the type
of measurement by selecting the corresponding tab, which contains all
the parameters previously used for this specific measurement. As soon
a one tab is selected or one parameter is modified, a text command file
is saved on the computer, and a text recapitulating all the settings is
copied to the clipboard, ready to copy to the lab book. We use essentially
a single Python program IDE, which performs measurements according
to the information read in the command file. Hence, after defining the
measurement in the Igor interface, one just has to launch this Python
program.
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Figure 15.3: Igor interface used to write command files.

We developed some convenient tools, like the measurement of spectrain a
non-rectangular region in the phase, frequency plane (9, fi). Afterloading
in Igor a spectrum, one draws a spline to define a specific path f1(6). In
the front panel, one loads this path and define a measurement region
as a frequency interval of a given amplitude around this path. When
reading the command file, the Python program sweeps the corresponding
snake-shaped window.
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Spin.  One key result of this thesis work is the experimental observation
of the fine structure of the Andreev states in InAs nanowire
weak links, as an effect of the Rashba spin-orbit interaction.
It is revealed by the existence of distinct spectroscopic lines,
which we interpret as atomic-like transitions of a quasiparticle
between two spin-split ABS doublets. A minimal two-band
model accounting for the spin-orbit interaction in the nanowire is
shown to explain these generic features and their evolution with
magnetic field, and confirms the role of spin in the underlying
processes. Compared to experiments performed with atomic
contacts, where only transitions involving pairs of quasiparticles
were possible, this new family of transitions offers a route,
alternative to quantum dots, to manipulate a single fermionic
spin and implement an Andreev spin qubit.

In collaboration with the group of A. Levy Yeyati, we developed
a general framework to describe the coupling of a resonator to a
multilevel system of ABS, which can be applied to model both
single-tone and two-tone spectroscopies. Although a quantita-
tive modelling of the spectrum of finite-length weak links is in
general out of reach as it requires knowledge of the energy of all
subgap states and of the continuum, this theory allows to capture
in some limits several observed features in the experiment, such
as the effect on the resonator shift of the levels” curvature and
the crossing of virtual transitions with the resonator frequency.

In addition, we reported data with clear evidence of direct
intra-manifold spin-flip transitions of a single quasiparticle in
the absence of any Zeeman field. These transitions, which were
initially predicted to be strongly suppressed when no magnetic
field is applied, are shown to be possible when the transverse
symmetry of the weak link is broken, which can be achieved by
means of a gate type of driving.

Charge. ABSs are generally perceived as chargeless states that only carry
supercurrent. Nevertheless, charging effects may be at play when
the weak link transmission is imperfect. The measured spectra
suggest that ABS in different channels of a nanowire junction
are weakly interacting, pointing at the relevance of Coulomb
interactions in the electrodynamics of finite-length weak links.
To evidence this effect, we identified recurring transition lines in
the microwave spectra, which we interpret as mixed pair transi-
tions involving pairs of quasiparticles in different ABS doublets.
Using different models, we show that such mixed transitions
are highly sensitive to electron-electron interactions, which lead
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to a modification of their spectral signatures characterized by a
generic splitting of their degeneracies at 6 = 0 and 7. In some
cases, this splitting is reminiscent of the singlet/triplet physics of
two interacting spins 1/2. Altogether, our measurements show
that an interacting multi-channel theory is in general needed
and that a minimal model to describe nanowire spectra should
include both spin-orbit coupling and the junction’s finite length.
The relevance of the ABS charge was independently established
by Fatemi et al., who evidenced by single-tone spectroscopy a
violation of particle-hole symmetry of the even states [50], as
another signature of Coulomb interactions.

Although the present work focused mainly on spectroscopy, we also
report results on time-domain experiments, in particular preliminary
ones on the manipulation of an Andreev spin. We demonstrate the
coherent driving of a single quasiparticle between two different ABS
doublets, although the populations of the associated spin superpositions
could not be extracted. From tight-binding calculations of the resonator
shift expected for the lowest-lying many-body states, we show that single-
shot readout of a quasiparticle spin may actually be achievable only in
a restricted range of superconducting phase difference around 6 = 0,
which constrains the operation of the weak link as a spin qubit and may
explain our difficulties in discriminating the spin states, as most of our
time-resolved measurements focused on the region around 6 = 7.

16.2 Future challenges & perspectives

We envision two future perspectives. First, in the continuity of the
present work, to realize the spectroscopy of ABS in an InAs nanowire-
based junction under high axial magnetic field. Second, to apply the
spectroscopy techniques that we developed to the investigation of multi-
terminal nanowire-based junctions.

16.2.1 Spectroscopy under high B field

One interesting path to be explored in the future, is the evolution of
the Andreev spectrum of InAs-nanowire weak links under high axial
magnetic field. Indeed, recent tunneling spectroscopy experiments in
full-shell nanowires claim that this hybrid system could be driven into a
topological phase by a flux-induced winding of the phase around the
superconducting shell [45]. To reach it, one quantum of applied flux
should thread the nanowire section, corresponding to a phase twist of 27t
in the shell. For nanowires with d = 150 nm diameter like the ones used
in this thesis, this would require to apply a longitudinal field of about
¢o/(ntd?/4) ~ 120 mT, much lower than the stringent 1 T parallel field
which was suggested in previous proposals [43, 44]. Although tunneling
experimental results must be taken with care after the editorial expression
of concern published in July 2021, a new experiment using a different
spectroscopic technique (namely, photon absorption spectroscopy), could
bring additional input about this rich system and possibly elucidate the
controversy. In Appendix J, I present the progress made towards this
experiment.

[50]: Fatemi et al. (2021), ‘Microwave
susceptibility observation of interacting
many-body Andreev states’

[45]: Vaitiekénas et al. (2020), ‘Flux-
induced topological superconductivity in
full-shell nanowires’

[43]: Lutchyn et al. (2010), ‘Majorana
Fermions and a Topological Phase Transi-
tion in Semiconductor-Superconductor
Heterostructures’

[44]: Oreg et al. (2010), ‘Helical Liquids
and Majorana Bound States in Quantum
Wires’
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16.2.2 Microwave spectroscopy of multi-terminal
nanowire junctions

A new class of junctions is now becoming accessible to experiments:
multi-terminal junctions, which are weak links between more than two
superconducting electrodes. Remarkably, several recent theoretical works
predict that such junctions can show topologically non-trivial effects even
if the leads are made from conventional superconductors and no exotic
materials are used to make the weak link [118, 46, 48].

In such a multi-terminal junction, the energy of the ABS, always inside
the superconducting gap, depends on the superconducting phase of each
superconducting electrode. Topological effects are predicted to arise for
certain values of the superconducting phase differences between the
terminals, when the gap in the excitation spectrum fully closes, i.e. when
the energy of the lowest ABS becomes exactly zero, even in presence
of disorder. Due to the 2m-periodicity of the superconducting phases,
there exists a formal analogy between the band structure of a periodic
solid, in which states” energy depends on the components {k, k,, k. }
of the electron wave vector, and the spectrum of Andreev states [46,
47]. Consequently, the ABS spectrum of a junction with N terminals
simulates a (N —1)- dimensional solid, with the (N — 1) phase differences
playing the role of the components of the wave vector. In this analogy,
the vanishing of the energy of ABS corresponds to the physics of a Weyl
semimetal, the 3-dimensional analog of a Dirac material.

Recent advances in material science now allow fabrication of complex
networks of crystalline semiconducting nanowires with epitaxial inter-
faces with superconductors (see Figure 16.1(a)). Using a technique based
on growing intersecting nanowires in etched trenches, Gazibegovic et al.
have demonstrated the realization of multi-junction and multi-terminal
nanostructures [119], which are now available for experimentalists to test
these predictions of topological effects.

So far, existing experiments on multi-terminal junctions focused mainly on
transport properties, and the results are poorly understood [120, 121, 122,
123]. The reason is that when finite voltages are applied, phase differences
vary. The occupation of ABS becomes time-dependent, and Landau-Zener
tunneling, relaxation processes, emission of photons and phonons to the
environment are at the origin of very complex, uncontrolled processes.
Probing the junctions at equilibrium requires circuit-QED techniques, of
which we have demonstrated here the optimization for the spectroscopy of
nanowire junctions. Possible designs to couple a multi-terminal junction
to a microwave resonator are shown in Figure 16.1.

Interestingly, the localized Weyl semimetal idea was recently generalized
to an even simpler case, the one of a Josephson tunnel junction array [124,
125]. It could be argued that the physics of such system would be very
similar to the multi-terminal one (exchange of Cooper pairs between
islands and reservoirs influenced by offset potentials and phases), so
that ultimately the key interesting facet of implementing it with actual
ABSs would be to access to odd-fermion-number states and their unique
physics (i.e. with spin-orbit as in Ref. [118]).
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A/4 resonator

Figure 16.1: Towards the microwave spectroscopy of multi-terminal Josephson junctions based on crossed nanowires. (a) Epitaxy of InSb
nanocrosses, obtained from the growth in etched trenches of (almost) intersecting InP nanowires which serve as stems for InSb nanowire
growth (adapted from Ref. [119]). Radial overgrowth is then performed to merge the two wires into a nanocross (red). (b) InAsSb nanocross
obtained from a collaboration with T. S. Jespersen and P. Krogstrup at the Niels Bohr Institute (Copenhagen) and grown with a similar
approach as in (a). (c) Schematic setup to couple a 4-terminal nanowire junction to a superconducting microwave resonator. The junction
(weak link in green, superconducting electrodes in grey) is placed in proximity to the shorted end of a quarter-wave resonator, shown in
blue. Electrostatic gates (magenta) allow tuning the properties of the weak link. The fluxes ¢1,2,3 through 3 superconducting loops are
tuned with DC currents in local flux lines (yellow) and a global magnetic field. Light grey area is an insulating layer between the gates and
the superconducting ground plane. (d) Device for a preliminary 3-terminal spectroscopy using a CPW implementation for the resonator
and two loops for the phase bias of the junction, which are shown in the green inset (e). A local flux line is used to bias one of the loops with
a flux ¢, while the other is sensitive mainly to an external magnetic flux ¢, and lies by design in the symmetry axis of the flux line to avoid
cross-talk. (f) Electron micrograph showing an InAsSb nanocross like the one in (b) hanging above a local gate. Three legs of the nanocross
are contacted to define the two loops (unfinished sample: the picture was manually edited to separate the contact pads and illustrate the
desired geometry).
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Superconductors viewed as
information mirrors

Some recent works offering a modern way of looking at Andreev reflection
from the perspective of quantum information theory. The starting point is
the following : when a normal metal becomes superconducting, electrons
pair up to form a macroscopic coherent state, the BCS state, which is
independent of the initial quantum state of the electrons that formed
the condensate, giving the wrong impression that all the information
encoded in the microscopic degrees of freedom of the electrons has been
erased. One can wonder what happens to the information falling into
the superconductor after the formation of the condensate ?

In Ref. [126], Manikandan et al. show that Andreev reflection of a pure
spin state can be thought about as a deterministic quantum information
transfer described by a unitary scattering matrix, in which the spin state
of the incoming electron — possibly in a superposition state of spin
T and spin | — is mapped exactly onto the outgoing hole. Since the
superconducting ground state consists of paired electrons in singlet states,
while the incoming electron is permitted to enter the superconductor, its
spin information is actually reflected.

Due to the proximity effect from the superconductor, entangled pairs of
quasiparticles may be created at the interface as resonances between the
electronic states of the metal and of the superconductor. They correspond
to low-lying excitations of the Fermi sea where an electron with k < kr
is promoted to a higher energy level with k’ > kr, thus leaving behind
a vacancy (hole) in the Fermi sea. An incoming electron undergoing
Andreev reflection can be seen to interact with such an electron-hole pair,
by binding with the electron-like quasiparticle to form a Cooper pair
in the condensate, while the remaining hole-like excitation is reflected
backwards. In such a process, the spin information is deterministically
transferred from the incoming electron to the outgoing hole, with both
the initial shared entangled pair (the electron-hole pair) and the final
entangled pair (the Cooper pair) always spin singlets, thus leaving the
whole transformation unitary.

In this picture, a superconductor can eventually be viewed as a special
kind of mirror' , transmitting particles while fully reflecting their spin
information. By sandwiching a normal metal between two such mirrors,
a geometry commonly known as a Josephson weak link, one can then expect
to confine spin information? . If this junction is designed in such a way
that the naturally occurring spin degeneracy is lifted, one could expect it
to serve as a platform to implement a novel kind of spin quantum dot,
that could be operated as a qubit.

To push further the analogy between superconductors and information
mirrors, Puspus et al. analyzed the spin entanglement of the BCS ground
state and showed in Ref. [127] that its information content, measured
by the entanglement entropy between the two spin sectors, scales like
the number of electrons in a shell 2A about , i.e. like the Fermi surface
area. This "area" law for the entanglement entropy is closely related
to Andreev reflection happening at the normal metal-superconductor

[126]: Manikandan and Jordan (2017),
‘Andreev reflections and the quantum
physics of black holes’

1: Sharing some similarity with phase-
conjugation mirrors in optics, where light
is reflected straight back the way it came
from, no matter the angle of incidence on
the mirror.

2: In a real system, with finite transmis-
sion, Andreev reflection no longer hap-
pens with probability one, meaning that
electrons may also undergo a normal spec-
ular reflection at the interface.

[127]: Puspus et al. (2014), ‘Entanglement
spectrum and number fluctuations in the
spin-partitioned BCS ground state’
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interface, which provides an interesting new perspective of looking at
it: pairs that contribute the largest to the entropy are precisely those
pairs that enter and leave the condensate during Andreev reflections.
The information contained in the BCS state therefore corresponds to a
physical process, Andreev reflections, which can be thought about as the
microscopic origin of a superconductor’s entropy. They provide a mech-
anism to understand how proximity effect operates at the microscopic
level and how metal electrons near a superconductor are converted to
Cooper pairs, thereby extending the superconducting correlations into
the metal.



Effect of symmetries in spin 1/2
systems

B.1 Kramers degeneracy

Time-reversal symmetry (TRS) is the symmetry of physical laws under
the transformation T : t + —¢. In quantum mechanics, the time-reversal
operation is represented by an anti-unitary operator T = % K where
K denotes complex conjugation and U is an unitary transformation
%t =1, As a consequence of this anti-unitarity, one may have either
T? = 1or —1.! The sign value depends on the total spin of the system
being an integer (+) or half-integer (—).

If TRS is a symmetry of the system, [H, T] = 0, then for every eigenstate
|t) the time-reversed state T|¢) is also an eigenstate with the same
energy. Though it may be identical to the original state, this cannot be for
a half-integer spin system, since TRS reverses all angular momenta and
reversing a half-integer spin cannot yield the same state. One can show?

that if T> = —1, then the states |¢) and |Tv) are actually orthogonal: a
general result called Kramers theorem. This implies that every energy
level of a time-reversal symmetric system is at least doubly degenerate

if it has half-integer spin. This applies in particular to Andreev states,

which are fermionic spin 1/2 states by nature.

B.2 Consequence for the band structures of
solids

Electrons in solids are well described by means of Bloch functions, which
take the form of plane waves modulated by a periodic function : {,,4(r) =
e 711, 15(r), with n the band number, k the electron wavevector and
o € { +1,-1} labels the spin index associated to spin T and spin |
electrons. If a Bloch state ¢kt has energy €, 1, then its time-reversed
state Ty, k1 = —,,_k| has energy €,,_i|, which implies €,x; = €1-k—0
because of TRS (Kramers degeneracy apply, because electron is a spin
1/2).

In addition, for a solid with space inversion symmetry, one can show
that €,xs = €,-ko. Then for a solid with both symmetries, we expect

a global two-fold degeneracy at each k-point, €,x5 = €4-k—6 = €nk—o-

However, if there is TRS but no space inversion symmetry, then the
two-fold degeneracy at a k-point is no longer guaranteed, except at

special k-points that differ from —k by only a reciprocal lattice vector G,

i.e. k = —k + G, which are commonly known as Time-reversal invariant
momenta (TRIM). In addition, a band crossing at a TRIM is protected, i.e.
it is robust to any perturbation that preserves TRS [128]. This general
result has profound consequences on the spectrum of half—integer spin
systems : bands come in pairs and the degeneracy is split in k- -space
between k and k except at the TRIMS, as illustrated in Figure B.1(a).

