Head: Cécile Reynaud
This topic is in the field in full rise of nanoscience and nanotechnology, which involves the study of structures or materials which have at least one characteristic dimension below 100 nm and have, therefore, specific properties. We develop our own nano-objects synthesis methods with a bottom-up approach. The aim is the formation of new entities with controlled physical and chemical properties. We study their growth process and their specific properties, particularly those induced by size effects. Taking advantage of the diversity of nanostructured objects that we are able to synthesize (nanoparticles, carbon nanotubes, membranes, electrodes...), we develop original nanomaterials or nanocomposites. Dispersion and suspension of these nano-objects, with or without prior functionalization, are studied in order to enable their convenient and safe manipulation. Many characterization methods are implemented, in particular optical spectroscopy and electron microscopy, often through collaborations. The concerned applications are in the fields of optics, optoelectronics, catalysis, sensors and markers (fluorescent or magnetic), new technologies for energy, new technologies for health, next generation nuclear materials, etc. This activity is in close relation with the national and international network of basic and applied research through many national and international contracts.