1: Proof
T2=%K%K=UW'=%#%")1=0
where @ is a diagonal matrix of phases.
Then % = ®% T and %7 = % ®, so that
U = % ®, meaning that the coefficients
in @ are +1, which implies T? = +1.

2: We assume [T, H] = 0and T? = —
Consider H|y) = E|¢), then TH|Y) =
HT|g) = HITIy) = ET|y) ie. [Tly) is
also an eigenstate with energy E.

Now suppose that T is a linear operator :
|Ty) = c|v) with ¢ € C. Then T?|¢) =
~1p) = Tel) = c'Tl) = [cl2ly) imply-
ing |c|? = =1, which cannot be.

Therefore [Ty) L |i)) and deg(E) > 2.

[128]: Bernevig and Hugues (2013),
Topological Insulators and  Topological
Superconductors, p. 37
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In the absence of spin-orbit interaction (SOI), €,,—k—g = €—ko- This means
that for a crystal without space-inversion symmetry; it is still common
to have €, = €,-k, because TRS further ensures that €,x; = €;-k—o-
This imposes a symmetric energy spectrum with global two-fold spin
degeneracy, as shown in Figure B.1(b). Except at TRIMs, SOl is expected
to break this degeneracy, but the spectrum still looks symmetric because
of the Kramers degeneracy, as illustrated in Figure B.1(b).

Time-reversal invariant momenta (TRIM)

€ I-() = €E_ —]-() - =
{ Egi }k mogd(é ! =  €g(k) =€eo(k) ataTRIM

Now for the specific case of Andreev states, their energy depends on
the superconducting phase 6 across the weak link. Since this phase
is 2m-periodic and originates from the application of a magnetic flux,
we have the following two symmetries for the system Hamiltonian:
H(6 +2m) = H(6) and TH(5)T™! = H(-6). Consequently, the Andreev
spectrum over 6 must be mirror-symmetric around 6 = 0, 7. This is
indeed verified in Figure 2.4 and Figure 2.5. Each Andreev level is split in
doublets of T, | states which must cross in energy at the two time-reversal
invariant phases 6 = 0, 7.

Figure B.1: (a) Kramers degeneracy: due
to TRS, bands come in pairs and the degen-
eracy is split in lz-space between k and —k,
except at special points Ag, A1 called time-
reversed invariant momenta (TRIM), where
k = —k modG € reciprocal lattice. (b) Ef-
fect of SOI on the energy levels of a system
with TRS but no space-inversion symme-

try.



Tight-binding description of
weak links

The normal region of the weak link can be described by means of
the following tight-binding Hamiltonian, which can be viewed as a
discretized version of the continuum model presented in Appendix E.
It assumes two chains (labelled 7 = 1, 2) of discrete longitudinal sites
(indexed by i) on which electrons can hop :

— t t
Hy = Z(ei,”( - [J)Cl’/f,gci,”(,o + thiIT,UCHl,T,G

i,7,0
+ Z tyc;'r’»[,oci,’[+1,a + O‘axc;‘rﬂ,acﬂl,r,&
1,T,0
+ iocyc;rmaci,ﬁl,g +h.oc., (Cy
where C}LT , creates an electron with pseudospin o on the longitudinal

site i beléﬁging to the transverse chain 7 ; €; ; denotes the onsite potential,
p the chemical potential, and ty y, ay , are spin-conserving and spin-
flip hopping amplitudes in the longitudinal and transverse direction
respectively.

This allows to describe the minimal two transverse bands scenario.
Diagonalizing Eq. (C.1) in the (c; 1,1, Ci1,1,Cin1/ Cip,)) basis yields the
following expression for the energy dispersion of the bands :

€1+ €
2

— 2
+(=1)" [(%) +al + 2 + 4alsin (k- a)’

E.o = — U+ 2ty cos(k-a)

€1 — €
2

2 1/2
+4s(3 —2n)ay sin (k - a) ( )+t§] , (C.2)

where n € {1, 2} labels the band number and s € {-1, +1} denotes the
pseudospin index ¢ =| (7).
We start from the situation with no spin-orbit interaction (ay = ay =0,

left column in Figure C.1). In the first Brillouin zone, k € [— ~ +§] with

a the size of the unit cell, the two bands are well described by two energy
shifted cosine arches (see Figure C.1(a), left):

Y 212
(k 2”) ) IR ©3)

-0
E, ~ 2|t cos (k- a) "= —2|tx|(1 - —

from which we recover the usual energy parabolas in the continuum
limit @ — 0. As the two cosine bands are energy-shifted copies, they have
the same Fermi velocity v, evolution with k (see Figure C.1(b), left). Ata
given energy value fixed by the chemical potential y, there exists a Fermi
velocity difference between both n = 1,2 bands (see Figure C.1(c), left),
but we are seeking a situation where this difference exists between the two
pseudospin subbands within a given band n. As longitudinal spin-orbit
interaction is added (ay # 0, middle column), the two transverse bands
split into two k-shifted copies associated to both pseudospin ¢ € {T, | }.
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This k-shift is given by :

]:LZ
1 1 =5
k, = +— arccos [ ] with 2m*a? (C.4)
a . \2 o = a

-0 —0

Using that (1 + x2)™/2 "3" 1 - x2/2 and arccos (1 - x2/2) '~ x, we
—0

recover the expected continuum limit : k, = ma /h?. As shown in

Figure C.1(c) (middle), the Fermi velocities still remain identical for both

pseudospin o at a given energy ; this is because the associated subbands

are copies from each other merely shifted by k.

Now, when introducing transverse spin-orbit interaction (a, # 0), mixing
between the two transverse bands occurs. Comparing Figure C.1(d)
for a, = 0 (middle) and a,, # 0 (right), one observes that subband
hybridization due to transverse spin-orbit interaction gives rise to a finite
Fermi velocity difference between the two spin textures of the lowest
band, which peaks close to the hybridization points k; and k; (indicated
by black arrows). The expression for these momenta is obtained by
searching the k-values that cancel the term under the square root in

Eq. (C.2):
A [4t§ + (61 - 62)2
ki = - arcsin 1a, (C.5)
k= -2 — k.
a

Although a Fermi velocity difference does also exist close to the bottom
of the second band, it does not show a clear peak as for the lowest n =1
band. Beware that this is an artefact due to the truncation to two lowest
bands : if a third transverse band n = 3 had been taken into account,
such a feature would have also been present for the n = 2 band. But if
the chemical potential lies close to the bottom of the lowest band, such a
minimal 2-band model is enough to grasp the physics.

When reasoning in terms of ABS, the quantity that intervenes in the equa-
tions is not the Fermi velocity v,,,, but the adimensional ratio A, = ﬁ
between the weak link length L and the energy-dependent supercon-
ducting coherence length &,; = hv,s/A with A the superconducting
gap. This ratio directly determines the number of ABS in the [-A, A]
energy range around . More precisely, the number of ABS in the gap is
givenby 1 + [2A/m] or 2 4+ |2A /7], depending on 6 and 7. Lifting the
spin degeneracy of the ABS requires having different A,,, for the two
pseudospin o =T, |. Therefore, the quantity 614, = A,,; — A, 1 determines
the spin splitting of the Andreev states.
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Figure C.1: (a) Energy dispersion E;;; /A of two transverse bands 1 € {1, 2} as a function of the electron quasi-momentum k for three different
cases (from left to right) : without any spin-orbit interaction (ax = ay = 0), with 1D-spin-orbit (ax # 0, @y, = 0) and with 2D-spin orbit
(ax # 0, ay # 0). The curves were computed from Eq. (C.2) for the following parameters: fo = 12 /2m* = 1656.51399 meV.nm? (m* = 0.023m,),
A=02meV,a=L/N =12nm, L =500 nm, W = 100 nm, (e1, €2) = (1.15,0.8) - 2t9/a?, p=0595meV,a=a-ay=W:-ay, =16 meV.nm,
ty = —0.85-ty/a?, ty =-1.0- to/W2. (b) Fermi velocity v, = (1/%)dEye of each subband 1o as a function of the electron quasi-momentum
k (normalization by the unit cell size a). Addition of spin-orbit (a # 0) has the effect to make the velocities pseudospin-dependent. (c) Same
curves as in (b) but plotted as a function of the subband energies E;;;. To highlight the degeneracies, some of the curves were plotted in
dashed lines to show the ones below. (d) Ratio of the weak link length L over the energy-dependent superconducting coherence length
&no = hvpg /A associated to each subband 10 as a function of their energy E;;/A. Transverse spin-orbit (« y # 0) gives rise to a finite Fermi
velocity difference for the two spin textures associated to a given band 7. This quantity peaks close to the hybridization points k1 and k,
highlighted by black arrows in the lowest rightmost plot.



On the origin of spin-orbit
interaction in InAs nanowires

For wurtzite WZ nanowires, the £ and §j directions are geometrically
distinct from Z, yielding different effective masses in the longitudinal
and transverse directions. Close to the I' point, the lowest conduction
bands can be approximated with the following quadratic Hamiltonian :

Ryl

Hy=—
0 2 Llm’

(k3 + ky) +

1
_k2]. (D.1)
i

In the following we choose a coordinate system having the Z-axis along
the [0001] crystalline direction of the WZ structure. The spin-orbit Hamil-
tonian of the conduction electrons in bulk WZ semiconductors can be
derived from k - p perturbation theory, with the following functional
form [129, 63] :

QOR(K) = (ky, —kx,0),

QP (k) = (bkZ = ki = k)(ky, —kx, 0).
(D.2)
It shows terms both linear and cubic in momentum, originating from
the bulk inversion asymmetry of WZ structures. Quantizing this spin-
orbit field 5[0001](7_5) = aéR(E) + yéD(E) along the confining X and
directions does not yield a term linear in k,, since each term contains
odd powers of transverse momentum, which integrate to zero. Therefore,
intrinsic bulk effects are expected to vanish for [0001] WZ nanowires !

Hso = [aQR (K)+yQP (k)]-5 with{

On the other hand, if we consider a WZ nanowire grown along the [0110],
the spin orbit field reads

yorio) (k) = [a + y(bk2 = k2 = k3))(0, =k, k), (D.3)

where the coordinate system was rotated so that the nanowire axis now
points along z=[0110]. By quantizing this spin-orbit field in the transverse
directions £ and {j, we obtain this time :

oz (K) = k2 (0, —a — y(x* — k2),0), (D.4)

with k2 = (m|bk2 + l?; |m), the expectation value of the transverse kinetic
term in the transverse mode m. For this other crystalline direction, we
observe that a term linear to k; is this time always present and is expected
to give the dominant contribution to spin-orbit splitting.

From this analysis, it would appear at first sight that [0001] WZ nanowires,
like the ones used in this thesis, would be surprisingly the worst can-
didates for spin-orbit applications and that ZB nanowires or WZ ones
grown along other directions like [0110] would be much better suited.
This analysis, however, holds only in the single-mode limit. We know on
the other hand that the InAs nanowires measured experimentally host
several transverse conduction modes [39]. For such multimode nanowires,
the above intramode result remains valid, however we expect to have an

[129]: Fu and Wu (2008), ‘Spin-orbit
coupling in bulk ZnO and GaN’

[63]: Campos et al. (2018), ‘Spin-orbit
coupling effects in zinc-blende InSb and

wurtzite InAs nanowires’

[39]: Goffman et al. (2017), ‘Conduction

channels of an InAs-Al
Josephson weak link’

nanowire
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additional intermode contribution to intrinsic SOI, which can be non-zero
between transverse modes of different parity. The measured spin-orbit
coupling for conventional WZ nanowires grown in the [0001] direction
would thus result from bulk contributions of intermode intrinsic SOI
and extrinsic contributions due to the structural inversion asymmetry of
the confinement.

Comparing experimentally the SOI in InAs WZ nanowires grown in the
conventional [0001] and in the perpendicular [0110] direction has been
challenging due to the inherent difficulty of obtaining wire growth along
directions different from the preferred [0001]. An experimental study
carried out by Jespersen et al. [130] showed recently that surprisingly, the
spin-orbit strengths extracted from low-temperature magneto-resistance
measurements show actually comparable values in both cases ! Thus, the
intraband intrinsic contribution does not add substantially to the effective
SOI of InAs WZ nanowires, as would have been naively expected. This
would finally point rather towards extrinsic structural asymmetry as
the main source of the measured SOI. Indeed in Ref. [36], Scheriibl et
al. demonstrate that the SOI strength can be strongly increased, up to
a factor 2, using the electric field from an external nearby gate, with
Rashba SOI strength in the a ~ 20 — 40 meV.nm range.

Due to the large surface-to-volume ratio of these nanowires, surface effects
play an important role in their transport properties. In particular, for low
band-gap semiconductors like InAs or InSb, the Fermi level at the surface
is known to be pinned inside the conduction band, which results in the
formation of a tubular conducting channel around the nanowire surface,
known as an accumulation layer [131, 132]. Electrons in this conduction
channel would therefore be strongly sensitive to the electric field from the
interface with vacuum and the one generated externally by electrostatic
gates. This goes in favour of the structural inversion asymmetry as the
main source of the observed linear Rashba SOI in InAs WZ nanowires.
Quantitative estimations of this effect for geometries relevant to recent
experiments on InAs nanowires were performed in Ref. [133] and showed
good comparison with the Rashba strength dependence on gate voltage
extracted from magneto-resistance measurements.

[130]: Jespersen et al. (2018), ‘Crystal
orientation dependence of the spin-orbit
coupling in InAs nanowires’

[36]: Scheriibl et al. (2016), “Electrical
tuning of Rashba spin-orbit interaction in
multigated InAs nanowires’

[131]: Degtyarev et al. (2017), ‘Features of
electron gas in InAs nanowires imposed
by interplay between nanowire geometry,
doping and surface states’

[132]: Bringer and Schépers (2011), ‘Spin
precession and modulation in ballistic
cylindrical nanowires due to the Rashba
effect’

[133]: Escribano et al. (2020), ‘Improved ef-
fective equation for the Rashba spin-orbit
coupling in semiconductor nanowires’



Scattering model for ABS in
Rashba nanowires

The aim of this Appendix is to present the scattering model used to
derive the ABS energies in a multichannel Rashba nanowire, in particular
the single-barrier model which we used to fit the experimental data from
Chapter 6. This theory was developped by our theoretician colleague
Sunghun Park. The derivation was given in Ref. [32] assuming an ideal
junction with no backscattering. Some results for the case with finite
transparency were printed in the supplementary of Ref. [51], but the
full derivation was never completely detailed. Hence I felt the need to
reproduce it here, to make justice to this theoretical model which was
used throughout this thesis to describe our experimental results.

(a) A,

(b)

(c)
M=V, (k+kg ) M—v, (k, +sz) M+ v, (k,— kg ) M+ v, (k,— kg )

\| l‘IJL 2\ 4 l‘IJR 2 |/
k\ / &
Figure E.1: (a) Sketch of a quasi 1D Rashba nanowire proximity coupled on both sides to
s-wave superconductors, thus forming a Josephson weak link with length L and width W.
We assume the presence in the nanowire of a point-like barrier at x = xg resulting in some
finite backscattering. A possible external magnetic field By is applied along the nanowire
axis £. (b) Energy dispersion of the lowest two transverse bands in the nanowire at zero
magnetic field. The case of no SOI mixing 1 = 0 is drawn in dashed line and the n # 0
appears in solid lines. Two right-moving electrons (blue and red disks) with different Fermi

velocities due to the finite 1) are reflected as holes (blue and red circles) through Andreev
reflections at x = L. (c) Linearization of the bands around the chemical potential .

E.1 System description & model Hamiltonian

We consider a multichannel nanowire Josephson weak link with Rashba
spin-orbit coupling as discussed in [32]. Electrons in a quasi-one dimen-
sional nanowire are free to move in the £ direction and are confined in

[32]: Park and Levy Yeyati (2017),
‘Andreev spin qubits in multichannel
Rashba nanowires’

[51]: Tosi et al. (2019), ‘Spin-Orbit Splitting
of Andreev States Revealed by Microwave
Spectroscopy’
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the  and Z directions by a harmonic potential. This is actually a good
approximation for nanowires grown in a wurtzite phase along the [0001]
crystal direction, like the InAs nanowires used in this thesis. Indeed,
in such nanowires, the §J and £ directions are known to be geometri-
cally distinct from the %, yielding different effective masses m’ and mﬁ
for the conduction band electrons in the transverse and longitudinal

directions.

We consider the situation described in Figure E.1. Two superconducting
electrodes separated by a distance L in the £ direction are proximity
coupled to the nanowire forming a Josephson junction. The Bogoliubov-
de Gennes (BdG) Hamiltonian for this cylindrical Josephson junction is

M =5 [ @1 OO - e + e, + o+ 5100, B

where the field operator @(r) is the four-component Nambu spinor
D = (O, D, CDI, —q)JTr)T and y is the chemical potential. .74 describes the
quasi-one dimensional nanowire, which is well approximated close to
the I' point by the following quadratic Hamiltonian* :
2 2 2
Py tp
P D Uy(x) + Uy, 2), (E2)

- Zmﬁ 2m’

0

where Up(x) = Upd(x — xp) represents a potential barrier at x = x¢ with
0 < xp < L used to model back-scattering in the normal region, and
Uc(y, z) = mi w3(y? + z%)/2 is the harmonic confinement potential with
wy, the associated angular frequency. We define an effective diameter for
the nanowire by W = 24//(m’ wo). The Rashba spin-orbit interaction
A% and the Zeeman interaction .77 are given by :

AR = —apx0oy + apyoy, (E.3)
Ay = % B0y, (E.4)

where «a is the strength of the spin-orbit coupling and By is an external
magnetic field applied along the % direction, g = 2 is the Landé factor
of the electron and g the Bohr magneton. The validity of such linear
spin-orbit field for InAs nanowires is discussed in Appendix D. The Pauli
matrices 0y y,; and Ty,y . act in the spin and Nambu spaces respectively.
5 is the induced s-wave pairing potential due to the proximity effect
with the two superconducting electrodes,

s = N(x)(cos 0(x)T, —sin 6(x)Ty), (E.5)

where the induced gap A(x) and the superconducting phase 6(x) are
given by A(x)e®® = Ag at x < 0, Age?® = Ay at x > L, and zero
elsewhere. Here, 6 is the superconducting phase difference. We assume
that the Zeeman field is weak so that we can treat 7#7 as a perturbation.

* The bandstructure of InAs nanowires with hexagonal cross-section was computed in
Refs. [134, 135] using a realistic multiband k - p approach from ab initio, showing that the
conduction bands overall possess good parabolic dispersions.

[134]: Faria Junior et al. (2016), ‘Realistic
multiband k.p approach from ab initio
and spin-orbit coupling effects of InAs
and InP in wurtzite phase’

[135]: Luo et al. (2016), ‘k.p theory of free-
standing narrow band gap semiconductor
nanowires’
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E.1.1 Mapping of the BAG Hamiltonian to a 1D model
Hamiltonian

We project the total Hamiltonian in Eq. (E.1) onto the subspace spanned by
the lowest two relevant transverse subbands to obtain a one-dimensional
Hamiltonian. By solving (pi +p3)/@2m?) + Uc(y, z) in Eq. (E.2), we find
the subband eigenvalues and eigenstates,

412
E+ = hawo(n +1) = ] (n+1), (E.6)
€1
2 Co(124.2) N2
D3y, 2) = N 2+=Wx, (E.7)
42
oy, 2) = VY ezt " xs, (E.8)

VAW

where n = 0,1, and ¢, (y, z) is the eigenstate with Ey and ¢7,(y, z) the
one with Ef. xs=1,] = (1/V2)[1,i(-1)]" are the eigenstates of o,,. The
one-dimensional Hamiltonian projected to this basis is given by

1 A ’ ’ / 7
Hpg = 5 / dx O (0)[(A — wts + AT + A + A (x), (E.9)

where @’(x) is the eight-component operator @ = (Pyp, Dy, P1p, Dy, CI)S I
with the subscript 115 referring to the transverse quantum numbern = 0, 1
and the spin s =T, |, and

2

Px

A = == +Ey + EXL, + Up(x), (E.10)
2m”

Ay = —apyG; +1GyLy, (E.11)

Hy = gzﬁBx?fw (E12)

where Ex = (Ej + E{)/2. §y,,. are the Pauli spin matrices written
in the basis {x1, x|}, and X, . are the Pauli matrices acting on the
space associated to the transverse degree of freedom. The coefficient
u in Eq.(E.11) describes the coupling between the different transverse
subbands with opposite spins through the spin-orbit coupling, and is
given by

n= / dydz ¢y (y, 2) #r 3y (v, 2)

-~ [ dviz 9310, 210070,
\/Eah

=~ (E.13)

We solve first /) + 3 in the absence of a potential barrier Up(x). We
focus on the single-channel energy regime. The dispersion relation is
then given by

212
X

E(kx) = Z

+Ef - \/(Ef F ahky)? + 12, (E.14)

*
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where the — sign is for @y and @y and the + sign for @y and ®y1. The
Fermi velocities vj=1 2 of the co-propagating electrons with momenta
ky = kr1 and kr; respectively, in the different spin subbands at E(ky) = u
are

hk
U1 = 1 + v cos 61,

*

m
Il

Uy = KEZ — acos O, (E.15)

m
Il

where the 01, 6; € [11/2, ] angles are given by

Ei‘ - ahkm
JEL = ahkp 2 + 12
ELf+ ahkry
2 = .

V(EL + ahkp)? + 12

01 =

(E.16)

The eigenstates yg j-1.2 (1, j=1,2) involving right (left) moving electrons
with the velocity v; can be expresses as

; 0 01\T
YR = _y,h,l — ezknx(sin é,0,0,—cos 7) ,

A 0 9, \T
YR = Thp, = eikrx (o, sin =2, cos ?20) , (E17)
where 7 = —iG,XoK is the time-reversal operator with the complex

conjugation operator K.

E.1.2 Linearization of the one-dimensional model
Hamiltonian

We now linearize the dispersion relation around the chemical potential
p and assume that the four-component spinor parts of the eigenstates
in Eq. (E.17) remain the same within the subgap energy range i — Ag <
E < u+ Ag. We write the electron field operator in terms of the left and
right propagating fields,

Dop(x) sin 61/2 sin 6, /2 0
sl =R b R T gD b
Dyp(x) —cos61/2 —cos6,/2 0
(E.18)
Then, the linearized model which is valid around the Fermi level can be
expresses as

1 ~ Hiin + S, + S A(x)eto®) ~
L _ 1 + kin b Z - _ -
Heac = 2 /dxCD (=) ( A(x)e~10@) —Hin — Hp + H7 ()
(E.19)
where ®(x) is the eight-component field operator in the left and right prop-

agating field basis D(x) = (R1(x), La(x), Ra(x), L1 (x), RI(x), L), R;r(x), Lt(x)).
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The kinetic term %;i(in and the potential barrier %;i, in this model are

—ihv1dx — hvikp 0 0 0
e 0 ihvy0y — hvakpn 0 0
kin = 0 0 —ihvydy — hvokps 0 ’
0 0 0 ihv19y — hv1kpi
(E.20)
1 cos [(61 — 6,)/2] 0 0
. cos[(61 — 62)/2] 1 0 0
S, = Upd(x — x0) 0 0 1 cos[(01 — 62)/2] |’
0 0 cos [(61 — 62)/2] 1
(E.21)

The Zeeman term has the following form

0 0 —cos[(61 — 6,)/2] 1
>~ _ .8UB 0 0 1 —cos[(B1 — 67)/2]
M2 =157 s (61 - 02))2] -1 0 0 '
-1 cos [(61 — 62)/2] 0 0
(E.22)

At zero Zeeman field, the BdG equation is

Hin + Hy A(x)et®)
A(l;c)e""s(xl; _;(,/1) _ ) Y = e¥(x), (E.23)

where W(x) = (5 (x), Y5, (%), Yy (%), ¥4 (x), Py (x), Y15 (%), Y, (), P (x)).

This equation can be split into the two following ones

—ihv10y — hvikp 0 0 0
0 ihvydy — hvokpn 0 0
0 0 ihv10dx + hviker 0
0 0 0 —ihvy0y + hvokry
1 cos[(61 — 6,)/2] 0 0
cos [(01 — 62)/2] 1 0 0
+Upd(x—x0) 0 0 -1 —cos[(01 — 62)/2]
0 0 —cos [(01 — 62)/2] -1
0 0 £10(x) 0 e, (x) ey (%)
0 0 0 PO ||y (x) ¥1,(x)
+AM)| o) 0 0 0 l,bﬁl(x) € 1%1(") '
0 e®® o o J|\phx) Y, (x)

(E.24)
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and
—ihvydyx — hookpo 0 0 0
0 ihv10y — hoikp 0 0
0 0 ihv,0y + hvokry 0
0 0 0
1 cos[(61 — 6,)/2] 0
+Upd(x—x0) | < [(910_ 072l (1) —01
0 0 —cos [(61 — 02)/2]
0 0 i0(x) 0 P, (x) Pio(X)
0 0 0 @ [|[ye (x) i, (x)
+ A(x ; ' =€ 1 '
(x) p=id(x) 0 0 0 Yo (%) Po(%)
0 e 0 P (x) Y @)
(E.25)

E.2 Subgap ABS for zero magnetic field

The Andreev levels for |e| < Ag are determined by matching the wave
functions of Egs. (E.24) and (E.25) at x = 0 and x = L, and from the
boundary condition across the delta function potential at x = xp used in
[136, 137]. We assume perfect Andreev reflections at the two interfaces
x =0, L. Itis enough to consider Eq. (E.24) because a solution of Eq (E.25)
is obtained by exchanging the 1,2 indices in vy, kr1, v2, krp. Let us write
the wavefunction associated to each of the four pieces of the system. In
the left superconducting region x < 0, we have

\1181(x) — aleikplirq]x + ble—ikp2x+q2x

B
0
) (E.26)
0

0
1
0 7
p

where i1, = (Ao/(iw;))V1 - (¢/Ao)? and f = €/ Ao — i1~ (¢/Ao)2. a1

and b are the coefficients. In the normal region at 0 < x < xo, we write

1 0 0 0
Wy (x) = apelke* 8 +byetknx (1) +ope ke (1) +dye kX 8 . (E.27)
0 0 0 1
where we have defined
{kEj =R R i fj=—. (E.28)
knj = krj — kj hoj
Similarly, we can write the wave function at xo < x < L as
1 0 0 0
Wya(x) = azeikax 8 +bselknx (1) +egekeax (1) +dye ki 8 . (E.29)
0 0 0 1

—ihl)lax + horkpy

0
0

—cos[(61 — 62)/2]

-1

[136]: Peng et al. (2016), ‘Signatures of
topological Josephson junctions’

[137]: Heck et al. (2017), ‘Zeeman and
spin-orbit effects in the Andreev spectra
of nanowire junctions’
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Finally, in the right superconducting region x > L, the wave function is
given by :

1 0
Wiy(x) = agelkrr¥—mx ﬁeqié + bye kX —0x g , (E.30)
0 e—ié

E.2.1 Scattering by the potential barrier

U, 0(x—x%,)

Figure E.2: A delta-like barrier is located at position x = x( to model possible backscattering
happening in the nanowire. Electron waves ¢, (x) (right-moving with velocity v1) and
Y7, (x) (left-moving with velocity v;) are scattered by the potential barrier with an amplitude
probability given respectively by r and r’.

The matching condition for the wave functions Wy1(x) and Wno(x) at
x = xg can be derived by rearranging Eq. (E.24) with A(x) = 0 as

i (%) i (%)
o [P | Pr,(x)
ihoy %;;(x) =0O(x) %ﬁ;(x) (E.31)
P, (x) Pi,(x)
with
w00 B
_ —02 0 0
=19 o o o
0 0 0 v
1 cos[(61 — 62)/2] 0 0
cos[(61 — 62)/2] 1 0 0
X | ~Uod(x=xo) 0 0 1 —cos [(6) — 6,)/2]
0 0 —cos[(01 — 02)/2] -1
—ﬁvlkpl 0 0 0
0 —hvzkl:z 0 0
- 0 0 —— 0 +¢e| (E.32)

0 0 0 hvokry
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We can obtain the solution as

wleﬁl((xfg ll)ial((xi;

X Py, (xi

l;z:(x ) = U(xy, xi) lp’%i(x) , (E.33)
¢L2(xf) z(x )

with oy
U(xg,x;) = exp{% / dx @(x)} (E.34)

Specifically, we can compute

v17 0 0 - 1 cos 402 92 0
0 0 0 o 0 0 —costizts
= ¢4 (‘8‘ 2) , (E.35)
with
A cosd — iug Slfi‘d —iup Slf,}d cos (61292) with 4q = 1,
zulsul;d cos(61 92) cosd+iu55i2d
where we defined (50
d= %\/uf + 12 = 2uy11y cos (67 — 0) (E.37)

and introduced the following notations : us = (11+u2)/2, s = (41 —u2)/2
with u; = vj/vg and vy = hv1v2/Uy.

From Egs. (E.27), (E.29) and (E.35), we can write the boundary conditions
at x = x¢ for the electronic and hole components respectively :

ik 1X0 . ik 1X0
B 5| = eihoa 28 (E.38)
C3€_l e2X0 Cze_l e2X0

ikpyx ikpyx
b3e 4hl 0 _ eiAoA bze 4hl 0 (E 39)
dge—zkhsz - dze—zkhsz .

The matrix M = ¢4 A, which is actually the transfer matrix associated
to the delta function barrier, can be written in terms of reflection and
transmission coefficients. We introduce

1 [ tt —rr— ,/Z—fr’ei@
M=o o (E.40)
- /v—]’_re 4 1

so that

0
Wio+09) = o T g [P —07) (E.A1)
0 0

0 My

— COs

o O

01-0>

92
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with @ = (k1 + ke2)xo. The reflection r, 7" and transmission ¢, ¢ coeffi-
cients are determined by

. . ind\-1
te”Ma = tlet = (cosd + ius%) , (E.42)
: : . ind 0,-0
re ' =1'e'? = —je'? uluzmz cos — 3 2V, (E.43)

E.2.2 Boundary matching atx =0, L

The matching of the wave functions in Egs. (E.26,E.27) at x = 0 yields

alﬁ QZ‘B

bi | | e
i (E.44)

bip dap

Similarly, matching at x = L gives

a3eik91L a4eikF]L—L]1L
CSE—l'kgzL b4€_ikF2L_q2Lﬁ
b3eikmL = a4eikp1L—q1L—i6‘B . (E.45)

dgeikth b4e—ikp2L—q2L—f(3

E.2.3 Andreev energy spectrum
Using Egs. (E.38,E.40,E.44,E.45), we find the equation

‘Be—ikmﬂ 0 4 ﬁei(kﬂ—km)(L—u)—ié 0 eik“ll
Det[l—( 0 pleikia My, 0 pleilke—kia)(L~a)=i5 Mal ™

(E.46)
resulting in the following transcendental equation for the ABS energies,
corresponding to the wave functions %, (x), ¥ ,(x), 1/)%1(9(), Y fz(x) :

i(k1—ky)L—i6 i(ky+ka)(L-2x0) _ p2 i(ki+k2)L| _
Re[Te + Re pe 0 (E.47)

where l;j = ¢/(hwj) and B = €/Ag — iy/1 - (e/Ag)>. We defined the
global transmission and reflection probabilities as T = |t|> =1 - R =
1 — |r|?, which are independent of the energy €. For the wavefunctions
e, (x), 97, (x), Ip];n(x), l,D?l (x), the associated transcendental equation is

obtained from Eq. (E.47) by exchanging the 1,2 indices in l;j.

Introducing the reduced energy € = €/Ay, the ratios A; = Ll;j J€=L/&;
with &; = hv;/Ag the superconducting coherence lengths associated to
both modes j = 1,2, and the reduced barrier position x, = 2xo/L -1 €
[-1,1], we can expand Eq. (E.47) to finally get :

T cos [(/\1 -A)EF 6] + (1-T)cos [(M + Az)éx,] =
(E.48)

cos [2 arccos (€) — (A1 + /\2)5]
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E.2.4 Double-barrier model

A more physical way to incorporate back-scattering in the model is to
consider that the two potential barriers are located at the left (x = 0)
and right (x = L) interfaces with the superconductors. Using a similar
derivation, one would obtain this time the following transcendental
equation for the ABS energies :

sin (€1 — arccos €) sin (€, — arccos €)
= (2—-"Tg — Tr)sin (€1) sin (€7)
— (1 =Tp)(1 = Tr) sin (€1 + arccos €) sin (€, + arccos €)

—2y/(1 = TL)(1 = Tr) cos (ror) (1 = €7), (E.49)

where €; = €A, + (-1)/s6/2, T g are the transmission probabilities at
the left and right interfaces and @ = (kr1 + kr2)L — (0L + OR) is the
total accumulated phase with 6y the scattering phases acquires at the
v = L/R interfaces :

sind, 5) (E.50)

0, = ( d,+i
arg(cosd, +i T o

where d, and v, are defined as d in Eq. (E.37), replacing Uy by U,.
Although this model seems more physical than the single-barrier model
that we derived in detail, it predicts similar shapes for the spin-split
ABSs and offers a similar fitting quality of the experimental data from
Chapter 6. The transcendental equation for the ABS energy shows a more
cumbersome expression, but the number of fitting parameters is the
same as before : two transmissions instead of one transmission and the
position barrier.

E.3 Subgap ABS for a finite magnetic field

We incorporate the Zeeman effect as a first order perturbation. Below,
we use the wave functions W, (x, 6) and W4(x, 6) written in the original
basis used in Eq. (E.19) :

\I]lt = (lpbi{l/ ]7sz1 O/ 0/ l,bl}él/ [}fz/ 0/ O)T (E51)
Wy =(0,0,9%,,15,,0,0,9%,, )T (E.52)

We project 77 in Eq. (E.22) onto the subspace spanned by W, and Wy,
leading to a 2 X 2 matrix,

(E.53)

_ €4(0) B,
He ‘( B ed(é))'

The diagonal terms are Andreev level energies at zero Zeeman field,

+00 ~ ~ .
Hin + 5, A(x)e®®
= \I]"' ) % . \II
€u/d [ dx W, 4(x,0) (A(x)e—z()(x) _ s — I wyd(x,0),
(E.54)

[se]

202
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As for the off-diagonal terms, they are given by

400 e}? O
Bx:[m dx\yj,(x,a)( ‘ jizz)\y;(x,a)

.§UBBx e
=T /oo dx WRPL +Vioke + VRV + VPR (E55)

- COS

hx_1 h
(‘Pm ke T YV 'ale r2 T ¥o¥ry)-  (E:56)
ABS energies and states are then obtained by solving the following
equation,

(eu (6) Bx ) (I)A = GA(DA‘ (E57)

B, ea(d)

from which we deduce

€A = €5 — /€2 + B2, Wy = ! By (E.58)
A— s a x|, A- \/N_A €a+\/€§+|Bx|2 .

1 Je2 2
€ar =€+ €2+ B2, Wy, = (E“ €a + B ) (E.59)

B

s

with the following notations

Ny = 2(eg 4B + eanje + |[BX|2) (E.60)

€, +€ €, — €
esz“Td, euz“Td. (E.61)

203



Dispersive shift : how quantum ?

F.1 Classical derivation

When a two-level system (TLS) is coupled off-resonantly to an electromag-
netic resonator, equivalent to a harmonic oscillator (HO), its transition
frequency is shifted in response to the quantum vacuum fluctuations of
the electromagnetic field, a phenomenon known as the Lamb shift [138].
This dispersive shift, routinely observed in spectroscopy in circuit QED,
actually contains a significant contribution from classical normal-mode
splitting that is not driven by any quantum fluctuations, which raises the
following questions: how much of this shift is really quantum in origin ?
how much of this shift persists if quantum fluctuations are neglected ?

In the following section, we derive classically the frequency shift acquired
by two harmonic oscillators coupled to each other. Remarkably, one
recovers the same result for the dispersive shift derived in cQED.

F.1.1 Coupling schemes

To set these ideas, let us derive the result in the context of electrical
circuits and so, do the reasoning in terms of LC resonators. Two couplings
schemes are typically considered, either inductive or capacitive (Figure
E1, Figure F.2). Let us start first with the case of two identical oscillators,
which makes the math easier and the results more straightforward to
interpret. We will then describe the more general case of two different
oscillators i.e. of finite detuning.

Inductive coupling

Let us define the bare resonance frequency of the uncoupled resonators
wo = 1/VLC and the inductive coupling coefficient «; as the ratio between
the coupling inductance to the oscillator inductance «x; = LT’” The system
can be described by a set of two coupled equations, which can be recast
in the following quartic characteristic equation :

2 2 2
jCULIl - ]I_1 + jCULn112 =0 W~ W, WoK; Il(a))
wC = w?Kj w? — a) L(w)] —
jwLI _]'ﬁ +jwLyly =0 (@ = w2 — wh? =

Because it is a polynomial equation of order 4, it has 4 solutions : +@w_
@o 1

and tw; given by ws = el
1

V(IFL,)C

Capacitive coupling

Very similarly, one gets for the capacitive case (Figure F.2) the following
set of equations :

[138]: Lamb and Retherford (1947), ‘Fine
Structure of the Hydrogen Atom by a
Microwave Method”

v, Gnov,
+
LY ¢ L

Figure F.2: Capacitive coupling.
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. . N . w? - w? W’k I(w)
_ ] —_— = m = c 1
jwCVy ]a)L jwCy Vo =0 , 0 ) (12( )) =0

= WK, w? - a)g
) L
joCVa=j—F = joCnV1 =0 (0% - w?)? - w*k2 = 0.

To get for the characteristic equation the same structure as in the inductive
case, one needs to put a minus sign in the definition of the coupling

coefficient x, = —% with C,; > 0. Keeping the notation where the +
sign for the frequencies refers to the ordering of the solutions : wy > w_,

_ w0 _ 1
one gets w. = Ve m
When the coupling is small enough «;, k¥, < wq so that the bare fre-
quencies are only slightly modified, the solutions can be expanded as
ws = wo(lxx/2)and Aw := w+—w—- = wok. This motivates the following

2_ 2
WiTw-  Aw
02+ T wo”
2 +w? 0

general definition for the coupling coefficient : k :=

Mixed coupling

In practice the coupling is never fully inductive or capacitive and one
generally has to deal with a mixture of both effects (Figure E.3). The
coupling coefficient then reflects the competition between inductive and

2 2
s 1 ... @y-w-  CLy=LCy ., L _ C
capacitive effects’ : x := 3wl = ICHInCn © Tn ~ s where we have
defined ws = =
eHnes Wx = Ve
1
Wy =
V(L = Lu)(C + Cn)
1

T LAL)€ -G

F.1.2 General case : non-zero detuning

Let us now consider the general case of two distinct oscillators 1 and
2 with bare frequencies w; = 1/ VL;C; with i = 1,2. The characteristic
equation (0 — w?)(w? — w3) — w*k1x2 = 0 now has the following two
positive solutions :

— 2 2 2 2\2 2.2
wi = wy + w5 \/(a)1 + w5)? + A W) | -

11
21 — K1K2

Introducing the detuning 6 between the two coupled oscillators and the
average frequency wy,

w1 =wy+0/2 w1 —wy =0 <K wy w%—a)%:Z(Sa)O
=1 ,
a)2=a)0—6/2 w1+ wy = 2wy a)la)2=a)5—62/4

which allows to rewrite the two solutions :

Figure F.3: Mixed coupling.

1: Interestingly, one sees that by tuning
L C = LCyy one can cancel the coupling
x = 0. In structure, it is quite similar to
the famous Heaviside condition between
primary line constants, LG = RC, which
states the requirement that an electrical
transmission line must meet to have no
distortion of the transmitted signal. The
condition is also an equality between two
ratios of longitudinal constants over trans-
verse constants.
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2
2= wé 1+ ’ + : + 1 o2
©xTTC K1K2 402~ 2 TRk 4w}
2 2
w, 52 o w 62 64
L PO GO T PR f PR Il
1-—x1%x7 40)0 wo o 2a)0 160)0

Large detuning 6 > g : dispersive limit

Assuming k1ky < (%)2 < 1, one can expand to first order :

2 2
w 52 I K1K2w
xR 0
- 1—-x1K2 4a)0 wo 4 26

B )

V1 —x1K2 46 B 2wy 4

One obtains the zeroth-order correction to the oscillators frequencies :

o =an (12 520) 0 2.

Introducing the coupling factors g; = 5«; for i = 1,2, one can rewrite
the normal mode splitting of the two oscillators as Aw = |w4 — w-| ~

2
Kia®y 58182 2
2—5 29,

Normal mode splitting of 2 classical oscillators — Dispersive case

disp.
=
2
5wi=i% g K0 < wy
N —
RWA

The first approximation k1, < ((%)2 < 1 amounts to assuming large
detuning 6 > /8182, which is generally known as the dispersive approxi-
mation 6 > g. Note that one recovers the same expression for the cavity
pull as the one obtained from the Jaynes-Cummings hamiltonian in the
quantum treatment of two coupled modes.[20]

The second approximation, 6 < wy, corresponds to the so-called Rotative
Wave Approximation (RWA), ie. |w1 — wz| < w1 + wy. With this ordering,
dw: < 6 < wg and the perturbation approach remains valid : the
relative correction to the bare frequencies 0w /@y stays small.

Going beyond the RWA, one would get the well-known result in the

qubit community: dw, = +g? ((L)llﬂ)z + m) = i%z (1 + ﬁ) which
only assumes the large detuning (=dispersive) approximation 6 > ¢
[71, 72]. This limit, in which the qubit and the resonator are far detuned
compared to the coupling strength g, is generally the one of practical
interest, since it allows a nondemolition-type measurement of the qubit

by probing the resonator.

2: Since

 KiKw] L_1(s z
T4 4
K]Kza)é 5
4

[20]: Blais et al. (2004), ‘Cavity quantum
electrodynamics for superconducting
electrical circuits’

[71]: Zueco et al. (2009), ‘Qubit-oscillator
dynamics in the dispersive regime’
[72]: Kohler (2018), ‘Dispersive readout’
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Small detuning 6 < g : resonant limit

Assuming this time the opposite limit k1x2(%)? > 1:

2 2
w 26 w 02 o
2 0 0
= —— |1+ —+—|l+x10—= |1 - — + —
Tl-wak | 4wl wo ' 262( 202 16wg)
@)
~ ——— (1 £ k1x2),
1—K1K2( 12)

which gives the following mode splitting :

|lwy — w_| = a)oLzl_K = kwy + O(x?) = 2¢ + O(x?).
1-x

Normal mode splitting of 2 classical oscillators — Resonant case

res.

—
dws = +5k = +g d < g < wp
~———
weak coupling

F.2 Quantum or not ?

We have just shown that for two coupled harmonic oscillators, the normal-
mode splitting predicted by a purely classical description of the modes
leads to a dispersive shift analogous to the one in cQED, i.e. without taking
any quantum fluctuations into account. Actually, a quantum calculation
for two HOs would also give the same result: this shift is not influenced
by the presence of quantum fluctuations ! By treating the more general
case of a weakly anharmonic atom coupled dispersively to a harmonic
oscillator, Gely et al [139] have shown that two distinct shifts actually
occur : one indeed is a purely quantum effect due to vacuum fluctuations,
another arises from classical normal-mode splitting. Nevertheless, in the
limit of zero anharmonicity, i.e. when the TLS is modeled as a purely
harmonic oscillator, then the quantum contribution vanishes and the
shift is given entirely by classical normal-mode splitting, as described in
this appendix.

[139]: Gely et al. (2018), ‘Nature of the
Lamb shift in weakly anharmonic atoms’



Admittance/susceptibility

formulation of the resonator
shift

In section 4.1, we showed that the resonator shift is given, up to a prefactor,
by the imaginary part of the weak link admittance. This quantity has been
computed using linear response theory both for zero-length weak links in
the normal and topological regime [140, 136, 141] and also more recently
for finite-length weak links in the presence of Coulomb interactions
[64] . Let us see that we recover the general result for the resonator shift
(Eq. 4.32) using the expressions for the weak link complex admittance
given in theses references.

G.1 Short superconducting weak link

Kos et al. [140] have derived the expression for the admittance of a single-
channel point contact of transmission T between two superconducting
leads in the presence of quasiparticles. The point contact is assumed to
host a single Andreev level at energy [142, 143]

EA(8) = AyJ1 — Tsin? (6/2). (G.1)

The admittance of the junction is conveniently split in two contributions:

H 5
J
Yo = — E Y;, G.2
1 a)L] + < 1 ( )

where the first term describes the w = 0 admittance of the weak link. It
captures the inductive response of the condensate and can be related to
the curvature of the Andreev level :
1
-1_ _ L
LI -2
®o

E%(6). (G.3)

The second term captures the finite frequency admittance originating
from quasiparticle transitions. The admittance exhibits a resonant be-
haviour at frequency w ~ 2E 4 corresponding to the process where a pair
of quasiparticles is created in the Andreev level. The contribution of this
process to the weak link admittance is labelled Y3(w) and given by the
following expression [140]:

ImYy() (82— B3)(E - A%cos? (5/2)
- 2
G hawEy
111
—2E4 hw +2E4 Ea

X (po — , (G4

(o= p2) ( o ) (G.4)
where py, p1,| and p; are the occupation factors i.e. the probabilities to
have zero, one or two quasiparticles in the Andreev level. To compute
the ground state admittance at the resonator frequency @ = wy, let us fix

po=1,p2=0.

[140]: Kos et al. (2013), ‘Frequency-
dependent admittance of a short
superconducting weak link’

[136]: Peng et al. (2016), ‘Signatures of
topological Josephson junctions’

[141]: Kurilovich et al. (2021), ‘Quantum
critical dynamics of a Josephson junction
at the topological transition’

[64]: Kurilovich et al. (2021), ‘Microwave
response of an Andreev bound state’

[142]: Beenakker (1991), “Universal limit of
critical-current fluctuations in mesoscopic
Josephson junctions’

[143]: Furusaki and Tsukada (1990),
‘A unified theory of clean Josephson
junctions’
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Introducing the reduced energy €4 = E4/A, one can rewrite the admit-
tance

nG

wolmY3(wo) = 3

A2 = (eA —cos?(6/2)) x Z(w, Aes), (G.5)
A

where we identified the resonant form factor Z(w,Ea) = ﬁ -

hmj—ZEA + %, and then simplify the middle factor

€% —cos?(5/2) = (1 - 1) sin® (6/2),

which appears in the expression for the matrix element of the current
operator (given in [52, 40]):

A A’(1-1)(1 2
_ ’ 2 _ _
= el ) = == (?A es)
_ 2

N o
=7 1-001-€) = (G.6)

Tsin? (6/2)

This allows to express the admittance in terms of the current operator
matrix element :

2

1-¢€
woImYs(wp) = %Azm —7)sin? (6/2) —2%(w, Ae4)
A
2
= (L) 2w, rcn), (G7)
®o

from which we can deduce the resonator shift, using Eq. (4.19):

how = he—L a)OIm YY" (wg)

E
“o [ —E(6) + M 7% (w, AeA)] (G.8)
One can identify the prefactor of this expression as (Sﬁp = {—i nzf;’t‘;%h =

2L 2, by using ¢f = %22 = % to rewrite Eq. (4.21) in terms of the

part1c1pat10n ratio and the resonator frequency. This finally yields the
expression for the resonator shift when the point contact is in its ground
state :

how
2
0%p

1 1 L
hwo —2E4 hwo + 2E4 Ea

=—E/(0) +.4* (G.9)

One recovers exactly the result predicted from our general expression
given in Eq. (4.32).

[52]: Park et al. (2020), ‘From Adiabatic to
Dispersive Readout of Quantum Circuits’
[40]: Bretheau (2013), ‘Localized Ex-
citations in Superconducting Atomic
Contacts’
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G.2 Finite-length weak link with Coulomb
interactions

In a recent paper, Kurilovich et al. [64] extended the former theory to
a finite-length weak link hosting a single ABS. The main differences
compared to a point contact are that

— both the ABS and the continuum states contribute this time to the
inductive response of the weak link;

— because of its finite length, the weak link may accommodate electric
charge and therefore be sensitive to Coulomb interactions.

The weak link is described as a single-level quantum dot coupled by
tunnel junctions to two superconducting leads, which can be viewed as a
generalization of the Anderson impurity model. Because of the proximity
effect, the dot level turns into an ABS, the energy of which depends both
on the phase difference 6 and the gate voltage V.

The authors show that the weak link can be described at small frequency
hw < A by an effective low-energy Hamiltonian, which smoothly in-
terpolates between the one of a quantum dot weakly coupled to two
superconducting leads (I' < A) and the one of a short junction (I' > A):

A
EA(d) = A”,/égz +[7(0)[2, (G.10)

where & = (1+% f)eg, 7(6) = (1+% g)y(é), ly[2 = P24 Ty sin? (5/2)

with f(I'/A) and g(I'/A), two complicated functions that describe the
renormalization of €, and y(6) by the Coulomb on-site repulsion L.

I' = I't +TI'r denotes the total tunneling rate to the leads and we write
OI' = T'L — I'r the asymmetry in the left/right tunneling rates. €, is the
energy of the dot level and is determined by the applied gate €, ~ —e V.

The authors provide an expression for the dynamic part of the current-
current response function 6 xj; of the weak link in its ground state at
frequencies hw < A:

S (72) S W DAY i N AN Ay e
oxn(w) = Ex 4E124—(hw)2|)7|2 €g (85EA)+4(A+1") (1+8A) or (T A+F) ’
(G.11)

Let us show that we can recover the expected result for the resonator
shift Eq. (4.32) using this expression for the current response of the weak
link. First, one can recognize the prefactor in Eq. (G.11) as the resonant
form factor #Z(w, E4) introduced in the previous section :

r 1 1 Per
hw—2Ex  hw+2Ex  Ea  Ep(h2w? —4E3)

(G.12)

For €, < T, one can simplify the expression of the Andreev level energy

G.10:
~ - _ in2
EA(5) T A? (1 LU g)w/l 7sin? (5/2), (G.13)

which coincides with Eq. (G.1) in the limit of strong tunneling I' > A
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and small interaction U < A : the wavefunction spreads from the dot
and resides mainly in the leads ; the system is then essentially equivalent
to a short junction.

Moreover, the effective transmission 7 of the weak link can be expressed

2
T=1-R*=1- (%) = 4r152rR/ from which we deduce

U \2 I\2
~2 _ u 201 i ~ F2 1
7] _(1+ Ag) 2(1 - 7sin (6/2)) €g<<rEA(1+A) . (G4

This allows to rewrite the current-current response in a more meaningful
way :

2
L s ol st
E5\1+ %

:1—T%(w,EA)(r)4( gu)4[A2_A+r EL P

oxm

2 2 2
4¢; E% A+T A r (1+%g)
2
(1 + Qg)
1-17%(w,EA) [ ,, A I ,12 %wEax) ,
T 402 E2 A 2 _A+1~EA] = P
%o A (1 + %) o
(G.15)
where we have defined the modified matrix element
Vi-1 1 T
M, = T [AE - E A], (G.16)
2 Egp A+T
and modified gap
1+Ue  [a+ o(é) I's A
.= A8 _ ' (G.17)

1+4 F+£(%—I‘)+o(£) I <A

When the tunneling between the dot and the leads is strong i.e. T > A,
the ABS wavefunction spreads into the leads and the effect of interactions
is diluted : A. =~ A and the U correction appears only in second order
in A/T. On the other hand, when the tunneling is weak, the ABS stays
mainly localized on the dot, the effect of interactions is stronger and
A, =T atleading order.

Note that .#. has the same functional form and reduces to the matrix
element of the current operator for a short junction, Eq. (G.6) in the limit
I'>A>U:

Esa A

x/ﬁ(A EA)= EL(AZ—E@.

A, A
A = (el 1) = =5 T

Although the expression for the normalization function g(I'/A) is cum-
bersome (see Eq. (B15) in [64]), it assumes simple asymptotic expressions
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in the limitsI' > Aand I' < A:

) L (@2-m2x)+0(x?) T'>A
X) = 7
8 L_x r<A

Tt

from which we deduce a final expression for the matrix element in the
limiteg, A < T

+
A

“ mi[(l fzé)z(l 1 u(%)z(z_ln%))Z_ Al;rEi‘]'
T

2 Eg
(G.18)
At first order in A/T, the Coulomb interaction U no longer plays any role
and one (almost) recovers the result for the short junction:

M. =

Ea A

ST - Eef1- )] ol

1-=2
2

- ~ M. (G.19)

I'>A

Finally, using Eq. (4.18), we obtain the following expression for the
resonator shift when the dot weak link is in its ground state:

(2
hw = Ewo)(n
= 02,03( 2 Eg(6) + oxu (o))
= 62, (E4(6) + (w0, Ea)2), (G.20)
with s
Al T'>A
Eg(é) = Econt —EA(0) + U(2r) >

u <A

how R 1 1 1
oz, LeO) A [hwo “2Ex hwo+2Es TEA|| P

Once again, one recovers exactly the result predicted from our general
expression, Eq. (4.32).
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Resonator shift in zero-length
weak links

H.1 Calculation of the resonator shift

The case of zero-length weak links is the simplest, as the BAdG equation can
be solved analytically. For a single conduction channel of transmission 7,
there is only one pair of Andreev states within the gap (see Figure 4.7(a)),

with energies E41,5 = £EA(0) = tAV1 -1 sin?(6/2) [7, 8, 9], which are
coupled through the matrix element of the current operator I—AII’U ; [144,16],
given by:

M = %—10,10 = (Hl)

2 \Exa A

AVl -1 ( A E A)
From these two subgap levels, labeled +1, there are only 3 possible many-
body states for the weak link, depicted in Figure 4.7(a): the ground state
|g) where the negative level —1 is occupied as well as all negative states
from the continuum ; the odd parity state |0) obtained by creation of one
quasiparticle of either spin in the upper level +1, |0) = |10) = ) |g) ;
and the doubly-excited state with even parity |e) = [1T1]) = )/IT)/I ll Q).
The space spanned by the two states of even parity, |¢) and |e), allows to
implement an Andreev pair qubit, the frequency of which being given by
fa =2E4/h.

Let us now compute the resonator frequency shift when the weak link is
in each of these 3 many-body states. The results are illustrated in Figure
H.1 for the case of a resonator at f; = 0.2A/h in two emblematic limits:
the adiabatic regime, where the Andreev pair qubit frequency fa is taken
far from f, (7 = 0.8), and the dispersive regime, where fa crosses the
resonator frequency f; (t = 0.999) therefore allowing for exchange of
virtual photons.

For each many-body state of the weak link, the associated resonator
frequency shift (dashed red line in Figure H.1) results from the sum of
four contributions. The first one corresponds to the contribution of the
curvature E,\ of the many-body state [\V) (green lines in Figure H.1).
The second one (blue lines) is associated with virtual transitions between
the Andreev levels -1 and +1, coupled by the matrix element .#_;,,1, and
reads:
M (2 1 1
4//—1(7,10 = T - - _ - ’
fa fa=fr fatfr

The third type of contribution (orange lines), is associated with virtual
transitions between an Andreev level and states in the continuum ¢~
atenergies E < —A or ¥* at energies E > A. Using the expressions for
the matrix elements of I:IL’M given in Refs. [145, 144], and introducing a
broadening of 1073A, one finds that the associated shift grows positive
from 6 = 0, presents a maximum, and exhibits a negative dip when
A — Ea = hfy. This is characteristic of a threshold behavior associated
with the continuum, also discussed in Ref. [140].

(H.2)

[7]: Beenakker and Houten (1991), ‘Joseph-
son current through a superconducting
quantum point contact shorter than the
coherence length’

[8]: Furusaki and Tsukada (1991), ‘Dc
Josephson effect and Andreev reflection’
[9]: Bagwell (1992), ‘Suppression of the
Josephson current through a narrow,
mesoscopic, semiconductor channel by a
single impurity’

[144]: Zazunov et al. (2014), ‘Quasiparticle
trapping, Andreev level population
dynamics, and charge imbalance in
superconducting weak links’

[16]: Janvier et al. (2015), ‘Coherent
manipulation of Andreev states in
superconducting atomic contacts’
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The last contribution, which results from virtual transitions from states
in €~ to states in €7, is negligible.

Shift in |g)

In the ground state, the level —1 and all levels in the negative continuum
%~ are doubly occupied, so that the factor 1/2 in Eq. 4.35 cancels out
with a factor 2 for the spin, and

18)
héf?’ ”
S Ejy + §’ Vi (H.3)
zp i<0
j>0

where we dropped the spin indices since Iflz,ul conserves the spin for
zero-length junctions. In the zero-length limit, the energy of the states
in the continuum does not depend on phase [73], and E’, = —E’;. The

gy —
second term reads

DUt =Van+ D, Yia+ D, Y+ D, Vi (H.4)

i<0 €6~ jEET €6
j>0 je€*

Figure H.1: Zero-length one-channel junc-
tion. (a-e) Resonator frequency shifts (in
units of (ﬁpA /h) for two values of the
channel transmission 7, and (f,g) transition
energy 2E 4 with color-coded frequency
change when driving the system from |g)
to |e), all as a function of the phase 0. The
bare resonator frequency, shown as a black
line in (f,g), was taken at f, = 0.2A/h. In
the left panels, T = 0.8, and the transition
frequency is always larger than /f;; in
the right ones, 7 = 0.999, and 2E 4 crosses

h f. Total frequency shifts o frlg>/lo>'|e> in
state |g) (ab,b’), |o) (c) and |e) (d,e) are
shown with dashed red lines. They are de-
composed into three contributions: states’
curvature E”|¢y 10) |y (green lines), virtual
transitions among Andreev levels (blue
lines) and virtual transitions from An-
dreev levels to continuum levels (orange
lines). The resonator shift 6 fr]C obtained
from the Jaynes-Cummings approxima-
tion is shown in black dashed lines.

[73]: Levchenko et al. (2006), ‘Sin-
gular length dependence of critical
current in  superconductor/normal-
metal/superconductor bridges’
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Since ¥;; = —7j,; and ¥;; = =7, j, one obtains, neglecting virtual
transitions from 4~ to ¢* (last term in Eq. (H.4)),
—S5— A —E V042 D> V) (H.5)
6zp jeE™

The computation of the shift in |¢) can be summarized graphically as
follows:

- Shiftin |g)

1, .
o lg> = EKbe—E‘ + 2,.2\ bffj 2 s for spin in ABS and in continuum

8fy =—E + !+Z +y !
B i |
ﬂ% ;
O fpen=0+ +

R

Identical terms

} Identical terms with
opposite signs

8f =—E,+ ! +zz!

(1/2) for double counting, ’

. . ! E>A
Sfp=—Eitq =42 2 & r42)) e
. EehEa E>A. curvature
negligible

In practice, because of the large energy E_1,j > E4 + A for a transition to
¢, the last term in Eq. H.5 can always be neglected and one is left with

wof L, (21 1
2 T A
6Zp

—-— - - . H.6
TV ey A 7 R
When f4 > f,, the three terms from #_; ; compensate and the frequency
shift is entirely due to E’;, as shown in Figure H.1(a) and far from 6 = 7 in
Figure H.1(b). When |f, — fa| < A there is a compensation between —E’;
and . % (green and blue lines in Figure H.1(b,b")), i.e. the contribution
due to A 7, vanishes [52], and the frequency shift is essentially the one
that can be derived from the Jaynes-Cummings Hamiltonian [146, 71]

I9JC _ 8(5))2( 1 1
of = ( 2n ) \fa—fr i fa+fr)’ (1)

with g(6) = .# 0, /h. At the scale of Figure H.1(b"), 6fr|g>’lc (shown in

black dotted line) and the exact & f,lg> coincide within the linewidth. The
rotating-wave approximation (RWA), which consists in neglecting the
second term:

o FI9RNA _ M, (HL8)

fa—fr
overestimates the little bump of 6 f,lg) at 0 = 1 by a factor ~ 2. Altogether,

if when fa > f; ,lg M remains a rather good approximation for the total
shift (see black dashed line in Figure H.1(a)), but it fails to capture the
smooth inductive contribution to the shift away from 6 = 7 arising from
the states’ curvature.

[52]: Park et al. (2020), ‘From Adiabatic to
Dispersive Readout of Quantum Circuits’

[146]: Johansson et al. (2006), ‘Readout
methods and devices for Josephson-
junction-based solid-state qubits’

[71]: Zueco et al. (2009), ‘Qubit-oscillator
dynamics in the dispersive regime’
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Shift in |0)

The odd parity state [0) = )| |¢) has energy Eg + E4 = 0. The shift of
the resonator in this case is

SF) =58 4 5. (FL9)
Using
wfV
= Ef+ W1+ >, i+ >, N (H.10)
p jee- jeet
and 71,j = —7.4,j, one obtains
hofi = > (Poaj+ 1)) - (H.11)
jEECH

Although the odd state does not disperse with 6 (E‘/O> = 0), one obtains
a finite shift associated to transitions from Andreev states to contin-
uum states, which becomes sizable when E 4 approaches A (see Figure
H.1(c)).

The computation of the shift in |0) can be summarized graphically as

follows:
| Identical terms with
Identical terms D opposite signs
+22@
Z ! E>A { }
E<-A i

~ Shift in |o)

O fin =0f (o +0f i,

o=

S figs =-E +

Sfis, {

n
= -
|

Shift in |e)

The excited state |e) = 7/1 71 l| g) has energy E¢ +2E1, = E4. The shift in
this state (shown in Flgure H.1(d,e)) is

SfI =58 +25£, (H.12)
and one gets
ho le)
5{ ~Ej =71 +2 D) N (H.13)
zp jee+

When E4 < A the continuum contributions can be neglected and

of, )~ =6 fr 1) This is no longer the case when E4 approaches A, a
situation in which both 2 3} jee+ i j and E’ ' contribute to the shift, as
shown in Figure H.1(d,e).

The computation of the shift in |e¢) can be summarized graphically as
follows:

216
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~ Shiftin |e)

8fr =0/ 261,

| Identical terms with
Identical terms opposite signs
é.f‘p =E,- = +22 =

! B =B
+ Y |FE Y=
E<a =y | curvature

Finally, note that the shifts predicted by Eq. (H.5, H.11,H.13) verify

the following half-sum rule, (6 frlg '+5 fr|€>) [2=0 f,|0>, as expected for
non-interacting many-body states [64, 50].

o=

= +ZZE
B
o {-
Ofr, =E +

S =—Ey+

= -
|

Shift fora |g) — |e) transition

Now that we have expressed the resonator frequency shift associated
to the three possible many-body states of a zero-length weak link, we
can estimate the frequency shift when the system is externally driven
with microwaves, in particular when it is driven from |g) to |e), which
is what we probe in our two-tone spectroscopy measurements. The
frequency shift that governs the measured signal is given by Af, =

Op|ey ((‘Sfrle> - (5fr|g>), with 6p|.y the population change in the excited
state due to the microwave excitation.

In Figure H.1(f,g), the quantity 0 frle> -0 f,lg> is encoded in the color of the
line showing the phase dependence of the pair transition energy 2E 4(0).
For T = 0.8, it is dominated by the curvature term 2E’}, except when
E 4 approaches A and virtual transitions to the continuum enter in 6 fr|e>.
For 7 = 0.999, close to 6 = 7, the terms associated to virtual transitions
between ABS causes a change of sign of Af, when 2E 4 crosses hf;, as

expressed by the dispersive approximation (Eq. (H.7)).

H.2 Revisiting experiments on atomic contacts

The zero-length limit for the weak link was tackled in a previous experi-
ment [16], dealing with atomic contacts between two superconducting
aluminium electrodes hosting a small number of transport channels.
The microwave spectroscopy of such system was performed near phase
0 =~ 1 and allowed to reveal the phase dependence of the pair transition
frequency associated to the |g) — |e) process.

In Ref. [16], the superconducting loop containing the atomic contact
was coupled to a microwave resonator at f, = 10.1 GHz measured
in reflection (see Figure H.2). Atomic contacts with various channel
transmissions were formed and probed with the same sample. Two
types of measurements were performed, which we are now going to
compare with the resonator shift theory that we just developed. The
first type of measurement consists in a single-tone continuous-wave (CW)
spectroscopy of the resonator. It gives direct access to the resonator shift
for the different many-body occupations of the weak link. The second

[64]: Kurilovich et al. (2021), ‘Microwave
response of an Andreev bound state’
[50]: Fatemi et al. (2021), ‘Microwave
susceptibility observation of interacting
many-body Andreev states’

(a) fy
fy AW\~ ?
f, -\~

(b)

Superc. loop  Atomic contact

Figure H.2: Setup of the atomic contact ex-
periment. (a) The measurement (frequency
fo) and drive (frequency fi) signals are
routed to a microwave CPW resonator. Af-
ter amplification, the reflected signal at fo
is homodyne detected by an IQ mixer and
its two quadratures (I and Q) are digitized.
(b) Optical micrograph of the quarter-wave
CPW resonator, inductively coupled at its
shorted end to an aluminium loop con-
taining the constriction where the atomic
contact is formed. (c) Detailed view of the
loop.
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type of measurement is a two-tone spectroscopy of the resonator, for which
an additional microwave tone is used to drive transitions between ABS.
In this case, as will be explained below, the resonator frequency is only
indirectly monitored, since the detection scheme relies on a homodyne
detection at a fixed measurement frequency. Although this time the
recorded signals are the two quadratures of the measurement field
reflected by the resonator, not its frequency, it is still possible by means of
some calibrations to retrieve the associated resonator shift and compare
it with theory. This is possible for example when the resonator shift is
small enough so that the two quadratures can be linearized around the
resonator frequency (see Section 6.5).

Single-tone CW resonator spectroscopy

Let us first discuss single-tone continuous-wave (CW) spectroscopy data
taken on seven different atomic contacts, as shown in Figure H.3. To
acquire these data, the microwave response of the resonator is probed
with a vectorial network analyzer (VNA) as a function of flux ¢ = 2n®/®y,
with no drive applied on the weak link. Over a small flux range around
¢ = 7, the amplitude of the reflection coefficient |S11| displays up to
three distinct local minima (in dark) as a function of frequency, as shown
in Figure H.3(a-g). The positions fi 3 of these minima were extracted by
fitting |S11|(f) with the linear combination Z?Zl pi |S?1 |(f, fi) of resonance
lines |SY, |(f, f;) corresponding to a single resonance centered at f;. The
extracted f; are shown with symbols in Figure H.3((a’-g’). These data
can essentially be understood by considering the contribution of just
one dominant channel of transmission 71 such that the corresponding
Andreev frequency fa1 comes very close to the resonator frequency f;
(a,b) or crosses it (c-g). The data are ordered with increasing 71 from
(a) to (g). The three resonances are attributed to partial occupancy of
ground |g), odd |o) and excited |e) states for the corresponding channel.
As shown in Egs. (H.5,H.13), and since, according to the analysis of
Section H.1, contributions of the continuum can safely be neglected
for phases close to 7, the frequency shifts associated with ground and
excited state are opposite (Figure H.3(a,b)), and the frequency shift
associated with the odd state is close to zero (Figure H.3(a,e)). Note
that in order to explain a small residual global shift, it is necessary to
consider the contribution of one or two additional channels with smaller
transmissions, as explained below.

The resonator frequency shift is obtained from Egs. (H.5, H.11, H.13),
adding the contributions of all channels. The bare resonator frequency f,
was determined from measurements of the resonator with open contacts.
The phase 6 across the contact actually differs slightly from ¢ = 2nd/d,
due to the phase drop across the loop inductance. Indeed, when a weak
link is placed inside a superconducting loop with geometric inductance
¢ threaded by a magnetic flux @, the screening current due to the weak
link leads to a phase drop across the loop inductance. This leads to the
following relation between the reduced flux ¢ = 2n®/®y and the phase
0 across the weak link:

0 =@ — Bijwy(0), (H.14)

with the screening parameter B = (A/@3, ¢o = Po/2m, and ijyy =

218
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Figure H.3: Fit of single-tone continuous-wave spectroscopy data taken with a vector network analyzer (VINA) on a series of atomic contacts
obtained from the same sample (described in Ref. [16]), with resonator at f, = 10.1 GHz . (a-g) Raw data, with reflection coefficient of
the resonator S11 coded with gray scale. By fitting S11(f) at each flux with the sum of shifted resonance curves, up to three values of the
frequency shift could be extracted ((a’-g’) and (g"), symbols). They are associated with the shifts in states |g), [0) and |e) of the channel
with the largest transmission. Solid line are fits with complete theory, using 6,p = 0.0042 and A/h = 44.3 GHz. Blue: 6 f, |, green: 0, o)

(with respect to Ist channel), red in (a’,b"): 6 f; |.y- Fit parameters are given in Table H.1. In (g”), the dashed line corresponds to 6 f,‘g> in the

rotating wave approximation (Eq. H.8).

@olpwy/A = (1/A)IEypy /90 the reduced current associated to the weak
link in state |W). For a single-channel zero-length weak link, one expects
the following currents: ijgy = —dv1 - 75in?(6/2)/d, ijey = —ilgy and
i|0> = 0. In practice, due to its small geometric inductance, the phase
drop along the loop is negligible compared to the phase drop 6 across
the weak link. However, when the weak link hosts highly transmitted
channels, as was the case here with atomic contacts, the supercurrent
carried by the weak link can become large enough so that 6 no longer
varies linearly with the applied flux ® and the correction due to the
loop inductance comes into play*. From the estimated loop inductance
¢ = 0.1 nH [21], we obtain the screening parameter = 0.03 used to fit
the data.

In a first step, the value of 6., = 0.0042, common to all contacts, was
determined by fitting Figure H.3(d), taken on a contact for which a fit
of the two-tone spectroscopy yielded 71 = 0.992 [16]. This value agrees
well with the nominal value expected from the mutual coupling design
(see Section 5.2.1). This two-tone spectrum will be later presented in
Section 21 (see Figure H.4). For the other contacts, the fitting parameters
are the transmissions 7; of two or three channels. All parameters are
given below in Table H.1.

The transmission 77 of the most-transmitted channel is the essential fit
parameter, as it determines the overall shape of the spectra. In the last
column of Table H.1, we indicate the minimal value of the Andreev
frequency associated to this transmission f XF“ = fa1(m) = 2Av1 — 13.
When " < f; (c—g), one observes an avoided crossing.

* For finite length weak links, this effect is expected to manifest to a lesser extent, since
the current carried by the ground state is to be smaller by at least a factor 1/(1 + L/<&)
[32], where L is the length of the weak link and &, the superconducting coherence length.
Indeed, we did not need to invoke any finite loop inductance effect to model the data
measured on the nanowire weak link experiment, as we will see in Section 6.5.
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contact | run fr (GHz) T Ty T3 fﬂm (GHz) "tl"allple é—ll Thg;lfata if Figltélre H.3(were
B) I 101345 09850 09428 09428  10.85 e ot mple. Tabelted 111 andt T
(b) I 10.1345 0.9856 0.9468 0.9468 10.63 In runs I and III, the bare resonator fre-
(c) 11T 10.1091 0.9890 0.9 - 9.29 quency f, was measured when Fhe Contac‘t
(d) I 101345 0.9922  .8783 _ 7.82 was open, whereas for run II it was a fit
€ | I 101091 0.9945 0.6561 6.57 parameter.
e . . . - .
(f) II 10.1364  0.9967 0.9692 - 5.09
(8) I 10.1345 0.9996 0.8497 - 1.77

A second channel with transmission 7, and for Figure H.3(a’,b’) a third
one with transmission 73 taken equal to 1, are taken into account. In the
small phase interval considered here, the effect of these other channels is
simply a constant overall shift of the order of a MHz.

The predictions for 6 f, assuming the most-transmitted channel to be in
|g), lo) or |e) are shown with blue, green and red lines in Figure H.3.
The 6— and 7— dependence of the coupling constant g is an essential
ingredient to obtain a consistent fit of all the data at once. The difference
between the full theory and the JC contribution is very small at the
scale of Figure H.3. In Figure H.3(a—c), since | fa1(77) — f¢| < fa1(n) + f;,
the counter-rotating term cc 1/(fa1 + f+) can also be neglected, and the
RWA is sufficient. When 7; is closer to 1 (Figure H.3(d-g)), fa1 becomes
significantly smaller than f; near 6 = 7 and the counter-rotating term
must be taken into account, as illustrated in Figure H.3(g”) where the
RWA prediction shown with a dashed line departs clearly from the
data. Overall, this series of single-tone CW spectroscopies show that
the measured resonator shift associated to the many-body occupancies
of the atomic contact weak link can be well described by our theory
for zero-length junctions. Let us now extend it to model the two-tone
spectroscopy measurements that were performed on the same system.

Two-tone spectroscopy

To further illustrate the agreement with our theory for the resonator
shift, let us now focus on the two-tone spectrum measured for the atomic 13 5A (V) g:gg EH HE 8;3 5Q
contact of Figure H.3(d) [16] that is shown in Figure H.4. A single pair 12 4 -0.02 -0.2
transition is observed in the measurement window, corresponding to

a channel with transmission 7 = 0.992. To acquire this data a strong
microwave pulse is used to drive the {|g), |e) } two-level system, during a :
time exceeding its relaxation and dephasing times, immediately followed o \/
by a microwave tone probing the resonator. The two quadratures of the

signal reflected by the resonator are measured by homodyne detection, 8

as depicted in Figure H.2. In Figure H.4, the color scale represents
the change of amplitude 6A of one of these quadratures, relatively to

its value in the absence of excitation. It depends on the steady state
occupancy of the states after the excitation pulse and on the frequency

f, (GHz)

I I I
0.95 1.00 1.05

o/m

Figure H.4: Two-tone spectrum measured
on the same atomic contact as for Figure

shift of the resonator in each state. For this data taken on a very high- H.3d. Left: experimental data. Colorscale
transmission contact and around 6 = 7, the resonator frequency shifts corresponds to the change of amplitude of

. . i . i L. a quadrature of the reflected signal. Right:
are dominated by the dispersive shifts, with negligible effects from the calculated spectrum, where the color en-
states in the continuum, and therefore the rotation wave approximation codes the change in S11, scaled in order to

(Eq. (H.8)) applies: 0 % = ~5 £V = — (¢(8)/210)? /(fa — f,) with g(6) = " atbestthedata.
g(M)EA(1)/EA(0) (from Eq. (H.1), when E4 < A).
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As mentioned earlier, in our two-tone spectra, the measured quantity is
not the resonator frequency shift. Therefore, to make contact with our
theory, one needs first to relate the amplitude of the signal reflected by
the resonator to the frequency shift of the latter. When the resonator
frequency is f, + 6 f;, the complex reflection coefficient of a measurement
tone at frequency f; + 0 fi; is known to be given by [16]

S1u(6f) =1 (1+¢9), (H.15)

S S
1+ Qext/Qint

with
0 = —2arctan (ZQt(éf, - 6fm)/fr) , (H.16)

where one recognizes the equation of a circle of radius 1/(1+ Qext/Qint) in
the complex plane. In this expression, Qint, Qext and Q; are the internal,
external and total quality factors of the resonator. When driving the
system, if it is in an even state (probability 1 — p,), the occupancies of the
ground and excited states change by 6p, and 6p, = —0pg, resulting in a

change of 511 by 6511 = 6pg(511(6f,|g>) - 511(6f,|€>)). Putting everything
together, one gets, for 6 f,, =0,
55y = op— " _is0 (H.17)
n= pg1+@1+4u2_ ! '
Q.

int

with u = Q;0 fJg> / fr- We have now almost all the pieces to compare the
two-tone spectrum with the theory for the resonator shift, except the
expression for the population transfer 6p, due to the driving tone. To
compute 6p, one can use the steady-state solution of the Bloch equations
[93] adapted for the presence of the odd state:

0 1-p,
S50 = Pe— =2
Pg = 1 4 L(Towp ’
L hw?

(H.18)

with Ty and T, the life time and coherence time, 6w = 2n(f; — fa) the
detuning between the drive frequency f; and the Andreev pair qubit
frequency fa, and wr the Rabi frequency. For simplicity, we assume
here that Ti and T, are constant: Ty = 4 us and T, = 38 ns (values
measured at 6 = ). Since the excitation acts on the phase across the
contact, the Rabi frequency depends on : wg o .#? (see Eq. H.1). The
drive tone being sent through the resonator, its amplitude is filtered:
wr o« (1+Qfi/fy - fr/f1)?) V2. In the fitting of the data, wg is set to
21t X 4.2 MHz at 6 = 7 in order to reproduce the measured line width.
Using Q; = 2200, Qint = 4800, f, = 10.13 GHz, and g(n)/2n = 72 MHz,
one obtains the fit shown on the right hand side of Figure H.4, with
the color scale of 6Q adapted to match the data. Not only does the
change in the Q quadrature reproduce the changes 5A in the measured
quadrature on the resonance line f4(0), but one also predicts a signal
at fi = f,, which has its origin in the very large Rabi frequency when
the drive signal is not filtered by the resonator. At this precise frequency,
the strong detuning dw is compensated by the large wr in Eq. (H.18),
and Op, is non-zero even if the drive is far from the resonant frequency
fa. This feature is clearly visible in the data, although not as strong as
in the calculation for f4 > f, perhaps due to an effect of the resonator
non-linearity not included in the model.

[16]: Janvier et al. (2015), ‘Coherent
manipulation of Andreev states in
superconducting atomic contacts’, p. 38

[93]: Palacios-Laloy (2010), ‘Superconduct-
ing qubit in a resonator’, p. 111
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(a) 16 fA3

5A (V) 5Q
0.01 0.1
6_
0.00 0.0
-0.01 5 -0.1
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(b) 20 999
10~ S1:(dB)
N 0
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Figure H.5: Two-tone spectrum of an atomic contact with several highly transmitted
channels. On the right half of the figure, calculated spectrum with identification of three
Andreev transitions with frequencies fa1 3. Lines color corresponds to the calculated
change in Q quadrature of Sq1. (b) Grayscale encodes the reflection coefficient amplitude
|S11]. Lines on the right-hand side are theoretical resonator shifts depending on the states
occupancy: black (ggg): all channels in ground state; Red: first channel in odd state (ogg);
Green: 2nd channel in odd state (gog); Blue: first and second channel in odd state (0og). A
global shift of —3.4 MHz was applied to the theory curves, which can be attributed to the
effect of several low-transmitting channels that are not visible in the two-tone spectrum.

One can play a similar game and fit an even more complex spectrum
from an atomic contact with more than one highly transmitted channel.
In Figure H.5, we show the two-tone spectroscopy and the single-tone
CW data of such a contact, obtained with the same sample and showing
a double avoided crossing. In the two-tone spectroscopy (Figure H.5(a)),
one observes three Andreev pair transitions (labeled fa1, fa2 and fa3)
corresponding to channels with transmissions 71 =0.998, 1, =0.992 and
73 =0.980, with minimum transition frequencies (at 6 = m) of 4.1,7.7,
and 12.6 GHz. Out of the three, two transition lines f4; and f4» cross the
resonator at 10.1 GHz.
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The experimental data (left half of Figure H.5(a)) show split transition
lines at 6 # 7. This splitting comes from the fact that the phase across
the contact can take several values at a given applied magnetic flux @,
depending on the occupancies of the ABS associated to each channel.
Indeed, due to the finite loop inductance and the relevance of the
superconducting phase, the channels are not strictly independent. As
already mentioned in Section H.2 on single-tone spectroscopy, the phase
0 across the contact, which is shared by all the channels, is in general
not proportional to the reduced flux ¢ and depends on the loop current,
due to the finite loop inductance. In the presence of several channels
which can be either in the ground or the odd state (we neglect the
occupancy of the excited states), this current can actually take several
values, depending on the occupancies of the Andreev dots associated
to each channel. If the current in one channel is modified (because the
Andreev dot changes state), the phase across the contact changes for
all dots, leading to an effective coupling between the channels. This
effect was already discussed qualitatively in [21], but here we provide an
additional quantitative modeling of this splitting.

To calculate the spectrum from theory, we use Eq. (H.15) (with 6 f,, =
—0.4 MHz) for each state |¥), and compute the weighted average
S11 = Zjwy pwyS11(|W)) using the probabilities pjy) for each state. The
probabilities to find each channel in the odd state were taken constant,
Po1 = 0.55, po2 = 0.5, po3 = 0.4, determined by fitting the phase depen-
dence of 511 ((p) at an excitation frequency where no transition is observed
(fi = 16 GHz). In presence of the excitation pulse, the change in each
p|w) was obtained from Eq. (H.17). For simplicity, we assumed T; = 4 us
and T, = 38 ns at each phase and for each state. Depending on the state
of the other channels, a transition from |g) to |e) in one channel leads
to different changes in S1j, as illustrated in Figure H.6. The resulting
calculated spectrum is shown in the right half of Figure H.5(a), in which
we represent the changes 60Q in the Q quadrature. Fainter lines in the
data are multi-photon transitions (at fa; /1), or transitions involving two
channels (fa1 + fa2 and (fa2 + fa3)/2), not included in the theoretical plot.
They appear because the spectroscopy was performed at a particularly
strong drive power. Despite the crude simplifications in the analysis, the
changes A in the amplitude of the reflected signal in Figure H.5(a) are
well reproduced by the calculated changes in the Q quadrature of Sy;.
Similar agreement is found on the other quadrature.

In Figure H.5(b) we show the single-tone spectroscopy of the resonator.
The resonator frequency shift calculated under the assumption that the
three channels are in the ground state is shown as a black solid line.
Features associated with configurations in which one (red and green
lines) or both (blue line) of the two most-transmitted channels are in the
odd state are also observed. Horizontal shifts of the red and green lines
with respect to the black ones result from the phase drop across the loop
inductance, different in each configuration. The analysis of the data of
Figure H.5 illustrates how, in a multi-channel weak link, the frequency
shift associated with a transition in one channel can depend strongly
on the occupancy of the Andreev states in the others, therefore adding
further complexity in the modeling of a two-tone spectrum.

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’, p.165 (Appendix C)

Figure H.6: Representation in the IQ
plane of S11 at @ = 1.04n, for the states
involved in transitions on the third chan-
nel (see dashed line in Figure H.5(a)). De-
pending on the state of the two first chan-
nels, the change of Q takes very different
values, the largest change corresponding
to loog) — |ooe) (in magenta). In Fig-
ure H.5(a), 6Q for the four transitions
is further scaled by the probability of
each initial state, e.g. po1po2(1 — po3) for
loog) — |ooe). Among the four transi-
tion lines, only this one is clearly visible in
Figure H.5(a).



Principles of pulse generation &
demodulation

I.1 Single sideband mixing

1Q mixer

To obtain the microwave pulses at the frequency of interest, we use a
single sideband mixing technique based on IQ mixers. In this method, a
continuous microwave at frequency wio is applied to the local oscillator
(LO) port of the mixer, and AC-modulated signals at an intermediate
frequency wrr in the 0 — 100 MHz range are applied on both the I and Q
ports to translate the frequency to the targeted value and define the pulse
envelope. The output microwave pulse is then picked on the RF port of
the IQ mixer, resulting from the combining of the I and Q signals mixed
with a respectively in-phase and in-quadrature LO tone. A functional
diagram of the mixer is depicted in Figure L.1.

Ideally, to generate a microwave pulse Sin(t) at the frequency wrr = Figure L1: Functional diagram of an IQ
wro + wir with a slowly-varying envelope Ain(f) and phase @in, one mixer.

would use a LO carrier LO(t) = Ar cos (wrot) in addition to I and Q

signals at the intermediate frequency wir with the same envelope Ajn(t)

and phase @in, butata 71/2 phase difference from each other. The resulting

RF signal at the mixer output would then take the following form :

Sin() = LO(H) - I(t) + LO(t + —

)-Q(f)

ZwLO
= AL Ain(t) [cos (wrot) cos (wipt + @in) — sin (wrot) sin (wipt + (pin)]

o Ain(t) cos (wrpt + (Pin)/ (L1)

which corresponds up to a prefactor to the targeted waveform for the RF
pulse. However in practice, as any microwave components, IQ mixers do
suffer from some imperfections. In addition to their operation bandwidth,
generally limited to a few GHz, and their RF saturation power around
a few dBm, they are characterized by a finite amplitude and phase
imbalance between the I and Q branches. This means that contrary to
the ideal case of Eq. (I.1), the IQ mixing rather takes the form LO(t) -
I(t) + (1 + a)LO(t + 57—+ B) - Q(t), where a is typically 1 -2 dB and the
phase imbalance f5 is at best a few degrees. These imperfections result in

the following mixing :

Sin(t) o< cos (wrot) cos (wirt + @in) + (1 + @) cos (wrof + g + B) sin (wipt + @in)
= %[COS ((wLo — wip)t - §01n) + cos ((CULO + wip)t + <Pin)

+ (1 + a@)sin ((a)Lo + W)t + Qin + g + ﬁ)

—(1+a)sin ((a)LO - OBt = Pt 5 + ﬁ)] -

Defining w; = wrr = wio + wir and w- = wro — wir for the frequencies
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of the upper and lower sidebands, we get :

Sin(t) o< % [cos (w-t — @in) + cos (w+t + Pin) (1.3)
+(1+a) [cos (w4t + @in) cos (B) — sin (w4t + @in) sin (ﬁ)]
-1+a) [cos (w-t — @in) cos (B) + sin (w-t — @in) sin ([3)]

a a
o (1 + E) cos (w4t + Qin) — 5 cos (w—t — Qin)
p

- E(l + a) [sin (w4t + @in) + sin (w-t — (pin)]. (L4)

This shows that for small but finite imbalance a, f < 1, in addition to
the desired RF signal, the IQ mixing gives also rise to a spurious signal at
the lower sideband frequency w_. These mixer imperfections are known
to decrease with increasing LO power, therefore the initial LO tone
generated by a microwave source is generally first amplified to typically
15 — 20 dBm before entering the mixer. Even under these conditions,
the amplitude and phase imbalances remain significant and corrections
are needed to suppress or at least minimize the lower sideband signal.
To do so, we compensate by applying I and Q signals with slightly
different amplitudes and phases obtained from a preliminary calibration,
involving a spectrum analyzer to minimize the power at the unwanted
sideband.

I.2 Demodulation

Now, after routing Sin(f) to the sample, we want to detect the outgoing
signal Sout(t) = 34‘—1{9{&“(15)} - Sa1(w)} = Aout(t) cos (wrrt + (Pout)
and extract its amplitude and phase, which encode information on the
weak link state. This process of extracting the waveform information
{Aout, Pout} of a modulated signal is called “demodulation”. As we will
show, it can be thought about as a projection from the waveform space
onto a 2D plane with coordinates I and Q.

For Sin(t) given by a square unit-step or a fast-load pulse, the analytical
expression for the outgoing signal was derived in the previous section
using complex amplitude notations (see Egs. (9.5, 9.13)). To relate to this
complex notation, we can express the real input signal S;»(f) in terms of
its I and Q components :

Sin(t) = Ain(t) cos (wrrt + @in)
= Apn(t) [COS (wrrt) cos (@in) — sin (wrrt) sin ((pm)]
= [in(t) cos (wrt) + Qin(t) sin (wrFt) (1.5)

th Iin(t) = Ain(t) cos (¢in)
Qin(t) = —Ain(t) sin (@in) ’

which shows that any signal can be described by a point in a 2D plane,
determined by its amplitude Ain(f) and phase @iy, (see Figure 1.2). With
this, we can rewrite the input signal in terms of real and imaginary parts
of a complex amplitude input, for which we know the associated output

(a) Ain (t) \

Sin(t)

~ Vv

WRF

Qin Ain (t)

v

[

Figure 1.2: (a) A microwave pulse is de-
scribed as a slowly varying waveform
Ain(t) on a fast-oscillating carrier at the
frequency wrr and phase @iy. (b) Any
such signal can be decomposed into its in-
phase (I) and quadrature (Q) components
in a frame rotating at frequency w. @i, is
counted clockwise to keep with the minus
sign convention in Q.
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from Egs. (9.8,9.15):
Sin(t) = Re[zm(t)ewaFf] + Im[Qm(t)ewaFf]. (L6)

By linearity of the response, the real output signal So¢(f) is then obtained
by simply adding up the two responses for the real and imaginary
parts.

Once the input signal at frequency wrr has crossed the sample transmis-
sion line, a heterodyne detection is performed (see Figure 1.3) by down-
converting the output signal Sout(f) = Aout(t) cos (wret + Qout) using
another IQ mixer with the same LO tone that was used for the single-
sideband generation (this ensures that a well-defined phase relation
between input and output signals is maintained). The output signal
picked on the I port is then given by :

Iout(t) & Aout(t) Ccos (a)LOt) cos (a)RFt + (Pout)

= IqouTt(t) [COS (a)H:t + (pout) + M]

Aout(t
~ %() cos (wIFt + (Pout)/ (17)

=

where the second term oscillating at 2wi0 + wir is discarded by low-pass
filtering above 2wrr. Similarly, the output signal on the Q port is :

Qout(t) o _Aout(t) sin (wLOt) Ccos (wRFt + (Pout)

_ _Ao;t(t) [M —sin ((wp)t + Pout)

~ Aout(t)
2

sin (wipt + Qout)- (1.8)

These two signals {Iout(f), Qout(t)} are subsequently digitized with a sam-
pling period 6t in a chosen time window during which their amplitude
Aoyt remains constant:

Aoy
Loutlk] = %t cos [wipkot + Qout]

A
gm sin [wipkdt + Pout]-

(1.9)
Qout [k] =

Applying the same procedure as for the input signal Si»(f) in Eq. (I.5), one
can rewrite the two output signals in terms of their I and Q components
with respect to wrr :

O

A u Aou . .
Tout[k] o< [Tt cos ((pout)] cos [wpkdt] + [_Tt sin ((pout)] sin [wipk Ot ]
[ —
I Ql

Aou . Aou .
Qoul k1 o [ 222 sin (gou) | cos [awrkot] + [ 222 cos (pour)| sin [wirkot].

N— e’ N———
I Q2

S(w)|?
l ( )l @ Heterodyne
down-conversion Sout (w)
WiF
N_— +
- + . »
0 wir w_ Yo w,

\ )

@ Numerical demodulation

Figure 1.3: Frequency representation of
the demodulation and heterodyne de-
tection processes. The output signal
Sout(t) = Aout cos (wrrt + (Pout) at fre-
quency wgrr = @+ is mixed with a strong
LO tone. After low-pass filtering, the re-
sulting I and Q outputs, oscillating at the
intermediate frequency wir are digitized
and then demodulated numerically to re-
cover the slowly-varying amplitude Aoyt
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In practice, these I and Q components are obtained by numerical demod-
ulation of {Iout[k], Qout[k]} at the intermediate frequency wir :

Tout,cos 2 & Lout[k] ] Aout [COS ((Pout)} [ll]
/ = — cos [kwpdt] ~ — | . = p
[Qout,eos] N =0 Qoutlk] [krrot] 2 |sin(@out) I
(L.10)
where the second equality is obtained assuming that the sample size

corresponds to an integer number of periods: N6t x Z= € N. If this is not

verified, a residual error scaling as o« 1/N will be present. Similarly,
[Iout,sin] E i Iout[k] ] sin [ka)lpét] ~ Aout [_ sin ((Pout)} _ [Ql} )
Qout,sin N k=0 ]

Qout[k 2 cos ((Pout) Q2

(L11)
From this decomposition, we see that by computing the following com-
binations, one can extract the amplitude Aqy: of the outgoing signal :

Tdemo =+ + = Aout €08 (@oy
{d d 1+Q £ €08 (Pout) (112)

Qdemod = _Ql + I = Ague sin ((Pout)/

from which we easily recover the output amplitude and phase :

— 2 2
AOUt - Idemod + demod (113)

@out = arctan (Qdemod/ Idemod)-

In practice, Igemod and Qdemod are obtained by computing numerically
the real and imaginary part of the following complex amplitude :

Ademod = 72 7 (Toulk] + jQuul e ke

(Iout[k] + onut[k]) (Cos (keoreot) — j sin (kwlpét))

I
Zin Zn Z|e
1= 114= 114

(towlK] cos (k@redt) + Qoul 1 sin (kwresh))

k=0
- -Q
+ 7(QuulK] cos (kargdt)  Lowl k] sin (ko)) (114)
- -1

from which we finally deduce :

(115)

Tgemod = Re[Ademod]
Qdemod = Im[Agdemod]-

Importantly, the advantage of computing the four demodulation products
I, Q1, I and Q; instead of just performing Iqemod = 211 and Qdemod =
2I, is that the particular combinations given in Eq. (1.12) happen to
cancel out any spurious signal possibly transmitted at the lower sideband
frequency w_, resulting from the imperfection of the IQ mixers. Indeed, re-
doing the same derivation above for a signal N_(t) = N_ cos (w-t + ¢_),
we would find the following expressions for the two signals at the mixer
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output:

I, (t) x [+% cos ((p_)] cos (wpt) + [+% sin ((p_)] sin (wygt)

— —_———
h,- Q1,-
N- N_
Qo_(t) o [‘*‘7 sin ((P—)] cos (wipt) + [—7 cos ((P—)] sin (wrpt),
— —_—
- Q2
and then :
I _ =+ _+ _=0
demod, 1, QZ, (116)
Qdemod,— = _er— + 12,_ =0.

Note that the above derivation was performed assuming ideal IQ mixers.
The finite imbalance of real components will naturally prevent from
reaching perfect cancellation of the lower sideband. Still, it is good
practice to perform the numerical demodulation this way.
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Towards measurements of ABS
at high magnetic fields

In this Appendix, I present the progress made towards the ABS spectroscopy
under high axial magnetic field.

During my thesis work, the highest field we applied was a few tens
of mT, which was enough to get a measurable Zeeman shift of the
Andreev levels and confirm the spin nature of the measured transitions
[51]. We did not explore the behavior at higher fields mainly due to
three reasons. First, we observed that the internal quality factor of sCPW
resonators degrades at moderate fields much smaller than the critical
field of the resonators’ material (H,, ~ 6 T in NbTiN). It is well known
that NbTiN is a type-II superconductor and that even a small magnetic
field (H¢1 ~ 1uT) results in the creation of Abrikosov vortices. When
exposed to microwave fields, vortices oscillate causing dissipation. In
order to mitigate this problem and keep internal quality factor high, next
generation of resonators has to minimize the number of vortices (for
example by using a CPS topology instead of CPW and eliminating the
contribution of large superconducting ground planes) and to limit their
dynamics (by introducing pinning centers for vortices into the regions
where microwave currents take place). The last point is discussed in
Ref. [147]. In this work, Kroll et al. reported high-Q resonators under
parallel field up to 6 T by introducing lithographically defined defects to
pin vortices.

Second, the connection between the thin (~25 nm) Al-shell of nanowires
and the NbTiN of the resonator is made of ~130 nm thick Al. This
thickness cannot be reduced to ensure a reliable connection and hence
the Al will become normal above ~10 mT even for parallel fields. In
order to circumvent this problem Al patches must be replaced by a
superconducting layer supporting high magnetic fields like for example
NbTiN. This requires to develop a new nanofabrication step combining
Ar etching to eliminate the Alumina layer on top of the nanowires with
sputtering NbTiN deposition through a PMMA mask.

Third, any small misalignment in the field would contribute to a per-
pendicular flux through the chip and therefore, once the first two issues
has been solved, perturb the phase bias of the weak link. In such condi-
tions, probing the Andreev spectrum by microwave spectroscopy would
become challenging, as the superconducting phase difference 6 would
need to be continuously readjusted each time the field would be swept.
To avoid such a complication, a straightforward improvement would be
to switch to a gradiometric design [148, 149], where the nanowire would be
embedded in two adjacent symmetric superconducting loops instead of
one (see Figure ].1). Any external uniform field would contribute to equal
fluxes through each of the two symmetric loops and therefore generate
equal currents that are canceled out at the junction, thus rendering the de-
vice insensitive to first order to any misalignment in the parallel Zeeman
field (Figure ].1a). More generally, even when no Zeeman field is to be
applied, implementing such a gradiometric scheme would also have the
advantage to help reducing the sensitivity to the ambient magnetic-field

[51]: Tosi et al. (2019), ‘Spin-Orbit Splitting
of Andreev States Revealed by Microwave
Spectroscopy’
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Figure J.1: Gradiometric scheme for mag-
netic field noise insensitive devices. (a) If
an external flux et is applied, the two
loops pick up the same flux so that not net
superconducting phase difference arises
across the weak link 6 = 0. (b) The super-
conducting phase difference 6 across the
nanowire can be generated using a current
bias I}, in a nearby flux line. Because the
left/right loops are symmetric, the cur-
rent bias generates opposite fluxes in both
loops, so that the partial phase drop at
the weak link due to each loop, 61, and 0Og,
add up constructively.

[147]: Kroll et al. (2019), ‘Magnetic-
Field-Resilient Superconducting
Coplanar-Waveguide Resonators for Hy-
brid Circuit Quantum Electrodynamics
Experiments’

[148]: Pita-Vidal et al. (2020), ‘Gate-
Tunable Field-Compatible Fluxonium’
[149]: Wesdorp et al. (2021), ‘Dynamical
polarization of the fermion parity in a
nanowire Josephson junction’
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Figure J.2: Comparison between the standard (a) and gradiometric (b) design of sSCPW resonators. (c) Sample with the standard design
where the NW shunts the gap of the CPW resonator on one side, therefore closing the left loop. Note that the inductive wire shorting the
CPW has been designed with a wiggly shape to increase its length and crank up the NW/resonator coupling. (d) Sample with gradiometric
loops. The NW is deposited on the central condutor of the CPW between the two symmetric loops. A current bias I} is applied in a nearby
flux line that generates opposite fluxes in both loops, as described in Figure J.1 and giving rise to a superconducting phase difference across
the weak link. SEM pictures of the nanowire deposited on each device are shown on the right.

noise and therefore likely improve the coherence properties of the device.
Note however that in this gradiometric configuration the nanowire cannot
be phase biased using the homogeneous magnetic flux @ext of an external
coil. One solution is to resort to a local current line to put flux in the
nearby loop (Figure ].1b). Although the gradiometric loops are designed
to be symmetric, the unavoidable imprecision in the manual deposition
of the nanowire would lead to a small imbalance between the effective
area of the two gradiometer loops. Therefore, a compensating coil would
still be required.
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(b)

Figure J.3: Current distribution in the gradiometric (a) and standard (b) designs when a DC current bias of I, = 1 mA is applied to the flux
fline (the differences between the two designs are more visible in Figure J.5, note that in (b) the right loop is not closed). Data was simulated
using the 3D-MLSI software for inductance extraction. The direction of the current flow is shown with white arrows and the magnitude of
the current density is encoded in colorscale in mA /pm.
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To design the current bias line, we need to estimate its mutual coupling
M to the weak link loop in order to compute the current bias I, needed
to put one flux quantum in it. Indeed, an arbitrarily high DC current
cannot be driven through the flux line, as it could dissipate in the residual
resistance of the bias tee and warm up the mixing chamber of the fridge
(see Section 13.2 for a schematic of the fridge wiring). The bias tee that
we had at hand was measured to have about 1Q) resistance at liquid
nitrogen temperature”. Assuming a cooling power of 17 pW at 20 mK, this
means we should not drive a current higher than y/17pW/1Q = 4 mA.
With a safety margin of a factor 10, this means that the mutual coupling
should be high enough so that a current of [," = 400 pA could generate
a flux quantum ¢ in the superconducting loop, i.e. we should have
M > ¢o/I™ ~ 5 pH.

To guide the design of the flux line, we used the simulation tool "3D-
MLSI" for extraction of inductances of multilayer superconductor circuits
[150]. This software allows for 2D magneto-static simulations by solving
numerically the Maxwell-London equations on a triangulated mesh
using the finite element method. As well as extracting self and mutual
inductances for the defined 2D conductors, it also allows to simulate
and visualize the currents flowing in the superconducting films and the
3D magnetic field distribution around them. We used it to simulate two
geometries, corresponding to the standard design with an improved
coupling and the gradiometric design. The two devices fabricated with
these geometries are presented in Figure ].2 and the results of the magneto-
static simulations are shown in Figure J.3. They allow to visualize the
current distribution in the superconducting film arising from a typical
current bias of I, = 1 mA in the flux line. In Figure ].4, we show for each
geometry the dependence of the mutual inductance M on the distance
d separating the current line to the superconducting loops. Using the
nominal loop length L = 93 um and assuming an effective loop width
Wegr = 8.9 um, it can be well fitted by the simple analytical formula
estimating the mutual coupling between a rectangular loop and a straight
wire assuming infinitely thin wires [21] :

Ho

M=—
21

d+w)

Lln( -

7.0
where w is the width of the rectangular loop and L its length. Results
for the geometries of the two fabricated devices are plotted in Figure J.3
and a zoom-in around the loop is shown in Figure J.5. The simulation of
the standard design — with a d = 5 um gap between the weak link loop
and the flux line — gives a mutual inductance M = 15.6 pH and a loop
inductance Lioop = 195 pH (Figure ].5b). The inductance of the flux line
is estimated to Ly = 857 pH. From this, we can compute the associated
coupling coefficient k = M/+/LioopLa = 38%. For the gradiometric
design, the presence of a 5 pm wide ground strip between the flux line
and the loop (necessary to short the resonator’s end to ground) makes
the minimal achievable loop-flux line separation necessarily larger. The
mutual coupling between both is therefore expected to be weaker ; the
simulation yields about a factor 2 difference, we get M = 7.8 pH for the
gradiometric design and Lioop = 193 pH (Figure ].5a). In this case, the

* We later found a better bias tee, SHF’s BT45 B (20kHz-45GHz), with about 5 Q) at room
temperature but only R ~ 0.4 Q at 77 K.

[150]: Khapaev (2004), 3D-MLSI: Extraction
of Inductances of Multilayer Superconductor
Circuits

[21]: Janvier (2016), ‘Coherent manipu-
lation of Andreev Bound States in an
atomic contact’, pp.61-62
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Figure J.4: Mutual inductance M as a func-
tion of the distance d between the current
line and the superconducting loop, simu-
lated using 3D-MLSI for the two geome-
tries described in Figure ].2. The simu-
lated data is fitted with the theory for the
coupling between a straight wire and a
rectangular loop (Eq. (J.1)). The values of
the mutual inductance corresponding to
the geometries (a) and (b) of Figure J.5 are
highlighted by arrows.
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Figure J.5: Extraction of the loop inductance Ljoop and the mutual inductance M with the flux line for the gradiometric (a) and standard (b)
designs. The current density when a DC bias of I, = 1 mA is applied to the flux fline is shown in colorscale. The ratio of the current ljo0p
induced in the loop to the bias current Ij /2 in the left part of the flux line is estimated to 0.02/0.5 = 4% for the gradiometric design and to
0.04/0.5 = 8% for the standard design, which has no ground strip between the loop and the flux line.

coupling coefficient is estimated to k = M/+/LioopLa = 19%. For both
designs, the mutual is higher than the 5 pH value that we had targeted,
therefore it should allow to phase bias properly the nanowire while
remaining in a safe mode of operation for the fridge and the device.

When first measuring the devices depicted in Figure J.2, the flux modula-
tion of the resonances was showing a hysteretic and jumpy behaviour.
The effect was present both when applying an external flux using the
small coil or a DC current in the flux line. We later understood that this
was due to a spurious DC loop involving the ground plane around the
resonator and a bonding wire that we had put above the flux line to
connect the ground planes. This extra loop was therefore screening the
external field until the critical current of this loop was reached, at which
point it would let some flux enter the loop (which would manifest as a
sudden jump in the resonance frequency) and decrease the flux focusing,
and so on. Once this bonding wire was removed, the flux bias worked
properly.

For the gradiometric resonator, a regular modulation of the resonance
frequency was measured, with a period of 0.49 mA. This coincides
well with the expected value from simulation, using the My, = 7.8 pH
computed by 3D-MLSI : the current should be ¢o/My = 0.26 mA,
hence 0.52 mA to drive in the flux line (factor 2 because the flux line is
left/right symmetric and current is split in two). From the measured

value of the period, we therefore estimate the mutual coupling to be
Mext = 2¢00/0.49mA = 8.4 pH.

For the standard resonator, without any gradiometric loops, the resonance
frequency was also modulating regularly with the applied external flux.
For the sample with a galvanic coupling to the nanowire, the weak link
loop had a nominal surface of 1000 pm? and the coil period for the
resonance modulation was about 0.10 mA. For this new sample with an
increased loop surface of 2600 pm?, we therefore expected a coil period
smaller by a factor 2.6, i.e. about 0.039 mA. The voltage that we had to
apply on the coil to sweep one period was about 0.021 mA, which is a factor
two away from the expected value. Note that there is likely to be some flux
focusing around the sample due to the bonding wires, the sample box, etc.
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and so an exact agreement with the nominal value was not to be expected.
Interestingly, we still measured a modulation of the resonance frequency
of the gradiometric resonator when an external flux was applied with the
coil, but the coil period was this time measured to be around 0.89 mA,
i.e. about a factor 40 bigger than for the standard resonator, therefore
proving the efficiency of the gradiometric design. Unfortunately this
sample had other issues for the spectroscopy applications and we did
not measure it further.



Gallery of two-tone nanowire
spectra

In the following we present a collection of various two-tone microwave
spectra acquired over different cooldowns of the sample S2 for many dif-
ferent values of the gate voltage. The grayscale represents the magnitude
of the in-phase (I) and quadrature (Q) components of the demodulated
measurement field. Since some transition lines sometimes appear with a
better contrast one one quadrature rather than the other, we present both
for the sake of completeness. The I quadrature corresponds to the top
plot when the spectra are in portrait format or to the left plot when they
are in landscape format. The associated single-tone spectroscopy of the
resonator is shown below with the same phase axis.

To guide the reading of the spectra, the main transition lines were
highlighted in color : the lowest pair transition (red), the lowest set(s) of
single-quasiparticle transitions (green) and the four mixed pair transitions
(blue), whenever they were visible. Additional lines at higher frequencies,
showing phase dispersions reminiscent of pair transitions, may have
also been highlighted in blue in some spectra, like in Figures K.22 and
K.24. In some of them, intra-manifold spin-flipping transitions are visible
at frequencies f; < 5 GHz (see Figures K .4, K.8, K.9, K.13, K.14 and
K.22-K.24). To confirm their identification, their frequency expected from
the observed set of single-quasiparticle transitions was plotted in green
dotted lines. The dashed lines appearing in some spectra correspond
to replicas at *f, of some of the transition lines. In some cases, the full
phase dispersion of the mixed pair transitions in solid blue lines could be
recovered from their visible replicas at lower frequencies (dashed blue),
see Figures K.9, K.10, K.13 and K.26.
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Figure K.1
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Acronyms

AR Andreev reflection.

VNA Vector Network Analyzer.

SNR Signal over noise ratio.

WL Weak link.

NW Nanowire.

AC Atomic contact.

PT Pair transition.

SQPT Single-quasiparticle transition.
SEM Scanning electron microscope.
BdG Bogoliubov-de Gennes.

cQED Circuit quantum electrodynamics.
ABS Andreev Bound States.

APQ Andreev Pair Qubit.

ASQ Andreev Spin Qubit.

BF Bistable fluctuator.

TRS Time-reversal symmetry.

SOI Spin-orbit interaction.

WZ Waurtzite structure.

ZB Zinc-blende structure.

TB Tight binding.

TRIM Time-reversal invariant momenta.
PCB Printed circuit board.

CPW Coplanar waveguide.

CPS Coplanar stripline.

sCPW Shunted coplanar waveguide.
TWPA Traveling wave parametric amplifier.
HEMT High electron mobility transistor.
TL Transmission line.

Physical constants

Speed of light in vacuum ¢ = 2.99792 x 108 m/s.

Electron charge e ~ 1.60217 x 1071 C.

h Reduced Planck’s constant /1/27 ~ 1.05457 x 1073* m?kg/s.
®o Reduced magnetic flux quantum //(2e) = 3.29106 x 1071® Wb.

[ Y



ECOLE DOCTORALE

L
universite | Physique en

PARIS-SACLAY

lle-de-France (PIF)

Titre : Effets de spin et de charge dans les états liés d'Andreev
Mots clés : Matiére condensée, Transport Quantique, Circuits supraconducteurs, Cryogénie, Micro-ondes

Résumé : Nous présentons les résultats d'expériences
sondant les propriétés des états d'Andreev dans des
liens faibles supraconducteurs a base de nanofils d'Ar-
séniure d'Indium (InAs). Les états d'Andreev sont des
états fermioniques localisés qui apparaissent a la jonc-
tion (ou lien faible) entre deux électrodes supraconduc-
trices. lls sont au coeur de la description microscopique
de l'effet Josephson. Les nanofils d'InAs permettent
d'obtenir des liens faibles de longueur finie, caracté-
risés par un couplage spin-orbite et des propriétés de
conduction ajustables électrostatiquement.

Par la technique d'électrodynamique quantique en
circuit (cQED), qui consiste a coupler le lien faible
a un résonateur micro-onde de fort facteur de qualité,
les états d'Andreev peuvent étre isolés efficacement du
bruit extérieur, et la lecture de la fréquence du réso-
nateur donne accés a leur occupation microscopique.
Nous modélisons ce couplage pour atteindre une sen-
sibilité optimale et comprendre en détail la réponse du
résonateur couplé au lien faible.

Nous avons mesuré les spectres des états d'An-
dreev, et leur dépendance en différence de phase su-
praconductrice. Ces spectres mettent en évidence deux
effets. Le premier est la levée de la dégénérescence de
spin des états du fait du couplage spin-orbite. Cela se
traduit par des lignes spectroscopiques caractérisant
le changement de |'état de spin d'une quasi-particule
unique dans le lien faible. Le second est |'influence des
interactions coulombiennes entre quasi-particules, ré-
miniscentes de la séparation entre états singulet et tri-
plet de deux spins 1/2 en interaction. La modélisation
théorique des liens faibles de longueur finie permet de
rendre compte de ces effets.

Nous caractérisons également les états d'Andreev
par des mesures temporelles. Des bits quantiques sont
obtenus soit en utilisant |'état fondamental et un état
ol une paire de quasi-particules est excitée ; soit deux
états avec une quasi-particule dans des états d' Andreev
différents. Nous avons mesuré les temps de vie et de
cohérence de ces deux types de « qubits d'Andreev ».

Title : Spin and charge effects in Andreev Bound States
Keywords : Condensed matter, Quantum transport, Superconducting circuits, Cryogenics, Microwaves

Abstract : We probe experimentally the properties of
Andreev states in superconducting weak links based
on Indium Arsenide (InAs) nanowires. Andreev states
are localized fermionic states that appear at the junc-
tion (or weak link) between two superconducting elec-
trodes. They are at the core of the microscopic des-
cription of the Josephson effect. InAs nanowires im-
plement finite-length weak links characterized by spin-
orbit coupling and electrostatically-tunable conduction
properties.

By coupling the weak link to a high quality fac-
tor microwave resonator, following the circuit quan-
tum electrodynamics (cQED) approach, the Andreev
states can be efficiently isolated from external noise,
and the resonator frequency readout gives access to
their microscopic occupancies. We model this coupling
to achieve optimal sensitivity and to understand in de-

tail the response of the resonator coupled to the weak
link.

We have performed the microwave spectroscopy of
Andreev states, and measured their dependence on the
superconducting phase difference. The spectra reveal
two effects. The first one is the lifting of the states’
spin degeneracy due to spin-orbit coupling. This results
in spectroscopic lines characterizing the change of the
spin state of a single quasiparticle in the weak link. The
second one is the influence of Coulomb interactions
between quasiparticles, reminiscent of the splitting in
singlet and triplet states of two interacting spin-1/2
electrons. Theoretical modeling of finite-length weak
links allows to account for these effects.

We also characterize the Andreev states by time-
resolved measurements. Quantum bits (qubits) are ob-
tained either using the ground state and a state where
a pair of quasiparticles is excited ; or two states with
a quasiparticle in different Andreev states. We have
measured the lifetimes and coherence times of these
two types of "Andreev qubits".
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